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Abstract

Why a particle has the specific rest mass it does is an open ques-
tion. An alternative theory of mass is put forward. Mass is due to the
intersection of a Hopf bundle and 3-space. The masses of six lighter
hyperons and electron are derived as functions of the proton and neu-
tron masses. Nine free parameters are thereby reduced to two. The
most significant outcome is the derivation of the electron mass.
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In the Standard Model the Higgs field imparts mass to fundamental par-
ticles. In the crowd analogy the field acts like a throng impeding the progress
of a celebrity across a room.[1] The slower the progress, the stronger the in-
teraction, the heavier the particle. If we dig a little bit deeper, particles that
exhibit internal Lie group symmetry at higher energy states gain mass when
spontaneous symmetry breaking couples with the Higgs field.[2, 3] The caveat
is the Higgs field interacts with quarks, leptons and some bosons, but not
photons; while the bulk of Hadron mass is due to quark confinement and not
the Higgs field. Unable to predict why a particle has the precise mass that it
does, the Standard Model leaves particle mass an open question. An alter-
native theory of mass is put forward that rethinks why a particle notices a
force. Symmetry preservation (not symmetry breaking) is the cause of mass.
The intersection of the particle and field is also responsible for the entirety
of a particle’s mass. This simplifying premise enables the calculation of six
light hyperons and electron as functions of the proton and neutron masses.
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The topological theory considers a particle to be a Hopf bundle. The
geometry is well understood.[4, 5, 6, 7] A Hopf bundle maps a 3-sphere to
a 2-sphere. The 3-sphere is the set of four dimensional points S3. The 2-
sphere is a two dimensional surface described by the set of three dimensional
points S2. A Hopf fibration continuously maps S3 to S2. This is done with
Hopf maps. A Hopf map (h : S3 → S2) is a surjective function that maps a
subset of S3 elements to a point in S2. An individual Hopf map describes a
circle (Hopf circle). Continuous mapping entails an infinite number of maps
for each point in S3; this requires an infinite bundle of circles that in total
connect each S2 point to every point in S3. The total space is transitive.

To this potted account of a Hopf bundle we bring a physical interpreta-
tion. A ‘Hopf particle’, as we shall call it, is also a 3-sphere that interacts
with an ambient three dimensional space (3-space). Like the Higgs field, the
3-space is a field with a ground state. An external force is a vector in 3-space.
On the surface of the Hopf particle the force applies to a point that also be-
longs to a bundle of Hopf circles. This raises the question of the differing
topologies of circle and point. Continuous retraction is impossible. Only by
cutting may the circle retract to a point. If a circle does not break, the force
must jump topologies. On this view, a particle with topology that deform
retracts to a point offers no resistance and is massless, whilst topological
discontinuity is interpreted as physical resistance to change in location and
speed. With the bundle of Hopf circles at point of contact related to every
point in S3, and a total space that is transitive, the size of the 3-sphere is
the measure of resistance to an external force.

Five equations characterise Hopf particle mass. The first tells us mass
is determined by the size of the 3-sphere. For example, if the mass of the
proton is 938.272 MeV then r ≈ 3.622 MeV. I.E.

M = 2π2r3. (1)

The volume of a 2-sphere is the space the Hopf particle occupies in the
ambient 3-space. This is the volume of an ordinary ball.

V =
2M

3π
=

4π

3
r3. (2)
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At Eq. (2), r is the radius derived at Eq. (1). In the case of the proton
V ≈ 199.108 MeV. The 3-sphere’s extra fourth dimension does not contribute
to the 3-space volume; it is dark in the sense it is not a direction the ball can
be forced to move within the limitations of 3-space.

ρ =
M

V
=

3π

2
. (3)

Eq. (3) means the ball is hyper-dense. The excess mass, we call ‘hyper-
mass’, is evidence of the extra dimension. Hypermass (H) is the difference
between mass and volume.

H = M − V. (4)

Hopf particle mass has the Hopf/hypermass signature (H-signature):

M = (H)(
ρ

ρ− 1
). (5)

H-signatures found in the mass data suggest lighter hyperons are Hopf
particles. For what follows the 2018 CODATA recommended values are used
for the proton and neutron masses (ignoring the standard deviation).[8]

Mp = 938.272 088 16 ± 0.000 000 29 MeV/c2.

Mn = 939.565 420 52 ± 0.000 000 54 MeV/c2.
(6)

All other masses derived in this paper are a function of Mp and Mn. For
instance, the light Σ (Sigma) masses are the following functions.

MΣ+ = (2Mp −Mn)(
ρ

ρ− 1
) ≈ 1189.3712. (7)

MΣ0 = (Mn)(
ρ

ρ− 1
) ≈ 1192.6546. (8)
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MΣ− = (4Mn − 3Mp)(
ρ

ρ− 1
) ≈ 1197.5797. (9)

All three derived values are close to the observed masses. The Parti-
cle Data Group (PDG) fit for MΣ+ is 1189.37 ±0.07.[9] While the PDG fit
for MΣ0 is 1192.642 ±0.024, Eq. (8) is particularly close to Wang 1192.65
±0.020.[10] Eq. (9), however, is over four standard deviations shy of the
PDG value (1197.449 ±0.030). The present PDG fit for MΣ− draws on
three results. Schmidt (1197.43) and Gurev (1197.417) are too low to be the
value derived here, though Eq. (9) is within one standard deviation of Gall
(1197.532 ±0.057).[11, 12, 13] The H-signatures for the Ξ (Xi) pair introduce
a complication that provides a way to check whether Eqs. (8, 9) are correct.

MΞ0 = (MΣ0)(
ρ

ρ− 1
)− Vp ≈ 1314.8104. (10)

(MΣ−)(
ρ

ρ− 1
)− Vp ≈ 1321.0622. (11)

Eq. (10) is within one standard deviation of the PDG fit and is close
to Fanti (1314.82 ±0.06)[14], but a problem looms. When the basic pat-
tern of Eq. (10) is repeated at Eq. (11) the result (1321.0622) is over nine
standard deviations adrift of the PDG fit for MΞ− . The present PDG rec-
ommended value (1321.71 Mev) relies on a 2006 study of a large 1992-1995
data sample.[15] Realistically, the 2006 result makes a future nine standard
deviation downward adjustment unlikely. Accepting Eq. (11) will not do, we
are about to see why [15] is accurate.

If MΣ− is close to 1321.71 a fudge ≈ 0.51 is needed to adjust the Eq.
(11) value. The electron mass ≈ 0.511 MeV is an obvious candidate. For the
moment we call the additional weighting value ‘W’. I.E.

MΞ− = (MΣ− +W )(
ρ

ρ− 1
)− Vp. (12)

At face value W appears ad hoc, but there is a firm reason for thinking
otherwise. There are a few more equations to walk through before we can
see why. First, we give the formula for the Ω− (Omega) mass.
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MΩ− =


3MΞ0 + 2MΞ−

5


ρ

ρ− 1


. (13)

Given Eqs. (8, 9, 10, 12, 13), and using Eq. (2) and Eq. (13) to also find
VΩ− , we use the following equivalences to determine W .


(MΣ0)(MΞ−)− (MΣ0)(MΞ0)

MΣ− −MΣ0

−MΞ0 − VΩ−


ρ− 1

ρ


= 1. (14)


(MΣ−)(MΞ−)− (MΣ−)(MΞ0)

MΣ− −MΣ0

−MΞ− − VΩ−


ρ− 1

ρ


= 1. (15)

Eqs. (14, 15) insist their mix of mass and volume are equivalent to
the pure number ρ

ρ−1
. If the equivalence holds true this is evidence for the

topological theory of mass. The proximity of W to Me gives support to this
idea. When Eqs. (14, 15) = 1, W ≈ 0.510 998 961 080. This compares
to 2018 CODATA value 0.510 998 9500 ±0.000 000 0015.[8] An adjustment
within one standard deviation to either Mp or Mn at Eq. (6) allows W to
come within one standard deviation of the CODATA Me value. From this
we conclude it is highly likely W = Me (MeV), and future adjustments to
Mp and Mn will see W and Me converge. If so, the mass value at Eqs. (8, 9,
10) are accurate to four decimal places, while the values for MΞ− and MΩ−

are within one standard deviation of the PDG recommendation. I.E.

MΞ− = (MΣ− +Me)(
ρ

ρ− 1
) ≈ 1321.7109. (16)

MΩ− ≈ 1672.4824 (Eq. 13). (17)

Before concluding, there is a question to clear up concerning which system
of units is the right system to describe electron mass. In eV, Eqs. (14, 15) =
Me eV

Me MeV
= 1,000,000; or in Kg, Me Kg

Me MeV
= 1.78 ·10−30. It seems the formulae
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only resolve to 1 when the numerator is in MeV. It is difficult to believe nature
privileges increments of one million electron volts. We find the answer lies in
an obsolete cgs unit of magnetomotive force, the Gilbert (Gb).[16] As the unit
of current in an electric circuit is the Volt, the Gilbert is a unit of magnetic
flux in a magnetic circuit. The SI units for magnetomotive force are Ampere
(A) and turn (tr). Turns are the winding number of an electromagnetic coil.
The winding number is the number of times the coil wraps around a point.
In SI units a Gilbert is equal to:

1 Gb =
10

4π
A · tr. (18)

The magnetic permeability µ0 (mu zero) is proportional to the energy
stored in a magnetic field.

µ0 ≈ (4π)(10−7) N · A−2. (19)

The revaluation of SI units in 2019 means µ is no longer an exact value.
However, it is sufficiently close to the number 4π × 10−7 for the difference
to be negligible. Magnetic permeability is related to electric permittivity ε0
(epsilon nought) by the following equivalence.

ε0 =
1

µ0c2
. (20)

ε0 is proportional to the energy stored in an electric field. We divide a
Gilbert by ε0 and use Eq. 20 to simplify and parse dimensions.

1 Gb

ε0
≈ (10−6)(c2) N · A−1 · tr. (21)

The arrangement of units of Eq. (21) converts mass denominated in eV/c2

into rest energy described in Newton-Volt-turns, where n is the number of
electron volts and one turn is the winding number of a Hopf circle. I.E.
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n eV

c2


1 Gb

ε0


≈ n× 10−6 N · V · tr. (22)

The final value given in NVtr is numerically indistinguishable from MeV.

The discrepant topologies of point and circle offer an economical theory of
mass, but not one that plays well with the Standard Model. The smattering
of results presented here are a long way from a thorough-going theory, while
the many questions left open make it easy to discount a challenge to the
Standard Model. Nonetheless, the Σ, Ξ, Ω and electron masses are derived
as functions of the proton and neutron. It is the first time this has been
done.
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