Fractional quantization of the residual resistivity and the normal state resistivity at the superconducting transition

Hans Peter Good Sargans, Switzerland e-mail: hp.good at catv.rol.ch

March 15, 2024

Abstract

The author provides a literature study showing that the residual resistivity and the normal state resistivity at the superconducting transition might be fractionally quantized. Surprisingly, fractional quantized resistivity is observed in the absence of strong magnetic fields. The presented phenomenological classification of 280 single crystals is based on six universal resistivity quanta that are only dependent on natural constants.

Keywords: universality, fractional quantization, residual resistivity, superconductivity, natural constants.

The purpose of this work is to present data found in the open access literature on residual resistivities ρ_0 and normal state resistivities at the superconducting transition $\rho(T_c)$ of high-quality single crystals. These absolute values are rarely mentioned explicitly in the literature because they are strongly sample dependent and not reproducible, seeming to have no connection to fundamental physics. To obtain values from literature data, they must, in most cases, be calculated using model functions (e.g., Fermi liquid) or extracted from figures using graphic design software with a ruler tool for measuring distances.

In conventional thinking, the residual resistivity is caused by the scattering of conduction electrons at lattice defects and atomic impurities that destroy the crystalline periodicity. However, considering the number of defects in a crystal as the only origin of ρ_0 leads to a problem with highly conducting oxide metals (e.g., PdCoO₂). In these compounds, the number of defects per lattice site is, according to the resistivity at low temperatures, extremely small and conflicts with chemistry. Thus, the residual resistivity cannot solely be induced by impurity or defect scattering.

Resistivity is an emergent feature of the metallic state that ceases to exist when a complex aggregate of atoms (e.g., a crystal) falls apart. The author speculates that resistivity has universal properties and is independent of microscopic material-specific details; that is, nature forgets which components make up a single-phase crystal. The property changes in quanta and assumes very specific universal values that are not determined by classical electro-dynamics because, in addition to the electrical charge q_e , the Planck constant h also plays a role.

Let $(h/q_e^2) \ell$ with $\ell \equiv \alpha \lambda_{e_bar}$, $\alpha \lambda_e$, λ_{e_bar} , λ_e , $\alpha^{-1} \lambda_{e_bar}$, $\alpha^{-1} \lambda_e$ be the allowed resistivity quanta. The ratio h/q_e^2 is the von Klitzing constant with the numerical value $\approx 25\ 812.807\ 45\ \Omega$. The parameter α is the Sommerfeld fine structure constant defined by the number constant $\alpha \equiv 2^{-6}\pi^{-2/3}$ [1a]. The quantities λ_e and λ_{e_bar} are the Compton wavelength and the reduced Compton wavelength $\lambda_e/(2\pi)$ of the electron, respectively. Like the von Klitzing constant, both are tabulated by CODATA. When everything is combined, ≈ 0.0073 , ≈ 0.0456 , ≈ 0.997 , ≈ 6.263 , ≈ 136.8 , and $\approx 859.8\ \mu\Omega$ cm result for the resistivity quanta. The resistivity $\rho(T \rightarrow 0)$ and $\rho(T_c)$ shall be fractionalized according to $\rho = \nu \rho_{quantum}$, with ν being an element of the 55 relatively prime factors $\nu \equiv p/q$ that can be formed from p, $q \in \{1, 2, ..., 9\}$ [1b].

The measurement of resistivities requires careful investigation and must be carried out along each crystallographic axis, that is, the samples must be aligned very precisely via diffraction before each measurement. Because of inhomogeneities that can be caused by chemical doping, pressure, or magnetic fields, measurements of stoichiometric compounds at ambient pressure and at zero external magnetic field were selected. Even then, it is challenging to obtain accurate absolute values because the geometric factor that transforms the measured resistance R into the resistivity $\rho = R$ (area/length) requires samples with well-defined geometries. Unfortunately, information about the size of a single crystal, its homogeneity, or the error of the geometric factor is usually missing in the literature.

The collected results of a large number of studies with corresponding interpretations are compiled in Table 1. Care was taken to ensure that the resistivity at $T\rightarrow 0$ or $T=T_c$ is flat, that is, has a low temperature dependence, tends to saturate, and leads to a resistivity plateau, so that the error in determining the resistivity is minimized. It is up to the reader to judge and verify whether the extracted, experimental values in Table 1 are coincidences or whether the simple ansatz $\rho = v \rho_{quantum}$ could be a unifying, comprehensive model underlying the data. Undoubtedly, more accurate measurements of precisely aligned, single-phase crystals with well-defined geometries are required.

References

- [1] On the Origin of Natural Constants Hans Peter Good, De Gruyter Berlin (2018)
 a) p. 42 b) p. 150
- [2] Non-linear Temperature Dependence of Resistivity in Single Crystalline Ag₅Pb₂O₆
 S Yonezawa et al Phys Rev B 70 184523 (2004)
- [3] Exceptional Type-I superconductivity of the layered silver oxide Ag₅Pb₂O₆
 S Yonezawa et al Phys Rev B 72 180504(R) (2005)
- [4] Transport properties of Ag₅Pb₂O₆: A three-dimensional electron-gas-like system with low carrier density
 S Yonezawa and Y Maeno Phys Rev B 88 205143 (2013)
- [5] Type-I superconductivity in Al₆Re DC Peets et al Phys Rev B **99** 144519 (2019)
- [6] Magnetotransport in Al₆Re E Cheng et al Phys Rev B **100** 054509 (2019)
- [7] Electrical resistivity of single crystal arsenic at very low temperatures C Uher et al J Phys F Met Phys **16** L103 (1986)

- [8] Band structure, superconductivity and polytypism in AuSn₄
 E Herrera et al Phys Rev Materials 7 024804 (2023)
- [9] Intrinsic surface p-wave superconductivity in layered AuSn₄
 W Zhu et al Nature Communications 14 7012 (2023)
- [10] Two-dimensional superconductivity and magnetotransport from topological surface states in AuSn₄ semimetal D Shen et al Commun Mater 1 56 (2020)
- [11] Probing the topological surface states in superconducting Sn₄Au single crystal: A magneto transport study
 MM Sharma et al J Phys Conden Matter **34** 415701 (2022)
- [12] Pressure-Induced Superconductivity in Mineral Calaverite AuTe₂
 S Kitagawa et al J Phys Soc Jpn 82 113704 (2013)
- [13] Quasi-two-dimensional superconductivity from dimerization of atomically ordered AuTe₂Se_{4/3} cubes
 JG Guo et al Nat Commun 8 871 (2017)
- [14] Observation of superconductivity in the noncentrosymmetric nodal chain semimetal Ba5In₄Bi₅ Y Ma et al arXiv 2210.04159
- [15] Clean 2D superconductivity in a bulk van der Waals superlattice A Devarakonda et al Science **370** 231 (2020)
- [16] Crystalline symmetry-protected non-trivial topology in prototype compound BaAl₄K Wang et al npj Quantum Mater 6 28 (2021)
- [17] Superconducting Properties of BaBi₃
 N Haldolaarachchige et al Supercond Sci Technol 27 105001 (2014)
- [18] Novel polymorphic phase of BaCu₂As₂ impact of flux for new phase formation in crystal growth
 H Wu et al Cryst Growth Des 20 5922 (2020)
- [19] Interlayer quantum transport in Dirac semimetal BaGa₂S Xu et al Nat Commun 11 2370 (2020)
- [21] First Order Phase Transition and Superconductivity in BaNi₂As₂ Single Crystals F Ronning et al J Phys Condens.Matter **20** 342203 (2008)
- [22] A resistive transition between the normal and superconducting state of BaNi₂P₂ single crystals Y Tomioka et al J Phys Soc Jpn 77 136 (2008)
- [23] Anomalous metallic state in quasi-two-dimensional BaNiS₂ D Santos-Cottin et al Phys Rev B **93** 125120 (2016)
- [24] Superconductivity at 3.85 K in BaPd₂As₂ with the ThCr₂Si₂-type structure Qi Guo et al EPL **113** 17002 (2016)
- [25] Superconductivity and structural distortion in BaPt₂As₂
 WB Jiang et al J Phys Condens Matter 27 022202 (2015)
- [26] The de Hass-van Alphen quantum oscillations in BaSn₃ superconductor with multiple Dirac fermionsG Zhang et al Chinese Phys Lett **37** 087101 (2020)

- [27] Dual topological states in the layered titanium-based oxypnictide superconductor BaTi₂Sb₂O Z Huang et al npj Quantum Materials 7 70 (2022)
- [28] Strong magnetic instability in correlated metal Bi₂Ir₂O₇ TF Qi et al J Phys Condens Matter **24** 345601 (2012)
- [29] Superconductivity in Bi based Bi₂PdPt A Kataria et al Mater Adv **3** 5375 (2022)
- [30] Superconductivity in the intermetallic pnictide compound Ca₁₁Bi_{10-x} M Sturza Phys Rev B **89** 054512 (2014)
- [31] Ca₃Ir₄Sn₁₃ A weakly correlated nodeless superconductor K Wang et al Phys Rev B **86** 024522 (2012)
- [32] Magnetotransport properties of the single-crystalline nodal-line semimetal candidates CaTX (T=Ag, Cd; X=As, Ge)
 E Emmanouilidou et al Phys Rev B 95 245113 (2017)
- [33] Shubnikov-de Haas and de Haas-van Alphen oscillations in topological semimetal CaAl₄
 S Xu et al Phys Rev B 99 115138 (2019)
- [34] Possible origin of extremely large magnetoresistance in the topological insulator CaBi₂ single crystal
 Y Ma et al Phys Scr 98 015002 (2023)
- [35] Magnetotransport properties of the topological nodal-line semimetal CaCdSn A Laha et al Phys Rev B **102** 035164 (2020)
- [36] Growth and characterization of CaCu₃Ru₄O₁₂ single crystal RJ Wang et al Chinese Phys B **24** 097501 (2015)
- [37] Large spin-orbit splitting and weakly anisotropic superconductivity revealed with singlecrystalline noncentrosymmetric CaIrSi₃
 G Eguchi et al Phys Rev B 86 184510 (2012)
- [38] Superconductivity and Physical Properties of CaPd₂Ge₂ Single Crystals VK Anand et al Phys Condens Matter **26** 405702 (2014)
- [39] Pd-P Antibonding Interactions in APd₂P₂ (A= Ca and Sr) Superconductors J Blawat et al Phys Rev Materials **4** 014801 (2020)
- [40] Ultralow-temperature heat transport study of noncentrosymmetric superconductor CaPtAs Y Wan et al Chinese Phys B **32** 127403 (2023)
- [41] CaPtAs: a new noncentrosymmetric superconductor W Xie et al Sci China Phys Mech **63** 237412 (2020)
- [42] Quasi-2D Fermi surface of superconducting line-nodal metal CaSb₂ A Ikeda et al arXiv 2206.15346
- [43] Nematic superconductivity in the topological semimetal CaSn₃ H Siddiquee et al Phys Rev B **105** 094508 (2022)
- [44] Superconductivity in CaSn₃ single crystal with a AuCu₃ type structure X Luo et al J Mater Chem C **3** 11432 (2015)
- [45] Superconductivity at 1 K in Cd₂Re₂O₇
 M. Hanawa et al Phys Rev Lett 87 187001 (2001)
- [46] Thermoelectric power of the superconducting pyrochlore Cd₂Re₂O₇ D Huo et al J Phys Condens Matter **14** L257 (2002)
- [47] Superconductivity in the Correlated Pyrochlore Cd₂Re₂O₇ R Jin et al Phys Rev B **64** 180503(R) (2001)

- [48] Superconducting properties of the pyrochlore oxide Cd₂Re₂O₇ Z Hiroi et al J Phys Chem Solids **63** 1021(2002)
- [49] Quantum transport evidence for a three-dimensional Dirac semimetal phase in Cd₃As₂ L P He et al Phys Rev Lett **113** 246402 (2014)
- [50] Complex magnetism and strong electronic correlations in Ce₂PdGe₃ RE Baumbach et al Phys Rev B **91** 035102 (2015)
- [51] Three-Dimensional Flat Bands and Dirac Cones in a Pyrochlore Superconductor J Huang et al arXiv 2304.09066
- [52] Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet
 I Belopolski et al Science 365 1278 (2019)
- [53] Magnetic, structural, and transport properties of the Heusler alloys Co₂MnSi and NiMnSb L Ritchie et al Phys Rev B **68** 104430 (2003)
- [54] Synthesis of ultra pure Co₃Sn₂S₂ crystals HJ Gao et al Research Square (2023)
- [55] Fermi Surface and Magnetic Properties in Ferromagnet CoS₂ and Paramagnet CoSe₂ with the Pyritetype Cubic Structure A Teruya et al J Phys Conf Ser 807 012001 (2017)
- [56] de Haas-van Alphen quantum oscillations and electronic structure in the large-Chernnumber topological chiral semimetal CoSi
 H Wang et al Phys Rev B 102 115129 (2020)
- [57] CoTe₂: A Quantum Critical Dirac Metal with Strong Spin Fluctuations PE Siegfried et al Adv Mater **35** 2300640 (2023)
- [58] Anisotropic physical properties and pressure dependent magnetic ordering of CrAuTe₄ NH Jo et al Phys Rev B **94** 184413 (2016)
- [59] Superconductivity in a new layered nickel-selenide CsNi₂Se₂ H Chen et al Supercond Sci Technol **29** 045008 (2016)
- [60] Anomalous thermoelectric effects and quantum oscillations in the kagome metal CsV₃Sb₅ D Chen et al Phys Rev B **105** L201109 (2022)
- [61] Bulk evidence of anisotropic s-wave pairing with no sign change in the kagome superconductor CsV₃Sb₅
 M Roppongi et al Nat Commun 14 667 (2023)
- [62] CsV₃Sb₅: a Z2 topological kagome metal with a superconducting ground state BR Ortiz et al Phys Rev Lett **125** 247002 (2020)
- [63] Magnetic Breakdown and Topology in the Kagome Superconductor CsV₃Sb₅ under High Magnetic Field
 R Chapai et al Phys Rev Lett 130 126401 (2023)
- [64] Three-Dimensional Charge Density Wave and Surface-Dependent Vortex-Core States in a Kagome Superconductor CsV₃Sb₅
 Z Liang et al Phys Rev X 11 031026 (2021)
- [65] Strong coupling superconductivity in kagome metal CsV₃Sb₅ revealed by soft point-contact spectroscopy
 MC He et al Phys Rev B 106 104510 (2022)
- [66] Quantum transport evidence of topological band structures of kagome superconductor CsV₃Sb₅
 Y Fu et al Phys Rev Lett **127** 207002 (2021)

- [67] Nodal superconductivity and superconducting domes in the topological Kagome metal CsV₃Sb₅ CC Zhao et al arXiv 2102.08356
- [68] Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV₃Sb₅ under high pressure KY Chen et al Phys Rev Lett **126** 247001 (2021)
- [69] de Haas-van Alphen effect and the first-principles study of the possible topological stannide Cu₃Sn
 C Liu et al J Alloy Compd 928 167017 (2022)
- [70] Electrical transport properties of CuS single crystals A Casaca et al J Phys Condens Matter **24** 015701 (2012)
- [71] Transport and thermal behavior of the charge density wave phase transition in CuTe CN Kuo et al Phys Rev B **102** 155137 (2020)
- [72] Single Crystal Growth and Electronic Properties of Mn₂P and Fe₂P J Ota et al JPS Conf Proc **30** 011087 (2020)
- [73] Termination Dependent Topological Surface States in Nodal Loop Semimetal HfP₂ C Sims et al Phys Rev Materials **4** 054201 (2020)
- [74] Topological electronic states in HfRuP family superconductors Y Qian et al npj Computational Materials **5** 121 (2019)
- [75] Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi O Pavlosiuk et al Scientific Reports **6** 18797 (2016)
- [76] Physical properties of the InPd intermetallic catalyst M Wencka et al Intermetallics **55** 56 (2014)
- [77] Novel Low Temperature Properties of Filled and Unfilled Single Crystal IrSb₃
 M Cook, Western Michigan University ProQuest Dissertations Publishing (2021), p. 29
- [78] Superconductivity at 5K in quasi one dimensional Cr based KCr₃As₃ single crystals QG Mu et al Phys Rev B **96** 140504(R) (2017)
- [79] Anisotropic H_{c2}, thermodynamic and transport measurements, and pressure dependence of T_c in K₂Cr₃As₃ single crystals T Kong et al Phys Rev B **91** 020507(R) (2015)
- [80] Physical properties and electronic structure of single-crystal KCo₂As₂ DJ Campbell et al Phys Rev Materials **6** 045003 (2022)
- [81] Superconductivity in the Z₂ kagome metal KV₃Sb₅ BR Ortiz et al Phys Rev Materials **5** 034801 (2021)
- [82] Anomalous, anomalous Hall effect in the layered, Kagome, Dirac semimetal KV₃Sb₅ SY Yang et al arXiv 1912.12288
- [83] Superconductivity in La₂Ni₂InJ Maiwald et al Phys Rev B 102 165125 (2020)
- [84] Possible multi-gap superconductivity and magnetism in single crystals of superconducting La₂Pt₃Ge₅ and Pr₂Pt₃Ge₅
 NH Sung et al Phys Rev B 86 224507 (2012)
- [85] La₂Rh_{3+δ}Sb₄: a new ternary superconducting rhodium-antimonide K Cheng et al Mater Futures 1 045201 (2022)
- [86] Crystal growth, transport, and magnetic properties of Ln₃Co₄Sn₁₃ (Ln = La, Ce) with a perovskite-like structure EL Thomas et al J Solid State Chem 179 1642 (2006)

- [87] Superconductivity in the nodal-line compound La₃Pt₃Bi₄ L Li et al Phys Rev Research **4** L032004 (2022)
- [88] Anisotropic superconductivity and unusually robust electronic critical field in single crystal La₇Ir₃
 DA Mayoh et al Phys Rev Materials 5 114803 (2021)
- [89] Multiple Weyl fermions in the noncentrosymmetric semimetal LaAlSi H Su et al Phys Rev B **103** 165128 (2021)
- [90] The de Haas-van Alphen Effect Study of the Fermi Surface of LaBi A Vashist et al JPS JPS Conf Proc **30** 011019 (2020)
- [91] De Haas-van Alphen Effect and Fermi Surface Properties in Ferromagnet LaCo₂P₂ and Related Compounds A Teruya et al Physics Procedia 75 876 (2015)
- [92] Unique Magnetic Phases in an Antiferromagnet CeCoGe₃ A Thamizhavel et al J Phys Soc Jpn **74** 1858 (2005)
- [93] Quantum oscillations and physical properties of LaCu₂Si₂ Z Podrebersek et al Can J Phys 100 (2022)
- [94] Phonon-mediated superconductivity in the Sb-square-net compound LaCuSb₂ K Akiba et al Phys Rev B **107** 245117 (2023)
- [95] Structural Characterization and Physical Properties of Superconducting LaNiGa₂ and Antiferromagnetic CeIn₃
 JR Badger, Doctoral Dissertation, University of California, Davis (2021), p. 115
- [96] Fermi surface of the heavy fermion superconductor PrOs₄Sb₁₂ H Sugawara et al Phys Rev B **66** 220504(R) (2002)
- [97] Multiple unconventional charge density wave transitions in LaPt₂Si₂ superconductor clarified with high-energy X-ray diffraction E Nocerino et al Commun Mater 4 77 (2023)
- [98] Evolution of charge density wave order and superconductivity under pressure in LaPt₂Si₂ B Shen et al Phys Rev B **101** 144501 (2020)
- [99] Multigap Superconductivity in a charge density wave superconductor LaPt₂Si₂ D Das et al Phys Rev B **97** 184509 (2018)
- [100] Conventional type-II superconductivity in locally noncentrosymmetric LaRh₂As₂ single crystals JF Landaeta et al Phys Rev B 106 014506 (2022)
- [101] Discovery of Superconductivity and Electron-Phonon Drag in the Non-Centrosymmetric Semimetal LaRhGe₃
 M Oudah et al arXiv 2311.11402
- [102] Nodeless superconductivity in noncentrosymmetric LaRhSn ZY Nie et al Phys Rev B **105** 134523 (2022)
- [103] Superconductivity and physical properties of a LaRhSn M Mihalik et al J Alloys Compd 452 241 (2008)
- [104] Electrical transport properties of ternary phosphides RRu₂P₂ (R=La, Ce, Pr and Eu) with ThCr₂Si₂ type crystal structure T Fujiwara et al J Phys Conf Ser 273 012112 (2011)

- [106] Multigap Superconductivity in the Filled-Skutterudite Compound LaRu₄As₁₂ probed by muon spin rotation A Bhattacharyya et al Phys Rev B 106 134516 (2022)
- [107] Consequences of breaking time reversal symmetry in LaSb: a resistivity plateau and extreme magnetoresistance FF Tafti et al arXiv 1510.06931
- [108] Thermodynamic and transport properties of YTe₃, LaTe₃, and CeTe₃ N Ru and IR Fisher Phys Rev B **73** 033101 (2006)
- [109] Contrasts in electron correlations and inelastic scattering between LiFeAs and LiFeP revealed by charge transport S Kasahara et al Phys Rev B 85 060503(R) (2012)
- [110] Quasi-two-dimensional anisotropic superconductivity in Li intercalated 2H-TaS₂ T Agarwal et al Phys Rev B 107 174509 (2023)
- [111] Specific heat evidence for two-gap superconductivity in ternary-iron silicide Lu₂Fe₃Si₅ Y Nakajima et al Phys Rev Lett **100** 157001 (2008)
- [112] Disorder-sensitive superconductivity in the iron silicide Lu₂Fe₃Si₅ studied by the Lu-site substitutions
 T Watanabe et al arXiv 0906.5569)
- [113] Nodeless superconductivity and the peak effect in the quasi-skutterudites Lu₃Os₄Ge₁₃ and Y₃Ru₄Ge₁₃
 ZF Wenig et al Phys Rev B 95 184501 (2017)
- [114] Effect of physical and chemical pressure on the superconductivity of caged-type quasiskutterudite Lu₅Rh₆Sn₁₈ C Xiong et al arXiv 2310.12849
- [115] Superconductivity in monocrystalline YNiSi₃ and LuNiSi₃
 FR Arantes et al Phys Rev B 99 224505 (2019)
- [116] Tuning the Parity Mixing of Singlet-Septet Pairing in a Half-Heusler Superconductor K Ishihara et al Phys Rev X 11 041048 (2021)
- [117] Weak Antilocalization Effect and Noncentrosymmetric Superconductivity in a Topologically Nontrivial Semimetal LuPdBi G Xu et al Scientific Reports 4 5709 (2014)
- [118] Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi A candidate for topological superconductivity FF Tafti et al Phys Rev B 87 184504 (2013)
- [119] Growth of Single Crystals of MgCNi₃
 HS Lee et al Advanced Materials 19 1807 (2007)
- [120] Flux growth and physical properties of Mo₃Sb₇ single crystals JQ Yan et al Phys Rev B 87 104515 (2013)
- [121] Fragile structural transition in Mo₃Sb₇ JQ Yan et al Phys Rev B **92** 064507 (2015)
- [122] Large unsaturated transverse and negative longitudinal magnetoresistance in the compensated semimetal MoGe₂
 YF Huang et al Phys Rev B 103 134116 (2021)
- [123] Ion exchange synthesis and superconductivity at 8.6 K of Na₂Cr₃As₃ with quasi one dimensional crystal structure QG Mu et al Phys Rev Materials 2 034803 (2018)

- [124] Superconductivity in a new layered cobalt oxychalcogenide Na₆Co₃Se₆O₃ with a 3d₅ triangular lattice J Cheng et al arXiv 2310.17464
- [125] Superconductivity in the Topological Nodal-line Semimetal NaAlSi T Yamada et al J Phys Soc Jpn **90** 034710 (2021)
- [126] Nodeless superconductivity in the SnAs-based van der Waals type superconductor NaSn₂As₂
 EJ Cheng et al EPL 123 47004 (2018)
- [127] Evidence for s-wave pairing with atomic scale disorder in the van der Waals superconductor NaSn₂As₂
 K Ishihara et al Phys Rev B 98 020503(R) (2018)
- [128] SnAs-Based Layered Superconductor NaSn₂As₂ Y Goto et al J Phy. Soc Jpn **86** 123701 (2017)
- [129] Superconductivity and Fermi Surface Nesting in the Candidate Dirac Semimetal NbC Dayu Yan et al Phys Rev B 102 205117 (2020)
- [130] Type-I superconductivity in noncentrosymmetric NbGe₂ B Lv et al Phys Rev B **102** 064507 (2020)
- [131] Fermiology and type-I superconductivity in the chiral superconductor NbGe₂ with Kramers-Weyl fermions
 E Emmanouilidou et al Phys Rev B 102 235144 (2020)
- [132] Fermi surface topology and electronic transport properties of a chiral crystal NbGe₂ with strong electron-phonon interaction YJ Sato et al Phys Rev B 108 235115 (2023)
- [133] Bulk Fermi surface of the Weyl type-II semimetallic candidate NbIrTe₄ R Schönemann et al Phys Rev B 99 195128 (2019)
- [134] Pressure-induced superconductivity and modification of Fermi surface in type-II Weyl semimetal NbIrTe₄ QG Mu et al npj Quantum Mater 6 55 (2021)
- [135] Extremely large magnetoresistance and ultrahigh mobility in the topologicalWeyl semimetal candidate NbP C Shekhar et al Nature Physics 11 645 (2015)
- [136] Planar Hall effect and quasi 2D anisotropic superconductivity in topological candidate 1T-NbSeTe C Patra et al arXiv 2304.12619v1
- [137] Chiral-Structure-Driven Split Fermi Surface Properties in TaSi₂, NbSi₂, and VSi₂ Y Ōnuki et al J Phys Soc Jpn 83 061018 (2014)
- [138] Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe₂
 X Zhang et al Chin Phys Lett 36 057402 (2019)
- [139] Pressure induced superconductivity bordering a charge-density-wave state in NbTe₄ with strong spinorbit coupling X Yang et al Scientific Reports 8 6298 (2018)
- [140] Magnetic phase diagram and multiple field-induced states in the intermetallic triangularlattice antiferromagnet NdAuAl₄Ge₂ with Ising-like spins M Cong et al Phys Rev Materials 7 024423 (2023)
- [141] Record-high Mobility and Extreme Magnetoresistance on Kagome-lattice in Compensated Semimetal Ni₃In₂S₂
 H Fang et al Sci China Mater 66 2032 (2023)

- [142] Endless Dirac nodal lines and high mobility in kagome semimetal Ni₃In₂Se₂ single crystal SK Pradhan et al arXiv 2401.03130
- [143] Superconductivity and magnetism on flux grown single crystals of NiBi₃ B Silva et al Phys Rev B 88 184508 (2013)
- [144] Surface-induced Magnetism Fluctuations in Single Crystal of NiBi₃ Superconductor X Zhu et al Phys Rev B 86 024527 (2012)
- [145] Fully-gapped superconductivity with preserved time-reversal symmetry in NiBi₃ single crystals
 T Shang et al Phys Rev B 107 174513 (2023)
- [146] Absence of spontaneous time-reversal symmetry breaking and ferromagnetism in superconducting NiBi₃ single crystal J Wang et al Phys Rev B 107 024415 (2023)
- [147] Topological Type-II Dirac Fermions Approaching the Fermi Level in a Transition Metal Dichalcogenide NiTe₂
 C Xu et al Chem Mater **30** 4823 (2018)
- [148] Crossover from linear to quadratic magnetoresistance in NiTe₂ I Kar and S Thirupathaiah Mater Today Proc **65** 70 (2022)
- [149] Multigap superconductivity and Shubnikov-de Haas oscillations in single crystals of the layered boride OsB₂
 Y Singh et al Phys Rev B 82 144532 (2010)
- [150] Anisotropic superconductivity in topological crystalline metal Pb_{1/3}TaS₂ with multiple Dirac fermions
 X Yang et al Phys Rev B 104 035157 (2021)
- [151] An investigation of type-I superconductivity in single crystal of Pb₂Pd K Arushi et al arXiv 2103.06591
- [152] Superconducting and Topological P roperties in Centrosymmetric PbTaS₂ Single Crystals JJ Gao et al J Phys Chem C **124** 6349 (2020)
- [153] Single Crystal Growth and Physical Property Characterization of Non-centrosymmetric Superconductor PbTaSe₂
 YJ Long et al Chinese Phys Lett 33 037401 (2016)
- [154] Nodeless superconductivity in noncentrosymmetric PbTaSe₂ single crystals GM Pang et al Phys Rev B **93** 060506 (2016)
- [155] Anisotropic superconducting property studies of single crystal PbTaSe₂ R Sankar et al J Phys Condens Matter **29** 095601 (2017)
- [156] Single crystal growth and physical property characterization of PbTaSe₂ as a noncentrosymmetric type-II superconductor R Sankar et al arXiv 1511.05295
- [157] Anomalous Nernst Effect in Nonmagnetic Nodal Line Semimetal PbTaSe₂
 K Yokoi et al Phys Rev B 106 115118 (2022)
- [158] Highly responsive ground state of PbTaSe₂: structural phase transition and evolution of superconductivity under pressure US Kaluarachchi et al Phys Rev B 95 224508 (2017)
- [159] Topological Dirac Surface States and Superconducting Paring Correlations in PbTaSe₂ TR Chang et al Phys Rev B 93 245130 (2016)
- [160] Nodeless superconductivity in type-II Dirac semimetal PdTe₂: London penetration depth and gap symmetry analysis S Teknowijoyo et al Phys Rev B 98 024508 (2018)

- [161] Quantum oscillations and high carrier mobility in the delafossite PdCoO₂ CW Hicks et al Phys Rev Lett **109** 116401 (2012)
- [162] Single crystal growth of the metallic triangular-lattice antiferromagnet PdCrO₂ H Takatsu et al J Cryst Growth **312** 3461 (2010)
- [163] Quantum oscillations and weak anisotropic resistivity in the chiral Fermion semimetal PdGa XY Zeng et al Phys Rev B 106 205120 (2022)
- [164] Broadband optical conductivity of the chiral multifold semimetal PdGa LZ Maulana et al Phys Rev B 103 115206 (2021)
- [165] Extremely large magnetoresistance and Kohler's rule in PdSn₄ a complete study of thermodynamic, transport and band structure properties NH Jo et al Phys Rev B 96 165145 (2017)
- [166] Multigap nodeless superconductivity in the topological semimetal PdTe C Zhao et al arXiv 2310.08462
- [167] Investigation of structural and magneto-transport properties of PdTe₂ single crystals Y Kumar et al Appl Phys A **128** 880 (2022)
- [168] Metallic Spin-Liquid Behavior of the Geometrically Frustrated Kondo Lattice Pr₂Ir₂O S Nakatsuji et al Phys Rev Lett **96** 087204 (2006)
- [169] Ambient and high-pressure electrical transport and structural investigations of magnetic Weyl semimetal PrAlGe U Dutta et al arXiv 2305.09298
- [170] Nonsaturating magnetoresistance, anomalous Hall effect, and magnetic quantum oscillations in ferromagnetic semimetal PrAlSi
 M Lyu et al Phys Rev B 102 085143 (2020)
- [171] Transport and Magnetic properties of PrCoIn₅ A Kebede et al arXiv 0905.4536
- [172] Anomalous Anisotropic Magnetoresistance in Heavy-Fermion PrFe₄P₁₂ H Sugawara et al J Phys Soc Jpn 77 085001 (2008)
- [173] Superconductivity in the Ferroquadrupolar State in the Quadrupolar Kondo Lattice PrTi₂Al₂₀
 A Sakai et al J Phys Soc Jpn 81 083702 (2012)
- [174] Multi-frequency Shubnikov-de Haas oscillations in topological semimetal Pt₂HgSe₃ D Mauro et al 2D Mater 7 025042 (2020)
- [175] Unusual magnetotransport and surface Dirac-cone state in single-crystalline Pt₃Te₄ : a new candidate of Dirac semimetal
 K Hsu et al Research Square Preprint
- [176] Analysis of unconventional chiral fermions in a noncentrosymmetric chiral crystal PtAl V Saini et al Phys Rev B 106 125126 (2022)
- [177] Extremely large magnetoresistance in topological semimetal candidate pyrite PtBi₂
 W Gao et al Phys Rev Let. 118 256601 (2017)
- [178] Nearly free electrons in a 5d delafossite oxide metal P Kushwaha et al Sci Adv 1 e1500692
- [179] Normal-state negative longitudinal magnetoresistance and Dirac-cone-like dispersion in PtPb₄ single crystals: a potential Weyl-semimetal superconductor candidate LM Wang et al New J Phys 23 093030 (2021)

- [180] Normal-state negative longitudinal magnetoresistance and Dirac-cone-like dispersion in PtPb4 single crystals: a potential Weyl-semimetal superconductor candidate LM Wang et al New J Phys 23 093030 (2021)
- [181] Superconductivity in PtPb₄ with Possible Nontrivial Band Topology CQ Xu et al Phys Rev B **104** 125127 (2021)
- [182] Origin of the extremely large magnetoresistance in topological semimetal PtSn₄ X Luo et al Phys Rev B 97 205132 (2018)
- [183] Largely Suppressed Magneto-Thermal Conductivity and Enhanced Magneto-Thermoelectric Properties in PtSn₄ C Fu et al Research 2020 4643507 (2020)
- [184] Thermoelectric signatures of the electron-phonon fluid in PtSn₄ C Fu et al arXiv 1802.09468
- [185] Magnetic Field Effects on Transport Properties of PtSn₄ E Mun et al Phys Rev B 85 035135 (2012)
- [186] Quantum oscillations in ultra pure PtSn₄
 M Inamdar et al Solid State Phenomena 194 88 (2012)
- [187] Electrical and optical properties of a PtSn₄ single crystal VV Marchenkov et al J Phys Conf Ser **1199** 012037 (2019)
- [188] Superconductivity with peculiar upper critical fields in quasi-one-dimensional Cr-based pnictides GH Cao and ZW Zhu Chinese Phys B 27 107401 (2018)
- [189] Superconductivity at 7.3 K in the 133 type Cr based RbCr₃As₃ single crystals T Liu et al EPL **120** 27006 (2017)
- [190] Point contact Andreev reflection studies of a non-centro symmetric superconductor Re₆Zr P Parab et al Scientific Reports **9** 2498 (2019)
- [191] Fully-gapped superconductivity in single crystals of noncentrosymmetric Re₆Zr with broken time-reversal symmetry GM Pang et al Phys Rev B 97 224506 (2018)
- [192] Unconventional nodal superconductivity in miassite Rh₁₇S₁₅ H Kim et al arXiv 2306.00261
- [193] Quantum oscillations and electronic structures in large Chern number semimetal RhSn S Xu et al Phys Rev B **100** 245146 (2019)
- [194] Pressure-enhanced superconductivity in cage-type quasiskutterudite Sc₅Rh₆Sn₁₈ single crystal
 G Lingannan et al J Phys Condens Matter **34** 245601 (2022)
- [195] Complex Antiferromagnetic Order in the Metallic Triangular Lattice Compound SmAuAl₄Ge₂
 K Feng et al Phys Rev B 109 014436 (2024)
- [196] Magnetic Properties of SmCd₁₁K Sugiyama et al JPS Conf Proc **3** 017021 (2014)
- [197] Type-II Superconductivity below 4K in Sn_{0.4}Sb_{0.6}
 MM Sharma et al J Alloy Compd 844 156140 (2020)
- [198] Two-fold anisotropic superconducting state in topological superconductor Sn₄Au MM Sharma et al EPL **142** 26004 (2023)
- [199] Electronic States of Sn4P3: Analogue of Topological Insulator Bi₂Se₃
 K Nakaim et al JPS Conf Proc 29 013006 (2020)

- [200] Detailed magneto heat capacity analysis of SnAs topological superconductor MM Sharma et al J Phys Condens Matter **34** 255702 (2022)
- [201] Superconducting properties in a candidate topological nodal line semimetal SnTaS₂ with a centrosymmetric crystal structure DY Chen et al Phys Rev B 100 064516 (2019)
- [202] Superconductivity and weak anti-localization in nodal-line semimetal SnTaS₂ M Singh et al Supercond Sci Technol **35** 084003 (2022)
- [203] Study of single crystalline SrAgSb and SrAuSb semimetals P Devi et al arXiv 2005.02323
- [204] Superconductivity in a ferroelectric-like topological semimetal SrAuBi H Takahashi et al npj Quantum Materials **8** 77 (2023)
- [205] Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi₃ (A = Sr and Ba)
 DF Shao et al Scientific Reports 6 21484 (2016)
- [206] Pressure-induced Superconductivity in Zintl Topological Insulator SrIn₂As₂ W Cao et al Phys Rev B **108** 224510 (2023)
- [207] Superconductivity and the Effects of Pressure and Structure in Single Crystaline SrNi₂P₂ F Ronning et al Phys Rev B **79** 134507 (2009)
- [208] Synthesis of Superconducting SrPd₂Ge₂ Single Crystals NH Sung et al Prog Supercond Cryog **11** 92 (2010)
- [209] Superconductivity in the ternary compound $SrPt_{10}P_4$ with complex new structure B Lv Phys Rev Materials 1 064801 (2017)
- [210] Evidence for two energy gaps and Fermi liquid behavior in SrPt₂As₂ superconductor X Xu et al Phys Rev B **87** 224507 (2013)
- [211] Single crystal growth and de Haas-van Alphen effect in strong coupling s-wave superconductor SrPt₃P M Horie et al J Phys Conf Ser 2164 012005 (2022)
- [212] Pressure-induced Superconductivity and Structure Phase Transition in SnAs-based Zintl Compound SrSn₂As₂
 W Cao et al Phys Rev B 108 224510 (2023)
- [214] Laser floating zone growth of SrVO₃ single crystals T Berry et al J Cryst Growth **583** 126518 (2022)
- [215] Superconductivity in Ta₃Pd₃Te₁₄ with quasi-one-dimensional PdTe₂ chains WH Jiao et al Sci Rep 6 21628 (2016)
- [216] Extended Kohler's Rule of Magnetoresistance in TaCo₂Te₂ J Xu et al Phys Rev X **11** 041029 (2021)
- [217] TaCo₂Te₂ An Air-Stable, High Mobility Van der Waals Material with Probable Magnetic Order
 R Singha et al Adv Funct Mater **32** 2108920 (2022)
- [218] Topological Dirac states in a layered telluride TaPdTe₅ with quasi-one-dimensional PdTe₂ chains WH Jiao et al Phys Rev B **102** 075141 (2020)
- [219] Anisotropic transverse magnetoresistance and Fermi surface in TaSb₂ A Pariari et al Sci Rep **8** 10527 (2018)

- [220] Evidence for topological semimetallicity in a chain-compound TaSe₃ AIU Saleheen et al npj Quantum Mater **5** 53 (2020)
- [221] Conventional Type-II Superconductivity in 2H-TaSeS K Yadav et al arXiv 2308.05377
- [222] Two Dimensional Multigap Superconductivity in Bulk 2H-TaSSe C Patra et al Phys Rev B **106** 134515 (2022)
- [223] Superconductivity and Charge-density-wave-like Transition in Th₂Cu₄As₅ QC Duan et al arXiv 2311.13308
- [224] Single Crystal Growth and Fermi Surface Properties of ThIn₃ TD Matsuda et al J Phys Soc Jpn **74** 3276 (2005)
- [225] De Haas-van Alphen Effect and Fermi Surface Properties of Ti₂Sn₃ J Ota et al JPS Conf Proc **29** 013007 (2020)
- [226] Superconductivity in Tl_{0.6}Bi₂Te₃ Derived from a Topological Insulator Z Wang et al Chem Mater **28** 779 (2016)
- [227] Large Upper Critical Field of Superconductivity in the Single Crystal U₆Co D Aoki et al J Phys Soc Jpn **85** 073713 (2016)
- [228] UBe₁₃: An Unconventional Actinide Superconductor HR Ott et al Phys Rev Lett **50** 1595 (1983)
- [229] Spin-Triplet Superconductivity in UNi₂Al₃ Revealed by the ²⁷Al Knight Shift Measurement K Ishida et al Phys Rev Lett **89** 037002 (2002)
- [230] Angle-dependent magnetoresistance and its implications for Lifshitz transition in W₂As₃ J Wang et al npj Quantum Materials 4 58 (2019)
- [231] Quantum transport in a compensated semimetal W₂As₃ with nontrivial Z₂ indices Y Li et al Phys Rev B **98** 115145 (2018)
- [232] Superconductivity in WP single crystal Z Liu et al Phys Rev B **99** 184509 (2019)
- [233] Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP₂ and MoP₂
 N Kumar Nat Commun 8 1642 (2017)
- [234] Extremely large magnetoresistance, anisotropic Hall effect, and Fermi surface topology in single-crystalline WSi₂
 R Mondal et al Phys Rev B 102 115158 (2020)
- [235] Imaging phonon-mediated hydrodynamic flow in WTe₂ U Vool et al Nature Physics **17** 1216 (2021)
- [236] Correlation of Crystal Quality and Extreme Magnetoresistance of WTe₂ MN Ali et al EPL 110 67002 (2015)
- [237] Anisotropy in the electronic transport properties of Weyl semimetal WTe₂ single crystals R Jha et al AIP Advances **8** 101332 (2018)
- [238] Signature of strong spin-orbital coupling in the large non-saturating magnetoresistance material WTe₂
 J Jiang et al Phys Rev Lett 115 166601 (2015)
- [239] Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride XC Pan et al Nat Commun 6 7805 (2015)
- [240] Superconductivity in a low carrier density system A single crystal study of cubic Y₃Ru₄Ge₁₃ O Prakash et al Phys C Supercond **492** 90 (2013)

- [241] Superconductivity in Y₄RuGe₈ with a vacancy-ordered CeNiSi₂-type superstructure JK Bao et al Chem Mater **33** 7839 (2021)
- [242] Anisotropic superconductivity of the caged compound Y₅Rh₆Sn₁₈ with unusual normal-state electrical resistivity N Kase et al JPS Conf Proc **3** 015042 (2014)
- [243] Superconductivity in Y₇Ru₄InGe₁₂ JK Bao et al Phys Rev Materials **3** 024802 (2019)
- [244] Crossover from a heavy fermion to intermediate valence state in noncentrosymmetric Yb₂Ni₁₂(P,As)₇
 W Jiang et al Sci Rep 5 17608 (2015)
- [245] Investigation of Yb₂Pt₆Al₁₅ single crystals:heavy fermion system with a large local moment degeneracy
 M Deppe et al New J Phys 10 093017 (2008)
- [246] Superconductivity mediated by a soft phonon mode: specific heat, resistivity, thermal expansion and magnetization of YB_6 R Lortz et al Phys Rev B **73** 024512 (2006)
- [247] High Quality Single-crystal Growth and de Haas-van Alphen Measurements of YbAl₂ K Ohta et al JPS Conf Proc **3** 011047 (2014)
- [248] Tuning the electronic hybridization in the heavy fermion cage compound YbFe₂Zn₂₀ with Cd-doping
 M Cabrera-Baez et al J Phys Condens Matter 28 375601 (2016)
- [249] YbV₃Sb₄ and EuV₃Sb₄, vanadium-based kagome metals with Yb²⁺ and Eu²⁺ zig-zag chains BR Ortiz et al Phys Rev Materials 7 064201 (2023)
- [250] Giant magnetoresistance in the crystalline YCd₆ intermetallic compound M Cabrera-Baez et al Phys Rev B **107** 144414 (2023)
- [251] Single Crystal Growth, Transport, and Electronic Band Structure of YCoGa₅ X Zhu et al J Alloys Compd 578 543 (2013)
- [252] YCr₆Ge₆ as a Candidate Compound for a Kagome Metal Y Ishii et al J Phys Soc Jpn **82** 023705 (2013)
- [253] Electron-phonon coupling origin of the resistivity in YNi₂B₂C single crystals RS Gonnelli et al Int J Mod Phys B 14 2840 (2000)
- [254] Transport and superconducting properties of RNi₂B₂C (R=Y, Lu) single crystals KDD Rathnayaka et al Phys Rev B **55** 8506 (1997)
- [255] Superconductivity in non-centrosymmetric YPtBi under pressure TV Bay et al Phys Rev B **86** 064515 (2012)
- [256] Superconductivity in the topological semimetal YPtBi NP Butch et al Phys Rev B **84** 220504(R) (2011)
- [257] Transport evidence of triply degenerate nodal semimetal YRh₆Ge₄Y Zhu et al Phys Rev B 101 035133 (2020)
- [258] Linear unsaturated magnetoresistance in YSi single crystal V Saini et al Appl Phys Lett **119** 071904 (2021)
- [259] Two-gap superconductivity in ZrB₁₂: Temperature dependence of critical magnetic fields in single crystals VA Gasparov et al Phys Rev B 73 094510 (2006)
- [260] Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS
 R Singha et al PNAS 114 2468 (2017)

- [261] Observation of Topological Nodal Fermion Semimetal Phase in ZrSiS M Neupane et al Phys Rev B **93** 201104(R) (2016)
- [262] Crystal growth of Dirac semimetal ZrSiS with high magnetoresistance and mobility R Sankar et al Scientific 7 40603 (2017)
- [263] Ferromagnetic Properties of ZrZn₂EA Yelland et al Phys Rev B 72 184436 (2005)
- [264] Temperature dependence of the lower critical field of the noncentrosymmetric superconductor α-BiPd J Juraszek et al Physica Status Solidi 17 2200423 (2022)
- [265] Dirac State in a Centrosymmetric Superconductor α-PdBi₂K Dimitri et al Phys Rev B 97 144514 (2018)
- [266] Pressure-induced irreversible evolution of superconductivity in PdBi₂ Y Zhou et al Phys Rev B **99** 054501 (2019)
- [267] Probing the superconducting gap symmetry of α-PdBi₂: A penetration depth study S Mitra et al Phys Rev B 95 134519 (2017)
- [268] Multiple Dirac Nodes and Symmetry Protected Dirac Nodal Line in Orthorhombic α-RhSi S Mozaffari et al Phys Rev B 102 115131 (2020)
- $\begin{array}{ll} \mbox{[269]} & \mbox{Superconductivity in the complex metallic alloy β-Al_3Mg_2$} \\ & \mbox{E Bauer et al Phys Rev B 76 014528 (2007)} \end{array}$
- [270] Superconductivity at 5.4 K in β-Bi₂Pd
 Y Imai et al J Phys Soc Jpn 81 113708 (2012)
- [271] Superconducting gap of the single crystal β-PdBi₂
 H Matsuzaki et al J Phys Conf Ser 871 012004 (2017)
- [272] Pressure effect on the superconducting and the normal state of β -Bi₂Pd G Pristáš et al Phys Rev B **97** 134505 (2018)
- [273] Low-temperature thermal expansion of the topological material candidates β -PtBi₂ and β -Bi₂Pd VF Correa et al arXiv 2204.02327
- [274] Topologically protected surface states in a centrosymmetric superconductor β-PdBi₂ M Sakano et al Nat Commun 6 8595 (2015)
- [275] Observation of superconductivity in the intermetallic compound β -IrSn₄ VH Tran et al J Phys Condens Matter **25** 155701 (2013)
- [276] Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB₄ S Nakatsuji et al Nature Physics 4 603 (2008)
- [277] Unconventional quantum criticality in β-YbAlB₄ detached from its magnetically ordered phase T Tomita et al Physics Procedia 75 482 (2015)
- [278] Strange Metal Without Magnetic Criticality T Tomita et al Science **349** 506 (2015)
- [279] Low-temperature thermal transport coefficients of heavy fermion β-YbAlB₄ Y Machida et al J Phys Conf Ser 273 012005 (2011)
- [280] Thermoelectric response near a quantum critical point of β-YbAlB₄ and YbRh₂Si₂: A comparative study Y Machida et al Phys Rev Lett **109** 156405 (2012)

single crystal item		info ^{a)}	RRR ^{b)}	$\begin{bmatrix} T_c^{\rho} \\ [K] \end{bmatrix}^{c)}$	resistivity [μΩcm]		fraction	varia	ref	
					measured ^{d)}	ansatz ^{e)}	quantum ^{f)}	υ		
A - Dh O		Tort			1.5	1.50	0.007	2/2		[0]
$Ag_5PD_2O_6$		$\Gamma = 1$		ρ_{ab}	1.3	1.30	0.997	3/2		[2]
$Ag_5Pb_2O_6$	#1	Γ 1g. 1		0.044	4.03(4)	4.70	0.203	2/4	ρ.	[3]
$Ag_5PD_2O_6$	#1		275	$ \mathbf{p}_0 $	4.7	4.70	0.205	5/4 6/7		[4]
Al ₆ Ke		F 1g. 2	3/3	ρ_0	0.0394(4)	0.0391	0.0430	0//		[5]
Al ₆ Ke	<i></i> ДА 1			ρ ₀	0.04	0.040	0.0450	1/8		[6]
A a	#A1 #A2			ρ_0	0.038	0.0380	0.0456	5/6 0/7		[7]
AS	#A2 #A2			ρ_0	0.0093	0.00934	0.0073	9//		[/]
AuSp	#A3	Text		$\frac{1}{2}$ $\frac{1}{4}$	0.0014	0.623	0.0075	5/8		
AuSh		Text		2.4	0.02	0.023	0.997	$\frac{J/0}{2/4}$		[0]
AuSii				2.4	0.73	2 402	0.997	5/4		[9]
AuSii		Fig. 5a		2.32	2.46(3)	2.492	6 262	3/Z		[10]
AuSn ₄				2.00	10.8	0.775	0.203	7/0		[11]
ANTo		Fig. 2a		ρ ₀	0.78	0.775	0.997	//9		[12]
Aure ₂		Fig. 2c			0.774(3) 0.207(4)	0.200	0.007	2/5	0.05GPa	[12]
	#1	FI		2 85	27 /	27.6	6 262	6	0.9501a	
AuTe ₂ Se _{4/3}	#1 #2	Fig. 4c		2.85	27.4	28.2	6 263	9/2		[13]
	11 2	Fig. 39		4.62	165(2)	16.7	6 263	8/3		
Ba₅In₄Bi₅		Fig. 5a		4 55	10.3(2) 14 0(2)	14.1	6 263	9/4		[14]
Du 31114 D 13		Fig. S7a		4.4	9.0(1)	8.97	0.997	9		[1]
Ba6Nb11S28		Fig. 1f		1.6	62.0(5)	60.8	136.8	4/9		[15]
BaAl	#A	Text		00	0.090	0.091	0.0456	2		[16]
BaBi ₃		FL		5.95	12.50	12.53	6.263	2		[17]
BaCu2As2		Fig. 4c		00	1.750(3)	1.744	0.997	7/4		[18]
BaGa2		Text		ρ_0^{xx}	0.440	0.443	0.997	4/9		[19]
Balr ₂ P ₂		Fig. 3c		o(3K:750G)	8.81(6)	8.77	6.263	7/5	•	[20]
BaNi2As2		Fig. 4a		o(1.5K:0.1T)	16.7(1)	16.70	6.263	8/3	•	[21]
BaNi ₂ P ₂		Fig. 1a		2.6	5.05(4)	5.01	6.263	4/5		[22]
BaNiS ₂		PI		Oo ^{ab}	5.5	5.48	6.263	7/8		[23]
BaPd ₂ As ₂		Fig. 2b		3.85	5.20(6)	5.22	6.263	5/6		[24]
$BaPt_2As_2$		Fig 6a		1 75	1062(7)	106.4	136.8	7/9		[25]
		Fig. 3d		1.75	263(3)	2 66	0.997	8/3		[23]
BaRh ₂ P ₂		Fig. 3d		o(1.5K:1T)	1.27(1)	1.282	0.997	9/7		[20]
BaSn ₃		Fig. 1b		4.4	24.5(3)	25.1	6.263	4		[26]
BaTi ₂ Sb ₂ O		Fig. 1d		2.5	11.0(1)	11.0	6.263	7/4		[27]
Bi2Ir2O7		Fig. 3a		00	342.10(3)	342.10	136.8	5/2)		[28]
Bi ₂ PdPt		Fig. 4		4.1	3.12(3)	3.13	6.263	1/2	•	[29]
$Ca_{11}Bi_{10}$		Fig. 2h		2.3	10.8(2)	11.0	6.263	7/4		[30]
$Ca_3Ir_4Sn_{12}$		Fig. 2a		7.5	85(1)	85.5	136.8	5/8		[31]
CaAgAs		Text		00 ^{xx}	25	25.1	6.263	4		[32]
CaAl		Fig. 2a	57	00 ^{xx}	0.788(5)	0.783	6.263	1/8		[33]
CaBi ₂		Text		00	0.219	0.222	0.997	2/9		[34]
CaCdGe		Text		0^{XX}	9	9.0	0.997	9		[32]
]	1	L	2.0	0.777	L . ´	l	[22]

single crystal	item	info ^{a)}	RRR ^{b)}	$\begin{bmatrix} T_c^{\rho} \\ [K] \end{bmatrix}^{c)}$	resistivity [μΩcm]		fraction	varia	ref	
					measured ^{d)}	ansatz ^{e)}	quantum ^{f)}	υ		
CaCdSn		Text		ρ ₀	0.6	0.60	0.997	3/5		[35]
CaCu ₃ Ru ₄ O ₁₂	#1 #2	FL FL		ρ_0 ρ_0	14 117	14.1 117.3	6.263 136.8	9/4 6/7		[36]
CaIrSi ₃		Fig. 3b		3.45	68(1)	68.4	136.8	1/2		[37]
CaPd ₂ Ge ₂		BG		2.0	12.03(3)	12.5	6.263	2		[38]
CaPd ₂ P ₂		BG		1.0	23.5	22.8	136.8	1/6		[39]
		FL		1.58	10.50	10.44	6.263	5/3		
CaPtAs		Fig. 2a		1.38	7.53(6)	7.52	6.263	6/5	plateau	[40]
C - Dt A -		Fig. 5a		1.40	117.5(7)	117.3	136.8	6/7	.=	г <i>и</i> 1 1
CaPtAs		Fig. 4a		1.30	143(1)	143	859.8	1/6		[41]
CaSb ₂		Text	1	2.0	0.77	0.775	0.997	7/9		[42]
CaSn ₃		Text	1	4.2	0.5	0.498	0.997	1/2		[43]
CaSn ₃		FL	1	4.2	1.348	1.329	0.997	4/3		[44]
$Cd_2Re_2O_7$	#B	Text		2.15	11	11.0	6.263	7/4		[45]
$Cd_2Re_2O_7$		FL		1.46	14.63	14.61	6.263	7/3		[46]
$Cd_2Re_2O_7$		FL		1.72	17.07	17.11	136.8	1/8		[47]
	#2A	Fig. 4		1.13	15.7(1)	15.7	6.263	5/2		
	#1A	Fig. 4		2.20	15.7(1)	15.7	6.263	5/2		F401
$Cd_2Re_2O_7$	#1F	Fig. 4		2.17	11.3(1)	11.3	6.263	9/5		[48]
	#1G	Fig. 2		1.06	11.1(1)	11.0	6.263	7/4		
Cd ₃ As ₂		Text		ρ_0^{xx}	28.2	28.2	6.263	9/2		[49]
Ce ₂ PdGe ₃		Fig. 7b		ρ ₀	175.0(1)	175.9	136.8	9/7		[50]
CeRu ₂		Fig. 1d	1	5.1	37.8(5)	37.6	6.263	6		[51]
Co ₂ MnGa		Text	1	ρ_0^{xx}	56	56.4	6.263	9		[52]
Co ₂ MnSi		Text	1	ρ ₀	7	6.98	0.997	7		[53]
$Co_3Sn_2S_2$		Fig. 2b	128	ρ_0	4.20(4)	4.18	6.263	2/3		[54]
CoSe ₂		Text		ρο	2.1	2.09	6.263	1/3		[55]
CoSi		Fig. 1d	14	ρ_0^{xx}	4.97(3)	4.98	0.997	5		[56]
CoTe ₂		Text	1	ρο	113.8	114	136.8	5/6		[57]
CrAuTe ₄		Text		ρο	5.566	5.567	6.263	8/9		[58]
CsNi ₂ Se ₂		FL		2.7	5.38	5.368	6.263	6/7		[59]
CsV ₃ Sb ₅		Fig. 1a		4.0	0.248(2)	0.249	0.997	1/4		[60]
CsV ₃ Sb ₅	pristine	Text		4.2	0.4	0.40	0.997	2/5		[61]
CsV ₃ Sb ₅		Fig. 2e		3.6	0.555(4)	0.554	0.997	5/9		[62]
CsV ₃ Sb ₅		Fig. S1b		3.85	1.19(1)	1.196	0.997	6/5		[63]
CsV ₃ Sb ₅		Fig. 1b		4.0	1.76(1)	1.744	0.997	7/4		[64]
CsV ₃ Sb ₅	#B	Fig. 1c	1	3.8	3.00(2)	2.99	0.997	3		[65]
CsV ₃ Sb ₅		Fig. 1a		4.0	4.03(3)	3.99	0.997	4		[66]
~ ~ ~ ~ ~ ~		Text		4.2	4.75	4.70	6.263	3/4		
CsV_3Sb_5		Fig. 2b			4.74(4)					[67]

Table 1: Fractional Quantization of the residual resistivity

single crystal item		info ^{a)}	RRR ^{b)}	$\begin{bmatrix} T_{c}^{\rho} \\ K \end{bmatrix}^{c}$		resistivity fraction [μΩcm]		varia	ref	
					measured ^{d)}	ansatz ^{e)}	quantum f)	υ		
	#1 #1	Fig. 2a	-	3.6 5.2	3.62(4) 3.72(4)	3.58 3.76	6.263 6.263	4/7 3/5	0GPa 0.37GPa	
CsV ₃ Sb ₅	#1 #1 #1			8.0 8.0 8.0	$ \begin{array}{c} 2.99(4) \\ 4.20(5) \\ 4.46(5) \end{array} $	2.99 4.18 4.47	6.263 6.263	3 2/3 5/7	1.86GPa 1.52GPa 1.46GPa	[68]
	#4 #4	Fig. 2b		3.6 4.6	1.41(2) 1.32(2)	1.40 1.33	0.997 0.997	7/5 4/3	5.2GPa 3.8GPa	
Cu ₃ Sn		BG		ρ_0^{b} ρ_0^{a}	$ \begin{array}{c c} 0.17(1) \\ 0.34(1) \end{array} $	0.17 0.33	0.997 0.997	1/6 1/3		[69]
CuS	#1	Fig. 2b		1.8	0.578(7)	0.570	0.997	4/7		[70]
CuTe		Text		ρ ₀	1.19	1.196	0.997	6/5		[71]
Fe ₂ P		Fig. 5a	760	ρ ₀	0.224(2)	0.222	0.997	2/9		[72]
HfP ₂		Fig. 1e		ρ ₀	5.06(6)	5.01	6.263	4/5		[73]
HfRuP		Fig. 1e	1	9.0	2540(20)	2579	859.8	3		[74]
HoPdBi		Fig. 1a	1	0.82	642(6)	645	859.8	3/4		[75]
InPd		Text	-	ρ ₀	16.6	16.7	6.263	8/3		[76]
IrSb ₃	#73.1	PL	-	ρο	3.57	3.58	6.263	4/7		[77]
K ₂ Cr ₃ As ₃		Fig. 2a	60	6.2	16.8(1)	16.7	6.263	8/3		[78]
K ₂ Cr ₃ As ₃		Fig. 2	50	6.2	19.3(1)	19.5	136.8	1/7		[79]
KCo ₂ As ₂	#1	Fig. 3a	160	ρ_0^{xx}	0.229(1)	0.228	0.0456	5		[80]
KCr ₃ As ₃	#B	Fig. 2b		5.2	161(1)	160	136.8	7/6		[78]
KV ₃ Sb ₅		Fig. 2e		1.4	0.290(3)	0.285	0.997	2/7		[81]
KV ₃ Sb ₅		Fig. 1c	45	ρ ₀	1.61(1)	1.595	0.997	8/5		[82]
La2Ni2In		Text		0.94	15.7(1)	15.7	6.263	5/2		[83]
La ₂ Pt ₃ Ge ₅		Fig. 5		8.2	10.8(2)	11.0	6.263	7/4		[84]
$La_2Rh_{3+\delta}Sb_4$	#1	FL Fig 4a		0.9	43.6	43.8	6.263	7		[85]
La Co Snia		Fig 4a		3.0	43.0(+)	43.8	6 263	7		[86]
$La_3 Co_4 Sin_{13}$		Fig. 3c		1 15	36.6(4)	37.6	6 263	6		[87]
$I_{a_7}Ir_2$		Text		2 5	52 5(5)	51.3	136.8	3/8		[88]
		Fig. 1c		0.0 ^{XX}	5 96(4)	5 98	0.997	6		[80]
LaRi		Fig. 19	665	ро о	0.182(2)	0.182	0.0456			[00]
LaDi		Fig. $1a$	69		1 195(8)	1 106	0.0430	6/5		[90]
LaCoGeo		Fig. 3	150		0.270(2)	0 274	0.0456	6		[91]
LaCuce3		Tevt			0.270(2)	0.274	0.0430	7/8		[92]
		Fig. 2h		P0 1 1	1.02(2)	1 00	0.997	2		[95]
LaCuSb ₂		Fig. 3a		0(1.6K:0T)	1.93(2)	1.39	0.997	6/5		[94]
LaNiGa ₂		FL		2.15	5.20	5.22	6.263	5/6		[95]
LaOs ₄ Sb ₁₂		Text		ρ ₀	2.8	2.78	6.263	4/9		[96]
LaPt ₂ Si ₂		Fig. 1b		1.22	55.0	54.7	136.8	2/5		[97]
		Fig. 1b		2.15	109.6(8)	109.5	136.8	4/5		L
LaPt ₂ Si ₂		Fig. 3a		2.36	19.7(1)	19.5	136.8	1/7	2.0GPa	[98]
		Fig. 3a		2.36	15.2(1)	15.2	136.8	1/9	2.4GPa	-

Image: Second state in the second state in	single crystal item	info ^{a)}	RRR ^{b)}	$\begin{array}{c} T_{c}^{\rho} \text{_onset} \\ [K] \end{array}^{c)}$	resistivity fraction vari [μΩcm]			varia	ref	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					measured ^{d)}	ansatz ^{e)}	quantum ^{f)}	υ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LaPt ₂ Si ₂	Fig. 2a		1.8	182(1)	182	136.8	4/3		[99]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LaRh ₂ As ₂	BG Fig 3a		0.35	10 9 0(1)	10.0 9.0	6.263 0.997	8/5 9		[100]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LaRhGe ₃	Fig. 7a		ρ_0	0.77(1)	0.775	0.997	7/9		[101]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LaRhSn	Fig. 1	-	2.2	24.5(3)	25.1	6.263	4		[102]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Fig. 5	-	2.2	50.0(5)	50.1	6.263	8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LaRhSn	Fig. 4		2.2	106(1)	106.4	136.8	7/9		[103]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$LaRu_2P_2$	Fig. 4		4.4	2.08(1)	2.09	6.263	1/3		[104]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$LaRu_2Zn_{20}$	Fig. 1		0.3	27.4(2)	27.4	136.8	1/5		[105]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	LaRu ₄ As ₁₂	Fig. 1		10.4	1.330(8)	1.329	0.997	4/3		[106]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	#1	PL		ρ ₀	0.080	0.080	0.0456	7/4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LaSb #2			ρο	0.330	0.332	0.997	1/3		[107]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Т	Fig. 3		ρ_0^{ac}	0.433(8)	0.427	0.997	3/7		г1001
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lale ₃			ρ_0^{b}	98(1)	97.7	136.8	5/7		[108]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LiFeP	FL		5.3	2.26	2.24	0.997	9/4		[109]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Li _x TaS ₂	Text	1	4.2	611(2)	614	859.8	5/7		[110]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Fig. 5		5.76	4.06(6)	3.99	0.997	4		г 1 1 1 1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Fig. 5	_	5.56	15.0(1)	15.2	136.8	1/9		[111]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lu ₂ Fe ₃ Si ₅	Text		6.2	7.0	7.05	6.263	9/8	ρ_0^c	[112]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	2.20	22	21.9	6.263	1/2	ρο ^{αυ}	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Lu_3Os_4Ge_{13}$	r_{1} r_{1} r_{2} r_{2}		3.30	382(7)	382	859.8	4/9		[113]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Lu_5Rh_6Sn_{18}$	Fig. 3a		4.4	183(2)	182	136.8	4/3		[114]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LuNiSi3	Text Fig. 7h		1.63	1.8	1.79	0.997	9/5		[115]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LuPdRi	Fig 2c		1 9	344(2)	344	859.8	2/5		[116]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Fig. 20		1.70	405(5)	411	136.8	3		
LuPtBiFig. 31.0574.5(4)76.0136.85/9[118]MgCNi3Fig. 36.6531.5(3)31.36.2635[119]Mn2PFig. 2b840 ρ_0 0.0798(4)0.07980.04567/4[72]Mo3Sb7gap2.3891.691.2136.82/3[120]Mo3Sb7Fig. 1b2.3590.7(8)91.2136.82/3[121]MoGe2PL ρ_0 1.41.400.9977/5[122]Na2Cr3As3Text128.8108.3107.5859.81/8[123]Na6Co3Se6O3Fig. 2c6.5136.6(8)136.8136.81[124]NaSn2As2Fig. 3a1.6560.4(4)60.8136.84/9[126]NaSn2As2Fig. 2b1.38171(2)171136.85/4[128]NbCFig. 2c12.727.4(2)27.4136.81/5[129]NbGe2Fig. 12.060.094(1)0.0910.04562[131]	LuPdBi	3a inset		1170	200(3)	205	136.8	3/2)		[117]
MgCNi3Fig. 36.65 $31.5(3)$ 31.3 6.263 5 $[119]$ Mn2PFig. 2b840 ρ_0 $0.0798(4)$ 0.0798 0.0456 7.4 $[72]$ Mo3Sb7gap 2.38 91.6 91.2 136.8 $2/3$ $[120]$ Mo3Sb7Fig. 1b 2.35 $90.7(8)$ 91.2 136.8 $2/3$ $[121]$ MoGe2PL ρ_0 1.4 1.40 0.997 $7/5$ $[122]$ Na ₂ Cr ₃ As ₃ Text12 8.8 108.3 107.5 859.8 $1/8$ $[123]$ Na ₆ Co ₃ Se ₆ O ₃ Fig. 2c 6.5 $136.6(8)$ 136.8 136.8 1 $[124]$ NaAlSiText 7.2 157 156.4 136.8 $8/7$ ρ^a $[125]$ NaSn ₂ As ₂ Fig. 3a 1.65 $60.4(4)$ 60.8 136.8 $4/9$ $[126]$ NaSn ₂ As ₂ Fig. 2b 1.38 $171(2)$ 171 136.8 $5/4$ $[128]$ NbCFig. 2c 12.7 $27.4(2)$ 27.4 136.8 $1/5$ $[129]$ NbGe2Fig. 1 2.06 $0.094(1)$ 0.091 0.0456 $7/4$ $[130]$	LuPtBi	Fig. 3		1.05	74.5(4)	76.0	136.8	5/9		[118]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MgCNi ₃	Fig. 3		6.65	31.5(3)	31.3	6.263	5		[119]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn ₂ P	Fig. 2b	840	ρ ₀	0.0798(4)	0.0798	0.0456	7/4		[72]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mo ₃ Sb ₇	gap	-	2.38	91.6	91.2	136.8	2/3		[120]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mo ₃ Sb ₇	Fig. 1b		2.35	90.7(8)	91.2	136.8	2/3		[121]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MoGe ₂	PL	-	ρ ₀	1.4	1.40	0.997	7/5		[122]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Na ₂ Cr ₃ As ₃	Text	12	8.8	108.3	107.5	859.8	1/8		[123]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Na ₆ Co ₃ Se ₆ O ₃	Fig. 2c	-	6.5	136.6(8)	136.8	136.8	1		[124]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NaAlSi	Text		7.2	157	156.4	136.8	8/7	ρ ^a	[125]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NaSn ₂ As ₂	Fig. 3a	-	1.65	60.4(4)	60.8	136.8	4/9	·	[126]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NaSn ₂ As ₂	Text	-	1.18	122	121.6	136.8	8/9		[127]
NbCFig. 2c12.7 $27.4(2)$ 27.4 136.81/5[129]NbGe2Fig. 3a2.10.0800.0800.04567/4[130]NbGe2Fig. 12.060.094(1)0.0910.04562[131]	NaSn ₂ As ₂	Fig. 2b	-	1.38	171(2)	171	136.8	5/4		[128]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NbC	Fig. 2c	-	12.7	27.4(2)	27.4	136.8	1/5		[129]
NbGe ₂ Fig. 1 2.06 0.094(1) 0.091 0.0456 2 [131]	NbGe ₂	Fig. 3a	-	2.1	0.080	0.080	0.0456	7/4		[130]
	NbGe ₂	Fig. 1	-1	2.06	0.094(1)	0.091	0.0456	2		[131]

Table 1: Fractional	Quantization	of the residual	resistivity
---------------------	--------------	-----------------	-------------

single crystal item		info ^{a)}	RRR ^{b)}	$\begin{array}{c} T_{c}^{\rho} \text{_onset} \overset{c)}{[K]} \end{array}$		resistivity [μΩcm]		fraction	varia	ref
					measured ^{d)}	ansatz ^{e)}	quantum ^{f)}	υ		
NbGe ₂		BG BG		ρ ₀ ^{out of plane}	0.050 0.165	0.0508 0.166	0.0073	7 1/6		[132]
NbIrTe ₄		Fig. 2a		$\rho(0.35K)$	15.7(1)	15.7	6.263	5/2		[133]
		Fig. 1e	19	ρ_0^{xx}	31.3(3)	31.3	6.263	5		
Nblr I e ₄	#2	Fig. 2e		2.95	820(4)	821	136.8	6	65.5GPa	[134]
NbP		Text		ρ ₀	0.63	0.623	0.997	5/8		[135]
NbSeTe		Fig. 3a		3.16	207.2(5)	205	136.8	3/2		[136]
NbSi ₂		Text		ρ ₀	0.074	0.0730	0.0456	8/5		[137]
NbTe ₂		Fig. 1d		0.72	12.6(2)	12.5	6.263	2		[138]
NbTe ₄		Text		ρ ₀	9.4	9.39	6.263	3/2		[139]
NdAuAl ₄ Ge ₂		Fig. 4b		ρ ₀	4.72(4)	4.70	6.263	3/4		[140]
Ni ₃ In ₂ S ₂		Text		ρ_0^{xx}	0.108	0.1064	0.0456	7/3		[141]
Ni ₃ In ₂ Se ₂		Fig. 2a	30	ρ_0^{xx}	1.01(1)	1.00	0.997	1		[142]
NiBi3		Fig. 3		4.1	5.13(5)	5.22	6.263	5/6		[143]
NiBi3		Fig. 1c		4.3	7.76(5)	7.83	6.263	5/4		[144]
		Fig. 2b		4.16	4.16(5)	4.18	6.263	2/3		
NiBi ₃		BG			4.5(2)	4.49	0.997	9/2		[145]
		Fig. 4a			4.50(4)					
NiBi ₃		Fig. 2a		4.3	58.6(6)	58.6	136.8	3/7		[146]
NiMnSb		Fig. 6a	1.65	ρ_0	31.22	31.31	6.263	5		[53]
NiTe ₂		Fig. 2a	374	ρ_0^{xx}	0.116(1)	0.114	0.0456	5/2		[147]
NiTe ₂		Fig. 2c		ρ ₀	1.000	0.997	0.997	1		[148]
OsB ₂		Text		2.20	1.55	1.566	6.263	1/4		[149]
Pb _{1/3} TaS ₂		Fig. 2e		3.45	1.99(1)	1.994	0.997	2		[150]
Pb ₂ Pd		Fig. 4		3.2	2.10(4)	2.09	6.263	1/3		[151]
PbTaS ₂		FL		2.6	0.319	0.319	0.0456	7		[152]
PbTaSe ₂		Text		4.0	0.14	0.142	0.997	1/7		[153]
PbTaSe ₂		Text		3.9	0.14	0.142	0.997	1/7		[154]
PbTaSe ₂		Fig. 6b		4.05	0.271(2)	0.274	0.0456	6		[155]
PbTaSe ₂		BG		4.0	0.28	0.285	0.997	2/7		[156]
PbTaSe ₂		Fig. S4b		4.1	0.332(5)	0.332	0.997	1/3		[157]
PbTaSe ₂		Fig. 1a		4.1	0.360(4)	0.365	0.0456	8		[158]
PbTaSe ₂		Fig. 2a		4.1	0.374(3)	0.374	0.997	3/8		[159]
PbTe ₂		Fig. 2		1.82	0.495(6)	0.498	0.997	1/2		[160]
PdCoO ₂		Fig. 3		ρ_0^{ab}	0.00741(1)	0.00726	0.0073	1		[161]
				ρ_0^c	8.08(5)	8.05	6.263	9/7		
PdCrO ₂		Text		ρ_0^{av}	0.045	0.0456	0.0456			[162]
DIC					16.5	16.7	0.203	8/3		
PaGa		F1g. 2a	<u> 3 /</u>	p ₀	0.393(4)	0.398	0.99/	<u> </u>		[163]
PdGa	 <i>ш</i> 1	F1g.1C		<u>ρ</u> 0	0./13(5)	0./12	0.99/)// 		[164]
PdSn ₄	#1			ρ_0	0.105	0.106	0.0456	1/3		[165]
Pdle		Fig. 2a		4.0	5.13(2)	3.13	0.263	$\frac{1/2}{\sqrt{2}}$		[166]
PdIe ₂		<u>∥</u> BG		ρ₀	8.02	8.05	6.263	9/1	l <u></u>	[167]

Table 1: Fractional Quantization of the residual resistivity

single crystal item		info ^{a)}	RRR ^{b)}	$\begin{bmatrix} T_c^{\rho} \\ M \end{bmatrix}^{c}$		resistivity fract [μΩcm]		fraction	varia ref
					measured ^{d)}	ansatz ^{e)}	quantum ^{f)}	υ	
Pr.Ir.O.		Fig. 12		20	364 5(3)	364.0	136.8	8/3	[169]
$\mathbf{P}_{12}\mathbf{H}_{2}\mathbf{O}_{7}$		Γ Ig. 4a		$\frac{\rho_0}{70}$	304.3(3)	204.9	6 262	0/3	[108]
$PI_2PI_3Oe_5$		$\mathbf{Fig. } \mathbf{J}$	+	/.9	20.5(2)	20.2	126.8	9/2 2/0	[04]
Dr A 15:		Γ Ig. 2a Γ is a 5	+	ρ_0	10.0(2)	10 0	6 262	2/9	[109]
PrAISI DrCola5		Tig. J		μ0	19.0(2)	10.0	0.203	2/4	[171]
DrE- D		Text		ρ_0	0.034	0.0342	0.0430	3/4 //7	[1/1]
Prre4P ₁₂		Text		ρ_0	0.37	7.07	0.997	4/ / 0	[1/2]
$PrOs_4Sb_{12}$		Text		ρ_0	8	0.274	0.997	0 2/0	[96]
Pr I 1 ₂ AI ₂₀	μΠ1	Text		0.185	0.380		126.9	3/8 1/9	[1/3]
Dt. UaSa	#D1 #D2	Text		ρ_0^{XX}	17.1	1/.1	6 262	1/0 5/2	[174]
rt2ngSe3	#D2 #D3			ρ_0	63	63	6 263	5/5	[1/4]
Pt ₂ Te ₄	πDJ	Text	+	ρ_0^{xx}	0.5	0.5	0.203	1 <u>Δ/9</u>	[175]
\mathbf{P}_{1}		Fig. 2a	+	00	5.06(7)	5.01	6 263	<u>4/5</u>	[176]
PtBio		FI	+	00	0.018	0.0182	0.205	2/5	[170]
$PtCoO_{2}$		Fig. 2a		ρ_0^{ab}	0.010	0.0102	0.0456	8/9	[17]
110002		Tevt		3.0	0.04070(3)	0.04033	0.0430	5/7	[1/0]
PtPb ₄		Fig. 2a	113	5.0	0.709	0.712	0.777	5/7	[179]
PtPb ₄		FL	1	2.8	0.753	0.748	0.997	3/4	[180]
PtPb ₄		Fig. 2a	1	2.77	2.78(3)	2.78	6.263	4/9	[181]
PtSn ₄		Text	1	ρ ₀	0.013	0.0130	0.0456	2/7	[182]
PtSn ₄		Text	1	ρ ₀	0.045	0.0456	0.0456	1	[183]
PtSn ₄		Text		ρ ₀	0.045	0.0456	0.0456	1	[184]
	#1	Text	1	ρ ₀	0.041	0.041	0.0456	8/9	
PtSn ₄	#2				0.053	0.053	0.0456	7/6	[185]
	#3				0.038	0.038	0.0456	5/6	
PtSn ₄		Text	812	$\rho_0{}^a$	0.315	0.319	0.0456	7	[186]
PtSn ₄		Text	1	ρ ₀	0.5	0.50	0.997	1/2	[187]
Rb ₂ Cr ₃ As ₃		Fig. 2b	1	5.0	3.57(4)	3.58	6.263	4/7	[189]
Rb ₂ Cr ₃ As ₃	#A	Fig. 5a	1	4.8	7.52(4)	7.52	6.263	6/5	[188]
RbCr ₃ As ₃		Fig. 2b	1	8.0	12.5(1)	12.5	6.263	2	[189]
Re ₆ Zr		Fig. 1a	1	6.84	208(4)	205	136.8	3/2	[190]
Re ₆ Zr		Text	1	6.9	300	308	136.8	9/4	[191]
Rh ₁₇ S ₁₅	pristine	Fig. 2	1	5.31	16.5(1)	16.7	6.263	8/3	[192]
RhSn		Fig. 2a	24	ρ_0^{xx}	3.16(2)	3.13	6.263	1/2	[193]
$Sc_5Rh_6Sn_{18}$		Fig. S3	1	5.05	229(4)	228	136.8	5/3	[194]
SmAuAl ₄ Ge ₂		Text	1	ρ0	1.5	1.50	0.997	3/2	[195]
6C.1		Text	1	ρ ₀	0.32	0.319	0.0456	7	
SmCd ₁₁		Fig. 2a		4.7	2.99(2)	2.99	0.997	3	T_{N1} [196]
$Sn_{0.4}Sb_{0.6}$		Fig. 8	1	4.0	82.4(2)	82.1	136.8	3/5	[197]
Sn ₄ Au		Fig. 1c	1	2.3	1.50(2)	1.50	0.997	3/2	[198]
Sn ₄ P ₃		Text	1	1.9	0.14	0.142	0.997	1/7	[199]
SnAs		Text	1	4.2	1.28	1.282	0.997	9/7	[200]
$SnTaS_2$		Fig. 1c]	3.05	0.063(1)	0.0639	0.0456	7/5	[201]

Table 1: Fractional Quantization of the residual resistivity

single crystal item		info ^{a)}	RRR ^{b)}	$\begin{bmatrix} T_c^{\rho} \text{onset}^{c} \end{bmatrix}^{c}$		resistivity [μΩcm]		fraction	varia	ref
					measured ^{d)}	ansatz ^{e)}	quantum ^{f)}	υ		
SnTaS ₂		Fig. 2a		2.9	0.099(1)	0.103	0.0456	9/4		[202]
SrAgSb		Fig. 7		ρ_0^{xx}	27.6(2)	27.4	136.8	1/5		[203]
SrAuBi	#3	Fig. 4a		2.5	68.3(5)	68.4	136.8	1/2		[204]
SrAuSb		Fig. 7		ρ_0^{xx}	22.9(2)	22.8	136.8	1/6		[203]
SrBi ₃		Fig. 8b		5.75	0.166(2)	0.166	0.997	1/6		[205]
SrIn ₂ As ₂		Fig. 1c		ρ ₀	490(3)	491	859.8	4/7		[206]
SrNi ₂ P ₂		Fig. 1b		1.55	1.55(2)	1.566	6.263	1/4		[207]
SrPd ₂ Ge ₂		Fig. 3		2.96	68.2(6)	68.4	136.8	1/2		[208]
SrPd ₂ P ₂		BG		0.7	67.8	68.4	136.8	1/2		[39]
SrPt ₁₀ P ₄		Fig. 3		1.5	9.3(2)	9.4	6.263	3/2		[209]
SrPt ₂ As ₂		Fig. 1a		5.50	78.2(3)	78.2	136.8	4/7		[210]
SrPt ₃ P		FL		8.6	15.2	15.2	136.8	1/9		[211]
SrSn ₂ As ₂		Fig. 1d		ρ_0	43.7(3)	43.8	6.263	7		[212]
SrVO ₃		Text		ρ ₀	0.41	0.411	0.0456	9	190 u.c.	[213]
SrVO ₃		Text		ρ ₀	172.4	172.0	859.8	1/5		[214]
Ta ₃ Pd ₃ Te ₁₄	#1	Fig. 2c		1.05	5.17(3)	5.22	6.263	5/6	ρ ^b	[215]
TaCo ₂ Te ₂		Text		ρ ₀	2.244	2.243	0.997	9/4		[216]
TaCo ₂ Te ₂		Fig. 4a	17	ρ_0^{xx}	11.4(1)	11.3	6.263	9/5		[217]
TaPdTe ₅		Text	59	ρ_0^a	0.559	0.554	0.997	5/9		[218]
TaSb ₂		Text		ρ_0^{xx}	0.75	0.748	0.997	3/4		[219]
TaSe ₃		PL		ρ_0^{b}	14.5	14.6	6.263	7/3		[220]
TaSeS		Fig. 3a		4.2	156(1)	156.4	136.8	8/7		[221]
TaSi ₂		Text		ρ ₀	0.014	0.0145	0.0073	2		[137]
TaSSe		Fig. 4a		4.0	645(7)	645	859.8	3/4		[222]
Th ₂ Cu ₄ As ₅		Fig. 2a		4.2	1745(15)	1720	859.8	2		[223]
ThIn ₃		Text		ρ ₀	0.32	0.319	0.0456	7		[224]
Ti ₂ Sn ₃		Fig. 2a	130	ρ_0	0.322(3)	0.319	0.0456	7		[225]
$Tl_{0.6}Bi_2Te_3$		Text		2.42	200	205	136.8	3/2		[226]
U ₆ Co		FL		2.75	54.1	54.7	136.8	2/5		[227]
UBe ₁₃		Fig. 2 Text		1.8 10	231(2) 228	228	136.8	5/3	flat max	[228]
UNi ₂ Al ₃		Text	1	0.91	3.6	3.58	6.263	4/7		[229]
W ₂ As ₃		Text	1	ρ_0^{xx}	1.04	1.044	6.263	1/6		[230]
	#1	Fig. 3a	291	ρ_0^{xx}	0.571(4)	0.570	0.997	4/7		
W_2As_3	#2	Fig. 3a	311	ρ_0^{xx}	0.450(4)	0.443	0.997	4/9		[231]
	#3	Fig. 3a	372	ρ_0^{xx}	0.570(4)	0.570	0.997	4/7		
WP	#3	Fig. 2		0.85	1.12(1)	1.121	0.997	9/8		[232]
WP ₂	#C2	Fig. 1e	24850	ρ ₀	0.00165(2)	0.00161	0.0073	2/9		[233]
	#C5	Text			0.012	0.0121	0.0073	5/3	sup note	
WSi ₂		Text		ρ ₀	0.103	0.103	0.0456	9/4		[234]
WTe ₂		Fig. 1a, ext	2000	ρ ₀	0.169(2)	0.166	0.997	1/6		[235]
WTe ₂		Text	l	ρ ₀	0.185	0.182	0.0456	4		[236]
WTe ₂		Text]	$ \rho_0^a $	0.275	0.274	0.0456	6	Table I	[237]

Table 1: Fractional	Quantization	of the residual	l resistivity
---------------------	--------------	-----------------	---------------

Image: Second state stat	single crystal item		info ^{a)}	info ^{a)} RRR ^b		resistivity [μΩcm]			fraction	varia	ref
WTe: Fig. 1c 58 p_1^{at} 10.03(7) 10.02 6.263 8/5 (238) WTe: Fig. 1b p_1^{at} 11.25(15) 11.27 6.263 9/5 (239) Y.Ru.Gen: Fig. 3 3.0 92.3(8) 91.2 136.8 2/3 (240) Y.Ru.Gen: Fig. 6a 1.35 46.0(4) 45.6 11.36.8 1/3 (241) Y.Ru.Inferen Fig. 2 3 368(3) 368 859.8 3.7 (242) Y.Ru.Inferen Fig. 2 5.78 26.5(2) 27.4 136.8 1/3 (243) Y.Ru.Inferen Fig. 1a 7.5 10.0(1) 10.0 6.263 4/3 (243) YbA. Fig. 3 45 p.0 0.503(4) 0.498 0.997 1/2 (247) YbA. Text p.1 11.1 11.0 6.263 4/3 (248) YbVA. Text p.1 1.2 1.20 0.997						measured ^{d)}	ansatz ^{e)}	quantum ^{f)}	υ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WTa		Fig. 1o			10.02(7)	10.02	6 262	8/5		[220]
$\begin{split} & \text{Teg} & \text{Teg}$	WT ₂		Fig. 1C		p_0	10.03(7)	11.02	6 263	0/5		[230]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V.Pu.Gov		$\operatorname{Fig. 10}_{\operatorname{Fig. 2}}$		3.0	023(8)	01 2	136.8	$\frac{3/3}{2/3}$		[239]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$V_3Ru_4Oe_{13}$		Fig. 1		3.0	846(8)	860	850.8	1		[240]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$V_1 R_1 Ge_2$		Fig. 6a		1 35	46 0(4)	45.6	136.8	1/3		[2/1]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V-Ph-Sn-		Fig. 2		2	368(3)	368	850.8	3/7		[241]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V-Ru InGer		$\operatorname{Fig. 2}_{\mathrm{Fig. 2c}}$		5 78	26 5(2)	27.4	136.8	1/5		[242]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Vh-Ni-P-		FI		0.70	20.3(2)	27.4	6 263	$\frac{1}{3}$		[243]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathbf{V}_{\mathbf{b}_{2}}\mathbf{P}_{\mathbf{t}_{2}}\mathbf{A}_{1_{2}}$				<u> </u>	1.65	1 661	0.203	5/3	LLC	[245]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\mathbf{VB}_{c}		Fiσ 1a		75	10.0(1)	10.0	6 263	8/5	1 ± 0	[246]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathbf{V}\mathbf{b}\Delta\mathbf{l}_{2}$		Fig. 1a	45	00	0.503(4)	0.498	0.203	1/2		[240]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YbFe ₂ 7n ₂₀		FI		00	8.4	8 35	6 263	4/3		[248]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YbV_2Sb_4		Text		00	11 1	11.0	6 263	7/4		[249]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YCd ₆		Text		00	1.2	1.20	0.997	6/5		[2:50]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YCoGa ₅		Fig. 3b		ρ_0^{ab}	0.142(1)	0.142	0.997	1/7		[250]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YCr ₆ Ge ₆		Fig. 3		00	4.5	4.49	0.997	9/2		[252]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YNi ₂ B ₂ C		Fig. 1		15.9	3.21(2)	3.13	6.263	1/2		[253]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YNi ₂ B ₂ C		PL	-	16.1	3.75	3.76	6.263	3/5		[254]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YNiSi ₃		Text		1.36	0.33	0.332	0.997	1/3		[115]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		#1	Fig. 3		0.77	159(1)	159.6	136.8	7/6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Y PtB1	#3	Fig. 1			143(1)	143	859.8	1/6	[]	[255]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	YPtBi		Fig. 1		1.05	689(4)	688	859.8	4/5	ρ ^{xx}	[256]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VDh Ca	#1	Fig. 2b		ρ_0^{xx}	39.7(3)	39.1	136.8	2/7		[257]
YSiText17 22 ρ_0 1.551.576.263 4.861/4 4.8711 (001) 	I KII6Oe4	#3	Fig, 2a		ρ_0^{xx}	19.6(3)	19.5	136.8	1/7		[237]
I M224.864.876.2637/9I I (100)[2:0]ZrB12Fig. 36.031.79(1)1.796.2632/7[259]ZrRuAsFig. 1d8.3164(1)164136.86/5[74]ZrSiSText ρ_0 0.0520.05210.04568/7[260]ZrSiSFig. 1b50 ρ_0 0.290(3)0.2850.9972/7[261]ZrSiSText $\rho_0^{0^{XX}}$ 0.180.1820.04564I I (100)ZrZn2PL $\rho_0^{0^{XX}}$ 0.3800.7970.9973/8I I (110)ZrZn2PL ρ_0 0.8000.7970.9974/5[263]α-BiPdFig. 1a4.100.360(2)0.3650.04568[264]α-PdBi2Text1.776.980.9977[265]α-PdBi2Fig. 2b1.6012.2(2)12.56.2632[266]α-PdBi2Text0.9333.334.2136.81/4[269]β-Al_3Mg2Text0.9333.334.2136.81/4[269]β-Bi2PdFig. 2c5.45.05.016.2637/2[271]β-Bi2PdFig. 1b5.0521.7(1)21.96.2637/2[271]	VSi		Text	17	ρ_0	1.55	1.57	6.263	1/4	I I (001)	[258]
ZrB12Fig. 36.031.79(1)1.796.2632/7[259]ZrRuAsFig. 1d8.3164(1)164136.86/5[74]ZrSiSText ρ_0 0.0520.05210.04568/7[260]ZrSiSFig. 1b50 ρ_0 0.290(3)0.2850.9972/7[261]ZrSiSText ρ_0^{ax} 0.180.1820.0456411 (100)[262]ZrZn2PL ρ_0^{ax} 0.800.7970.9974/5[263]α-BiPdFig. 1a4.100.360(2)0.3650.04568[264]α-PdBi2Text1.776.980.9977[265]α-PdBi2Fig. 2b1.6012.2(2)12.56.2632[266]α-PdBi2Text0.9333.334.2136.81/4[267]β-Al_3Mg2Text0.9333.334.2136.81/4[269]β-Bi2PdFig. 2c5.45.05.016.2637/2[271]β-Bi2PdFig. 1b5.0521.7(1)21.96.2637/2[271]				22		4.86	4.87	6.263	7/9	I I (100)	[250]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ZrB_{12}		Fig. 3	-	6.03	1.79(1)	1.79	6.263	2/7		[259]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ZrRuAs		Fig. 1d	-	8.3	164(1)	164	136.8	6/5		[74]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ZrSiS		Text		ρ ₀	0.052	0.0521	0.0456	8/7		[260]
ZrSiSText ρ_0^{xx} 0.18 0.380.182 0.3740.0456 0.9974 3/811 (100) 11 (110)[262]ZrZn2PL ρ_0 0.800.7970.9974/5[263] α -BiPdFig. 1a4.100.360(2)0.3650.04568[264] α -PdBi2Text1.776.98 0.997 7[265] α -PdBi2Fig. 2b1.6012.2(2)12.56.2632[266] α -PdBi2Text1.71818.86.2633[267] α -PdBi2Text0.9333.334.2136.81/4[268] β -Al_3Mg2Text0.9333.334.2136.81/4[269] β -Bi2PdFig. 2c5.45.05.016.2634/5[270] β -Bi2PdFig. 1b5.0521.7(1)21.96.2637/2[271]	ZrSiS		Fig. 1b	50	ρ ₀	0.290(3)	0.285	0.997	2/7		[261]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ZrSiS		Text		ρ_0^{xx}	0.18	0.182	0.0456	4		[262]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0.38	0.374	0.997	3/8	1 (110)	
α -BiPdFig. 1a4.100.360(2)0.3650.04368[264] α -PdBi2Text1.776.980.9977[265] α -PdBi2Fig. 2b1.6012.2(2)12.56.2632[266] α -PdBi2Text1.71818.86.2633[267] α -RhSiText ρ_0^{xx} 0.780.7836.2631/8[268] β -Al_3Mg2Text0.9333.334.2136.81/4[269] β -Bi2PdFig. 2c5.45.05.016.2634/5[270] β -Bi2PdText5.02221.96.2637/2[271] β -Bi2PdFig. 1b5.0521.7(1)21.96.2637/2[272]	$ZrZn_2$		PL		ρ_0	0.80	0./9/	0.997	4/5		[263]
α -PdBi2Text1.776.980.9977[265] α -PdBi2Fig. 2b1.6012.2(2)12.56.2632[266] α -PdBi2Text1.71818.86.2633[267] α -RhSiText ρ_0^{xx} 0.780.7836.2631/8[268] β -Al ₃ Mg2Text0.9333.334.2136.81/4[269] β -Bi2PdFig. 2c5.45.05.016.2634/5[270] β -Bi2PdText5.02221.96.2637/2[271] β -Bi2PdFig. 1b5.0521.7(1)21.96.2637/2[272]	α-BiPd		Fig. 1a		4.10	0.360(2)	0.365	0.0456	8		[264]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	α -PdB1 ₂		$\Gamma = 2h$		1./	12 2(2)	0.98	0.997	2		[265]
α -PdBi2Text1.71818.86.2635[267] α -RhSiText ρ_0^{xx} 0.780.783 6.263 1/8[268] β -Al_3Mg2Text0.9333.334.2136.81/4[269] β -Bi2PdFig. 2c5.45.05.016.2634/5[270] β -Bi2PdText5.02221.96.2637/2[271] β -Bi2PdFig. 1b5.0521.7(1)21.96.2637/2[272]	α-ΡαΒ12		Fig. 20		1.00	12.2(2)	12.3	6.203	<u>∠</u>		[266]
α -RhSiText ρ_0^{xx} 0.780.783 6.263 1/8[268] β -Al_3Mg_2Text0.9333.334.2136.81/4[269] β -Bi_2PdFig. 2c5.45.05.016.2634/5[270] β -Bi_2PdText5.02221.96.2637/2[271] β -Bi_2PdFig. 1b5.0521.7(1)21.96.2637/2[272]	α -PdBi ₂		Fig. 2		1.7	$10 \\ 18 A(2)$	10.0	0.205	5		[267]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a-RhSi		Tig. 2		2.3	0.78	0 783	6 263	1/8		[268]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B-Al2Ma2		Text		0.93	33 3	34.7	136.8	1/4		[260]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-RisPd		Fig 2c		5 4	50	5 01	6 263	4/5		[270]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-Bi2Pd		Text		5.0	22	21.9	6 263	7/2		[271]
	β-Bi ₂ Pd		Fig. 1b		5.05	21.7(1)	21.9	6.263	7/2		[272]

Table 1: Fractional	Quantization	of the residual	resistivity
---------------------	--------------	-----------------	-------------

single crystal	item	info ^{a)}	RRR ^{b)}	T _c ^p _onset ^{c)} [K]	resistivity [μΩcm]			fraction	varia	ref
					measured ^{d)}	ansatz ^{e)}	quantum ^{f)}	υ		
β-Bi ₂ Pd		Text		4.86	23	22.8	136.8	1/6		[273]
β-Bi ₂ Pd		Fig. 1b		5.3	32.0(4)	31.3	6.263	5		[274]
β-IrSn ₄		Fig. 3a		1.03	3.13(4)	3.13	6.263	1/2		[275]
β-PtBi ₂		Text		ρ ₀	0.065	0.064	0.0456	7/5		[273]
β-YbAlB4	#A	Text Fig. 4a		0.082	0.4 0.40(1)	0.40	0.997	2/5		[276]
β-YbAlB ₄		Fig. 1a		0.097	0.422(1)	0.427	0.997	3/7		[277]
β-YbAlB4		Fig. S5a		0.090	0.423(4)	0.427	0.997	3/7		[278]
β-YbAlB4		Fig. 1		0.083	0.490(6)	0.498	0.997	1/2		[279]
β-YbAlB4	#1 #2	Fig. 1a		0.074 0.083	1.34(1) 0.49(1)	1.33 0.50	0.997 0.997	4/3 1/2		[280]

Notes:

a) Information on how the measured residual resistivity ρ_0 or $\rho(T_c)$ was determined:

Text the value is explicitly mentioned in the text.

Figure the value was extracted from the figure using a ruler.

FL the value was calculated using the parameters of the **Fermi Liquid** fitting function mentioned in the text.

PL the value was calculated using the parameters of the **Power Law** fitting function mentioned in the text.

BG the value was calculated using the parameters of the **Bloch Grüneisen** fitting function in the text.

Gap the value was calculated using the parameters of the **Gap** fitting function mentioned in the text.

b) If the residual resistivity ratio (RRR) is listed, RRR was used to calculate ρ_0 or $\rho(T_c)$ from $\rho_{Room Temperature}$.

c) For a superconductor $T_{c_{onset}}^{\rho}$ in Kelvin is listed; otherwise, ρ_0 is indicated for differentiating.

d) Unless otherwise stated, the measured resistivity refers to ambient pressure and a zero magnetic field. An estimate of the error associated with the extraction from the figure due to incorrect placement of the ruler is given in round brackets. This information is missing for a calculated value and for a value explicitly mentioned in the article.

e) The ansatz is:

f) A bold value means the interpretation is ambiguous because more than one quantum is consistent with the experiment. For example, 0.997 (5/2) gives $\approx 2.49 \ \mu\Omega$ cm and 6.263 (2/5) gives $\approx 2.51 \ \mu\Omega$ cm, which in most cases cannot be distinguished experimentally.