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Abstract

 Set Theory is a formalization of the existence and fundamental properties of mathematical objects as collections of

elements and/or elements included in collections. Its formulation is so basic and comprehensive that it has been p

stulated as the foundation of all mathematics. Perhaps, the major achievement of Set Theory is that, after being

criticized by many reputable mathematicians and philosophers since its appearance, it is now commonly accepted

as the primary explanation of the most basic components of mathematics: numbers; and not only the numbers we

have needed or we may ever need but all the numbers that could potentially exist. In Set Theory, an infinite

equence of numbers exists not as the mere projection of a construction algorithm but as a complete and self-identical

mathematical object: a set. In Set Theory the words infinite and infinity do not refer to the property of growing

endlessly (potential infinity) but to a definite magnitude; a number; the actual infinity. As a result of such a conception,

Set Theory arrives at the conclusion that there exist infinitely many infinities, each one with a different value.

The set of postulates, proofs and theorems used to justify the existence of such infinities is commonly known as

Transfinite Set-Theory. The first part of this work shows how some of the properties and theorems applied to infinite

sets, in Set Theory, necessarily lead to internal and fundamental contradictions under classical logic, even when the

dea of actual infinity is accepted. Throughout the second part, motivated by the necessity of an alternative to

Transfinite Set-Theory, due to the incapacity of such a theory to explain some of the findings shown in the first part

(especially the proof of the existence of as many rational as irrational numbers), the author develops a theory to

provide a better understanding of infinite sequences of numbers.
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PART I 
 

 

 

Why Transfinite Set-Theory is wrong 

 

 

 
“Later genera!ons will regard Set Theory as a 

disease from which one has recovered.” 

Henri Poincaré 
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1. What is Set Theory and why is it so important? 

 

Set Theory is a formaliza!on of the existence and fundamental proper!es of mathema!cal 

objects as collec!ons of elements and/or elements included in collec!ons. Its formula!on 

is so basic and comprehensive that it has been postulated as the founda!on of all 

mathema!cs. The inven!on of Set Theory is commonly a#ributed to George Cantor (1845-

1918), a mathema!cian who was born in Saint Petersburg, Russian Empire, and acquired 

most of his academic forma!on in Germany, where he also developed most of his career. 

Perhaps, the major achievement of Set Theory is that, a$er being cri!cized by many 

reputable mathema!cians and philosophers since its appearance, it is now commonly 

accepted as the primary explana!on of the most basic components of mathema!cs: 

numbers; and not only the numbers we have needed or we may ever need but all the 

numbers that could poten!ally exist. In Set Theory, an infinite sequence of numbers exists 

not as the mere projec!on of a construc!on algorithm but as a complete and self-iden!cal 

mathema!cal object: a set. 

 

1.1. Some fundamental proper"es of sets 

Set Theory postulates some proper!es that are inherent to all sets, including infinite 

sets. Two of the most important proper!es of sets are: 

 

1.1.1. Cardinality  

It is the property of possessing a determined number of elements. If / is a 

set whose elements are {0, 2, 3}, it is said that the cardinality of / is 3 or 

|A| = 3. 

 

1.1.2. Power set 

It is the property of implying the existence of a set of all the subsets contained 

in a set. If / is a set whose elements are {0, 2, 3}, then there exists a set 5(/), 

called the power set of /, whose elements are: 

 8{∅}, {0}, {2}, {3}, {0, 2}, {0, 3}, {2, 3}, {0, 2, 3}:, and it is said that its 

cardinality is 8 or |5(/)| = 8. 

 

1.2. Some fundamental theorems of Set-Theory 

By the acceptance of the men!oned proper!es, two fundamental theorems are 

derived: 

 

1.2.1. Cantor–Schröder–Bernstein Theorem 

Which states that, if there exist injec!ve func!ons < ∶  A→B and @ ∶  B→A 

between the sets A and B, then there exists a bijec!ve func!on ℎ ∶ A→B. In 
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terms of the cardinality of the two sets, this classically implies that if |A| ≤
|B|  and |B| ≤ |A|, then |A| = |B|; that is, A and B are equipotent.1 

 

1.2.2. Cantor’s Theorem 

Which states that, for any set A, the set of all subsets of A, the power set of 

A, has a strictly greater cardinality than A itself.2 

 

1.3. Concep"on of infinity in Set Theory 

The validity of the proper!es and theorems listed above is almost evident for any 

finite set but it is problema!c when it is accepted for infinite sets as well. However, 

since infinite sets are seen as completed and self-iden!cal en!!es in Set-Theory, 

there is nothing fundamentally different between them and finite sets. That is 

because in Set Theory the words infinite and infinity do not refer to the property of 

growing endlessly (poten!al infinity) but to a definite magnitude; a number; the 

actual infinity. As a result of such a concep!on, as it will be shown further on in this 

work, Set Theory arrives at the conclusion that there exist infinitely many infini!es, 

each one with a different value. The set of postulates, proofs and theorems used to 

jus!fy the existence of such infini!es is commonly known as Transfinite Set-Theory. 

 

 

In the following sec!on, I will show how the above proper!es and theorems applied to 

infinite sets necessarily lead to internal and fundamental contradic!ons under classical 

logic, even when the idea of actual infinity is accepted. 

  

 
1 Defini!on extracted from h#ps://en.wikipedia.org/wiki/Cardinality 
2 Defini!on extracted from h#ps://en.wikipedia.org/wiki/Cantor%27s_theorem 
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2. Cantor’s actual infinity 

 

The main-stream concep!on of infinite sets today comes from the work of Georg Cantor. 

One of Cantor’s main objec!ves was to give a totalizing character to his Set Theory. To 

achieve that, he needed to state that every mathema!cal object could be conceived as a 

set and has, at least, the same basic proper!es shared by all sets; then, infinite sequences 

of numbers must be sets, and they must have the proper!es of cardinality and power set, 

which will consequently lead to the existence of infinite different infini!es. Cantor was a 

strong believer in the existence and consistency the actual infinity. Contrary to the most 

accepted no!on of infinity in the history of mathema!cs and philosophy un!l the rise of 

Set Theory, and s!ll now for some,3 which is that infinity is not a number nor a quan!ty 

but just the property held by an en!ty of having no end, no limit, no term, no finish, also 

called poten!al infinity, Cantor defended the idea of actual infini!es being complete, 

closed and definite mathema!cal objects, and that every poten!al infinity exists only 

within the path of the actual infinity. Many pres!gious mathema!cians and philosophers 

of his !me decidedly disagreed with many of Cantor´s proofs, methods and ideas. 

However, his thoughts found great acceptance within Chris!an theologists, especially in 

neo-Thomist circles, and were promoted by Pope Leo XIII himself.4 The religious appeal of 

Cantor’s ideas is not surprising. Cantor must have been aware of the importance of them 

from a theological perspec!ve. God is infinite but he is also absolutely complete; nothing 

exists beyond him; thus, God cannot be poten!ally infinite; God cannot be conceived as 

something capable of growing because that would mean that he is imperfect. God must 

be an actual infinity: The Absolute. From him and within him, all other infini!es were 

created, not suggested or projected or launched, but formed as complete, self-iden!cal 

infini!es; many kinds among them but none with the property of growing endlessly 

because, in that unthinkable case, they could poten!ally extend themselves beyond God. 

Actual infini!es have a lot of sense in theology but not in mathema!cs. The concept of 

actual infinity produces not only logic and mathema!c contradic!ons, but a type of 

contradic!on that is even deeper and more evident: a seman!c contradic!on. In most 

dic!onaries, the word infinite has the meaning, both as a noun and as an adjec!ve, of 

limitless, endless, extending beyond any finite extension or quan!ty, etc.; from the La!n 

infinitus (limitless, borderless, endless). On the other hand, Cantor’s concept of actual 

infinity seems to be just an esoteric, thus confusing, version of the concept of finite. 

Ludwig Wi#genstein (1889-1951), known as one of the most influen!al philosophers of 

the Twen!eth Century, whose work was mainly focused on logic, the philosophy of 

mathema!cs, and the philosophy of language, was a firm cri!c of Cantor’s misuse of the 

 
3 Wolfgang Mückenheim, in his book Transfinity: A Source Book, presents a large list of quotes by more than 400 

pres!gious mathema!cians, philosophers and scien!sts showing their skep!cism about the idea of actual infinity. In 

the same book, Mückenheim presents a list of more than 100 arguments against actual infinity and contradic!ons 

of Transfinite Set-Theory. h#ps://www.hs-augsburg.de/~mueckenh/Transfinity/Transfinity/pdf 
4 Warren Dauben, Joseph; Georg Cantor: His Mathema!cs and Philosophy of the Infinite; Princeton University Press, 

1979; p. 120-148 
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words infinite and infinity and its catastrophic consequences for the founda!ons of 

mathema!cs.5 It is difficult to establish whether religious beliefs were the deepest 

mo!va!on for Cantor’s work or just a refuge from the rejec!on of his ideas by the 

mathema!cs community of his !me. However, religious beliefs may have been an 

important mo!va!on for some of his followers of the upcoming genera!on of 

mathema!cians, such as A. A. Fraenkel (1891-1965), whose intellectual interests included 

finding logical explana!ons for some fantas!c events described in the Torah.6 However, 

Cantor’s ideas may have never found enough support among the mathema!cs community 

without the applause of David Hilbert (1862-1943), who became the most influen!al 

mathema!cian of his genera!on and whose religion had nothing to do with the Judeo-

Chris!an God but, maybe, with his deep belief in the completeness and total coherence of 

mathema!cal systems, from which not even the infinite could escape. Hilbert endorsed 

Cantor’s Set Theory and that support was enough to turn Cantor’s misleading ideas into 

mathema!cal dogma un!l today. More interes!ng than establishing Cantor’s, Hilbert’s and 

Fraenkel’s mo!va!ons and biases, it would be trying to understand why the vast majority 

of the mathema!cs community has been defending, for more than a century, the concept 

of actual infinity or, even ignoring that from that concept were derived, ideas such 

completed infinite sets, the cardinality of infinite sets, power sets of infinite sets, 

transfinite numbers, etc. However, it would not be the first !me in history that humanity 

fell into such a kind of collec!ve self-decep!on. 

 

I will argue against some of the proofs presented by Cantor, which have contributed to the 

general misconcep!on about infinite sequences of numbers, especially, to the wrong 

general belief that the concepts of cardinality and power set can be applied to them the 

same way they are applied to finite sets. 

  

 
5 Therrien, V. L. (2012) « Wi#genstein and the Labyrinth of ‘Actual Infinity’: The Cri!que of Transfinite Set Theory », 

Ithaque, 10, p. 43-65. 
6 Zelcer, Mair; A. A. Fraenkel’s Philosophy of Religion: A Transla!on of “Beliefs and Opinions in Light of the Natural 

Sciences”; Hakirah, the Flatbush Journal of Jewish Law and Thought, Vol 12, 2011; p. 213-214 
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3. Logical development and faults of Transfinite Set-Theory 

 

The following is the logical process for the construc!on of Transfinite Set-Theory. I will 

present the main premises and methods used by Cantor in the construc!on of his theory 

and some irrefutable proofs of its faul!ness. 

 

3.1. Cardinality of the set of natural numbers 

The first postulate for the development of Transfinite Set-Theory is that there exists 

a set ℕ whose elements are all the natural numbers and its cardinality is infinity (∞). 

Further findings forced Cantor to dis!nguish this infinity from other infini!es; for that 

reason, he eventually named it ℵ+ (aleph null) or countable infinity since natural 

numbers are the numbers used for coun!ng. ℵ+ is the least infinite cardinal number. 

Note that this implies that the infinite sequence of natural numbers is a self-iden!cal 

en!ty; a completed set with a definite number of elements encompassing all 

possible natural numbers. 

 

3.1.1. Self-contradictory statement about the cardinality of natural numbers 

The cardinality of the set of natural numbers ℕ, which is also the set of all 

finite cardinal numbers, is the infinite cardinal ℵ+, for which, given any 

arbitrarily large natural number ( ), the following is always true: 

 

 < ℵ+ 

 

That implies that different from what happens to any of its subsets, the set 

of all finite cardinal numbers has a cardinality that is greater than its greatest 

element. By defini!on, if there is a greatest element in a set, the set should 

be finite. If there is not a greatest element, the cardinality should be 

undetermined or undeterminable. 

 

Here we start seeing how infinite sets are excluded from at least one of the 

most necessary aspects of cardinality, with no other jus!fica!on than the 

determina!on of a#ribu!ng that property to all sets. 

 

 

Once the first postulate is accepted, we can ask ourselves whether other infinite sets, 

such as the set of even natural numbers or the set of integers, have cardinality ℵ+ as 

well; whether they have the same number of elements as the set ℕ. 

 

3.2. Bijec"vity implies equipotency 

Since every natural number can be transformed into a singular even natural number 

by the func!on <(0) = 20 and every even natural number can be transformed into a 
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singular natural number by the func!on @(0) = J
K , then, from the Cantor–Schröder–

Bernstein Theorem we can affirm that there exists a bijec!on between those two sets. 

And, since we accept that infinite sets have a definite number of elements, we can 

also affirm that a bijec!ve rela!on between two of them implies their equipotency; 

which means, they have the same number of elements. There exist just as many 

natural numbers as even natural numbers. It results evident that the same would 

happen with any infinite subset of the set of natural numbers and also with any finite 

mul!plica!on of such sets, as the set of integers or the set of even integers. All those 

sets are called countable-infinite sets and their cardinal is ℵ+. 

 

And, what about the ra!onal numbers? 

 

3.3. Cantor’s diagonal snake 

In 1890, Cantor published a proof of the accountability of ra!onal numbers by using 

what is known today as Cantor’s diagonal snake or Cantor’s first diagonal. This proof 

starts by assuming that, as it happens with finite sets, all sets that can be mapped 

(disposed in a one-to-one display) to any countable-infinite set have a bijec!on with 

it and, thus, with the set of natural numbers. To prove that integers and ra!onal 

numbers can be mapped to each other, Cantor organized all posi!ve frac!ons in a 

squared array, in which each row contains all frac!ons with the same numerator and 

each column contains all frac!ons with the same denominator. Then, all frac!ons can 

be listed star!ng from the top-le$ corner and moving right-down covering all the 

frac!ons in each diagonal and ignoring the ones that can be simplified, as follows: 

 

1
1          12          13          14 … 

 

2
1          22          23          24 … 

 

3
1          32          33          34 … 

 

4
1          42          43          44 … 

 

⋮            ⋮            ⋮            ⋮      
 

We get the following mapping: 

 

 

(1) (2) 

(3) 

(4) 

(.) 

(5) (6) 

(7) 

(8) 

(9) 
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1, 2, 3, 4, 5, 6,  7, 8, 9, … 
 

1, 1
2 , 2, 3, 1

3 , 1
4 , 2

3 , 3
2 , 4, … 

 

Then, we just have to add 0 at the beginning of the list and, a$er each frac!on, its 

nega!ve, as follows: 

 

1, 2,  3,  4,      5, 6,     7, 8,   9,10,   11,12,   13, … 
 

0, 1, −1, 1
2 , − 1

2 , 2, −2, 3, −3, 1
3 , − 1

3 , 1
4 , − 1

4 , … 

 

Therefore, the set of ra!onal numbers has a bijec!ve rela!on with the set of integers 

and, by extension, with the set of natural numbers; which means, it is countable-

infinite; thus, the cardinality of the set of ra!onal numbers is ℵ+. 

 

3.3.1. Inconsistency of Cantor’s diagonal snake 

The problem with the proof above is that it implies that, differently from what 

happens with finite sets, there are right and wrong methods for mapping 

infinite sets, depending on the result we want to obtain. If we apply that same 

principle to the rest of mathema!cs, they would become inconsistent. 

 

We may decide to map natural and ra!onal numbers by lis!ng ra!onal 

numbers in order of their denominators, for example; as follows: 

 

1,  2, 3, 4,  5, 6, … 
 

1
1 , 1

2 , 1
3 , 1

4 , 1
5 , 1

6 , … 

 

By using this method, we would never be able to map any frac!on with a 

numerator different from one because denominators of one will always be 

equal to their pair and will increase infinitely as the coun!ng terms increase. 

 

Cantor assumes that the above is not a problem in this case because, 

according to him, we only need one method that makes the mapping possible 

to affirm that a given set has the same size as the set of natural numbers. We 

also could claim the opposite; that we only need one method that makes the 

mapping impossible to affirm that a given set has a different size from the one 

of natural numbers. The choice of one assump!on instead of the other is 

arbitrary unless a logical explana!on invalidates the second method for 

infinite sets, other than the necessity of proving a specific hypothesis. 
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In any other field of exact sciences, we would say that, if two different 

methods drive to different conclusions, there may be a mistake in the 

formula!on of the hypothesis or at least one of the methods is wrong; and the 

reason to choose one method instead of the other is normally not because it 

is the one that proves our hypothesis. Think for example in the case of a 

neolithic physicist who wants to prove that things exposed to direct light get 

ho#er. He shows his audience how a bowl of water gets ho#er when it is 

exposed to direct sunlight and when it is placed close to a fire. But when 

someone asks him to try the same under the moonlight, the physicist refuses 

to do so, saying that it is needed just one method that can turn the water 

ho#er in the presence of light to prove that light makes things ho#er. In the 

case of Cantor mapping the ra!onal numbers to the integers, as well as in the 

case of the neolithic physicist, there is no reason to prefer one of the methods 

be#er than the other, other than the necessity of proving a specific 

hypothesis. Both methods work the same for finite sets; thus, an explana!on 

of why both do not work for infinite sets is required unless we consider 

ourselves as neolithic mathema!cians. 

 

I am going to take Cantor’s arbitrary assump!on as valid, just because it will 

further help me to refute another proof made by him. 

 

3.3.2. Contradictory statements about the cardinality of ra"onal numbers 

Set Theory tells us that the cardinality of a set is always greater than or equal 

to the cardinality of any of its subsets. By the func!on <(0) = *
J , we know 

that there exist at least as many ra!onal numbers within the interval (0,1] as 

numbers in the set of all natural numbers. Thus, the cardinality of the set of 

ra!onal numbers within the interval (0,1] must be ℵ+. By the defini!on of 

ra!onal numbers, we know that they can only have a finite number of decimal 

digits ( ) in their decimal representa!on. We also know that the total number 

of ra!onal numbers cannot be higher than the total number of possible 

permuta!ons of the natural numbers between 0 and 9 in ( ) posi!ons. We 

also know that such a number is equal to 10S, which is a finite number 

because ( ) is finite. Thus, the total number of ra!onal numbers within the 

interval (0,1] is finite; therefore, the cardinality of such a set is lesser than ℵ+, 

which contradicts the first underlined statement. 

 

3.3.3. When counterintui"ve just means wrong 

Some!mes, counterintui!ve conclusions are the result of unknown or 

unexpected complexi!es exis!ng in reality. That is the case of some 

paradoxical outcomes from quantum mechanics and general rela!vity. 
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Counterintui!ve has become a very appealing word since the discoveries of 

Plank, Bohr, Einstein, Hubble, Heisenberg and Schrödinger, turning out to be, 

perhaps, one of the most expected signs of scien!fic breakthroughs. That, 

however, could have turned itself into a misleading intui!on, growing deep 

roots into the field of mathema!cs, where conclusions are normally not 

derived from experimental observa!ons, as they are in physics, but from 

rigorous logical demonstra!ons which are supposed to dissipate all wrong 

intui!ons in the process. That, although, is not what happens in Set-Theory. 

Some!mes, counterintui!ve conclusions are just the result of false 

assump!ons or wrong methods. That is the case of the famous Hilbert’s Hotel 

allegory, which has been one of the symbols of Transfinite Set-Theory for a 

century, and shows how it is possible to accommodate an infinite number of 

new guests in an already fully occupied hotel with infinite rooms7. 

 

Let us analyze the following reasoning about the cardinality of countable-

infinite sets: 

  

a. The cardinality of a set is a measure of the number of elements of the set 

b. The set of integers has countable-infinity elements 

c. The set of ra!onal numbers has countable-infinite elements 

From a, b and c, it follows: 

d. Integers and ra!onal numbers have the same cardinality. They have the 

same number of elements 

 

If we can presume that countable-infinity (ℵ+) represents the number of 

elements of a set (magnitude of quan!ty), we may also presume the existence 

of a number represen!ng an infinitely short magnitude (ℵT*). Then, if we 

accept that the reasoning above, regarding the cardinality of countable-

infinite sets, is true, we must accept that the following is true as well: 

 

a. The distance between places A and B is the sum of the distances between 

all consecu!ve places between A and B 

b. The distance between Amsterdam and Berlin can be divided into an 

infinite number of infinitely short consecu!ve distances 

c. The distance between Amsterdam and Chongqing can be divided into an 

infinite number of infinitely short consecu!ve distances 

From a, b and c it follows: 

d. The distance between Amsterdam and Berlin is equal to the distance 

between Amsterdam and Chongqing. 

 
7 A more detailed descrip!on can be found in: 

h#ps://en.wikipedia.org/wiki/Hilbert%27s_paradox_of_the_Grand_Hotel 
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That is what happens when we use the concepts infinite, infinitely or infinity 

not as the property of having no end but as a magnitude of distance or 

quan!ty. 

 

 

A$er accep!ng that the sets of natural numbers, even natural numbers, integers and 

ra!onal numbers have all the same number of elements, then we can ask ourselves 

what would be the cardinality of the set of real numbers. 

 

3.4. Equipotency between the set of real numbers and the set of real 

numbers within the interval [0,1) 

Any number within the interval [0,1) can be transformed into a posi!ve real number 

by the func!on <(0) = J
*TJ and any posi!ve real number can be transformed into a 

number within the interval [0,1) by its inverse <(0)T* which is <(2) = U
*VU. That 

means, there is a bijec!ve rela!on between those two sets of numbers; therefore, 

they have the same number of elements; they are equipotent.8 But, is their cardinality 

ℵ+? 

 

3.5. Cantor’s diagonal argument 

In 1891 Georg Cantor published a proof of the uncountability of the set of real 

numbers using what is called the diagonal argument or Cantor’s second diagonal. It 

starts by assuming that the set of real numbers is countable-infinite and, thus, it has 

the same cardinality as the set of natural numbers. Then, we construct an enumerated 

hypothe!cal list of all the real numbers within the interval [0,1) in its binary 

representa!on (no strict order is necessary). Once we have the list, we construct a 

number, named diagonal number, by selec!ng, from each number in the list, the value 

of the decimal posi!on that corresponds to the posi!on of the number in the 

enumera!on, as follows: 

 

1 → 0.00101011… 

2 → 0.11100010… 

3 → 0.10000111… 

4 → 0.10101010… 

5 → 0.01010101… 

⋮              ⋮ 
 

Diagonal number = 0.01000… 

 
8 Note that this reasoning leads to the paradox shown in Sec!on 3.3.3., about the distances Amsterdam-Berlin and 

Amsterdam- Chongqing 
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A$er that, we create a new number, named the an!diagonal number, by changing all 

the values of the decimal string. 

 

An!diagonal number = 0.10111… 

 

The new number is a real number within the interval [0,1) but it is not in the 

enumerated list; therefore, there exist more real numbers than natural numbers. 

 

The above could seem absurd but it is not; at least, it is not absurd at the most 

superficial level. We may say that the diagonal number cannot be constructed 

because the list would grow exponen!ally as the string of decimal digits grows 

linearly, thus, the diagonal would never encompass more than a small frac!on of the 

list. But remember that we are accep!ng that ℵ+, the countable infinity, is a self-

iden!cal definite value and that is exactly the quan!ty of natural numbers that have 

ever existed, exist and will ever exist. The number of decimal digits is ℵ+ and the size 

of the list is also ℵ+, they cannot be smaller or larger than ℵ+. Thus, we have a squared 

array and both the diagonal and an!diagonal numbers can be constructed, resul!ng 

in a number that it is not in the list and leading to the conclusion that the cardinal of 

the set of real numbers, also known as the cardinal of the con!nuum (W), is greater 

than the cardinal of the set of natural numbers: W > ℵ+. 

 

It is important to men!on that the diagonal argument cannot be applied to the set of 

ra!onal numbers because they do not have an infinite number of decimal digits. Their 

decimal digits are finite and any finite number is always lesser than ℵ+; we do not 

know how lesser but, in any case, lesser than ℵ+. Therefore, we cannot have a squared 

array and the diagonal number cannot be constructed. 

 

3.5.1. Proof A: There exist as many ra"onal as irra"onal numbers 

I will present an arithme!c proof demonstra!ng that there exists one and only 

one irra!onal number per each exis!ng ra!onal number and vice versa; which 

implies that the cardinality of those two sets is exactly the same: |ℚ| =
|ℝ − ℚ|. That, by extension, demonstrates that the cardinality of the set of 

real numbers is ℵ+, which contradicts the conclusion derived from Cantor’s 

diagonal argument. 
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3.5.1.1. Statement about ra"onal numbers 

Every ra!onal number can be expressed as a finite simple 

con!nued frac!on:9 

 

[+ + 1
[* + 1

[K + 1
⋱ + 1

[^

 

 

Where ([+) is an integer, ([_) is a posi!ve integer for ` = 1, 2, … , a 

and ([^) ≠ 1. 

 

3.5.1.2. Statement about irra"onal numbers 

Every irra!onal number can be expressed as an infinite simple 

con!nued frac!on: 

 

[+ + 1
[* + 1

[K + 1
[c + 1

⋱

 

 

Where ([+) is an integer and ([_) is a posi!ve integer for ` =
1, 2, … 

 

 

3.5.1.3. Existence of irra"onal numbers 

For every pair of ra!onal numbers (p, q), there exists at least one 

irra!onal number (u), such that (u) is between (p) and (q). This 

can be confirmed by observing the last nested frac!on of the 

simple con!nued frac!on representa!on of two similar ra!onal 

numbers. 

 

d = [+ + 1
[* + 1

[K + 1
⋱ + 1

[^

 

 

 
9 For a more detailed explana!on about simple con!nued frac!ons, visit: 

h#ps://en.wikipedia.org/wiki/Con!nued_frac!on#:~:text=When%20bi%20%3D%201%20for,called%20an%20infinit

e%20con!nued%20frac!on. 
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e = [+ + 1
[* + 1

[K + 1
⋱ + 1

[^ + 1

 

 

There exists at least one irra!onal number (u) between (p) and 

(q): 

 

u = [+ + 1
[* + 1

[K + 1
⋱ + 1

[^ + 1
[f + 1

[fV* + 1
⋱

 

 

Where ([+) is an integer and ([_) is a posi!ve integer for ` =
1, 2, … , a, g, (g + 1), … and ([^) ≠ 1. 

 

3.5.1.4. Existence of ra"onal numbers 

For every pair of irra!onal numbers (u, v), there exists at least one 

ra!onal number (q), such that (q) is between (u) and (v). This can 

be confirmed by observing the last nested frac!ons that two 

similar irra!onal numbers have in common in their simple 

con!nued frac!on representa!on; more exactly, at the nested 

frac!on where they start to diverge from each other. 

 

u = [+ + 1
[* + 1

[K + 1
⋱ + 1

[^ + 1
[f + 1

[fV* + 1
⋱

 

 

v = [+ + 1
[* + 1

[K + 1
⋱ + 1

([^ + 1) + 1
[h + 1

[hV* + 1
⋱
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There exists at least one ra!onal number (q) between (u) and (v). 

 

e = [+ + 1
[* + 1

[K + 1
⋱ + 1

[^ + 1

 

 

Where ([+) is an integer and ([_) is a posi!ve integer for ` =
1, 2, … , a, g, (g + 1) … , i, (i + 1), … and ([^) ≠ 1. 

 

If (u) and (v) share the same nested frac!ons indefinitely, we can 

say (u) and (v) are mathema!cally indis!nguishable from each 

other, thus: u = v. 

 

3.5.1.5. Final statement of Proof A 

As it is true that (u) is between (p) and (q) for every (p, q) ∈
ℚ and (u) ∈ (ℝ − ℚ), and it is also true that (q) is between (u) 

and (v) for every (u, v) ∈ (ℝ − ℚ) and (q) ∈ ℚ, we can say that 

there exists one and only one irra!onal number per each exis!ng 

ra!onal number and vice versa. 

 

Therefore, |ℚ| = |ℝ − ℚ|. Q.E.D. 

 

Since the set of real numbers is the union of the sets of ra!onal 

and irra!onal numbers, and the cardinality of the union of two 

countable-infinite sets must be countable-infinite as well, then, the 

cardinality of the set of real numbers must be ℵ+, which contradicts 

the conclusion derived from Cantor’s diagonal argument. 

 

 

Once we accept that the cardinality of the set of real numbers (W) is higher than ℵ+, 

we should inquire whether there exist other infinite cardinal numbers different from 

ℵ+ and W. 

 

3.6. Cantor’s Theorem 

Cantor’s Theorem affirms that any set (including infinite sets) is strictly smaller than 

its power set. In order to prove that theorem, Gerhard Hessenberg (1874-1925) used 

a method which is not exactly the same but very similar to Cantor’s diagonal 
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argument. That is why it is some!mes called the diagonal set. The proof is presented 

below: 10 

 

Theorem: Let < be a map from set / to its power set m(/). Then < ∶  / → m(/) is not 

surjec!ve. As a consequence, card(/) < cardtm(/)w holds for any set /. 

 

Proof: Consider the set x = {0 ∈ / | 0 ∉ <(0)}. Suppose to the contrary that < is surjec!ve. 

Then there exists z ∈ / such that <(z) = x. But by construc!on, z ∈ x ⇔ z ∉ <(z) = x. 

This is a contradic!on. Thus, < cannot be surjec!ve. On the other hand, @ ∶  / → m(/) 

defined by 0 ↦ {0} is an injec!ve map. Consequently, we must have card(/) < cardtm(/)w. 

Q.E.D. 

 

Cantor’s Theorem leads to the existence of an infinite number of different infinite 

cardinals. Since the cardinality of all countable-infinite sets is ℵ+ and the cardinality 

of the power set of a set with cardinality (�) is 2�, then, ℵ+ < 2ℵ�. Cantor later found 

that the cardinality of the power set of the set of natural numbers equals the 

cardinality of the real numbers (W), and named that cardinal number: ℵ*. However, 

that would be only the second one of an infinite catalogue of infinite cardinals 

{ℵ+, ℵ*, ℵK, ℵc. . . }, each one represen!ng 2 to the power of its predecessor. 

 

3.6.1. Disproof of Cantor’s Theorem by using Cantor’s methods 

We can also prove, by using Cantor’s diagonal snake, that the power set of the 

set of natural numbers is countable-infinite; meaning that those two sets are 

exactly the same size or, in other words, they have the same cardinality. 

 

Cantor’s diagonal snake method tells us that any set whose elements can be 

arrange in a squared array is countable, the same way the set of ra!onal 

numbers is countable. We know that the number of possible subsets in any 

set / is 2 to the power of the number of elements in / . We know, according 

to Cantor, that the number of elements in the set of natural numbers is ℵ+, so 

we can say that cardtm(/)w = 2ℵ� = 2 × 2 × 2 … Thus, we can arrange all 

elements 0 ∈ m(/) in a squared array as follows: 

 

0*   0K 

 

Then mul!plying by two: 

 

0*   0K 

0c   0� 

 

 
10 Proof extracted from: h#ps://en.wikipedia.org/wiki/Cantor%27s_theorem 
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Then mul!plying by two: 

 

0*   0K   0�   0� 

0c   0�   0�   0� 

 

Then mul!plying by two: 

 

0*    0K    0�    0� 

0c    0�    0�    0� 

0�  0*+  0*c  0*� 

0**  0*K  0*�  0*� 

 

Then mul!plying by two: 

                                                                        … 

 

We can make an array of the same characteris!cs than the one Cantor used to 

prove the countability of the set of ra!onal numbers and then use the same 

mapping method to prove that any infinite set has the same cardinality as its 

power set. There is no reason to say that this method is acceptable in the case 

of ra!onal numbers but unacceptable in the case of power sets, other than 

the need to prove some hypothesis and disprove others, which is arbitrary 

and, thus, illogical. 

 

3.6.2. Contradictory statements about the cardinality of the set of natural numbers 

and its power set 

Set Theory tells us that the cardinality of the set of natural numbers is ℵ+ and 

the cardinality of its power set is 2ℵ� = ℵ*. Now, let us ask ourselves up to 

how many digits is a natural number allowed to have in its binary 

representa!on. If our answer is an infinitely large finite number, then, that 

number, regardless how large it is, is a finite number ( ). Thus, the quan!ty 

of all possible natural numbers could not be greater than the number of 

permuta!ons of 0 and 1 in ( ) posi!ons, which is 2S; a finite number; 

therefore, we would have to state that the cardinality of the set of natural 

numbers is a finite number and the cardinality of its power set is also a finite 

number, which contradicts the first underlined statement. If, on the other 

hand, natural numbers could have an infinite number of digits (ℵ+), then, the 

number of elements in the set of natural numbers would be given by 2ℵ� =
ℵ* and the cardinality of its power set would be 2ℵ� = ℵK, which also 

contradicts the first underlined statement. Neither having a finite nor an 

infinite number of digits, natural numbers can sa!sfy what Set Theory states 

about them. 
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4. Cardinality does not apply to infinite sequences of numbers the 

same way it does to finite sets 

 

It is been shown that some of the proofs published by Cantor have contradictory premises 

and/or arbitrary methodologic principles; and, as a result, contradictory conclusions can 

be derived when those methods are extended to other cases. It is possible to prove both, 

the countability and uncountability of the same infinite set, by using Cantor´s methods. 

The reason for such an inconsistency is that Cantor had to force his methodology in order 

to prove that the concept of cardinality applies to infinite sequences of numbers the same 

way it does to finite sets. 

 

Cardinality, by defini!on, cannot be determined for infinite sequences of numbers. The 

idea of the existence of infinitely many infini!es, each one with a different value, is derived 

from the wrong assump!on that cardinality can be determined for infinite sequences of 

numbers as it is for finite sets; therefore, the idea of mul!ple infini!es was wrongly 

conceived. One of the consequences of such a mistaken concep!on, or perhaps its actual 

origin, is the idea of the set of real numbers as a con!nuum and its topologic equivalence 

to the real line. And the founda!on of such an idea may rest in the ancient misconcep!on 

of lines as infinite collec!ons of points. But, how could a sequence of non-dimensional 

objects form a one-dimensional one? How is that the sum of an infinite quan!ty of no-

lengths comes to be an infinite length? The no!on of the sequence of real numbers as a 

con!nuum, as an object of constant, progressive and smooth change, as a numeric 

arrangement with no possible gaps, almost makes necessary the acceptance of the actual 

infinity and its meaning as the total quan!ty of real numbers, and the erroneous belief on 

that infinite sequences of numbers have cardinality. 

 

That does not mean that we cannot get an idea of the shape, poten!al and size of an 

infinite sequence of numbers, but the concept of cardinality is useless to achieve that. 

Saying that a sequence has an infinite number of elements is meaningless if we want to 

have a deeper understanding of it. The concepts of countability and uncountability of a 

sequence of numbers are meaningless too. Sequences of numbers are collec!ons of 

numbers. Numbers are discrete objects. We can count an infinite number of discrete 

objects by using just natural numbers. By defini!on, all sequences of numbers are 

countable. On the other hand, the existence of a bijec!ve rela!on between two infinite 

sequences of numbers cannot be taken as an equivalent of those sequences being of the 

same size. The special nature of infinite sequences of numbers allows them to have 

bijec!ve rela!ons with other infinite sequences of different sizes, like in the case of 

integers and even integers. Saying that those two sequences of numbers have the same 

size, just because they both are infinite and there is a bijec!ve rela!on between them, is 

a useless oversimplifica!on of their singular nature. In order to have a more accurate and 
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useful idea of the shape, poten!al and size of numeric structures, we need to see 

sequences of numbers in a different way. 

 

Moreover, Proof A demonstrates that there exist, or poten!ally can exist, as many ra!onal 

as irra!onal numbers. That not only proves Transfinite Set-Theory wrong but also shows 

us how li#le we know about the real nature of numbers. An alterna!ve theory is needed 

to understand what numbers are, how they come to exist, how they are different from 

each other and how many of them exist or poten!ally can exist. 
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PART II 
 

 

 

Theory of Numeric Structures 

 

 

 
“Numbers are free crea!ons of the human 

mind; they serve as a means of apprehending 

more easily and more sharply the difference of 

things.” 

Richard Dedekind 
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5. Fundamentals of the Theory of Numeric Structures 

 

The development of the following theory was mo!vated by the necessity of an alterna!ve 

to Transfinite Set-Theory, due to the incapacity of such a theory to explain the existence of 

one and only one irra!onal number per each exis!ng ra!onal number and vice versa, as it 

was shown in Sec!on 3.5.1. (Proof A) of this work. The theory presented below is not 

exhaus!ve and it is not intended for a full comprehension of mathema!cs or to replace 

Set Theory but only to provide a be#er understanding of infinite sequences of numbers. 

 

5.1. Seman"c clarifica"on 

The following glossary clarifies the meaning of some words used in this and further 

sec!ons: 

 

Infinite: (adjec!ve) limitless or endless in space, extent, or size; impossible to 

measure or calculate. 

Infinitely: (adverb) to an infinite extent or amount; without limit. 

Indefinitely: (adverb) to an unlimited or unspecified degree or extent. 

Infinity: (noun) the direc!on to which the value line extends itself infinitely. 

Exist: (verb) when referring to the expression of a value in the value line, that such 

an expression can be constructed. 

 

5.2. Jus"fica"on 

Every mathema!c ac!vity (opera!on, analysis, etc.) takes place in a specific 

mathema!cal context which uses a specific language to express mathema!cal 

values. Such a language is given by numeric structures. 

 

5.3. Core defini"ons 

The following defini!ons are the basis for the development of the Theory of Numeric 

Structures: 

 

Value line: There exists a con!nuum (object of constant, progressive and smooth 

change) of mathema!cal value called value line. 

 

Number: There exists a specific value corresponding to a single point on the value 

line, which can be represented by an u#er expression (an expression containing a 

finite quan!ty of symbols represen!ng a finite quan!ty of mathema!cal objects). 

Such a value and its u#er expression are indis!nctly called a number. 

 

Numeric structure: There exists a mathema!cal expression that represents a rule or 

a collec!on of rules for construc!ng a sequence of numbers. Such a mathema!cal 
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expression and the sequence of numbers it constructs are indis!nctly called a 

numeric structure. 

 

5.4. Nota"on and some basic concepts 

Numeric structures could be treated, in some situa!ons, as sets of numbers. 

However, I will not use the Set-Theory nota!on and terminology in this work for two 

reasons: 

 

a. Numeric structures are languages for expressing mathema!cal values in a 

specific mathema!cal context, not just ordinary sets of numbers. 

 

b. Infinite sets are commonly conceived as completed collec!ons, while infinite 

numeric structures are non-completable; they are always under construc!on 

since the sequences of numbers they construct are infinite. An infinite numeric 

structure would never be smaller or greater than what we need it to be. 

 

The difference between numeric structures and ordinary sets of numbers will 

become clearer as we advance through this work. 

 

The following nota!on is proposed in order to emphasize the above and also for its 

feasibility. 

 

The generic expression  !{Λ} will be used to refer to numeric structures, where (Λ) 

describes the rules to create a sequence of numbers. The symbols used to denote 

such rules usually represent infinite sequences of numbers; thus, the expressions 

included in (Λ) have no algebraic meaning. Numeric structures can include 

arithme!c, geometric and/or other kind of mathema!c rela!ons as rules to construct 

sequences of numbers. 

 

5.4.1. Basic numeric structures 

Integers  !{ℤ}, non-nega!ve Integers  !{|ℤ|} and posi!ve integers  !{ℕ} 

are the basic numeric structures. The rules to construct these sequences of 

numbers will not be described in this work.11 

 

5.4.2. Non-basic numeric structures 

All other numeric structures are the descrip!on of the mathema!c rela!on 

between the sequence of numbers they construct and the basic numeric 

structures. 

 

 
11 Peano axioms could work as rules for construc!ng the basic numeric structures. A descrip!on of Peano axioms can 

be found in: h#ps://en.wikipedia.org/wiki/Peano_axioms 
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Ra!onal numbers are an example of an arithme!c numeric structure 

represented as  ! %ℤ
ℕ), meaning it is a numeric structure that constructs a 

sequence of all numbers which are the result of the division of any integer by 

any posi!ve integer. Another example of a numeric structure based on an 

arithme!c rela!on is  ! %± �|ℤ|ℕ ), which constructs a sequence of all 

numbers that are the nth root of a non-nega!ve integer. An example of a 

geometric-arithme!c numeric structure is the sequence of numbers 

commonly used to express angle values in radians:  ! %ℤ�
ℕ ). 

 

A numeric structure does not determine the forms of representa!on of the 

sequence of numbers it constructs. That is determined by the numeral 

system. For example, the decimal and binary numeral systems are just two 

different representa!ons of  ! % ℤ
*+|ℤ|). 

 

The extension of a numeric structure can be limited to a certain interval. For 

example, the numeric structure commonly used to express Boolean values is 

 !{|ℤ| ≤ 1}; or, if we want to limit the value of angles to their decimal form 

between 0° and 360°, we will use  ! % |ℤ|
*+|ℤ| ≤ 360); or, if we need a numeric 

structure to express only sexagesimal values between (−1) and (1), we will 

use  ! %−1 ≤ ℤ
�+|ℤ| ≤ 1); or to express the !me elapsed within a day in terms 

of frac!ons of day but limited to the precision of a second, we can use 

 ! % |ℤ|�ℕ
ℕ����++), which is the sequence of all numbers resul!ng from the division 

of a non-nega!ve integer by a posi!ve integer in which the numerator is less 

than or equal to the denominator and the denominator is less than or equal 

to (86400). 

 

Single expressions and groups of expressions in (Λ) can be restricted not only 

to certain intervals but also to other kinds of specific mathema!cal 

condi!ons. For example, if we are working in a mathema!cal context in which 

only prime numbers are needed or allowed, the language to express 

mathema!cal value in such a context can be described as 

 ! %ℕ�� �ℕ����tℕ� ≠∧ (1, ℕ�)w� ≠ 0), which is the sequence of all 

posi!ve integers such that the remainder of the division of such numbers by 

any posi!ve integer, except one and themselves, is not equal to zero. 

 

5.4.3. Union and intersec"on of numeric structures 

Two or more numeric structures,  !{Χ},  !{Ψ},  !{Ω},  …, can be merged to 

form a compound numeric structure  !{Λ} =  !{Χ} ∪  !{Ψ} ∪  !{Ω} ∪
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… =  !{∪ (Χ, Ψ, Ω … )}. For example,  ! %ℤ
ℕ) can be merged with 

 ! %± �|ℤ|ℕ ) to form:  ! %∪ �ℤ
ℕ , ± �|ℤ|ℕ �). 

 

Similarly, we can construct a sequence of the numbers that two or more 

different numeric structures have in common. For example, the numeric 

structure for construc!ng the sequence of numbers that  !{2ℕ} and  !{3ℕ} 

have in common will be expressed as  !{∩ (2ℕ, 3ℕ)}. 

 

5.4.4. Real numbers 

We will use the expression  !{ℝ} to represent the compound numeric 

structure whose components are all the infinitely many possible numeric 

structures of real value. 

 

Note: Imaginary and complex numeric structures will not be discussed in this 

work. 

 

5.4.5. Uniform infinitely intensive numeric structures #${,} 

Some numeric structures can construct an infinite quan!ty of numbers 

between any two numbers constructed by them; we will call them uniform 

infinitely intensive numeric structures and we will use lower-case Greek 

le#ers in their generic expression; e.g.,  !{λ},  !{μ}, etc. A deeper 

explana!on about the different types and classifica!on of numeric structures 

will be provided in Sec!on 11. 

 

5.5. Embedded and unembedded values in #${,} 

A number is the u#er expression of a specific mathema!cal value. Some values 

represented by numbers in a given uniform infinite intensive numeric structure, 

 !{�}, may not have an u#er expression in a different numeric structure,  !{�}. In 

such a case, we will say that the value of (0) is embedded in  !{�} and unembedded 

in  !{�}. Nevertheless, we may find a non-u#er expression of (0) in terms of  !{�}. 

A non-u#er expression is any expression that contains an infinite number of symbols 

or a symbol represen!ng an infinite number of mathema!cal objects. For example, 

a number for the value of ( ) can be constructed by  ! %ℤ�
ℕ ), in which it has the u#er 

expression ( ). That same value is unembedded in  ! % ℤ
*+|ℤ|) but it can be 

represented in it with the non-u#er expression 3.14159 …, where (… ) is a symbol 

represen!ng an infinite number of non-repea!ng decimal digits. The same happens 

in rela!on to  ! %ℤ
ℕ), in which ( ) can be represented by the non-u#er expression: 
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3 + 1
7 + 1

15 + 1
1 + 1

292 + 1
1 + 1

1 + 1
1+⋱

Where (⋱) represents an infinite number of nested frac!ons.12

On the other hand, in numeric structures like  ! %ℤ�
ℕ ), integers can only be 

represented by non-u#er expressions (containing an infinite number of symbols or 

symbols represen!ng an infinite number of mathema!cal objects).

We may think that ( ), (£) and (¤) are arbitrary symbols to abbreviate non-u#er 

expressions, but they are not. They are arbitrary symbols to abbreviate u#er 

expressions.

  = ¥
¦ where (§) is the perimeter of a circle and (�) is its diameter

£ = �
� such that 

�
� = �V�

� and ([ > ¨ > 0)
¤ = limS→¬ �1 + *

S�S
which is an u#er expression because infinity in this case refers to 

a direc!on in the value line, not to an infinite number of mathema!cal objects

Note that, unlike what happens with numeric structures, in Set theory it does not 

make much sense to talk about expressing elements of one set in the language of 

another set.

Let us see the case of  !8 √ℕℕ :. The numbers constructed in such a structure using

the first 15 posi!ve integers would seem on the real value-line as follows (the reason 

to use the expression “real value-line” instead of “number line” or “real line” will be 

explained in Sec!on 10):

12 More informa!on about the infinite con!nued frac!on representa!on of Pi in: h#ps://en.wikipedia.org/wiki/Pi

Fundamentals/Con!nued frac!ons.

Some of the values con!nuing the sequence can be found in:

h#ps://mathworld.wolfram.com/PiCon!nuedFrac!on.html#:~:text=The%20sequence%20of%20increasing%20term

s,5916686112%2C%209448623833%2C%20...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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We may get the impression that the more non-nega!ve integers are used to 

construct the sequence of numbers in this numeric structure the less likely is the 

existence of unembedded values in it; but, actually, no ma#er how many non-

nega!ve integers are used in the construc!on of this sequence, most values

embedded in some other numeric structures will always be unembedded in this 

numeric structure. For instance, most values embedded in  ! %|ℤ|
ℕ ),  ! %|ℤ|�

ℕ ) and 

 ! % |ℤ|
*+|ℤ|), like 

c
�,

�
K and 1.124 will always be unembedded in  !8 √ℕℕ :, regardless the 

number of posi!ve integers used to construct its sequence of numbers.

Now, let us check a different situa!on. See how, using the same par!al construc!on, 

 ! %|ℤ|
ℕ ) looks like on the real value-line, just to have a visual representa!on of this 

numeric structure:

Something similar happens in this case. Most values embedded in  !8 √ℕℕ : and 

 ! %|ℤ|�
ℕ ), like √2®

, √7¯
,   and 

�
� will always be unembedded in  ! %|ℤ|

ℕ ), regardless the 

number of integers used to construct its sequence of numbers. While the embedded 

values in  ! %|ℤ|
ℕ ) are commonly called non-nega!ve ra!onal numbers, the 

unembedded values in this numeric structure are known as non-nega!ve irra!onal 

numbers.

A third example is given to enable a complete understanding of what numeric 

structures are. Let´s see how  ! % |ℤ|
*+|ℤ|) looks like on a value line constructed the same 

way it was done for the previous two cases.

As in the previous case, most values embedded in  !8 √ℕℕ : and  ! %|ℤ|�
ℕ ), like √2®

,  
and 

�
� will always be unembedded in  ! % |ℤ|

*+|ℤ|), regardless the number of integers 

used to construct its sequence of numbers. However, they can be represented in 

 ! % |ℤ|
*+|ℤ|) with the non-u#er expressions 1.4142 …, 3.1415 … and 0.6283 …,

respec!vely. The same happens to some of the values embedded in  ! %|ℤ|
ℕ ), like 

*
c, 

�
** and 

*
�, which can be represented in  ! % |ℤ|

*+|ℤ|) with the non-u#er expressions 0. 3²,

0. 81²²²² and 0. 142857²²²²²²²²²², respec!vely; where t�̅w represents an infinite repe!!on of the 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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decimal digits (�) . Here, it may be necessary to emphasize that non-u#er 

expressions are not numbers; they do not express specific values; they are just 

approxima!ons.13 That is true regardless how well we know the infinite 

mathema!cal objects of the expression because it never reaches a specific value. For 

that reason, we have that the following proposi!ons are true: 

 

0. 9² ≠ 1 

0. 9² < 1 < (2 − 0. 9²) 

 

Note 1: Some numeric structures can construct numbers represented by more 

complex mathema!cal expressions. For example:  ! %ℤ + ´µ¶ ℤ
�ℕ ) constructs a number 

with the u#er expression 9 + ´µ¶ *�
�¯ . 

  

Note 2: The embedded values in a compound numeric structure are the embedded 

values in all of its components. However, we cannot affirm the same about its 

unembedded values because an unembedded value in one of the components could 

be embedded in other. 

 

It is clear now that the possibility of represen!ng a value with an u#er expression 

depends only on the numeric structure with which we decide to work. 

 

 

Now, a ques!on arises: Are there more embedded or unembedded values in any given 

 !{λ}? 

  

 
13 This will be shown clearly in Sec!on 7 (Proof C). 



36 

 

6. Proof B: There are as many unembedded as embedded values in 

the decimal numeric structure #$ % ℤ
'(|ℤ|)14 

 

I already presented, in Sec!on 3.5.1. (Proof A), a demonstra!on of the existence of one 

and only one irra!onal number per each exis!ng ra!onal number and vice versa; which is 

equivalent to state that there are as many unembedded as embedded values in  ! %ℤ
ℕ). 

Now I will present an arithme!c proof demonstra!ng that there exists one and only one 

unembedded value in  ! % ℤ
*+|ℤ|) per each embedded value in it and vice versa. 

 

6.1. Statement about embedded values in #$ % ℤ
'(|ℤ|) 

Every embedded value in  ! % ℤ
*+|ℤ|) can be expressed as a finite decimal expression: 

 

z. �*�K … �^ 

 

Where (z) is the integer part, (�_) are decimal digits for ` = 1, 2, … , a and �^ ≠ 0. 

 

6.2. Statement about unembedded values in #$ % ℤ
'(|ℤ|) 

Every unembedded value in  ! % ℤ
*+|ℤ|) can be expressed as an infinite decimal 

expression: 

 

z. �*�K … 

 

Where (z) is the integer part and (�_) are decimal digits for ` = 1, 2, …. 

 

6.3. Existence of unembedded values in #$ % ℤ
'(|ℤ|) 

For every pair of embedded values (p, q) in  ! % ℤ
*+|ℤ|), such that p < q, there exists 

at least one unembedded value (u) in  ! % ℤ
*+|ℤ|), such that p < u < q. This can be 

confirmed by observing the last decimal digits of the decimal expression of two 

similar embedded numbers. 

 

p = z. �*�K … (�^ − 1) 

q = z. �*�K … �^ 

 

 
14 We can call it decimal numeric structure since it constructs all the numbers that can be represented as a finite 

decimal expression. 
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There exists at least one unembedded value (u) between (p) and (q): 

 

u = z. �*�K … (�^ − 1)�f�fV* … 

 

Where (z) is the integer part of a number, (�_) are decimal digits for ` =
1, 2, … , a, g, (g + 1), … and �^ ≠ 0. 

 

6.4. Existence of embedded values in #$ % ℤ
'(|ℤ|) 

For every pair of unembedded values (u, v) in  ! % ℤ
*+|ℤ|), such that u < v, there exists 

at least one embedded value (q) in  ! % ℤ
*+|ℤ|), such that u < q < v. This can be 

confirmed by observing the last decimal digits that two similar unembedded values 

have in common; more exactly, at the decimal posi!on where they start to diverge 

from each other. 

 

u = z. �*�K … (�^ − 1)�f�fV* … 

v = z. �*�K … �^�h�hV* … 

 

There exists at least one embedded value (q) between (u) and (v): 

 

q = z. �*�K … �^ 

 

Where (z) is the integer part of a number, (�_) are decimal digits for ` =
1, 2, … , a, g, (g + 1) … , i, (i + 1), … and �^ ≠ 0. 

 

If (u) and (v) share the same decimal digits indefinitely, we can say (u) and (v) are 

mathema!cally indis!nguishable from each other, thus: u = v. 

 

6.5. Final statement of Proof B 

As p < u < q is true for every (p, q) embedded and (u) unembedded in  ! % ℤ
*+|ℤ|), 

and u < q < v is also true for every (u, v) unembedded and (q) embedded in 

 ! % ℤ
*+|ℤ|), we can say that there exists one and only one unembedded value in 

 ! % ℤ
*+|ℤ|) per each exis!ng embedded value in it and vice versa. Q.E.D. 
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7. Proof C: Theorem of parity

Theorem of parity: In any given  !{λ} there exists at least one unembedded value 

between any two embedded values and there exists at least one unembedded value 

between any two embedded values; thus, in any given  !{λ} there exists one and only one 

unembedded value per each exis!ng embedded value and vice versa.

Now I will present a geometric proof demonstra!ng that there are as many unembedded 

as embedded values in any  !{�}; that means, there is an embedded-unembedded value 

parity in every  !{�}.

7.1. Wrapping representa"ons and succeeding convergents

Any finite ini!al por!on of a non-u#er expression of the value (0) unembedded in 

 !{�} represents a convergent of (0), which means it is an embedded value in  !{�}
approaching (0). For example: {3, 3.1, 3.14, 3.141, 3.1415, … } are finite ini!al 

por!ons of 3.14159…, which means they all are convergents of ( ) from its decimal 

representa!on in  ! % ℤ
*+|ℤ|). They are shown in the following value line:

Note that these convergents approach ( ) only from one side of the value line.

However, we can also construct non-u#er representa!ons of any value (0)
unembedded in any  !{�}, in which the convergents approach (0) from both sides 

of the value line, as it is the case of alterna!ng series of progressively smaller values. 

In order to represent ( ) in  ! % ℤ
*+|ℤ|), we can construct the alterna!ng series:

% �
*+� − �

*+� + �
*+® − �

*+¯ + �
*+¸ − ⋯ ). The first few convergents of ( ) from this

alterna!ng series representa!on in  ! % ℤ
*+|ℤ|) are: {4, 3.1, 3.15, 3.141, 3.1416, … }. 

When the convergents of a non-u#er representa!on of the value (0) unembedded 

in  !{�} approach to it from both sides of the value line, we will say that it is a 

wrapping representa!on of (0), and its convergents are wrapping convergents.

The first few wrapping convergents of ( ) from its simple con!nued frac!on 

representa!on in  ! %ℤ
ℕ) are shown below in compu!ng order:

3
3 + 1

7 = 22
7

3 3
.1

3
.1

4

3
.1

4
1

3
.1

4
1

3
.1

4
1

5
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3 + 1
7 + 1

15
= 333

106 

3 + 1
7 + 1

15 + 1
1

= 355
113 

3 + 1
7 + 1

15 + 1
1 + 1

292

= 103993
33102  

 

A pair of convergents that are computed one immediately a$er the other in a given 

wrapping representa!on will be called succeeding convergents. In the case shown 

above, the pairs �3, KK
� �, �KK

� , ccc
*+��, �ccc

*+� , c��
**c� and �c��

**c , *+c��c
cc*+K � are succeeding 

convergents of ( ). They are shown in the following value line: 

 

 

 

 

 

 

Note that the value of ( ) is always between any pair of succeeding convergents of 

its simple con!nued frac!on representa!on and, as the computa!on moves forward, 

succeeding convergents get closer to each other. In fact, we can affirm that a value 

(0) unembedded in any  !{�} is between every pair of succeeding convergents of 

its wrapping representa!on, and succeeding convergents of every wrapping 

representa!on get closer to each other as more of them are computed. 

 

7.2. Geometric considera"ons 

In order to avoid contradictory no!ons about value lines, we need to consider the 

following: 

 

A point is a geometric object of 0 dimensions, which means, it has no length, width 

or thickness; thus, a succession of points cannot produce any object of dimensions 

greater than 0. A length of 0 plus a length of 0 equals a length of 0. However, points 

can be placed on objects of dimensions greater than 0 (e.g., a line). 

 

A line is a geometric object of 1 dimension, which means, it has length but it has no 

width or thickness; thus, a succession of parallel lines cannot produce any object of 

dimensions greater than 1. A width of 0 plus a width of 0 equals a width of 0. 

3 

22
7  

333
106 

355
113 

103993
33102  
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However, lines can be placed on objects of dimensions greater than 1 (e.g., a plane). 

It is impossible to fill the length of a line with objects that have no length (points). 

 

A line segment is a line with well-defined ends marked with points. Between any two 

points on a single line there exists at least one line segment and between any two 

segments of the same line there exists at least one point. 

 

An infinitely short line segment is the best possible approxima!on to a point in terms 

of one-dimensional objects. The endpoints of such a segment will be called infinitely 

close points. The magnitude of Infinitely short line segments is undeterminable. 

 

7.3. Geometric meaning of embedded and unembedded values 

If {§*, §K, §c, §�, §�  … } are wrapping convergents of the unembedded value (0) in 

 !{�}, we know that (0) is within the value-line segments {g*, gK, gc, g�, … } formed 

by every pair of succeeding convergents, with increasing precision a$er each (g_), as 

(`) increases towards infinity. That is shown in the following value line: 

 

 

 

 

 

 

 

 

 

 

 

 

Note that (g_) gets shorter as (`) increases but it will never turn into a single point 

because the value line is infinitely divisible; thus, the wrapping expression of an 

unembedded value (0) in  !{�} can geometrically be defined as the representa!on 

of an infinitely short value-line segment, whose endpoints are its infinitely close 

succeeding convergents.  

 

Since it is true that every value (0) unembedded in any  !{�} can be represented by 

a wrapping expression in terms of  !{�}, which convergents are values embedded 

in  !{�}, we can state that every unembedded value in any given  !{λ} corresponds 

to an infinitely short segment of the value line (in which  !{λ} has its domain)15, 

whose endpoints correspond to embedded values in  !{λ}. 

 
15 The clarifica!on is necessary because the domain of a numeric structure can be in the real value-line or in the 

imaginary value-line. 

§* §K §c §� 

§� 

g* 

gK 

gc 

g� 
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7.4. Final statement of Proof C 

Since the above is true, and it is also true that any value of the value line (where a 

numeric structure  !{λ} has its domain) has to be, by defini!on, either an embedded 

or an unembedded value in  !{λ}, and it is also true that there exists at least one 

line segment between any two points on a line, and there exists at least one point 

between any two segments of the same line, then, we can affirm that, in any given 

 !{λ}, there exists at least one unembedded value between any two embedded 

values and there exists at least one unembedded value between any two embedded 

values; thus, in any given  !{λ} there exists one and only one unembedded value per 

each exis!ng embedded value and vice versa; that means, there is an embedded-

unembedded value parity in every  !{λ}. Q.E.D. 

 

The Theorem of parity applies to infinitely intensive compound numeric structures 

as well since the geometric meaning of their embedded and unembedded values is 

the same as for infinitely intensive non-compound numeric structures. Therefore, at 

any por!on of any  !{λ}, for all embedded numbers ([, ¨, §), where ([) is infinitely 

close to (¨) and (¨) is infinitely close to (§), we will find the following arrangement: 

 

 

 

 

 

 

 

Where ([¨) and (¨§) are unembedded values in  !{λ}. 

 

7.5. Alterna"ve defini"on of irra"onal numbers 

The above allow us to define irra!onal numbers (it would be be#er to call them 

irra!onal values) as the infinitely short line segments of the  ! %ℤ
ℕ) value line (open 

interval) between the points that represent all ra!onal numbers. 

 

  

[ ¨ § 

[¨ ¨§ 
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8. Unembedded values in numeric structures different from #${,} 

 

We can also decide to accept unembedded values in other numeric structures different 

from uniform infinitely intensive numeric structures. For example, the numeric structure 

commonly used to express Boolean values,  !{|ℤ| ≤ 1}, constructs only the numbers (0) 

and (1), to which we assign values of truth; (false) and (true), respec!vely. The proposi!on 

“this proposi!on is false”, though, cannot be qualified with any embedded value in 

 !{|ℤ| ≤ 1}. Instead, when we compute it (validate any two op!ons and correct if 

necessary), we will note that its value jumps infinitely from (0) to (1) and from (1) to (0). 

The value of truth of such a proposi!on is unembedded in  !{|ℤ| ≤ 1}. We can say that 

such a value is undecidable or, actually, express it as the alterna!ng series (1 − 1 + 1 −
1 + ⋯ ), or as the Boolean open interval (0,1). The same numeric structure can be used 

to qualify different fundamental states in quantum physics. Self-references, superposi!ons 

and irra!onal numbers may have in common that they can only be definite or valid under 

a specific structure of thought. 
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9. Parity paradox 

 

Proof C also demonstrates that, in any given  !{λ}, there exists an infinite number of 

unembedded values between any two embedded values and vice versa. We may think that 

this contradicts the Theorem of parity, but it does not. When it is said of an object that it 

is infinite, it means that such an object is non-completable; thus, it is indefinite; it cannot 

be said that such an object is self-iden!cal and, therefore, classical logic has to be applied 

to it with that considera!on in mind. 

 

Let us observe a par!cular case of the parity paradox. Consider the numeric structures 

 ! %ℕ
ℕ) (posi!ve ra!onal numbers) and  !8 √ℕℕ : (we will call them posi!ve radical 

numbers). We have that, in each one of them, there are as many embedded values 

(posi!ve ra!onal and radical numbers respec!vely) as unembedded values (posi!ve 

irra!onal and irradical values), and that some values are embedded in both of them 

(posi!ve integers). A ques!on arises: What is it there just a$er every posi!ve integer? It 

cannot be a ra!onal number because all integers are also ra!onal numbers and, according 

to the Theorem of parity, there must be an irra!onal value between any two of them. It 

cannot be a radical number because all integers are also radical numbers and, according 

to the Theorem of parity, there must be an irradical value between them. Apparently, we 

have come to a paradox. 

 

The right answer to that ques!on is: it depends on the numeric structure with which we 

are working. If we are working with  ! %ℕ
ℕ), there is at least one irra!onal value between 

an integer and any other ra!onal number. If we are working with  !8 √ℕℕ : there is at least 

one irradical value between an integer and any other radical number. However, there is a 

third op!on. Just at the moment we started to join two different numeric structures in our 

mind, we have created a new numeric structure:  ! %∪ �ℕ
ℕ , √ℕℕ �). In this numeric 

structure there is an infinite quan!ty of ra!onal numbers between any two radical 

numbers; there is, as well, an infinite quan!ty of radical numbers between any two ra!onal 

numbers; and, also, there exists at least one irra!onal-and-irradical value between any pair 

of ra!onal, radical or ra!onal-radical numbers (integers). That means, just a$er every 

integer, in  ! %∪ �ℕ
ℕ , ± √ℕℕ �), there must be an irra!onal-and-irradical value. It is 

important to be aware of the numeric structure in which we are working to avoid 

confusion and paradoxes. Nevertheless, another ques!on may arise: What is it there, just 

a$er every integer and its following irra!onal-and-irradical value? That will depend on 

what exactly is the integer to which we are referring and the stage of the construc!on of 

the numeric structure. For example, in  ! %∪ �ℕ
ℕ , √ℕℕ �), using just the combina!ons of the 

first 15 posi!ve and nega!ve integers to construct its sequence of numbers, a radical 

number t√10® w will be just a$er the integer 3 and its following unembedded number; but, 
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in that same stage of the construc!on, a ra!onal number �*c
c � will be just a$er the integer 

4 and its following unembedded number. That situa!on, however, most likely would be 

different in a further stage of construc!on. For example, using the combina!ons of the 

first 30 posi!ve and nega!ve integers, a radical number t√28¯ w will be just a$er the integer 

3 and its following unembedded number, and another radical number t√17® w will be just 

a$er the integer 4 and its following unembedded number. Then, how would it be when 

the numeric structure is complete? As it is being emphasized since the beginning, infinite 

numeric structures are non-completable; they are always under construc!on since the 

sequences of numbers they construct are infinite. An infinite numeric structure would 

never be smaller or greater than what we need it to be. That is one of the proper!es that 

make them different from ordinary sets of numbers. 
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10. The real value-line and unspecifiable values 

 

Let  !{ℝ} be a compound numeric structure whose components are all the infinitely many 

possible numeric structures of real value. Therefore, the embedded values in  !{ℝ} are 

all the infinitely many possible numbers in the real value-line (the real numbers). The 

Theorem of parity tells us that, even in this numeric structure, there exist as many 

unembedded as embedded numbers and, since all the numbers constructed by any 

possible numeric structure are already embedded in  !{ℝ}, then the unembedded values 

in it cannot have any correspondent u#er expression in any possible numeric structure. 

For that reason, the unembedded values in  !{ℝ} will be called unspecifiable values. That 

means that there exist as many real numbers as unspecifiable values in the real value-line. 

Real numbers are a discrete sequence of numbers; they are not a con!nuum (this can be 

derived from the defini!ons of "Value line" and "Number" in Sec!on 5.3., and the 

defini!ons of "Point" and "Line" in Sec!on 7.2.). The real value-line, not the real numbers, 

is the con!nuum of real mathema!cal value. The real value-line is not a succession of 

numbers, as a line cannot be a succession of points. In order to avoid any confusion 

between the real numbers and the con!nuum of values where they exist, I have preferred 

to use the term “real value-line” instead of “number line” or “real line”. 

 

The reasoning above is also applicable to the imaginary numbers  !{ℝ`} and the 

imaginary value-line. 
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11. Shape, poten"al and size of numeric structures 

 

It is possible to have a more precise idea about the form of a numeric structure than the 

one provided by the concept of “cardinality”. In order to achieve that, we need to define 

the concepts of shape, poten!al and size in the realm of numeric structures. 

 

11.1. Shape of #${º} 

Every numeric structure has an intrinsic shape consis!ng in a series of proper!es 

which are iden!fiable and invariant along its construc!on process. The proper!es 

that determine the shape of a numeric structure are the following: 

 

11.1.1. Shape of #${º} according to the value line in which it has its domain 

Depending on the value line in which numeric structures have their domain, 

they can be classified as: 

 

Real: If their domain exists only within the real value-line 

 

Imaginary: If their domain exists only within the imaginary value-line 

 

Complex: If their domain exists within both real and imaginary value-lines 

 

11.1.2. Shape of #${º} according to the direc"on in which its construc"on 

advances 

Depending on the direc!on in which numeric structures move a$er each 

stage of their construc!on prosses, they can be classified as: 

 

Posi!ve: If they advance only towards infinity 

 

Nega!ve: If they advance only towards nega!ve infinity 

 

Reversal: If they advance towards zero 

 

Posi!ve-nega!ve: If they advance towards both the infinity and nega!ve 

infinity 

 

11.1.3. Shape of #${º} according to their uniformity 

Depending on the quan!ty of numbers they can construct on any value-line 

segment of the same length, numeric structures can be classified as: 
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Uniform: If they can poten!ally construct the same quan!ty of numbers on 

any value-line segment of the same length; e.g.,  ! %ℤ
ℕ),  !{−|ℤ|},  !{π ℤ}, 

etc. 

 

Non-uniform: If they cannot construct the same quan!ty of numbers on 

any value line-segment of the same length; e.g.,  !8 √2ℕ :,  ! %*��ℤ�*�
ℕ�*� ), 

 !{¤ℤ},  ! %ℕ�� �ℕ����tℕ� ≠∧ (1, ℕ�)w� ≠ 0), etc. 

 

11.1.4. Shape of #${º} according to their projec"on to infinity 

Depending on the way numeric structures project themselves infinitely, 

they can be classified as: 

 

Finite: If they do not project themselves infinitely in any sense; e.g., 

 !{ℕ ≤ 10},  !{−1 ≤ ℤ ≤ 1},  ! % |ℤ|�ℕ
ℕ����++), etc. 

 

Infinitely extensive: If they project themselves infinitely only towards any 

direc!on of the value line; e.g.,  !{ℤ},  !{|ℤ|},  !{−ℕ},  !{2ℤ}, 

 !{−2|ℤ| + 1},  ! %ℤ
c),  !{±(2ℕ)}, etc. 

 

Infinitely intensive: If they project themselves infinitely only deep inside the 

value line; e.g.,  ! %K�(|ℤ|�ℕ)
ℕ ),  ! % |ℤ|

*+|ℤ| ≤ 360),  ! %sin |ℤ|
*+|ℤ|),  ! %−1 ≤

ℤ
ℕ ≤ 1), etc. 

 

Infinitely extensive-intensive: If they project themselves infinitely both in 

direc!on of the value line and deep inside it; e.g.,  ! %ℤ
ℕ),  ! %± �|ℤ|ℕ ), 

 ! %ℕ �sin |ℤ|
*+|ℤ|�), etc. 

 

11.2. Poten"al of #${º} 

We will define the poten!al of a numeric structure as its capacity for construc!ng 

an infinite quan!ty of numbers. Depending on the scope towards numbers are 

constructed, we can establish the following hierarchy of criteria, in order to rank 

the poten!al of numeric structures: 

 

a. Capacity for construc!ng an infinite quan!ty of numbers both extensively and 

intensively 

b. Capacity for construc!ng an infinite quan!ty of numbers uniformly 
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c. Capacity for construc!ng an infinite quan!ty of numbers in both posi!ve and 

nega!ve sides of the value line 

d. Capacity for construc!ng an infinite quan!ty of numbers 

 

We can stra!fy the poten!al of real and imaginary numeric structures from the 

lowest to the highest according to the criteria above, as follows: 

 

1. Finite 

2. (Posi!ve or nega!ve or reversal) and (non-uniform) and (infinitely extensive or 

infinitely intensive) 

3. (Posi!ve-nega!ve) and (non-uniform) and (infinitely extensive or infinitely 

intensive) 

4. (Posi!ve or nega!ve or reversal) and (uniform) and (infinitely extensive or 

infinitely intensive) 

5. (Posi!ve-nega!ve) and (uniform) and (infinitely extensive or infinitely 

intensive) 

6. (Posi!ve or nega!ve or reversal) and (non-uniform) and (infinitely extensive-

intensive) 

7. (Posi!ve-nega!ve) and (non-uniform) and (infinitely extensive-intensive) 

8. (Posi!ve or nega!ve or reversal) and (uniform) and (infinitely extensive-

intensive) 

9. (Posi!ve-nega!ve) and (uniform) and (infinitely extensive-intensive) 

 

The poten!al of a numeric structure is not an indicator of its size.  

 

11.3. Size of #${º} 

We will define the size of a numeric structure as the quan!ty of numbers it can 

construct. We can obtain three different size measurements of numeric structures 

depending of their shape: 

 

Total size: It is the total quan!ty of numbers constructed by a numeric structure. 

Applies only to finite numeric structures. 

 

Rela!ve size: It is the quan!ty of numbers constructed by a numeric structure 

rela!ve to  !{ℤ}, whose rela!ve size is (1). Applies only to uniform infinitely 

extensive numeric structures. 

 

Par!al size: It is the quan!ty of numbers constructed by a numeric structure within 

a specific interval at a specific stage of construc!on. Applies to all numeric 

structures. 
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While establishing the total size of any finite numeric structure is possible by just 

coun!ng the quan!ty of numbers (embedded values) in it, the same task results 

impossible for any infinite numeric structure; and limi!ng ourselves to say that 

their size is infinite is not only useless but also very unprecise. Instead, we can 

obtain meaningful informa!on about the size of infinite numeric structures by two 

different methods, depending on their shape. 

 

11.3.1. Size of infinitely extensive numeric structures 

We can measure the size of infinitely extensive numeric structures by 

calcula!ng their density (½) in rela!on to the basic numeric structures 

within a specific interval. We can calculate the density of a numeric 

structure within the interval [a, b] as follows: 

 

½ !{Λ}[Á,Â] = ÃÄ[ i`i2 �<  Ä�¨¤ag Å`iℎ`  [a, b]
|[ − ¨|   

 

In order to compare the density of two or more non-uniform infinitely 

extensive numeric structures, the chosen interval has to be the same in all 

cases. As the density of non-uniform numeric structures can vary from one 

interval to another, the calcula!on of density will give us their par!al size 

(only for the chosen interval). 

 

In the case of uniform infinitely extensive numeric structures, we just need 

an interval large enough to include a few of its numbers in order to obtain 

its rela!ve size. Once we have calculated its density, we mul!ply it by the 

rela!ve size of the basic numeric structure with which it shares its domain. 

The resul!ng value will be its rela!ve size. We will establish the rela!ve size 

of  !{|ℤ|} and  !{ℕ} as �*
K�. For instance, we have that even integers, 

 !{2ℤ}, and odd integers,  !{±(2ℤ − 1)}, both have density �*
K� and, as 

they share their domain with the integers,  !{ℤ}, their rela!ve size is also 

�*
K�. As another example, we have that  !{3|ℤ|} and  !{3ℕ − 1} both have 

density �*
c� and, as one shares its domain with  !{|ℤ|} and the other with 

 !{ℕ}, their rela!ve size is �*
��. The difference made by the construc!on of 

the number (0) in  !{3|ℤ|} is negligible when comparing infinite numeric 

structures. 

 

11.3.2. Size of infinitely intensive and extensive-intensive numeric structures 

It is impossible to calculate the density of infinitely intensive and infinitely 

extensive-intensive numeric structures since they can construct an infinite 
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quan!ty of numbers in a given interval. However, we can obtain meaningful 

informa!on about the way in which a numeric structure grows by 

measuring its par!al size; that is, within a specific interval at a specific stage 

of its construc!on process. 

 

11.3.2.1. Standard construc"on process 

We will establish the following as the standard process for the 

construc!on of any numeric structure  !{Λ}: 

 

Star!ng with (0) and moving forward one unit at a !me, we will 

take each non-nega!ve integer and, subsequently, its opposite 

nega!ve integer to make all possible combina!ons of them in (Λ) 

with themselves and with all other integers previously combined 

in (Λ). 

 

The following would be the standard construc!on process for 

 ! %ℤ
ℕ): 

 

0
1 , 1

1 , −1
1 , 2

1 , −2
1 , 0

2 , 1
2 , −1

2 , 2
2 , −2

2 , 3
1 , … 

 

11.3.2.2. Stage of construc"on 

For any non-nega!ve integer (0), we will say that  !{Λ} is on the 

stage (0) of its construc!on when the last number of the 

sequence constructed under the ongoing standard construc!on 

process is the last possible combina!on of (0)’s opposite 

nega!ve, if applies, (otherwise, (0) itself) with itself and all other 

integers already used in the construc!on process. 

 

For instance, we say that  ! %ℤ
ℕ) is on stage (0) when the 

standard construc!on process has produced only �+
*�, or on stage 

(1) when the process has just finished with the construc!on of 

�*
* , T*

* �, or on stage (2) when it has just completed the numbers 

produced by the following combina!ons �+
K , *

K , T*
K , K

K , TK
K �. 

 

11.3.2.3. Measurement of the par"al size of #${º} 

Once we have decided the finite interval [[, ¨] and the 

construc!on stage for which we want to measure the size of a 
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given  !{Λ}, we can proceed to count the numbers exis!ng 

within that interval at that stage of construc!on. 

 

The following chart compares the quan!ty of numbers 

(embedded values) exis!ng in two different numeric structures 

of the same shape (real / posi!ve / uniform / infinitely extensive-

intensive), at three different construc!on stages and within three 

different intervals: 

 

Stage 

Interval 
 

(0,1] 
 

(0,2] (0,3] 

 ! Æℕ
ℕÇ  !8 √ℕℕ :  ! Æℕ

ℕÇ  !8 √ℕℕ :  ! Æℕ
ℕÇ  !8 √ℕℕ : 

4 6 1 9 9 10 10 

8 22 1 32 41 36 46 

15 72 1 108 163 120 175 

 

 

This method cannot give the total size of a complete infinite numeric 

structure because there is not such a thing as a complete infinite numeric 

structure; but it provides accurate informa!on about the way infinite 

intensive and extensive-intensive numeric structures grow, which could be 

more useful than saying that their cardinal is ℵ+, ℵ*, ℵK, …, and, certainly, 

it makes much more sense. 

 

 

Shape and poten!al are two different and closely related qualita!ve proper!es of numeric 

structures. Size, on the other hand, is a quan!ta!ve method for comparing different 

numeric structures of similar shape and poten!al. 
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12. Ques"ons for further developments on the Theory of Numeric 

Structures  

 

Some interest ques!ons arise from the ini!al development of the Theory of Numeric 

Structures: 

 

12.1. Unspecifiable values 

I have proved that between any two real numbers there exist at least one 

unspecifiable value; a segment of the real value-line (open interval) for which no 

u#er expression can exist. From that, some hypotheses can be presented for 

confirma!on or refuta!on: 

 

12.1.1. Υ hypothesis 

There exists an unspecifiable value in the real value-line called the 

unspecific par!cle (Υ), for which the following is true: 

 

Υ = 1 − 0.99² = 1
99² = 2 *

��² − 1 

 

12.1.2. Υ-func"on hypothesis  

All unspecifiable values in the real value-line can be defined as a func!on 

of the real numbers as follows: 

 

Ä = 0 + Υ 

È = 0 − Υ 

 

Where (Ä) and (È) are different unspecifiable values, (0) is a real number 

and (Υ) is the unspecific par!cle. 

 

12.1.3. Hypothesis of non-determinability 

Any opera!on that implies the addi!on of two or more unspecifiable values 

of the same sign is undefined. E.g. 2Υ and −2Υ are undefined. 

 

12.2. Theorem of parity in complex numbers 

I have shown how the Theorem of parity is applicable to any numeric structure that 

has its domain within the real or imaginary value lines. Does it apply the same way 

to numeric structures that have their domain in both the real and the imaginary 

value lines? 
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