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Abstract. This paper consists of three parts: Starting with the field C

of complex numbers, the Banach space C(V ) of continuous, C-valued
functions on a simply connected compact region V ⊂ C is shown to
decompose the topological direct sum of two complementary subspaces:
a subspace of integrable and therefore analytic functions, and a sub-
space of un-integrable and anti-analytic functions. Introducing orienta-
tion as a central notion, orientation inversion (parity) turns out to be
the complex conjugation, which maps integrable (w.r.t. positive orien-
tation) to un-integrable functions, which are integrable w.r.t. negative
orientation, and vice versa. Orientation allows the extension of complex
analyticity to R

2, which ends part 1. Part 2 is devoted to the exten-
sion of analyticity to multi-dimensions. These results are then applied
in part three to continuous mechanical dynamical systems, where it is
shown that Hamilton-Jacoby theory yields the unrestricted integrabil-
ity of any continuous, mechanical dynamical system of either parity and
represents their solutions as geodesics of (integrated) action functions
of positive/negative parity, i.e.: as fermionic and bosonic solutions.

Part 1. Integrability and orientation of continuous functions in 1 complex
and 2 real dimensions

1. Introduction: Preliminaries and problem statement
Let K stand for either R, R2, or C. A function f from V to either R, R2, or
C is is called continuous on V , if is well-defined and continuous in an open
environment U ⊂ K of V . The set of continuous K-valued functions on V then
is a Banach space C(V,K) with the supremum norm∥·∥ : f 7→ supx∈V

∥∥f(x)
∥∥
K
,

where ∥·∥
K

stands for the absolute value for K = R, the Euclidean norm for
K = R2, and the absolute value for K = C. In the following, we’ll briefly write
C(V ) for C(V,K), when it is clear what the target space K is.
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A path γ in V is a continuous mapping γ : [0, 1] → V , where [0, 1]
denotes the closed real interval from 0 to 1. V s called connected, if for each
x, y ∈ V there is a path γ in V with γ(0) = x and γ(1) = y. A compact set
V ⊂ K is a closed and bounded subset of K. V will be called closed region, if
it is the closure of a non-void open and connected set. The path γ is called
closed if γ(0) = γ(1), and a connected V is called simply connected, if all
closed paths in V are point homotopic in V , i.e.: if V has no holes. Let V be
a simply connected, closed region and f ∈ C(V,K). Then for every piecewise
continuously differentiable path γ : [0, 1] → V , the path integral

∫
γ

f(s)ds :=∫ 1
0 f(γ(t)) dγ(t)

dt dt is a well-defined, continuous linear functional on C(V,K). A
function f ∈ C(V,K) is called integrable, if and only if

∫
γ

f(s)ds = 0 for every
closed path γ in V . In all cases, if f is integrable, then the path integrals
from a fixed startpoint in V to the variable endpoint in V define a function
If , which is commonly called primitive of f . (Since two primitives of the
same function f differ utmost by the choice of the startpoint, which adds an
additive constant, the primitives are naturally defined as equivalence classes.)
While this is trivial for one real dimension, i.e: for V ⊂ R, and it is simple
in the complex (also 1-dimensional) case, with two real dimensions V ⊂ R2,
both f ∈ C(V,R) and f ∈ C(V,R2) there is a twist: primitives of integrable
f ∈ C(V,R) are functions If ∈ C(V,R2), while the primitives of f ∈ C(V,R2)
are functions If ∈ C(V,R). So, if If itself is integrable again to I2f , then
I2f will be in the same space of continuous functions on V as f , and the mth

order primitive Imf of f will be element of C(V,R) or C(V,R2), depending
on whether m is even or odd.

For now, let us restrict to the unproblematic complex case C(V,C) with
V ⊂ C:
If f ∈ C(V,C) is integrable, then f can be uniquely path integrated from a
fixed z0 = x0 + iy0 in the interior of V to any other z = x + iy ∈ V , which –
up to an additive constant of integration – defines a function If ∈ C(V,C),
which is complex differentiable and for which dIf(z)

dz holds. If is therefore
called anti-derivative or primitive of f . Clearly, if f is integrable, then it is
integrable to all orders, i.e. the nth primitive Inf exists for all n ∈ N. For
the next, a definition of complex analyticity is needed: If ∈ C(V,C) is called
(complex) analytic, if for all z0 ∈ V there is an environment Uϵ(z0), such that
for all z ∈ Uϵ(z0): f(z) =

∑
k≥0 ck(z − z0)k is on Uϵ(z0) the uniform limit of

the power series
∑

k≥0 ck(z − z0)k, where ck ∈ C for all k.

We’ll refer to Cauchy theory as the contents of his original article [4].
Morera’s theorem ([1][Ch. 4.2.3, p.122]) shows that analyticity and analytic
continuation are rooted in the integrability only:

Proposition 1.1 (Morera’s theorem: Corollary of Cauchy theory). If V ⊂ C

is a compact and simply connected region and f : V ∋ z 7→ f(z) is continuous
and integrable (w.r.t. dz), then f is analytic on V .
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Remark 1.2. Because of Cauchy’s theorem every analytic function on V has
a primitive (on V ) so it is necessarily integrable. Morera’s theorem hence
implicitly states the equivalence of analyticity and integrability (on V ).

The proof of this theorem uses the following
Lemma 1.3. Let V ⊂ C be a compact and simply connected region.

(i) If f ∈ C(V,C) is integrable and If is its primitive, then the square
If2 := If · If is integrable.

(ii) If f, g ∈ C(V,C) are integrable, the product If · Ig of their primitives If
and Ig is integrable.

We’ll skip the straightforward, well-known proofs (see: [1][Ch. 4.2.2]),
as we’ll extend Morera’s theorem to n ∈ N dimensions in part 2.

The above offers numerous open topics to explore:
(1) The characteristic properties of integrable functions as a subspace of

C(V,C) should be examined:
– is it closed?
– is it open?
– does if have a topological compement, and if so: what is this com-

plement?
(2) For V ⊂ R2 the complex isomorphism ι : V ∋ (x, y) 7→ x + iy ∈ C

isomorphically transforms f ∈ C(V,R2) to ιfι−1 ∈ C(ιV,C). So
Tι : C(V,R2) ∋ f 7→ ιfι−1 ∈ C(ιV,C)

is an isomorphism of Banach spaces, which will be called complex iso-
morphism, either. Then it is to expect that every relation for the com-
plex functions can be mapped via T −1

ι from C(ιV,C) to C(V,R2), and
this includes integrability and analyticity along with it. By the Weier-
straß convergence theorem ([1][Ch. 8 1.1]) this pulled-back space of an-
alytic functions should be closed in C(V,R2), and therefore the complex
analytic functions would be closed in C(ιV,C).

2. Integrability decomposition
Let V be a simply connected, closed and compact region of R2 or C and
f ∈ C(V,K), where K stands for either R, R2, or C. f will be called integrable
at the point z ∈ V , if and only if there are some h0 > 0 such that the path
integrals

∫
γh

f(s)ds of positively (i.e. counter-clockwise) orientated, closed
paths once around the boundaries of circles of radius h < h0 around z are
defined, and such that

∫
γh

f(s)ds = o(hm) holds for any m ∈ N ∪ {0} as
h → 0, which means that 1

hm

∣∣∣∫γh
f(s)ds

∣∣∣ → 0 as h → 0. Because the value

of the path integration gets inverted in sign, 1
hm

∣∣∣∫γh
f(s)ds

∣∣∣ → 0 for h → 0
likewise holds if the paths γh go the opposite way with negative orientation.
A function f ∈ C(V,K), which is not integrable at z ∈ V will be called
unintegrable at z. As such f is unintegrable at z ∈ V , if and only if there is
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some h0 > 0, some C0 > 0, and m ∈ N, such that for any δ > 0 with δ < h0

there is a positive h < δ:
∣∣∣∫γh

f(s)ds
∣∣∣ ≥ C0hm, where again (γh)h>0 is the

family of positively orientated paths with (winding) index 1 along circles of
radius h around z.

Proposition 2.1 (Integrability decomposition). Let V ⊂ R2 be be a simply
connected compact region and K stand for either R or R2.

(i) C(V,K) is the topological direct sum of two subspaces: the space of inte-
grable functions Y+(V,K) and a complementary space Y−(V,K) of un-
integrable functions.

(ii) C(ιV,C) is the topological direct sum of two subspaces: the space of in-
tegrable functions Y+(ιV,C) and a space Y−(ιV,C) of (strictly) uninte-
grable functions.

Proof. The asserted decomposition of C(ιV,C) follows from the decomposi-
tion of C(V,K) through the complex isomorphism Tι. So it suffices to prove
the first statement.

So, let f ∈ C(V,K). Then f is to be continuous on an open super-
set U of V , and we define Q as set of all squares Q(d, x, y) = {(x′, y′) ∈
R2 |

∣∣x′ − x
∣∣ ,

∣∣y′ − y
∣∣ ≤ d/2} for (x, y) ∈ V and some d > 0. Let Γ(Q)

be the set of all positively (i.e.: anti-clockwise) orientated paths γ(d, x, y)
around the boundaries of the Q(h, x, y) with d > 0 and (x, y) ∈ V . Then
pγ : f 7→ pγ(f) :=

∥∥∥∫
γ

f(s)ds
∥∥∥ ≥ 0, (γ ∈ Γ(Q)), defines a family of contin-

uous seminorms on C(V,K). The set of all f ∈ C(V,K), for which pγ(f) = 0
for all γ ∈ Γ(Q) then is closed in C(V,K), since it is the intersection of the
closed sets. It contains all integrable(, continuous) functions on V .

Let Y+(V,K) denote this closed space of C(V,K). Then its complement
is an algebraic subspace, which is open in C(V,K). We call it space of non-
integrable functions and denote it by Y−(V,K).

To finish up, it remains to be shown that Y+(V,K) is also open, or
equivalently to prove that Y−(V,K) is closed. We need to refine this family
of seminorms, in order to make further progress:
For each f ∈ C(V,K) the function

F : [0, d] × V ∋ (h, x, y) 7→
∫

γ(h,x,y)

f(s)ds ∈ K

is uniformly continuous on [0, d] × V , but also:
∣∣F (h, x, y) − F (h′, x, y)

∣∣ =
o(h − h′) (for h, h′ < d). So, F is (right) differentiable (at h = 0) in its
first argument for h → 0, and F is continuously differentiable in h for each
(x, y) ∈ V for 0 < h < d. And because every f ∈ C(V,K) can be isometrically
extended as a continuous function onto the closed d-environment of V , the
mapping

p : C(V,K) ∋ f 7→ suph∈[0,d],(x−y)∈V
1

4h

∣∣F (h, x, y)
∣∣ ≥ 0
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is a well-defined semi-norm on C(V,K), and it is a norm on its (open) subspace
Y−(V,K) of unintegrable functions. Let’s inspect the last statement in detail:
For f ∈ Y−(V,K), there is some (x, y) ∈ V , such that for any δ > 0 there is
an h > 0 with h < δ and

∣∣∣∫γ(h,x,y)
f(s)ds

∣∣∣ > 0, where γ(h,x,y) is the path once
around the boundary of the h-square centered at (x, y). So, γ(h,x,y) is the
sum of two paths, γ(h,x,y) = γ(h,x,y),R −γ(h,x,y),L, where γ(h,x,y),L starts from
the lower left corner along the y-axis to the upper left corner, then along
the upper upper side along the x-axis from top left to upper right corner,
and γ(h,x,y),R is the path from the lower left corner to upper right corner
across the lower right corner. Unintegrability of f at (x, y) then mandates∫

γ(h,x,y)
f(s)ds = 2

∫
γ(h,x,y),R

f(s)ds. So, by continuity of f :

limh→0 sup
(x,y)∈V

∣∣∣∣∣ 1
4h

∫
γ(h,x,y)

f(s)ds

∣∣∣∣∣ ≥

∣∣∣∣∣f(x, y)
∫

γ(h,x,y),R

1
4h

ds

∣∣∣∣∣ ,

and therefore p(f) ≥ 1
2 sup(x,y)∈V

∣∣f(x, y)
∣∣. So, p is stronger than the supre-

mum norm, so p itself is a norm on Y−(V,K). On the other hand, clearly:
p(f) ≤ sup(x,y)∈V

∣∣f(x, y)
∣∣, so on Y−(V,K), p is equivalent to the supremum

norm. Hence Y−(V,K) is closed, its algebraic complement Y+(V,K) is open,
the canonical projections to the quotient spaces π± : C(V,K) ∋ f 7→ [f ]± ∈
C(V,K)/Y±(V,K) are (bi-)continuous, and C(V,K) is the topological direct
sum of its closed and open subspaces Y±(V,K) – as was asserted. □

The decomposition into the spaces Y±(V,K) and Y±(ιV,C) resp. is a
provisional result and not the final decomposition: One would want the in-
tegrable and unintegrable subspaces to be isomorphic. We’ll see next, that
there are conjugations on C(V,R2) and C(ιV,C), which map the Y−-spaces
into their complementary Y+-spaces, but leave a subspace of the Y+-spaces
invariant. The goal then will be to extract that subspace and to decompose
Y+ further.

3. Conjugation, Jacobians, and C0-spaces
Again, let V ⊂ R2 be a simply connected compact region.
For f = (f1, f2) ∈ C(V,R2) and f = Re(f) + iIm(f) ∈ C(ιV,C) the functions

f c := (f1 − f2) and f c := f̄ := Re(f) − iIm(f)
will be called conjugates of f , where in particular z̄ denotes the complex
conjugate of z ∈ C. So, in the complex case, f c(z) := f(z).

Then the conjugation is a an isometric isomorphism on C(V,R2) and an
isometric antilinear bijection on C(ιV,C), such that (f c)c = f for all f , i.e.:
the conjugation is an idempotent mapping in all cases.

We now examine the spaces of integrable and unintegrable functions,
in order to identify the conjugation-invariant subspaces. We shall restrict
(mainly) to C(V,R2). For the complex case, C(V,C), results will be constructed
from this via the complex isomorphism.
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Both, C(V,R2) and C(ιV,C), have the infinitely differentiable functions
C∞(V,R2) and C∞(ιV,C) as dense subspaces (see: [6]). Restricting to these
has the advantage that the structure of the subspaces can be classified by the
types of the Jacobi matrices (i.e.: the derivatives) of its elements. With this
we have: The derivative of every continuously differentiable f ∈ C(V,R2) can
be represented by matrix-valued function Df , called the Jacobian, given by

Df(x, y) =
(

a(x, y) b(x, y)
c(x, y) d(x, y)

)
, with a, b, c, d ∈ C(V,R)

By Green’s theorem (see e.g.: [1][Ch. 5 5.2]), a continuously differen-
tiable function f ∈ C(V,R2) is integrable if and only if its Jacobian Df is a
symmetric matrix

Df(x, y) =
(

a(x, y) b(x, y)
b(x, y) c(x, y)

)
, where a, b, c ∈ C(V,R).

These then comprise all continuously differentiable elements from Y+(V,R2).
And the unintegrable, continuously differentiable fY−(V,R2) then have the
Jacobian Df

Df(x, y) =
(

0 −b(x, y)
b(x, y) 0

)
, where b ∈ C(V,R) \ {0}.

The conjugation on C(V,R2) now maps the Jacobian

Df(x, y) =
(

a(x, y) b(x, y)
c(x, y) d(x, y)

)
for an abitrary continuously differentiable f ∈ C(V,R2) to:(

1 0
0 −1

) (
a(x, y) b(x, y)
c(x, y) d(x, y)

)
=

(
a(x, y) b(x, y)

−c(x, y) −d(x, y)

)
,

hence it inverts the integrability: It maps Y−(V,R2) into Y+(V,R2), but it is
not onto, because its image does not contain the diagonal elements(

a(x, y) 0
0 d(x, y)

)
.

This determines its invariant subspace w.r.t. integrability inversion, which
will be denoted by C0(V,R2). Because these diagonal matrix functions are
globally diagonal on V , a must not change in the y-direction, and d must be
constant in the x-direction. So,

Df(x, y) =
(

a(x, y) 0
0 d(x, y)

)
mandate a(x, y) = a(x) and d(x, y) = d(y) for (x, y) ∈ V , so a and d are
functions on the x- and y-coordinate projections on V , namely Vx := {x ∈
R | (x, y) ∈ V } and Vy := {y ∈ R | (x, y) ∈ V }, and both are bounded,
closed intervals, since V is to be a simply connected compact region. And a
and b have primitives given by Ia(x) :=

∫ x

−∞ a(t)dt and Ib(y) :=
∫ y

−∞ b(t)dt,
so that the primitive of Df is given by the pair of functions f : V ∋ (x, y) 7→
(Ia(x), Ib(y)). And because the set of continuously differentiable functions
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is dense in C(V,R2), it follows that C0(V,R2) is the closed subspace of all
f : V ∋ (x, y) 7→ (f1(x), f2(y)) ∈ R2 with f1 ∈ C(Vx,R) and f2 ∈ C(Vy,R).
Next, C0(V,R2) is open too, because for every f = (f1, f2) ̸= 0, either f1 ̸= 0
or f2 ̸= 0, where both are continuous, real-valued functions on intervals. If
f1 ̸= 0, then

∣∣f1(x)
∣∣ > ϵ for some (x, y) ∈ V an some ϵ > 0. Then there is

a function g ∈ C(Vx,R) contained in the ϵ-environment of f1, and likewise
there is for f2, in case f2 ̸= 0. That proves the openedness of C0(V,R2).

As announced above, we then define C+(V,R2) := Y+(V,R2)/C0(V,R2),
rename C−(V,R2) := Y−(V,R2), and get the desired decomposition

C(V,R2) = C+(V,R2) ⊕ C0(V,R2) ⊕ C−(V,R2)

into the the topological direct sum of its constituents C±(V,R2) and C0(V,R2).
We consider C(V,R): There is no conjugation defined on it, yet the

Y±(V,R) are both non-trvial, and they have an integrability inversion with a
nontrivial C0(V,R) as invariant subspace of C(V,R):
If f ∈ C(V,R) is continuously differentiable, then its derivative is given by its
gradient ∇f := (∂xf, ∂yf). It exists irrespective of whether ∇f is integrable
again to its primitive, or not. Suppose, that ∇f was not integrable. What
we know from the above is that ∇f is the sum of three components ∇f =
g++g−+g0 with g± ∈ C±(V,R2) and g0 ∈ C0(V,R2), where g− ̸= 0. To enforce
the integration of ∇f back to f , g− must be transformed to its integrable
counterpart via conjugation: (Igc

0)c; this would allow to retain f from ∇f ,
even when non-integrable.

It is well-known that C±(V,R) are both non-trivial:
f(x = r cos(t), y = r sin(t)) := r2 sin(t/r) for (x, y) ̸= 0 and f(0, 0) := 0 with
(x, y) in V := {(x, y) | − 1 ≤ x, y ≤ 1}, is an example of an unintegrable
function at the origin, so represents a non-zero element f ∈ C−(V,R), and
hence its conjugate represents a member of C+(V,R).
To show that C0(V,R) is non-trivial either, it suffices to integrate f ∈ C0(V,R2):
f(x, y) = (f1(x), f2(y)) is integrable and has If(x, y) = If1(x) + If2(y) as
primitives, where again If1, If2 are the primitives If1(x) :=

∫ x

−∞ f1(t)dt

and If2(y) :=
∫ y

−∞ f2(t)dt. By differentiating the continuously differentiable
f ∈ C0(V,R2), we even get the general result directly for all g ∈ C0(V,R): it
consists of all functions g = g1 + g2 with g1 ∈ C0(Vx,R) and g2 ∈ C0(Vy,R).
And again, this is an open and closed subspace of C(V,R).

An immediate consequence of the above is that primitives of (integrable)
functions of C(V,K) are integrable again to any order.

(The special case K = C is analogous to K = R.)
As to the differentiation, the situation then is similar: if f ∈ C+(V,K) ⊕
C0(V,K) is n times continuously differentiables, then all its n derivatives are
in C+(V,K) ⊕ C0(V,K) for some K = R,R2,C,C2. However: if f ∈ C−(V,K),
then latest at the 2nd derivative, the anti-symmetry of the Jacobian

Dg(x, y) =
(

0 −b(x, y)
b(x, y) 0

)
, where b ̸= 0
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impedes further differentiability, because of ∂y∂xg(x, y) = ∂xb(x, y) = −∂x∂yg(x, y).
That said, f ∈ C(V,K) is continuously differentiable to an order of 2 or more,
only if f ∈ C(V,K) ∈ C+(V,K) ⊕ C0(V,K).

Summarizing, it was shown:

Proposition 3.1. 1. The subspaces Y+(V,K) and Y+(ιV,C) contain open
and closed invariant subspaces C0(V,K) and C0(ιV,C) consisting of con-
tinuous functions f , for which ∂x∂yf = ∂y∂xf ≡ 0 holds.

2. Y−(V,K) and Y−(ιV,C) are isomorphic to the quotient spaces Y+(V,K)/C0(V,K)
and Y+(ιV,C)/C0(ιV,C), resp.

3. For C(V,R2) and C(ιV,C), the conjugation f → f c maps Y−(V,K) onto
Y+(V,K)/C0(V,K), and Y−(ιV,C) onto Y+(ιV,C)/C0(ιV,C).

4. Primitives of integrable functions are integrable.

We define C+(ιV,C) := Y+(ιV,C)/C0(ιV,C) and C−(ιV,C) := Y−(ιV,C)
in line with C+(V,K) := Y+(V,K)/C0(V,K) and C−(V,K) := Y−(V,K), the
corresponding canonical projections will be denoted by

Π0 : C(V,K) → C0(V,K),
Π0 : C(ιV,C) → C0(ιV,C),
Π± : C(V,K) → C±(V,K) as well as
Π± : C(ιV,C) → C±(ιV,C).

Since integrable functions have been defined as elements from the Y+-spaces,
which include the C0-spaces as a subspace, the functions from C+(V,K) and
C+(ιV,C) will be called strictly integrable.

Then we can state:

Corollary 3.2. The following holds as a topological direct sum:
1. C(V,K) = C+(V,K) ⊕ C0(V,K) ⊕ C−(V,K)
2. C(ιV,C) = C+(ιV,C) ⊕ C0(ιV,C) ⊕ C−(ιV,C)

From inspection of the Jacobians, note that the product of two in-
tegrable functions from C(V,R) or C+(V,R2) is integrable again (where for
C+(V,R2) the product is a function in C(V,R)).

4. Conformality, holomorphic and anti-holomorphic functions
As was shown above, C(ιV,C) splits into the topological sum of a strictly
integrable, a strictly unintegrable, and an invariant subspace. From Proposi-
tion 1.1 we know that all integrable functions are analytic, and then it will be
straightforward to derive the analyticity of the unintegrable ones (see below).

The a-priori concern however is, how the vector space of holomorphic
functions will fit into this, especially regarding the closedness of the space
C+(ιV,C) in C(ιV,C). So, let’s look into this:

The Jacobian for a continuously differentiable f ∈ C+(V,R2)⊕C0(V,R2)
is given by

Df(x, y) =
(

a(x, y) b(x, y)
b(x, y) c(x, y)

)
, where a, b, c ∈ C(V,R).
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Under the complex isomorphism Tι it transforms to

D(Tιf)(x, y) = D(ιfι−1)(x, y) =
(

a(x, y) −ib(x, y)
ib(x, y) c(x, y)

)
, where a, b, c ∈ C(ιV,R).

But: The definition of an holomorphic function demands c ≡ a (see: e.g. [1]).
This is solved by splitting the diagonal matrix up into the sum of a symmetric
and an anti-symmetric part:(

a 0
0 c

)
= 1

2

(
a + c 0

0 a + c

)
+ 1

2

(
a − c 0

0 −(a − c)

)
,

which defines continuous projections on C0(V,R2) and C0(ιV,C), respectively.
The spaces C0(V,R2) and C0(ιV,C) therefore decompose into toplogical direct
sums of symmetric subspaces C0,sym(V,R2) and C0,sym(ιV,C), as well as anti-
symmetric subspaces C0,asym(V,R2) and C0,asym(ιV,C). So,

C(V,R2) = Cconf (V,R2) ⊕ Caconf (V,R2), where

Cconf (V,R2) := C+(V,R2) ⊕ C0,sym(V,R2),

Caconf (V,R2) := C−(V,R2) ⊕ C0,asym(V,R2) and likewise
C(ιV,C) = Cconf (ιV,C) ⊕ Caconf (ιV,C), where
Cconf (ιV,C) := C+(ιV,C) ⊕ C0,sym(ιV,C), and

Caconf (ιV,C) := C−(ιV,C) ⊕ C0,asym(ιV,C).
The functions of Cconf (V,R2) and Cconf (ιV,C) are called conformal, and the
functions of Caconf (V,R2) and Caconf (ιV,C) are defined as anti-conformal
functions. With this, a real-valued function f ∈ C(V,R) will be called confor-
mal, if and only if it is integrable and its primitive (which then is an R2-valued
function) is conformal.

Remark 4.1. Cconf (V,R2) is the closure of the subspace of all differentiable
f = (f1, f2) of C(V,R2), for which ∂xf1 = ∂yf2 holds, Caconf (V,R2) the
closure of differentiable f ∈ C(V,R2), for which ∂xf1 = −∂yf2. Analogously,
Cconf (ιV,C) is the closure of all f ∈ C(ιV,C), for which the partial derivatives
exist and ∂xRe(f) = ∂Im(f)(x+iy)

i∂y
holds, and Caconf (ιV,C) the closure of f

with existing partial derivatives, such that ∂xRe(f) = − ∂Im(f)(x+iy)
i∂y

.

The decomposition of C(V,R2) and C(V,C) into the topological direct
sum of their conformal and anti-conformal subspaces will be called conformal
split.
Then we get:

Proposition 4.2. Let V ⊂ R2 be a simply connected compact region. The
functions of Cconf (ιV,C) are exactly those, which obey the Cauchy-Riemann
equations (see: [1]), which – by the definition – are holomorphic functions
on V . Its (complex) conjugated space Caconf (ιV,C) therefore consists of all
anti-holomorphic functions on V .
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Proof. The functions in Cconf (ιV,C) are integrable. By Proposition 1.1 these
functions then are analytic on V , so continuously differentiable on V in its x-
and y-coordinates. Because all elements of Cconf (ιV,C) are conformal, they
are holomorphic (which by definition means that they satisfy the functions
are continuously differentiable in x- and y-coordinate and satisfy the Cauchy-
Riemann equations). All non-zero elements in its topological complement
are either not integrable or anti-conformal, conflicting the Cauchy-Riemann
equations. So, no other holomorphic functions exist on V . □

Remark 4.3. The conformal split allows a pragmatic access to integrability:
fconf = (f1, f2) ∈ Cconf (V,R2) if and only if f1 ≡ f2. Likewise, faconf =
(f1, f2) is in Caconf (V,R2) if and only if f1 ≡ −f2. So, fconf = (g, g) and
faconf = (hc, −hc) for some conformal functions g, h ∈ C(V,R). As a confor-
mal function, g is integrable to a function (Ig, Ig), so the primitive Ifconf

of fconf is Ig, which we can write as Ifconf = Ig(1, 1); the second order
primitive of fconf then writes to I2fconf = (I2g, I2g), and so forth. Anal-
ogously, we can assign Ifaconf := (Ih)c(1, −1) as the primitive of faconf ,
I2faconf := ((I2h)c, (I2h)c) as 2nd-order primitive, and so forth.

Lemma 4.4. Let V ⊂ R2 be a simply connected compact region. If f ∈ C(ιV,C)
is analytic on ιV , then its conjugate f c is analytic on (−i)ιV .

Proof. If f(z) =
∑

k ck(z − z0)k is analytic (on V ), then f̄(z) :=
∑

k c̄k(z −
z0)k is analytic (on V ). The conjugate f c is defined by f c : z 7→ f(z), so we
have f c(z) = f̄(z̄). Now, g : (−i)ιV ∋ (ix+y) 7→

∑
k c̄k(−i)k((ix+y)−(ix0 +

y0))k is analytic on (−i)ιV , and f c = g, since (−i)((ix + y) − (ix0 + y0)) =
(x − iy) − (x0 − iy0). □

Because every f ∈ C(ιV,C) can be extended to a continuous function f̃
on a square area Q(h) ⊃ ιV with the origin as center and of sufficiently large
side length h > 0, such that supz∈Q(h)

∣∣∣f̃(z)
∣∣∣ ≤ 2 supz∈ιV

∣∣f(z)
∣∣, C(ιV,C) is

continuously embedded into C(Q(h),C), and we can ensure ιV to contain −iz
and z̄ with every z ∈ ιV . So, there appears to be no substantial reason, to
exclude conjugates of analytic functions from being analytic functions.

The results can be summarized for C(ιV,C) as:

Corollary 4.5. Let ιV ⊂ C be a simply connected compact region. C(ιV,C) is
the topological direct sum of the subspace Cconf (ιV,C) of analytic and holo-
morphic functions f(x + iy) = g(x) + ih(iy), and its conjugated subspace
Caconf (ιV,C) of anti-holomorphic functions.

That solves the integrability and analyticity posed as to the complex
space, but still we have no analogous results for the spaces C(V,R2) (and
C(V,R). This asks for some explanation:
Complex analysis is essentially built upon the 2-dimensional Laplace equation

∆f(x, y) := (∂2
x + ∂2

y)f(x, y) ≡ 0.
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Within C, ∆ factors into the commuting product ∆ = (∂x − i∂y)(∂x + i∂y).
Hence, in there, ∆f ≡ 0 reduces to first order differential equations, and the
solutions are the sums of functions that solve (∂x −i∂y)f = 0 or (∂x +i∂y)f =
0. So, the idea was to pick any differentiable function f(x + iy), for which
then (∂x − i∂y)f(x + iy) ≡ 0, so ∆f ≡ 0. The hindsight: these functions are
analytic (by Cauchy theory). The problem: By the Weierstraß convergence
theorem, these functions proved not to be dense in the space of continuous
functions f : V ∋ z 7→ f(z) ∈ C, where V ̸= ∅ is a simply connected open
region in C. What was proved in here was, that the conjugated differentiable
functions f c : z 7→ f(z̄) are needed either, in order to get ∆f ≡ 0 fulfilled for
a dense set of continuous functions f : U → C.

What one would then obviously would want to do, is to pull the results in
the complex via the complex isomorphism T −1

ι to the C(V,R2). The concern
is, that for a well-behaved, integrable complex function f(reiϕ), the preimage
T −1

ι f is a function g(r, ϕ) with a polar symmetry, which generally will be
strictly unintegrable at the origin: For example, if g(r, ϕ) = r2 sin(4ϕ), the
path integral along ϕ from 0 to 2π will not vanish. And as discussed above,
this means that ∂x∂yg = −∂y∂xg (at the origin), which in turn suggests to
look for a (possibly compact) Lie group to apply. However, there is apparently
no suitable one. To get at results for C(V,R2) at all, it will be necessary to
build from ground up.

5. Algebraic extension of R2 and C(V,R2)
An orientation on the vector field Rn is an embedding

φ : Kn ∋ (x1, . . . , xn) 7→
∑

1≤k≤n

akxk ∈ A

into an associative algebra A over the field R with unit element 1, such that
akaj = −ajak for all 1 ≤ k < j ≤ n and a2

k = 1 for all k = 1, . . . , n. (For
K = C and n = 1 the orientation is implicitly interpreted to be “in line with”
or as “given by” the direction of the real part.)

In the 2-dimensional case, n = 2, we define two numbers e1 and e2 (not
contained in C), for which

(i) e1e1 = e2e2 ≡ 1,
(ii) e1e2 = −e2e1, and
(iii) e1e2 ≡ +i.
(From conditions (i) and (ii) follows that e1e2 = ±i, and in order to determine
the sign of that value, (iii) is needed.)

Then φ+ : R2 ∋ (x, y) 7→ ζ := e1x + e2y and φ− : R2 ∋ (x, y) 7→ ζ̃ :=
e1x− e2y are a vector space isomorphisms of R2 onto the target spaces φ±R

2,
which we denote by R2

±.
By defining on R2

± the metrics, induced by the quadratic form

Q : φ±R
2 ∋ e1x ± e2y 7→ (e1x ± e2y)2 = x2 + y2 =

∥∥∥e1x ± e2y∥2
∥∥∥ ,
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φ± become isometries.
Along with ζ = e1x + e2y also ζ ′ = e2x + e1y solves the algebraic

equation (a + b)2 = a2 + b2. Because of e1e2 = i, i(e2x + e1y) = e1x − e2y,
and iζ ′ = (e1x − e2y) follows. To be in line with the complex functions, iζ ′

will be called conjugate of ζ and denoted with either ζc or ζ̃.

φ± : R2 ∋ (x, y) 7→ ζ = e1x ± e2y ∈ R
2
±

then define two global coordinate charts over the manifold (R2, φ±) of positive
and negative orientation.

Remark 5.1. 1. e1 and e1 are numbers, not just symbols: they are defined
solely based on the imaginary i, which is not a symbol, but a number.

2. Sofar, R2
± are vector spaces, which are equivalent to R2, but they readily

extend to a non-commutative, associative algebra, which will be denoted
by A, in which the product is defined as algebra extension of:

· : R2
± × R

2
± ∋ (e1x ± e2y, e1x′ ± e2y′) 7→ xx′ + yy′ ± (ixy′ − iyx′) ∈ A.

3. Due to e1e2 = i, the algebra A is inevitably complex. However it is not
an algebra over the field C: As an algebra over C, i would commute with
all elements, which is not the case for A.

4. Anti-commutativity of e1 and e2 with e1e2 ≡ +i implies: iek = −eki,
(k = 1, 2), so (ekx + iy)2 = x2 − y2 follows for k = 1, 2.

Next, ζ2 > 0 for all non-zero ζ ∈ R2
±. Therefore the the Euclidean

topology of R2 (and its isometric space R2
±) extends onto A, so R2 and R2

±
are isometrically embedded into A.

With this we define C+(φ+V,A) as vector space of all functions Tφ+ :=
φ+fconf φ−1

+ , where fconf ∈ Cconf (V,R2), and likewise C−(φ−V,A) is defined
as vector space of all Tφ− := φ−faconf φ−1

+ with faconf ∈ Caconf (V,R2). For
ζ = e1x ± e2y ∈ R2

± \ {0} the multiplicative inverse 1
ζ = ζ

x2+y2 is well-defined,
and likewise ζm = (e1x ± e2y)m exists for m ∈ N.

Since R2
± and A are finite dimensional normed spaces, the vector spaces

C(φ±V,A) of A-valued continuous functions on φ± are well-defined, and are
Banach spaces with the supremum norm, which isometrically embed C±(φ±V,A)
as closed subspaces.

For ζ0 ∈ φ±V a function f ∈ C±(φ±V,A) will be called differentiable in
ζ0 if and only if df(ζ=ζ0)

dζ
:= limζ→ζ0(f(ζ) − f(ζ0)) 1

ζ−ζ0
exists (as an A-valued

function). df(ζ)
dζ will be called derivative of f .

Remark 5.2. (i) Note that the divisional term 1
ζ−ζ0

is factored to the right
side of f : This is to ensure uniqueness of the limit in the case that the
target values f(ζ) do not commute with the variable ζ. As long as f(ζ)
is real-valued, however, the ordering of the product is irrelevant: “left”
and “right” derivative coincide.

(ii) In particular, we then have: ( df(ζ)
dζ )c = dfc(ζ̃)

dζ̃
, where f c : ζ̃ 7→ (f(ζ̃))c.
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Since A is a finite-dimensional algebra, the Euclidean metrics defines a
natural topology on A, through which differentiability of functions f : U → A

for open U ⊂ A get well-defined.
The chain rule also holds for differentiable functions g : φ±V → A and
f : g(φ±V ) → A, where df(u=g(ζ))

du now denotes the derivative Df(u) of f at
u ∈ g(φ±V ) ⊂ A.
Also, the product rule holds for two commuting, differentiable functions
f, g : φ±V → A: if f(ζ)g(ζ) = g(ζ)f(ζ) for all ζ ∈ φ±V , then d(f(ζ)g(ζ))

dζ =
df(ζ)

dζ g(ζ) + f(ζ) dg(ζ)
dζ .

In view of the isometry of φ± : R2 → R2
±, a real-valued function f ∈

C(V,R) is differentiable in some point (x0, y0), if and only if φ±V ∋ ζ 7→
f(ζ = φ±(x, y)) is differentiable in ζ0 = e1x0 ± e2y0.

Because C±(φ±V,A) are the images of conformal and anti-conformal
subspaces of C(V,R2), every f ∈ C+(φ+V,A) writes as

f(ζ) = e1g(ζ) + e2g(ζ), where g : V ∋ (x, y) 7→ g(ζ := e1x + e1x) ∈ R

is conformal. Then path integration of f along a path γ ⊂ φ+V in e1x- and
e2y-coordinates from ζ0 = e1x0 + e2y0 to ζ = e1x + e2y equals the path-
invariant integral of G : (x, y) 7→ (g(x, y), g(x, y)) from (x0, y0) to (x, y),
so f is integrable, and If = (Ig)1 ≡ (Ig)2, where (Ig)1 and (Ig)2 denote
the projections of Ig = ((Ig1, (Ig)2) onto its x- and y-coordinates. The 2nd

primitive I2fconf of fconf then results into

I2f : ζ 7→ e1I2g(x, y) + e2I2g(x, y).

By induction, fconf is integrable to all orders, If is differentiable, and dIfconf

dζ =
fconf .

Likewise, for f ∈ C(φ−V,A), f(ζ̃) = e1gc(x, y) − e2gc(x, y), where g ∈
C(V,R) is conformal again, and If(ζ̃) = (Igc(x, y))c defines the primitive of
f . Then I2f = (I2gc(x, y))c is its second primitive, f has primitives of all
orders, If is differentiable on (φ−V ) w.r.t. ζ̃, and dIf(ζ̃)

dζ̃
= f(ζ̃).

Next, we define analyticity:
A function f ∈ C(φ+V,A) is called analytic on φ+V , if for each ζ0 in φ+V
there is an open neighbourhood U ⊂ R2

+, of ζ0, such that

f(ζ) =
∑
k≥0

ck(ζ − ζ0)k, (ck ∈ A, k ∈ N),

where the power series is to converge uniformly on U . Analogously, f ∈
C(φ−V,A) is called analytic, if every ζ̃0 ∈ φ−V has an open neighbourhood
U ⊂ R2

− of ζ̃0, on which f the uniformly converging limit f(ζ̃) =
∑

k≥0 ck(ζ̃ −
ζ̃0)k.

On the positive/negative orientated φ±R
2 let

Ψ± : ζ = e1x ± e2y 7→ 1
ζ
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be the Cauchy function. Then Ψ±(ζ0 − ζ) = 1
ζ0

∑
k≥0

(
ζ−1

0 ζ
)k exists for∣∣∣ζ−1

0 ζ
∣∣∣ < 1, and the series uniformly converges in ζ on all compact simply

connected regions not containing the pole ζ0. So, it is analytic on these re-
gions.

Remark 5.3. Ψ+ is conformal on simply connected regions not containing the
origin, because
(1) the constant function and the identity id : R2

+ ∋ ζ 7→ ζ ∈ A are confor-
mal,

(2) the addition f + g of two conformal functions f and g is conformal,
(3) if f is conformal, then 1

f is conformal on all simply connected regions,
on which f has no zeros.
Since also the product of two conformal functions is conformal again,

the path integral
∫

γ
f(ζ)Ψ+(ζ0 − ζ)dζ for f ∈ C+(φ+V,A) along a (piecewise

smooth) path γ ⊂ φ+V \ {ζ0} is a conformal function of ζ0.

6. Analyticity of C(V,R2)
For r > 0 the paths γ± : [0, 2π] ∋ t 7→ r(e1 cos(t)±e2 sin(t)) ∈ R2

± are circular
paths around the origin with positive and negative orientation from and to
e1r. The path integrals

∫
γ+

Ψ+(ζ)dζ and
∫

γ−
Ψ−(ζ̃)dζ̃ along these paths then

calculate to∫
γ+

Ψ+(ζ)dζ =
∫ 2π

0
(e1 cos(t) + e2 sin(t))(−e1 sin(t) + e2 cos(t))dt (6.1)

=
∫ 2π

0
(e1e2(cos2(t) + sin2(t)))dt =

∫ 2π

0
idt = 2πi, and

∫
γ−

Ψ−(ζ̃)dζ̃ =
∫ 2π

0
(e1 cos(t) − e2 sin(t))(−e1 sin(t) − e2 cos(t))dt (6.2)

=
∫ 2π

0
−(e1e2(cos2(t) + sin2(t)))dt =

∫ 2π

0
−idt = −2πi.

This gives

Proposition 6.1. 1. Every conformal fconf ∈ C(V,R2) extends as an ana-
lytic function f+ : φ+V → A, where φ+ : R2 → R2

+ is the chart with pos-
itive orientation. The Cauchy-formula holds for f+:

∫
γ

f+(ζ) 1
ζ−ζ0

dζ =
2πif+(ζ0), where γ ⊂ φ+V is a positively orientated Jordan curve
around ζ0 (i.e: a piecewise continuously differentiable closed curve loop-
ing once around ζ0 at some distance ϵ > 0 from ζ0 with positive orien-
tation).

2. Every anti-conformal faconf ∈ C(V,R2) extends as analytic function f− :
φ−V → A, where φ− : R2 → R2

− is the chart with negative orientation.
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The Cauchy-formula holds for f−:
∫

γ
f−(ζ̃) 1

ζ̃−ζ̃0
dζ̃ = −2πif−(ζ̃0), where

γ ⊂ φ−V is a negatively orientated Jordan curve around ζ̃0.

Proof. Since f ∈ C+(φ+V,R2) is integrable on V , the path integrals (within
φ+V ) from startpoint a ∈ φ+V to endpoint b ∈ φ+V are path independent.
By the above, the Cauchy function Ψ+(ζ) = 1

ζ is analytic on convex sets not
containg the origin, hence integrable on there. The Cauchy-formula f(ζ0) =

1
2πi

∫
γ

f(ζ) 1
ζ−ζ0

dz then follows from equation 6.1 togther with the continuity
of f for all closed, positively orientated Jordan curves γ ⊂ ιV around ζ0.
Then, as in Proposition 1.1, f(ζ0) is within the encircled open region the
uniform limit of a power series on ϵ-neighbourhoods of ζ0, so analytic in
there.
For f ∈ C−(φ−V,R2) the the proof is analogous with equation 6.2. □

Corollary 6.2. The complex isomorphism Tι maps C+(φ+V,R2) onto the com-
plex subspace Cconf (ιV,C) of holomorphic functions, and is given by: Tι : f 7→
e1fe1. Hence, the power series expansion f(z) =

∑
k ck(z − z0)k of any holo-

morphic function f ∈ C(ιV,C), determines the power series expansion for
T −1

ι f ∈ C+(φ+V,R2) to be (T −1
ι f)(ζ) =

∑
k(e1ck)(ζ − ζ0)k.

Part 2. Integrability and orientation of continuous functions in n ∈ N

dimensions

7. Preliminaries
Let K denote either the field of real numbers R or complex numbers C. For
n ∈ N let V ⊂ Rn be bounded and be the closure of a non-trivial open
subset of Rn. A path γ in V is a continuous, piecewise smooth mapping
γ : [0, 1] → V , where [0, 1] denotes the closed real interval from 0 to 1. As γ
is piecewise smooth, it is the sum γ = γ1 + · · · + γk of k ∈ N continuously
differentiable paths γk. |γ| :=

∑
1≤l≤k

∫
∥ dγl(t)

dt ∥dt is called arc length of γ,
where ∥·∥ is the Euclidean norm in Rn. V is called connected, if for each
x, y ∈ V there is a path γ in V with γ(0) = x and γ(1) = y. A compact set
V ⊂ Rn is a closed and bounded subset of Rn. The path γ is called closed if
γ(0) = γ(1), and a connected V is called simply connected, if all closed paths
in V are point homotopic in V , i.e.: if V has no holes.

If V is also simply connected (i.e.: if all closed paths in V are 0-
homotopic in V ), then V will be called a simply connected compact region.
A function f from V to Km for some m ∈ N is called continuous on V , if is
well-defined and continuous in an open environment U ⊂ Rn of V . The set of
continuous Km-valued functions on V then is a Banach space C(V,Km) with
the supremum norm∥·∥ : f 7→ supx∈V

∥∥f(x)
∥∥
Rm , where∥·∥

Rm denotes the Eu-
clidean norm of Km. In the following, we’ll briefly write C(V ) for C(V,Km),
when it is clear what the target space Km is.

Let V be a simply connected, closed region and f ∈ C(V,Rm). Then
for every piecewise continuously differentiable path γ : [0, 1] → V , the path
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integral
∫

γ
f(s)ds :=

∫ 1
0 f(γ(t)) dγ(t)

dt dt is a well-defined, continuous linear
functional on C(V,Rm). A function f ∈ C(V,Rm) is called integrable, if and
only if

∫
γ

f(s)ds = 0 for every closed path γ in V . In all cases, if f is inte-
grable, then the path integrals from a fixed startpoint in V to the variable
endpoint in V define a function If , which is commonly called primitive of f .
(Since two primitives of the same function f differ utmost by the choice of
the startpoint, which adds an additive constant, the primitives are naturally
defined as equivalence classes.)

In this paper, we restrict integrability considerations on two comple-
mentary cases, f ∈ C(V,Rn) and f ∈ C(V,R), that is: we’ll assume either
m = n or m = 1, where V ⊂ Rn. The situation then is in line with the 2-
dimensional case: Given that V ⊂ Rn is a simply connected compact region,
the primitive If of an integrable f ∈ C(V,Rn) is a (continuously differen-
tiable) real-valued function If : V → R, while for integrable f ∈ C(V,R) the
primitive is Rn-valued.
It will be seen below, that these functions are twice integrable, if they are
once integrable. Hence, the integrable real-valued or Rn-valued functions f
have primitives Imf of all orders m ∈ N, which toggle in the dimensionality
of their range at each order of integration (from R to Rn).

Proposition 7.1 (Integrability). Let V ⊂ Rn be a simply connected compact
region with n > 2, and let K denote either R or Rn. Then the following
statements are equivalent for f ∈ (V,K):
(1) f is integrable on V .
(2) There exists an ϵ > 0, such that for all x0 ∈ V and all spheres S(r) of

radius r < ϵ around x0:
∫

S(r) f(x)da ≡ 0, where
da :=

∑
k dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 · · · ∧ dxn denotes the differential of

the (n − 1)-dimensional surface element of S(r).
(3) There exists an ϵ > 0, such that for all x0 ∈ V and all r-balls B(r) of

radius r < ϵ around x0:
∫

B(r) f(x)dnx =
∫

B(r) f(x)dx1 ∧ · · · ∧ dxn ≡ 0
for all permutations of the integrals along the coordinates.

(Note that the differential dnx := dx1 ∧ · · · ∧ dxn is the alternating
n-form, and it is not the Lebesgue measure of the (then always non-
negative) volume.)

Proof. (1)⇒(2) follows indirectly: If for a given ordering of the coordinates
and some r-sphere S(r) ⊂ V :

∫
S(r) f(x)da ̸= 0, then locally and in spherical

coordinates, the surface integral is the (ordered) product of one integration
along an azymuthal angle ϕ1 from 0 to 2π and n − 2 integrations along
the polar angles ϑ1, . . . , ϑn−2 from 0 to π, each. Applying the mean value
theorem to the polar angles ϑ1, . . . , ϑn−2 iteratively one by one, there must
exist ϑ1, . . . , ϑn−2 such that ∂

∂ϑn−2
· · · ∂

∂ϑ1

∫
S(r) f(x)da ̸= 0, so

∫
γ

f(s)ds ̸= 0
follows for some closed, circular curve γ of radius r′ ≤ ϵ in the azymuthal
plane around some x′ ∈ V .

Conversely, if f is integrable on V , the path integrals of f along all
circles on the r-spheres S(r) vanish, so starting with the r-circular path γ12
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around fixed x ∈ V in the azymuthal x1x2-plane, the integrals of
∫

γ12
f(s)ds

from 0 to t ≤ π along any of the n − 2 polar coordinates must be zero
either, and iterative integration w.r.t. the orthogonal polar coordinates from
to t ≤ π, again gives zero. So,

∫
S(r) f(x)da ≡ 0, regardless of the order of the

coordinate integration.
Finally, (1) and (2) are equivalent, because in local spherical coordinates∫

B(r) f(x)dnx =
∫ r

0
∫

S(r′) f(x)dadr′. □

Remark 7.2. Note that (3) of Proposition 7.1 can be understood as Poincaré’s
lemma in terms of differential n-forms:
The volume integral of f over B(r) can be written as integral of the differ-
ential form dα := f(x)dx1 ∧ · · · ∧ dxn, which possesses an exact primitive α
on B(r), i.e.: a differential form ω exists on B(r) such that α = dω, then by
Poincaré’s lemma:

∫
B(r) dα =

∫
B(r) f(x)dx1 ∧ · · · ∧ dxn ≡ 0 (see: [3][Theorem

2.12.1]), and we then have (by Stoke’s theorem):
∫

∂B(r) α =
∫

B(r) dα ≡ 0,
where ∂B(r) is the boundary of B(r), which is S(r) (see: [3][Theorem 4.4.1]).

So far, we are in line with the 2-dimensional case: The concept of inte-
grability does not depend on the orientation of the vector space. To proceed,
we now need the concept of orientation on the Rn for n > 2. While in the
2-dimensional case, i.e. for n = 2, the orientated R2 is isomorphic to the field
C of complex numbers (see: Part 1), for n > 2 there is no field structure any
more, and the strong concept of complex differentiability is not applicable.
This is a general problem for multi-dimensional complex analysis, and it is
dealt with in there by projection to affine 2-dimensional sections, which then
allow a pairwise treatment. This we can also do in here:

For 1 ≤ k < l ≤ n and x = (x1, . . . , xn) ∈ Rn let πkl(x) : R2 ∋
(yk, yn) 7→ (x1, . . . , xk + yk, . . . , xl + yl, . . . , xn) ∈ Rn be the affine plane
sections through x in the kl-plane, and let πkl : R2 ∋ x 7→ (xk, xl) ∈ R2 be
the canonical coordinate projection.

For a simply connected compact region V ⊂ Rn and f ∈ C(V,Rn) then
f is integrable on V if and only if for all x ∈ V and all 1 ≤ k < l ≤ n
there is an ϵ-environment Uϵ ⊂ R2 of the origin, such that Uϵ ∋ (yk, yl) 7→
πklf(πkl(x)(yk, yl)) is integrable. And for real-valued f ∈ C(V,R), the inte-
grability condition is simpler: f ∈ C(V,R) is integrable on V if and only if for
each x ∈ V and all 1 ≤ k < l ≤ n there is an ϵ-environment Uϵ of the origin
in 2 dimensions, such that Uϵ ∋ (yk, yl) 7→ f(πkl(x)(yk, yl)) is integrable (in
Uϵ).
So, this allows us to fall back to the 2-dimensional functions, for which it was
shown in Part 1, that an integrable function (on a compact simply connected
region) is twice integrable. Therefore, we have

Proposition 7.3. As above, let V ⊂ Rn be a simply connected compact region
with n > 2, and let K denote either R or Rn. If f ∈ C(V,K) is integrable, then
it is twice integrable. So, if at all a primitive If of f exists on V , then it has
primitives Imf of all orders m ∈ N.
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Let’s me restate the definition of orientation on Rn from Section 5:
Definition 7.4 (Orientation). An orientation on the vector field Rn is an
embedding

φ : Kn ∋ (x1, . . . , xn) 7→
∑

1≤k≤n

akxk ∈ A

into an associative and non-commutative algebra A over the field R with unit
element 1, such that akaj = −ajak for all 1 ≤ k < j ≤ n and a2

k = 1 for all
k = 1, . . . , n.
Remark 7.5. (i) A is the real-valued algebra generated by the elements

a1, . . . , an, defined above.
(ii) Other than in the case of n = 2 dimensions, for all higher dimensions,

we can always find n × n (Hermititian) matrices as representations for
a1, . . . , an.
In particular, the product a1 · · · an satisfies: (a1 · · · an)2 = −1 for n =

2, 3, 6, 7, 10, 11, . . . and (a1 · · · an)2 = +1 for n = 4, 5, 8, 9, . . . . In order to
reduce ambiguity of the ak, one might additionally demand a1 · · · an := i for
n = 2, 3, 6, 7, . . . and a1 · · · an := 1 for n = 4, 5, 8, 9, . . . . Though, it is not
necessary, so it is left out in here.
Monomials ak1ak2 . . . akl

with 1 ≤ k1 < · · · < n and their cyclic permuta-
tions are said to be positively orientated. Otherwise, ak1ak2 · · · akl

is called
negatively orientated.
This defines the (l-volume) differentials ak1ak2 · · · akl

dxk1 · · · dxkl
the same

way as the dxk1 ∧ · · · ∧ dxkl
for differential forms, the only difference being

that we have here the ak, replacing the wedges.
Remark 7.6 (Graßmann algebra and differential forms). I am well-aware that
an orientation also can be defined on the Graßmann algebra of alternating
mappings, on which then differential forms are constructed. I refrain from
doing this, since it will not suffice our purpose, for one major reason: the
Graßmann algebra does not extend the vector space Rn. Because the alter-
nating product a∧a ≡ 0 for any a ∈ Rn, differential forms are limited in order
to the number of dimensions n, and alternating products of order m > n are
all identical zero. So, we have to do it differently, in order to catch up with
power series expansions etc..

For 1 ≤ k1 ̸= k2 · · · ≤ n, the monomials ak1ak2 · · · of the ak ∈ A will in
the following take on the role of the alternating monomials ek1 ∧ ek2 ∧ · · · of
the orthogonal base vectors ek, while keeping the squares a2

k ≡ 1 in line with
the expected Euclidean product e2

k ≡ 1.
This sets up the toolset to generalize the 2-dimensional results from

Part 1 to n dimensions.

8. Integrability decomposition
Proposition 8.1 (Integrability decomposition). Let V ⊂ R2 be be a simply
connected compact region and K stand for either Rn or R.
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C(V,K) is the topological direct sum of two subspaces: the space of integrable
functions Y+(V,K) and a complementary space Y−(V,K) of unintegrable func-
tions.
Proof. So, let f ∈ C(V,K). Then f is to be continuous on an ϵ-environment
U ⊃ V of V , and we define B as set of all balls B(r, x) = {(x′) ∈ K |

∣∣x′ − x
∣∣ ≤

r} for (x, y) ∈ V , where r > 0 and r < ϵ. Let Γ(B) be the set of all positively
orientated boundaries S(r, x) of the balls B(r, x) with d > 0 and (x) ∈ V .
Then pS(r,x) : f 7→ pS(r,x)(f) :=

∣∣∣∫S(r,x) f(a)da
∣∣∣ ≥ 0, (S(r, x) ∈ Γ(B)), defines

a family of continuous seminorms on C(V,K). The set of all f ∈ C(V,K), for
which pS(r,x)(f) = 0 for all γ ∈ S(r, x) ∈ Γ(B)) then is closed in C(V,K), since
it is the intersection of the closed sets. It contains all integrable(, continuous)
functions on V .

Let Y+(V,K) denote this closed space of C(V,K). Then its complement
is an algebraic subspace, which is open in C(V,K). We call it space of non-
integrable functions and denote it by Y−(V,K).

To finish up, it remains to be shown that Y+(V,K) is also open, or
equivalently to prove that Y−(V,K) is closed. We need to refine this family
of seminorms, in order to make further progress:
For each f ∈ C(V,K) the function

F : [0, ϵ] × V ∋ (r, x) 7→
∫

S(r,x)
f(a)da ∈ K

is uniformly continuous on [0, d]×V , but also:
∣∣F (h, x) − F (h′, x)

∣∣ = o(h−h′)
(for h, h′ < d). So, F is (right) differentiable (at h = 0) in its first argument
for h → 0, and F is continuously differentiable in h for each (x, y) ∈ V for
0 < h < d. Let |Sn| be the area of the n-dimensional unit sphere. Because
every f ∈ C(V,K) can be isometrically extended as a continuous function
onto the closed ϵ-environment of V , the mapping

p : C(V,K) ∋ f 7→ suph∈[0,ϵ],x∈V
1

r(n−1)|Sn|
∣∣F (h, x)

∣∣ ≥ 0

is a well-defined semi-norm on C(V,K), and it is a norm on its (open) subspace
Y−(V,K) of unintegrable functions. And, because p(f) ≤ 1

|Sn| supx∈V

∣∣f(x)
∣∣, p

is a continuous seminorm on C(V,K). But for f ∈ Y−(V,K) we also have
p(f) ≥ supx∈V,r<ϵ infy∈S(r,x)

∣∣f(y)
∣∣, where infy∈S(r,x)

∣∣f(y)
∣∣ →

∣∣f(y)
∣∣ uni-

formly for x ∈ V as r → 0, because of uniform continuity of f on V . So,
on Y−(V,K), the norm p is equivalent to the supremum norm, which is the
norm of the Banach space C(V,K). This proves that Y−(V,K) is a closed sub-
space of C(V,K), and as it was already shown to be open, both complementary
subspaces Y±(V,K) are both closed and open.

Therefore, the canonical projections to the quotient spaces π± : C(V,K) ∋
f 7→ [f ]± ∈ C(V,K)/Y±(V,K) are (bi-)continuous, and C(V,K) is the topologi-
cal direct sum of its closed and open subspaces Y±(V,K) – as was asserted. □

Remark 8.2. Note that the restriction to positive orientated boundaries of
the balls B(r, x) is unnecessary for the above proof: With this, the number
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of elements in Γ(B) is just halved. The values of integration in opposite
orientation is only an additional factor −1.

The decomposition into the spaces Y±(V,K) is a provisional result and
not the final decomposition: One would want the integrable and unintegrable
subspaces to be isomorphic. We’ll see next, that there are conjugations on
C(V,K), which map the Y−-spaces into their complementary Y+-spaces, but
leave a subspace of the Y+-spaces invariant. The goal then will be to extract
that subspace and to decompose Y+ further.

9. Jacobians, and C0-spaces
Again, let V ⊂ Rn be a simply connected compact region. We now examine
the spaces of integrable and unintegrable functions:

C(V,Rn) contains the space of infinitely differentiable functions C∞(V,Rn)
as a dense subspace (see: [6]). Restricting to these has the advantage that the
structure of the subspaces can be classified by the types of the Jacobi matri-
ces (i.e.: the derivatives) of its elements. With this we have: The derivative of
every continuously differentiable f ∈ C(V,Rn) can be represented by matrix-
valued function Df , called the Jacobian, given by

Df(x, y) =


g11(x, y) g12(x) · · · g1n(x)
g21(x) g23(x) · · · g2n(x)

· · ·
gn1(x) gn2(x) · · · gnn(x)

 , with gkl ∈ C(V,R)

By Poincaré’s lemma (see e.g.: [3][Ch. 1 2.12.1]), a continuously dif-
ferentiable function f ∈ C(V,Rn) is integrable if and only if its Jacobian
Df is a symmetric matrix, i.e: gkl = glk holds for all 1 ≤ k, l ≤ n. These
then comprise all continuously differentiable elements from Y+(V,Rn). And
the unintegrable, continuously differentiable fY−(V,Rn) then have the anti-
symmetric Jacobian Df

Df(x, y) =


0 −g21(x) · · · −gn1(x)

g21(x) 0 · · · −gn2(x)
· · ·

gn1(x) gn2(x) · · · 0

 , (gkl = −glk ∈ C(V,R))

For any f ∈ C∞(V,Rn) the Jacobian Df can be broken into the sum
Df = Dfsym +Dfasym of a symmetric matrix Dfsym = 1

2 (Df +Df t) and an
anti-symmetric matrix Dfasym := 1

2 (Df − Df t), where Df t is defined as the
transpose of Df . That decomposes C∞(V,Rn) into the algebraic direct sum
of a symmetric and an anti-symmetric subspace. Since C∞(V,Rn) is dense in
C(V,Rn), if we see that the closures of these subspaces w.r.t. the supremum
norm are just the spaces Y±(V,K). There is just one problem: Y+(V,Rn)
does contain elements f , for which Df has non-zero diagonal elements, so
Y−(V,Rn) is not isomorphic (or even isometric) with Y+(V,K).
So, we want to extract these diagonal matrices, integrate these, prove that
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their primitives constitute their own subspace, and show that this is an open
and closed subspace of C(V,Rn):

Let Df be a diagonal n × n-matrix, where its diagonal elements are
continous functions g11, . . . , gnn ∈ C(V,R). Then Df is integrable, because
for any piecewise continuously differentiable path γ : [0, 1] → V the inte-
gral f(x) =

∫
γ

Df(s)ds =
∫ 1

0 Df(γ(t)) · dγ(t)
dt dt does only depend on the

endpoints γ(0) and γ(1): on convex subsets, f = (fk)1≤k≤n is given by
fk(x) =

∫ γ(1)k

γ(0)k
gkk(x1, . . . , s, . . . , xn), k = 1, . . . , n. The set of all continuously

differentiable vector functions with diagonal matrix Df is a vector space, Z,
say. For all f = (fk)k ∈ Z and all 1 ≤ k ̸= l ≤ n then: ∂fk

∂xl
≡ 0. We equip Z

with the supremum norm and denote its closure by C0(V,Rn). (Then again
all f = (fk)k f = (fk)k ∈ C0(V,Rn) satisfy: ∂fk

∂xl
≡ 0 for 1 ≤ k ̸= l ≤ n.)

Further, C0(V,Rn) also is open, because for any f ̸= 0 in C0(V,Rn), there
must exist some x ∈ V , for which

∣∣f(x)
∣∣ > ϵ > 0. Let Ω(ϵ) be the open set

of all g ∈ C0(V,Rn), for which supx∈V

∣∣g(x)
∣∣ < ϵ/2. Then f + Ω(ϵ/2) is an

open subset of C0(V,Rn) not containing 0, so C0(V,Rn) is also open. Then
again, the canonical projection π0 : Y+(V,Rn) → C0(V,Rn) is continuous, so
C0(V,Rn) possesses a topological complement

C+(V,Rn) := Y+(V,Rn)/C0(V,Rn).

The functions in C+(V,Rn) will be called purely integrable.
We gain more insight into the space C0(V,Rn) considering the space of

real-valued functions, C(V,R):
It has a dense subspace C1(V,R) of continuously differentiable functions, and
the space of its derivatives just equals C(V,Rn). And because the functions
f ∈ C0(V,Rn) are integrable to continuously differentiable functions If ∈
C(V,R), the primitives If of C0(V,Rn) satisfy ∂k∂lIf ≡ 0 for all 1 ≤ k ̸=
l ≤ n. Their closure w.r.t the supremum norm, denoted by C0(V,R), then
consists of all functions, which locally are the sums of 1-dimensional functions:
f : x = (x1, . . . , xn) 7→ f1(x1) + · · · + fn(xn). And this, of course, is a closed
and open subspace of C(V,R).

For convenience, the 1-dimensional space Const of additive constants
will be included in C0(V,K).

In all, we proved:

Proposition 9.1. Let V be a compact simply connected region in Rn, and let K
denote either R or Rn. Then C(V,K) is – modulo additive constants – the topo-
logical direct sum of three subspaces C(V,K) = C+(V,K) ⊕ C0(V,K) ⊕ C−(V,K)
of the space of purely integrable functions C+(V,K) := Y+(V,K)/C0(V,K),
an isomorphic space of unintegrable functions C−(V,K) := Y−(V,K), and a
complementary C0(V,K).
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10. Partially integrable and unintegrable functions
In this section the subspace C(V,K)/C0(V,K) = C+(V,K) ⊕ C−(V,K) for K =
R,Rn is to be decomposed further:

As immediate consequence of Proposition 7.1, a function f ∈ C(V,K)
with K = R,Rn (on a simply connected compact region V ⊂ Rn) is integrable,
if and only if it is locally integrable on all convex, compact, closed regions
U ⊂ V . So, without loss of generality, we may assume V to be convex.
Then, by Proposition 7.1 f is integrable on that convex V , if and only if f is
integrable in all its 2-dimensional orthogonal affine sections, of which there are(

n
2
)

= n(n−1)
2 , one for each pair of coordinate indices (µ, ν), (1 ≤ µ < ν ≤ n).

Let Γ(V ) be the set of all piecewise smooth paths γ : [0, 1] ∋ s 7→ γ(s) ∈
V , and let |γ| denote the arc length of γ, (γ ∈ Γ(V )). Then the supremum
norm on C(V,K)/C0(V,K) is equivalent to the supremum norm

f 7→ sup
γ∈Γ(V )

1
|γ|

∣∣∣∣∣
∫

γ

f(s)ds

∣∣∣∣∣ .

Assuming convexity of V as above, each γ is the sum

γ =
∑

1≤µ<ν≤n

γµν

of
(

n
2
)

paths γµν = πµνγ, where πµν : V ∋ (x1, . . . , xn) 7→ (xµxν) ∈ R2 are
the orthogonal projections to the xµxν-coordinate planes. Let Γµν(V ) be the
set of all paths πµνγ, (γ ∈ Γ(V )). The supremum norm on C(V,K)/C0(V,K)
then is also equivalent to the sum of seminorms

qµν : f 7→ sup
γ∈Γµν (V )

1
|γ|

∣∣∣∣∣
∫

γ

f(s)ds

∣∣∣∣∣ .

The vector space Cµν(V,K) of all f ∈ C(V,K)/C0(V,K), for which qkl(f) = 0
holds for all (k, l) ̸= (µ, ν) and (1 ≤ k < l ≤ n), therefore is an open and
closed Banach subspace of C(V,K)/C0(V,K).

And because C(V,K)/C0(V,K) does not contain the invariant subspace
C0(V,K), the subspaces Cµν(V,K) are mutually disjoint, i.e:

Cµν(V,K) ∩ Ckl(V,K) = {0}, (µ, ν) ̸= (k, l), (1 ≤ µ, k < ν, l ≤ n).
So, C(V,K)/C0(V,K) is the toplogical direct sum of its subspaces Cµν(V,K),
(1 ≤ µ < ν ≤ n).

Either by applying [5][Proposition 2.1] or by following the proof of
Proposition 8.1 above, it follows, that each subspace Cµν(V,K) decomposes
further into the topological direct sum of two subspaces Cµν

± (V,K):
Let Γc

µν ⊂ Γµν be the set of all closed curves, which are contained in
some convex subset U ⊂ V . We define Cµν

+ (V,K) as subspace of all f ∈
Cµν(V,K), for which

pµν : f 7→ sup
γ∈Γc

µν (V )

1
|γ|

∣∣∣∣∣
∫

γ

f(s)ds

∣∣∣∣∣ = 0
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and Cµν
− (V,K) as its algebraic complement in Cµν(V,K).
Both spaces then are closed and open subspaces of Cµν(V,K), and we

obtain:

Proposition 10.1 (Partial integrability decomposition). Let V ⊂ R2 a simply
connected compact region and K = R,Rn.

1. C+(V,K) is the topological direct sum of the subspaces Cµν
+ (V,K), i.e.:

C+(V,K) =
⊕

1≤µ<ν≤n

Cµν
+ (V,K).

2. C−(V,K) is the topological direct sum of the subspaces Cµν
− (V,K), i.e.:

C−(V,K) =
⊕

1≤µ<ν≤n

Cµν
− (V,K).

While the spaces Cµν
+ (V,K) will be referred to as partially integrable

subspaces, the spaces Cµν
− (V,K) will be called partially unintegrable.

11. Conjugation, orientation, and parity
In Part 1, conjugation, anti/conformality and parity (i.e. orientation inver-
sion) were defined, and it was shown that these played together, mapping un-
integrable functions isomorphically onto strictly integrable functions, while
the supplementary C0-space is invariant w.r.t. conjugation and parity, and
can be broken up into the toplogical direct sum of a conformal and an anti-
conformal subspace. Because conjugation, conformality, and parity are de-
fined as inversions between coordinate pairs, these are uniquely defined for 2
dimensions, but for n > 2, because of the lack of uniqueness for n > 2.

In order to achieve a holistic view and treatment for n > 2, it is therefore
necessary to extend the definitions for conjugation, conformality, and parity:

Remark 11.1 (Recapture from Part 1: R2 is unorientated). As to Euclidean
geometry, R2 represents the coordinates of points w.r.t. a right or positively
orientated orthonormal pair of base vectors. If coordinate values (x, y) were
all non-negative, everything would be fine: because then (x, −y) and (−x, y)
with x, y ≥ 0 will be identified as the coordinate (x, y) of the left or negatively
orientated pair of base vectors. But with x, y ∈ R we loose that information:
R2 is unorientated.

The complexification (x, y) 7→ x + iy := (x, iy), however, introduces an
orientation: irrespective of the sign of x and y, (x, iy) refers to the unique
point in the right/positively orientated system. An orientated coordinate sys-
tem therefore differentiates between parity, which is the inversion (x + iy) 7→
x − iy and the inversion of handedness x + iy 7→ ix + y. Both inversions
anti-commute, and their product is ±i, not 1. In Part 1, the orientation was
based on that product of these inversions, and it was shown that orientation
(as defined in 7.4) in 2 dimensions allows a pullback of complex calculus from
C to R2.
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While complex analysis – because of its field structure – is confined to 2
dimensions, the concept of orientation similarly allows the extension to any
dimensions n > 2 (incl. odd numbers of dimension), but comes with a defect:

As in definition 7.4, let

φ : Rn ∋ x = (x1, . . . , xn) 7→ ζ :=
∑

1≤k≤n

akxk := (a1x1, . . . , anxn) ∈ A

be an orientation of Rn. We define φ to be of (totally) positive/right handed
orientation and set φ+ := φ as well as Rn

+ := φ+R
n. Rn

+ is called positive
orientated Rn.

Remark 11.2. φRn is (of course) given the norm

|·| : ζ 7→ (ζ2)1/2 = (
∑

k

x2
k)1/2 ≥ 0,

which makes φ an isometry of Banach spaces.

For each pair (k, l) with 1 ≤ k < l ≤ n, then the mapping

ϑkl : Rn
+ ∋ ζ =

∑
k

akxk 7→ a1x1+· · ·+ak−1xk−1+alxk+· · ·+akxk+· · ·+anxn,

which interchanges the algebra element ak with the algebra element al, de-
fines an orientation inversion, such that for any two pairs ϑkl and ϑk′l′ the
orientations of ϑklRn

+ and ϑklRn
+ are equivalent and will be defined to be neg-

atively orientated with respect to Rn
+. And consequently, any odd number of

transpositions compose to a orientation inversion, while any even number of
these are orientation preserving. In other words, the orientation is an equiva-
lence relation on the group of permutations of a1, . . . , an, by which all ϑkl are
equivalent orientation inversions, so that we may pick ϑ12 as representative
of the equivalence class ϑ := [ϑ12] and set Rn

− := ϑRn
+(, which is represented

by ϑ12Rn
+). Rn

− will be defined as negative orientated.

The problem with that definition of orientation inversion ϑ is:
While φ strictly determines the positive orientation from dimension n down
to dimension 2 in all its othogonal projections, ϑ only partially inverts the
orientation and hides the rest behind an equivalence class:

Example: For n = 3 the inversion x1 7→ −x1 inverts the orientation
of 12- and 13-projections, while it leaves the orientation of 23-projections
invariant – up to equivalence. But if instead the orientation is inverted by
x2 7→ −x2, then 13-projections keep their orientation – again up to equiva-
lence.

That calls for an improved redefinition of ϑ:

Definition 11.3 (Orientation inversion). For 1 ≤ µ < ν ≤ n let πµν : Rn
+ ∋ ζ =∑

k akxk 7→ aµxµ + aνxν ∈ R2
+ be the orthogonal, 2-dimensional projections.
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We represent each ζ ∈ Rn
+ as the tuple (πµνζ)1≤µ<ν≤n. The orientation

inversion is then defined as the mapping

ϑ : (πµνR
n
+)1≤µ<ν≤n ∋ ζ 7→ (ϑµνπµνζ)1≤µ<ν≤n.

While Rn
+ will be called to have positive orientation, Rn

− = ϑRn
+ will be said

to have negative orientation. Further, for a compact region V ⊂ Rn we define
V+ := φV and set V− := ϑV+.

The vector space Rn
− and the 2n-dimensional algebra A are equipped

with the Euclidean norm (as with Rn
+), by which they become Banach spaces.

So, Rn
+ and Rn

− are isometric (and isomorphic), and the orientation inversion
ϑ is a conjugation on these spaces, i.e.: its square ϑ2 = 1 is the identity 1

on these conjugated spaces. Because the spaces Rn
± are identical up to their

opposite orientation, it makes no sense to distinguish between these as target
space, and we may replace both by their superspace A.
In line with the above, we set φ+ := φ and φ− := ϑφ+, and define:

Φ± : C(V,R) ∋ f 7→ fφ−1
± ∈ C(V±,R) and

Φ± : C(V,Rn) ∋ f 7→ φ±fφ−1
± ∈ C(V±,Rn

±).
From Proposition 10.1 we know that C(V,K) for K = R,Rn is the topolog-

ical direct sum const⊕
⊕

µν

(
Y+(V,K)⊕Y−(V,K)

)
. With this, the orientation

inversion Θ is defined as:

Θ : C(V+,K) ∋ f = c+
∑
µν

fµν
+ +fµν

− 7→ c+
∑
µν

(
fµν

+ ϑµν +fµν
+ ϑµν

)
∈ C(V−,K).

Under the condition that path integration factors are taken in fixed order
to the right of the integrand, Proposition 10.1 extends straightforward from
C(V,K) to C(V,K), which allows the extension of Θ to

Θ : C(V+,A) → C(V−,A).

As a convenient shorthand, we’ll write fϑ := Θf . Along with ϑ, Θ is a
conjugation on both C(V∓,A).

Proposition 11.4. Let V ⊂ Rn be a compact simply connected region and
Vpm := φ±V . Then Θ : C(V±,A) → C((ϑV )∓,A) is an inversion, i.e. an
homeomorphism of Banach spaces, such that Θ2 is the identity, and the fol-
lowing holds: Θ maps

1. C±(V±,A) onto C∓(V∓,A), and
2. C0(V±,A) onto C0(V∓,A).

In other words: Θ maps unintegrable functions onto strictly integrable func-
tions, and the “straight” C0-spaces onto C0-spaces.

We can therefore use φ+ and Φ+ to integrate C+(V,A) as well as φ−
and Φ− to integrate C−(V,A).

For convenience and in analogy to Part 1 we write: f̄ := Θf for f ∈
C±(V,A) and call f̄ the conjugate of f .
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12. Conformality
We begin with conformality, which – as shown in Part 1 – is an optional
feature for analyticity, which was discussed in order to get analyticity in line
with holomprphy in complex analysis.

Again, let V ⊂ Rn be a compact simply connected region.

Proposition 12.1. C0(V,A) is the topological direct sums of pairwise conformal
and anti-conformal subspaces C0,conf (V,A) and C0,aconf (V,A).

Proof. We prove the two cases for K = R,A/R separately. For K = R, we
know from 9 that f ∈ C0(V,R) (locally) is the sum of 1-dimensional, real-
valued functions f(x = (x1, . . . , xn)) =

∑
k fk(xk). This sum can be split into

a sum of
(

n
2
)

pairs: f = 1
n−1

∑
1≤k<l≤n(fk + fl), which allows the pairwise

conformality decomposition as in 1[Sec. 4]:

fk(xk) + fl(xl) =(fk(xk) + fl(xl)
2 + fk(xk) + fl(xl)

2
)

+
(fk(xk) − fl(xl)

2 − fk(xk) − fl(xl)
2

)
For K = A/R, we have f(x) = (f1(x1), . . . , fn(xn)), which splits accordingly
into the sum of pairwise vectors 1

n−1 (fk, fl) for 1 ≤ k < l ≤ n:(
fk(xk)
fl(xl)

)
= 1

2

(
fk(xk) + fl(xl)
fk(xk) + fl(xl)

)
+ 1

2

(
fk(xk) − fl(xl)

−(fk(xk) − fl(xl))

)
.

Because in both cases the decompositions define continuous projections onto
complementary subspaces, they give the desired decomposition for C0(V,R)
and C0(V,A \R). The other remaining 2 cases the follow from the topological
isomorpisms Φ+ (defined in the previos section). □

We may now add the conformal part of C0(V,A) to C+(V,A) and the
anti-conformal part of C0(V,A) to C−(V,A), which gives us, what we’ll call
conformality decomposition or conformality split:

C(V,A) = Cconf (V,A) ⊕ Caconf (V,A),
where Cconf (V,A) = C+(V,A) ⊕ C0,conf (V,A) is defined to be conformal, and
Caconf (V,A) = C−(V,A) ⊕ C0,aconf (V,A) is called anti-conformal.
For C(V±,A), the conformal and anti-conformal subspaces Cconf (V±,A) and
Caconf (V±,A) are defined analogously.

13. Differential calculus on C(V±,A) (and C(V±,R))
As discussed in Part 1 for two dimensions, the algebra A with n anti-commuting
“generators” a1, . . . , an of unit length is a finite dimensional vector space over
the field of real numbers, while φ is an orthogonal injection into A, so con-
tinuity and partial differentiability of functions f : V± → A are well-defined
(where of course V ⊂ Rn is assumed to be a simply connected compact region
throughout this section).
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And, because R is a subspace of A, we may – for the largest part – restrict to
consider just C(φ±V,A).

Let f ∈ C(V±,A). Then f will be called differentiable at ζ0 ∈ V±, if
df(ζ=ζ0)

dζ
:= limζ→ζ0(f(ζ) − f(ζ0)) 1

ζ−ζ0
exists as element f ′(ζ0) ∈ A. f is

called differentiable on V±, if f is differentiable in all points ζ0 ∈ V±.
f ′(ζ) := df(ζ)

dζ will be called derivative of f .

Remark 13.1. (i) Because 1
ζ−ζ0

= ζ−ζ0
|ζ−ζ0|2 , where|ζ − ζ0| =

∑
k(xk−x0k)1/2,

1
ζ−ζ0

exists.
(ii) Note that the divisional term 1

ζ−ζ0
is factored to the right side of f : This

is to ensure uniqueness of the limit in the case that the target values
f(ζ) do not commute with the variable ζ. As long as f(ζ) is real-valued,
however, the ordering of the product is irrelevant: “left” and “right”
derivative coincide.

(iii) For f ∈ C(V−,A)/C0(V−,A) differentiability means, that for its tuple-
representation f = (fµν)µν (as of Proposition 10.1), each fµν is differ-
entiable w.r.t. ζ̄, where ζ̄ := ϑζ and ζ ∈ V+.
It follows:

Proposition 13.2. 1. (Anti-integral): The derivative is the inverse of the
primitive of an integrable f ∈ C(V±,A).

2. (Anti-derivative): Conversely, if f ∈ C(V±,A) is continuously differen-
tiable on (a simply connected compact region) V ⊂ Rn, then its deriva-
tive f ′ is integrable, and If ′ equals f modulo constant of integration.

3. Let f ∈ C(V±,A). Then f : ζ 7→ f(ζ) is differentiable in ζ0 ∈ V± if and
only if f c : V∓ ∋ ζ̄ 7→ f(ζ) is differentiable in ζ̄0, where ζ̄ := ϑζ.

4. (Chain rule): Let f ∈ C(V±,A) and g ∈ C(W±,Rn
±) be differentiable

on V± and W±, where V and W are assumed to be compact simply
connected regions of Rn, such that ran(g) := g(W±) ⊂ V±. Then the
composed function f ◦ g : W± → A is differentiable, and the chain rule
holds: df◦g(ζ)

dζ = df(η)
dη

dη
dζ , where η := g(ζ).

But:
Proposition 13.3. If f ∈ C(V±,A) is differentiable and non-constant, then
its conjugate Θf is undifferentiable. In other words: The conjugation is not
differentiable(, although it is a topological homeomorphism).
Proof. The conjugation Θ is a linear (and continuous) mapping on C(V±,A)
onto C(V∓,A), so the limit limζ→ζ0(ζ̄ − ζ̄0) 1

ζ−ζ0
exists and is Θ. For f ∈

C+(V±,A) ⊕ C−(V±,A) however, Θ is itself not an element of A, but only a
linear mapping of φ±R

n to A. This makes Θ a globally non-differentiable
transformation. □

So, the conjugation Θ sets the boundary for both, integrability and
differentiability. (Which is to be expected, since derivatives proved to be anti-
primitives and vice versa.) However, by Section 11, Θ also inverts integrability
(and therefore differentiability as the inverse of the primitives)!
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The mappings
φ± : Rn ∋ x 7→ ζ ∈ R

n
±

hence define two global coordinate charts over the manifold (Rn, φ±) of pos-
itive and negative orientation, which in turn lets us define C+(V+,A) to be
positive orientated, C−(V−,A) to be negative orientated, and C0(V±,A) will be
called straight.
With this, integrability on simply connected compact regions is a matter of
orientation: integrable functions can be integrated w.r.t. positive orientation,
and the non-integrable functions are integrable w.r.t. the negative orienta-
tion.

A function f ∈ C(φ±V,A) is called analytic on φ±V , if for each ζ0 in
φ±V there is an open neighbourhood U ⊂ Rn

+, of ζ0, such that

f(ζ) =
∑
k≥0

ck(ζ − ζ0)k, (ck ∈ A, k ∈ N),

where the power series is to converge uniformly on U .

Remark 13.4. It immediately follows that analytic functions on φ±V are
both integrable and differentiable on φ±V in all orders. Hence, the product
f · g : ζ 7→ f(ζ)g(ζ) of an integrable continuous function f and an analytic
function g on φ±V is integrable on φ±V .

On the positive/negative orientated Rn
± let

Ψ± : Rn
± \ {0} ∋ ζ 7→

∑
k ak

ζn−1 ∈ A

be the Cauchy function.
Then

Ψ±(ζ0 − ζ) =
∑

k ak

ζn−1
0

∑
k≥0

(k + n − 2)!
(n − 2)!k!

(
ζ−1

0 ζ
)k

exists for
∣∣∣ζ−1

0 ζ
∣∣∣ < 1, and the series uniformly converges in ζ on all compact

simply connected regions not containing the pole ζ0. So, it is analytic on these
regions.

Let us first consider the case f ∈ C+(φV,R). Because f =
∑

k akfk is
integrable on (the simply connected compact region) V , it follows by 7.1,
that ∫

S(r,ζ0)
f(ζ)Ψ+(ζ − ζ0)dn−1ζ = ±(a1 · · · an)|Sn|

∑
k

fk(ζ0),

where S(r, ζ0) is the sphere of radius r > 0 around ζ0, |Sn| is the area of the
(n − 1)-dimensional unit sphere in Rn, and where the integral is the surface
integral over S(r, ζ0), and where the sign ±1 is determines orientation the
integration over the r-sphere: it is +1 for the positive orientation and −1 for
the opposite.
The complementary case is that f ∈ C+(φV,A/R): then its primitive If is
in C+(φV,R), so the above delivers the same result for If . Cauchy theory
applies (as shown in Part 1[Proposition 1.1]), by which f (and If) prove
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to be analytic on φV . (And for C−(φV,A) the equivalent results follow with
Ψ−.) Therefore:

Proposition 13.5. For a simply connected compact region V ⊂ Rn and K± =
R,A all functions of C+(φ+V,K)+ are analytic w.r.t. the positive orientation,
while all functions of C−(φ−V,K−) are analytic w.r.t. the negative orienta-
tion, and the straight subspace C0(φ±V,K±) is analytic w.r.t both, positive
and negative orientation.

Remark 13.6 (Laplace equation). The above proposition is not really a sur-
prise: it can be predicted from ground: the Laplace equation ∆ :=

∑
k ∂2

k ≡ 0
tells it all:
We know that its solutions are the harmonic functions, of which we know
that, restricting to pairs, these are all (pairwise) real analytic. So, the har-
monic functions all are globally real analytic. Hence, any irregularity of the
continuous functions must come with the sources of the Laplace operator.
Now, where are the sources? If the sources are contained within V , then they
are not contained in the outside of V , which itself is within the complement
of V , and vice versa. This is the essence of the preceeding proposition.

Part 3. Mechanical Dynamical Systems

14. Lagrangian dynamical systems
Wrapped in the terminology of differential topology, a Lagragian system is
defined in [7] as a pair (Y, L) consisting of a smooth n-dimensional fiber
bundle Y → X over the time axis R and a differential n-form on an r-order
jet-manifold JrY of Y .

V. I. Arnold’s original definition (see: [2][Ch. 1, §2.2]) brings it to a
clearer point:
A Lagrangian system is a pair (M, L) of an n-dimensional (smooth) man-
ifold M of the generalized location variables q1, . . . , qn and a function L :
I × TM → R, where TM is the tangent space of M and I is the time inter-
val.
Its meaning: The Euclidean space of location coordinates is (contravariantly)
curved in order that the curved velocity variables become “flat” tangent vec-
tors: that is one half of Einstein’s equivalence principle.

From what was dealt with in this paper was about till here, it should
be clear that we will refine the charts (Uα, ϕα) of the manifold’s atlas to
positive and negative orientated ones. For now, we simply leave the space of
generalized coordinates “unbent”, which reduces the Lagrangian system to
its original model in classical mechanics, where the Lagrange function

L : I × V × R
n ∋ (t, q, q̇) → R

is a function on the (cartesian) product of a (non-trivial) closed and bounded
interval I = [t0, t1] of time, a simply connected compact region V ⊂ Rn

of location coordinates, and the space of velocity components Rn. L then
defines the equation of motion as solution of all continuously differentiable



30 Hüttenbach

paths γ : [t0, t1] ∋ t 7→ γ(t) ∈ U , for which S : γ 7→
∫ t1

t0
L(t, q(t), dq

dt )dt is
extremal, i.e.: δS(γ) ≡ 0.

We define the Lagrangian system to be mechanical, if the Lagrange
function is strictly convex in all velocity coordinates q̇ = (q̇1, . . . , q̇n), and
restrict to such systems in the sequel. Then the Legendre transformation
q̇i → pi := ∂L

∂qi
can be applied, which transforms L(t, q(t), q̇(t)) to p · q̇ −

H(t, q(t), p(t)), where H := q̇ · ∂L
∂q̇ is the energy function, known as Hamilton

function. Because the domain of the velocity coordinates was supposed to be
Rn, the momentum coordinates either have Rn as domain(, although it would
suffice to be an open, convex subset).
Remark 14.1. Note that the existence of the Legendre transformation de-
mands that all particle masses are to be unequal zero.

Then dS = Ldt = p(t) · dq − H(t, q(t), p(t))dt is a differentiable 1-form,
and

f : [0, 1] × V × R
n ∋ (t, q, p) 7→ (p(t), −H(t, q(t), p(t))) ∈ R

n+1

a vector-valued function, which we may restict in the momentum coordinate
space to a sufficiently large, compact simply connected region W ⊂ Rn, say,
such that f is continous on I × V × W . We can now (uniquely) decompose
f either into the sum f = (f+ + f0) + f− of an integrable function f+ + f0
and an unintegrable complement f−, or into a conformal and anti-conformal
part, introduce the orientation φ : Rn+1 → A with its positive and negative
orientation, then integrate the integable or conformal function w.r.t. φ+ and
the the unintegrable or anti-conformal part w.r.t. φ−. In particular, Φ±f±
and their primitives S± : φ±I × V → R then are analytic. We showed
Proposition 14.2. Let L : I × V × W ∋ (t, q, p) 7→ p · q̇ − H(t, q, p) ∈ R

be the Legendre transformed Lagrange function of a mechanical Lagrangian
system, where I × V × W is a simply connected compact region, such that L
is continuous on I × V × W . Then there exists a decomposition of the system
into the sum of two subsystems dL = dL+ + dL− = p · dq − H(t, q, p)dt of
positive and negative orientation, such that L± can be integrated to analytic
action functions S± : φ±I × V → R.

Indeed, S+ is nothing but the classical well-known Hamilton-Jacobi
function S, which is calculated from the Legendre transformed (hence: me-
chanical) Lagrangian dynamical system, using the following sufficient con-
dition: There exists a diffeomorphism of the variables Ω : (q, p) → (Q, P ),
which leaves the Hamilton equations invariant (called canonic transforma-
tion), such that H(t, Q, P ) ≡ 0. That is: A canonic transformation Ω to a
free mechanical system must exist.
In this case, P · dQ − H(t, Q, P ) = P · dQ evidently is an exact differen-
tial 1-form, because ∂Pk

∂Ql
≡ 0 for (1 ≤ k, l ≤ n), so the system is globally

integrable w.r.t. the transformed canonical coordinates, and the inverse of
the canonical transformation delivers a global action integral for the original,
untransformed system. This is the Hamilton-Jacobi function.
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There are several important remarks to be made on Hamilton-Jacobi
functions:

Remark 14.3 (Hamilton-Jacobi functions). (1) The domain of definition of
the Hamilton-Jacobi function is space time, and it is not the direct
product of time cross phase space, where the phase space is defined as
the direct product of location and momentum coordinates.

(2) The essence of Hamilton-Jacobi theory is the (global) integrability of
the 1-form p · dq − H, or equivalently, the integrability of the vector-
valued function f : (t, q, p) 7→ (p(t), −H(t, q(t), p(t))). By that, all
path integrals of f from a start point (t0, q(t0), p(t0)) to the end point
(t1, q(t1), p(t1)) result in the vary same action value. The name “prin-
ciple of stationary action” for the Lagrangian mechanical system seems
misleading: all paths then are extremal.

(3) The Hamilton Jabobi function completely solves the mechanical system:
given a particle or system constallation at q(t0) for time t0 and initial
momentum p(t0), then by S, we know the action value S(t0, q(t0)). And
∂S(t,q(t))

∂qk
= pk(t), (1 ≤ k ≤ n), give us the direction and momentum for

each t ∈ [t0, t1].
What the Hamilton-Jacobi function then tells us, is that S is to be
grasped as (n+1)-dimensional manifold of space time, on which the sys-
tem’s possible motions are the exactly along geodesics of that manifold.
This is the complementary part of Arnold’s definition of the Lagrangian
system in this sections’s beginning: The Lagrangian mechanics contains
in itself Einstein’s principle of equivalence: Either the action function S
is curved and the motion of the particles occurs on the geodesics of that
manifold, or – equivalently – space time is bent along S, and the parti-
cles then move freely along geodesics of that curved space time. In both
cases, we could and should define an oriented manifold on the space time
domain along S. The transformation of the coordinates (q, p) 7→ (Q, P )
then becomes the canonical Hamitom-Jacobi transformation above.

(4) Once S determined for one particle, then – as long as the particles
don’t interact with eachother – we can place any amount of particles
altogether on the surface of S with any initial momentum. The result
will be a stream of particles along the geodesics: it is the idea behind
D. Bernoulli’s hydromechanics.

Because the functions S± : φ±(I × V ) → R are analytic, they have a
radius of convergence for each (t, q) ∈ I × V , and, since I × V is compact,
a minimal radius r > 0 exists, within which all perturbations still lead to a
convergent behavior of the S±. In this sense, a mechanical Lagrangian system
should sustain a limited amount of “chaotic backgound noise”.
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15. Outlook
Restricting to conservative mechanical systems, time is extractable from the
space time coordinate system as an external parameter. The above can then
be applied to KAM-theory.

Also, note that the part S−, which is the action function for the nega-
tive orientated system, can be viewed as S+-function for the outside of the
bounded internal region. And this S− is (completely) anti-symmetric. The
particle system or system of states, which it describes, behave as fermions.
So, it is possible to base the quantum mechanical notion of spin on geometric
grounds, where fermions would be orientation inverted bosons.
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e-mail: d.huettenbach@gmail.com

https://archive.org/details/mmoiresurlesin00cauc
https://archive.org/details/mmoiresurlesin00cauc
https://vixra.org/abs/2304.0169
https://en.wikipedia.org/wiki/Lagrangian_system
https://en.wikipedia.org/wiki/Lagrangian_system

	Part 1. Integrability and orientation of continuous functions in 1 complex and 2 real dimensions
	1. Introduction: Preliminaries and problem statement
	2. Integrability decomposition
	3. Conjugation, Jacobians, and C0-spaces
	4. Conformality, holomorphic and anti-holomorphic functions
	5. Algebraic extension of R2 and C(V,R2)
	6. Analyticity of C(V,R2)

	Part 2. Integrability and orientation of continuous functions in nN dimensions
	7. Preliminaries
	8. Integrability decomposition
	9. Jacobians, and C0-spaces
	10. Partially integrable and unintegrable functions
	11. Conjugation, orientation, and parity
	12. Conformality
	13. Differential calculus on C(V,A) (and C(V,R))

	Part 3. Mechanical Dynamical Systems
	14. Lagrangian dynamical systems
	15. Outlook
	16. Information disclosure and interest statement
	References


