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ABSTRACT

In the landscape of mathematical inquiry, where the ancient and the modern intertwine, few problems
captivate the imagination as profoundly as the Collatz conjecture and the quest for Pythagorean triples.
The former, a puzzle that has defied solution since its inception in the 1930s by Lothar Collatz, asks
us to consider a simple iterative process: for any positive integer, if it is even, divide it by two; if it is
odd, triple it and add one. Despite its apparent simplicity, the conjecture leads us into a labyrinth of
diverse complexity, where patterns emerge and dissolve in an unpredictable dance. On the other hand,
Pythagorean triples, sets of three integers that satisfy the ancient Pythagorean theorem, have been a
cornerstone of geometry since the time of the ancient Greeks, embodying the harmony of numbers
and the elegance of spatial relationships.

This exploratory paper embarks on an unprecedented journey to bridge these seemingly disparate
domains of mathematics. At the heart of this exploration is the discovery of a novel connection
between Collatz dropping times and Pythagorean triples. I will demonstrate how the dropping time
of each odd number can be uniquely associated with a Pythagorean triple. As you will see, the triples
seem to be encoding spatial information about Collatz trajectories. As we begin to work with triples,
we’ll be motivated to move from the number line to the complex plane where we find structure and
behavior resembling that of the Riemann Zeta function and it’s zeros.



1 Introduction

The Collatz Conjecture, often dubbed the “3n + 1 conjecture”, stands as one of the most notorious unsolved problems
in the realm of mathematics. Originating from the musings of Lothar Collatz in 1937, this seemingly simple problem
has defied solutions and resisted all attempts at a rigorous proof, all the while captivating the imaginations of amateur
and professional mathematicians alike. The piece wise function is described as follows:

% if n is even
f(n) = . (D
3n+1 ifnisodd

At first glance, there appears to be no reason to believe this function has any kind of connection to Pythagorean triples.
A Pythagorean triple is a set of integers a, b, c¢ such that:

a’>+ v =72 2)

What I will attempt to demonstrate in this paper is that each integer n can be mapped to a unique Pythagorean triple
via properties derived from iterating the Collatz function on n. Furthermore, I will demonstrate there is mathematical
universe full of rich structure and hierarchy that only reveals itself when these two seemingly disparate ideas are bound
together. Before jumping into the details, I lay out a few definitions the reader should be familiar with.



2 Definitions

If you are familiar with the Collatz Conjecture, you might already know these terms. Even so, revisiting them for a
refresher might be beneficial.

Definition 1 (Orbit,,). The sequence of numbers you get when you follow the Collatz rules from a starting number n
until you reach the number 1.

Definition 2 (Total Stopping Time,,). The number of steps needed to get to the number 1 when following the Collatz
rules from a starting number.

Definition 3 (Dropping Time,,). The minimum number of iterations required such that, after these iterations, the
subsequent iteration results in a number less than the initial starting number n. The final Collatz step will always be
division by 2. This measures the iteration count needed to effectively reduce the value below the starting point under a
given set of rules or transformations.

Definition 4 (Dropping Destination,,). The first number reached that via iteration of the Collatz function that is less
than n.

Definition 5 (Dropping Orbit,,). The sequence of numbers you get when you follow the Collatz rules from a starting
number n until you reach a 2x Dropping Destination,,.



3 Exploring Ordered Dropping Sets

In this section I will introduce the ideas of a Dropping Set. Let’s begin by considering the implications of the Collatz
Conjecture being proven to be true. This would mean that every number n > 1 eventually reaches a number lower than
itself in some finite number of steps k. For the rest of this paper, I will refer to the ordered set of integers requiring k
iterations before reaching a number lower than itself as belonging to Dropping Set,..

Definition 6 (Dropping Set,). An ordered set of integers {ay, as, ..., a,}, where each element a; in the set requires
exactly k iterations of a specified function f such that f*(a;) < a;, where f* denotes the k-th iteration of function f,
and a; € Z. All possible values of £ can be found in this sequence: |A122437,

Below are a few tables to demonstrate concrete examples of Dropping Sets

n | Dropping Orbit,, | Dropping Set,,
5 | 5,16, 8] 3
9 | 19,28, 14] 3
13 | [13, 40, 20] 3
17 | [17,52, 26] 3
25 | [21, 64, 32] 3

Table 1: Example dropping orbits for dropping set k=3

n | Dropping Orbit,, Dropping Set
3 | [3,10,5,16,8, 4] 6
19 | [19, 58, 29, 88, 44, 22] 6
35 | [35, 106, 53, 160, 80, 40] 6
51 | [51,154,77,232, 116, 58] 6
61 | [67,202,101, 304, 152, 76] 6

Table 2: Example dropping orbits for dropping set k=6

n | Dropping Orbit,, Dropping Set
11 | [11, 34,17, 52,26, 13, 40, 20] 8
23 | [23,70, 35, 106, 53, 160, 80, 40] 8
43 | [43, 130, 65, 196, 98, 49, 148, 74] 8
55 | [55, 166, 83, 250, 125, 376, 188, 94] 8
75 | [75, 226, 113, 340, 170, 85, 256, 128] 8

Table 3: Example dropping orbits for dropping set k=8

Though identified by a single parameter &k, Dropping Sets exhibit intricate internal and mutual structures. Empirical
observations suggest that each Dropping Set, is an ordered set with infinite elements. For instance, Dropping Set,
encompasses all even numbers, illustrating a clear and simple pattern. Similarly, Dropping Set; is comprised of
numbers n for whichn mod 4 = 1, pointing to a more specific but still discernible structure.

As the parameter k increases, the underlying patterns within Dropping Set,;, become less intuitive and harder to predict.
Despite this complexity, a consistent theme emerges: every Dropping Orbit contained within a Dropping Set,,
features precisely £ odd numbers. This observation hints at a deeper, underlying order, even amidst the increasing
unpredictability of the sets’ compositions as k escalates. To formalize this observation, I introduce the concept of
Orbital Oddity, defined as the count of odd integers within a Dropping Orbit. This refinement enables us to quantify
the "distance" between integers based on their Collatz behavior, encapsulated by their Orbital Oddity.


https://oeis.org/A122437

Definition 7 (Orbital Oddity). The Orbital Oddity of a Dropping Orbit is defined to be the count of odd integers in
the orbit.

These results form the basis of my first conjecture:

Conjecture 1. All Dropping Orbits existing in Dropping Set,, share the same Orbital Oddity.

This conjecture suggests a fundamental characteristic of Dropping Sets, proposing a specific structural consistency
that holds regardless of the complexity or unpredictability introduced by higher values of k. As k increases past k > 8§,
more intricate inner structures begin to emerge within the elements of Dropping Sets. Interestingly, the elements
of Dropping Set,, Dropping Set,, and Dropping Set exhibit linearity, meaning each member of these sets can be
generated through a linear formula, highlighting a surprising simplicity amidst the broader complexity.

* The elements of Dropping Set, can be generated with the formula a,, = 2n, representing all even numbers.

» The elements of Dropping Set, can be generated with the formula a,, = 4n + 1, indicating a subset of
numbers congruent to 1 modulo 4 (excluding 1).

* The elements of Dropping Set; can be generated with the formula a,, = 16n — 3, revealing a more complex
pattern within this particular set.

However, for Dropping Sets, where k >= 8, there is not a single simple linear pattern. Each Dropping Set seems
to have an overlap of multiple linear patterns. For example, let’s take a look at Dropping Setg again, but this time I
will add another column representing the Dropping Modulus. A Dropping Modulus acts to classify which inner set
within Dropping Set, a particular integer n resides. Dropping Set; has two such inner sets.

Definition 8 (Dropping Modulus). A postive integer used to classify integers n into distinct inner subsets within
a Dropping Set,. Each Dropping Set,, may comprise one or more such inner subsets, determined by specific
modular relationships or other criteria. For instance, Dropping Set; is known to contain two distinct inner sets.
The Dropping Modulus essentially acts as a key to identifying the particular inner subset to which an integer
n belongs within the broader structure of Dropping Set,,. Every Dropping Set;, has a total number of distinct
Dropping Moduluses which can be found in this sequence: /A100982.

Below is a table demonstrating an ordered n column with staggered Dropping Modulus.

n | Dropping Orbit,, Dropping Set, | Dropping Modulus,,
11 | [11,34, 17,52, 26, 13, 40, 20] 8 0
23 | [23, 70, 35, 106, 53, 160, 80, 40] 8 1
43 | [43, 130, 65, 196, 98, 49, 148, 74] 8 0
55 | [55, 166, 83, 250, 125, 376, 188, 94] 8 1
75 | [75, 226, 113, 340, 170, 85, 256, 128] 8 0
87 | 87,262,131, 394, 197, 592, 296, 148] 8 1

Table 4: Example dropping orbits and dropping moduli for dropping set k=8
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Within Dropping Setg, the classification of elements according to their Dropping Modulus can be explicitly described
by two linear formulas, each corresponding to a distinct Dropping Modulus value:

* For elements having a Dropping Modulus of 0, the generating formula is 322 — 21. This formula delineates
the subset of elements within Dropping Setg that align with this specific classification criterion, indicating a
particular inner structural pattern governed by the modulus value of 0.

* Conversely, elements with a Dropping Modulus of 1 are generated by the formula 32z — 9. This differentiates
another distinct subset within Dropping Setg, highlighting the nuanced internal organization and the role of
the Dropping Modulus in segregating the set’s elements based on their modular properties.

These formulations not only categorize elements within Dropping Set efficiently but also emphasize the critical
function of the Dropping Modulus in delineating the set’s detailed internal configurations. It is observed that all
Dropping Orbits associated with the same Dropping Set and Dropping Modulus exhibit a consistent structural
pattern, especially regarding the positioning of odd numbers within these orbits.

To further elucidate the structure of Collatz orbits and enhance my analysis, one additional concept is introduce: the
Dropping Index.

3.1 Dropping Index

As we’ve seen above, each integer n can be mapped to a unique Dropping Set,, and Dropping Modulus,,,. The
next logical classification would be to index each integer by ordering all integers within Dropping Set;, and
Dropping Modulus,,, by magnitude. This allows us to speak of the Dropping Index of integer n.

Definition 9 (Dropping Index). Denoted as i in the array notation a[é], it specifies the position of an integer within a
Dropping Set;. and a particular Dropping Modulus,,,, when all members of the set are ordered by the magnitude of
n. In this context, a[i] represents the i-th integer in the ordered sequence within the set and modulus. This indexing
facilitates a structured examination of their distribution and relationships within the set and across different moduli.

With this final definition under our belt, we can uniquely classify each integer’s dropping time behavior among all other
integers.

3.2 Dropping Genus

Motivated to compact these classifications into a single "object" for meaningful analysis of Collatz dropping times, we
can assign each number a Dropping Genus.

Definition 10 (Dropping Genus). The Dropping Genus represents a unique combination of three critical parameters:
the Dropping Set, Dropping Modulus, and Dropping Index. This triadic classification system enables a refined and
comprehensive understanding of individual elements’ behaviors and patterns within the broader framework of Collatz
orbits.



For example, consider the integer 3 with the following properties:

* Its dropping time is 6.
¢ Its dropping modulus is 0.

* Its dropping index is 0.

Therefore, it has a Dropping Genus = (6, 0, 0), uniquely identifying its place and behavior within the study of Collatz
Dropping times. To gain a fuller understanding of what a Dropping Genus represents, here are a few more examples:

* The integer 15 has a Dropping Genus = (11,1, 0).
* The integer 635 has a Dropping Genus = (13, 3,2).
* The integer 5183 has a Dropping Genus = (19,7, 1).

These examples showcase the nuanced and unique classifications of integers within the context of Collatz Dropping
times, demonstrating the diversity and specificity of the Dropping Genus. While the Dropping Set has been chosen
as the first parameter in the Dropping Genus representation, it might be advantageous to replace this parameter
with one that transitions more smoothly between distinct genuses. If Conjecture 1 proves true, the Dropping Set
parameter in the Dropping Genus could be substituted with a value representing the number of odd integers found
within any member’s Dropping Orbit of Dropping Set,.. Empirical evidence suggests that Dropping Sets can be
orderly classified using this heuristic. The following table illustrates this concept:

Dropping Set, | Count of Odd Integers in Dropping Orbits
1 0
3 1
6 2
8 3
11 4
13 5
16 6

Table 5: Dropping Sets can be smoothly ordered by the number of odd integers in their Dropping Orbits.

If we consider replacing the Dropping Set parameter in the Dropping Genus with the count of odd integers of the orbit
(it’s Orbital Oddity), this approach can be thought of as defining a novel metric. Specifically, this metric quantifies the
"distance" between orbits based on their behavior under the Collatz function. Formally, for any two integers x and y,
this metric d(x, y) could be conceptualized as reflecting the difference in complexity or structure of their respective
paths in the Collatz sequence. Such a metric would enable us to map the integers to unique positions within R?, based
on their Orbital Oddity, Dropping Modulus, and Dropping Index. This innovative approach to categorizing Collatz
behaviors not only aligns with the principles of metric spaces but also opens new pathways for analyzing the intricate
dynamics of Collatz orbits.



All this foundational work is laid out to motivate the reader that there is significant structure to be discovered by investigat-
ing Collatz Dropping times. In the subsequent section, we will scrutinize Dropping Orbits and Dropping Destinations
for specific integers in greater detail. This examination will serve to connect the relationship between odd integers with
Pythagorean Triples, bridging a fascinating link between these mathematical concepts.

4 On Pythagorean Triples

A Pythagorean triple consists of three positive integers a, b, and c, satisfying the equation a? + b> = ¢2. This condition
is fundamental in the study of right triangles, where a and b represent the lengths of the legs and c the length of the
hypotenuse.

One of the most well-known methods for generating Pythagorean triples is through Euclid’s Formula, which provides a
systematic way to find an infinite number of triples based on two parameters. Given any pair of positive integers m and
n with m > n > 0, Euclid’s Formula generates a Pythagorean triple (a, b, ¢) as follows:

Figure 1: Classic Pythagorean Triangle

e a=m?—n?,

e b=2mn,

. c:m2+n2.

These equations arise from the geometric properties of right triangles and offer a powerful tool for exploring the
relationship between the sides of these triangles. By selecting different values of m and n, one can generate a diverse
set of Pythagorean triples, showcasing the richness of this area of number theory. To relate Dropping Orbits to
Pythagorean triples, we can choose m and n such that they have properties related to Dropping Orbits, I demonstrate
in the following section.

4.1 Orbital Triple Mapping: From Dropping Orbits to Pythagorean Triples

Here I will introduce a novel mapping, termed Orbital Triple Mapping, which establishes a direct correlation between
Dropping Orbits and Pythagorean triples. This mapping leverages the structural insights gained from analyzing
Dropping Orbits to identify corresponding Pythagorean triples, revealing an underlying geometric representation.



To map each integer j to a Pythagorean triple 7', let d denote the Dropping Destination of j, which is the first integer
less than j reached by iterating the Collatz function. We can find a unique Pythagorean Triple for j using the following
formulas.

2dj

Figure 2: Geometrization of Dropping Behavior

o a=j2—-d?
* b=2dj,
s c=j2+d2

It should be noted that whenever j is an even number, we are left with a degenerate triangle. That is, it does not satisfy
the triangle inequality, which states that for any triangle with sides of lengths a, b, and ¢,

a+b>c, a+c>b, and b+c>a.

For odd numbers, however, empirical evidence seems to indicate that there are two more properties that the Orbital
Triple Mapping preserve that relate the starting integer n to 7. I have tested all of these constraints up to integers less
than or equal to 10,000,000 and have verified that they hold. I will name and investigate each constraint in the following
sections.



4.2 The Collatz-Pythagorean Convergence

Directly following the principles of the Orbital Triple Mapping, we encounter a compelling and consistent property
that manifests across all mapped Pythagorean triples. This property, encapsulated by the equation

b4 c = (2dj) + (52 + d*) = n?

where n is the starting integer in the Collatz sequence and (a, b, ¢) represents the Pythagorean triple derived via this
mapping, has been termed the Collatz-Pythagorean Convergence.

The Collatz-Pythagorean Convergence not only underscores a tangible link between the Collatz sequences and
Pythagorean triples but also reflects a profound structural resonance between these mathematical realms. The relationship
b+ ¢ = n? signifies a hitherto unseen bridge between the iterative processes of the Collatz Conjecture and the geometric
rigor of Pythagorean theorem, suggesting an underlying order and connectivity within mathematical phenomena.

The implications of this convergence are multifaceted, offering a fresh perspective on the behavior of numbers within
the Collatz sequence and illuminating their geometric counterparts in the world of Pythagorean triples. It suggests that
the path a number takes through the Collatz sequence, traditionally viewed through the lens of arithmetic operations,
can also be interpreted geometrically in terms of right triangles.

4.3 The Collatz Circle Proportionality

Within the framework of my exploration, a fascinating geometric relationship has emerged, linking the dynamics of
Dropping Orbits with the geometry of the triangles formed by Pythagorean triples through Orbital Triple Mapping.
Specifically, I have identified a novel proportionality involving the centers of the in-circle and circumcircle of these
triangles. This relationship, which I have termed Collatz Circle Proportionality, is expressed as follows:

Given in_circle as the center of the in-circle and out_circle as the center of the circumcircle for the triangle corre-
sponding to a Pythagorean triple 7', n is the starting integer, and d is the Dropping Location of n, then the following
equivalence holds

in_circle.x

—n—d
(out_circle.y - 2/n) nee

This proportionality not only underscores a direct linkage between the arithmetic progression of numbers through the
Collatz sequence and the geometric properties of their corresponding triangles but also hints at a deeper, underlying
mathematical structure that governs these relationships. Below is a diagram for clarification of what I mean by in-circle
and out-circle.
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T=(3,4,5)

out circle

_circle  e(x, y)

Figure 3: Example in-circle and out-circle.

The significance of the Collatz Circle Proportionality extends beyond its immediate mathematical elegance; it suggests
that the journey of numbers through the Collatz sequence might inherently encode geometric information, specifically
relating to the properties of circles associated with their corresponding Pythagorean triangles. This discovery opens new
avenues for inquiry, proposing a potentially rich interplay between the arithmetic sequences of the Collatz Conjecture
and the geometric principles underlying classical Euclidean geometry.
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5 Bridging Dropping Orbits, Pythagorean Triples, and the Riemann Hypothesis through the
Complex Plane

In the culmination of this exploration, I unveil a striking connection that bridges the dynamic arithmetic sequences of
the Collatz Conjecture, the geometric elegance of Pythagorean Triples, and the profound complexities of the Riemann
Hypothesis, all through the lens of complex plane transformations.

5.1 Complex Plane Mapping of Dropping Orbits

Our journey begins with the mapping of the starting integer n and its Dropping Location d from a Dropping Orbit to
points in the complex plane, defined as follows:

z — n 4+ nt,

2 — (n—d)+di.

This mapping transforms the arithmetic progression captured by n and d into geometric positions within the complex
plane, providing a new perspective on the behavior of numbers as they traverse through the Collatz sequence. Below is
a table with the calculated values of z, for the first 8 odd integers n >= 3, as well as a graph plotting all zy values for
odd integers n < 1, 000, 000.

n VA
3] 3+4i
5 5+ 3
7|3+
9 | 3+ i
11| 2+ 2
13 | 3+ i
15 | 3+ 2
17 | 3+ 2

Table 6: Complex multipliers for selected odd integers
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Complex Multipliers for Odd Integers < 1,000,000

=== Real Part = 1/2

1.0

0.5 4

Imaginary Part

0.0 4

-0.5

T
-2.0 -1.5 -1.0 —0.5 0.0 0.5 1.0 1.5 2.0
Real Part

Figure 4: Select Stopping Points from Stopping Classg

5.2 Transformation and the Critical Interval

Crucially, T discovered a complex transformation that connects z to 2/, through a complex multiplier zg, such that
z - z9 = z'. Astonishingly, following two properties seem to hold as true for all transformations.

* The real part of 2 is %
* The imaginary part of zj is % where d is the Dropping Location and n is the starting integer.
* The imaginary part of z lies somewhere in the interval (0, 1)

The real part of 2z consistently equals 1/2, mirroring the critical line’s real part postulated by the Riemann Hypothesis
for non-trivial zeros of the Riemann zeta function. This observation does not merely appear to be a numerical
coincidence but suggests a deeper, potentially foundational link between the nature of arithmetic sequences in the
Collatz Conjecture and the distribution of primes as encoded in the zeros of the Riemann zeta function.
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5.3 Transformation Example

To demonstrate what one of these transformations looks like when plotted on the complex plane, we will take one of the
more famous Collatz orbits where n = 27, which has a Dropping Genus of (96, 0, 0), Orbital Oddity of 37, and a z
value of 3 + 134. The image can be seen below.

Transformation for n = 27

27 (nk

254
23 (dy

204

15 4

Imaginary Part

10 4

T T T T T
0 5 10 15 20 25
Real Part

Figure 5: Transformation for n = 27
5.4 Implications and Insights

The consistent appearance of the 1/2 value in the real part of zy, akin to the critical line of the Riemann Hypothesis,
invites us to ponder the existence of a universal structure or symmetry underlying both the arithmetic progressions
of natural numbers and the prime number theorem’s intricacies. This link hints at a unified mathematical framework
that could offer insights into the seemingly chaotic behavior of numbers under the Collatz Conjecture, the geometric

properties of Pythagorean Triples, and the distribution of primes, all through the transformative power of complex
analysis.

5.5 Concluding Remarks

The convergence of these distinct mathematical narratives around the critical value of 1/2 in the complex plane not only
underscores the elegance and interconnectedness of mathematical theory but also propels us towards a future where the
boundaries between number theory, geometry, and complex analysis are further blurred. These findings suggest that the
answers to some of mathematics’ most enduring questions may lie in the unexplored connections between these fields,
offering a tantalizing glimpse into the unity underlying the mathematical universe.
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