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This collection of my findings will convince the reader that the Relativity Theory
is completely and hopelessly false. The reader is encouraged to check the
calculations. They are correct. They show many errors in both the Special and
the General Relativity Theory. How is it possible that these errors were not
seen for one hundred years? It is not quite so. I am certain that Einstein knew
that his theory has serious errors. I do not manage to get any of these papers
reviewed by any main stream journal, so I just put them into this document.
Should they interest anybody, they are here to be read. But in these our times,
I rather doubt that anybody will read and understand anything. People prefer
to be cheated by Einstein. It is easier.
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Critical Explorations of the Relativity Theory

Abstract

This paper contains a collection of my critical explorations of the

relativity theory. The reader is encouraged to check the calculations.



Introduction: the two basic errors in the Relativity Theory

Let P be a point in an oriented 4-manifold M . We inherit local Cartesian
coordinates and the inner product (|) from R4. The point P can be expressed in
local coordinate systems as P = X = (x0, x1, x2, x3) and the norm is

r2 = (rēr|rēr) = (
∑

xiēi|
∑

xiēi) =
∑

x2
i . (1)

We do not get any cross terms xixj , i Ó= j, because Cartesian local coordinates are
orthogonal in the in herited metric induced by the inner product. Differentiating

2rdr =
∑

2xidxi

we get

dr2 =
(

∑ xi

r
dxi

)2

. (2)

Let us also define a line element

ds2 =
∑

dx2
i . (3)

Notice that this line element is not the square of the differential of the norm.
This line element is the square of the norm of the following vector:

ds̄ = dsēr =
∑

dxiēi. (4)

There also cannot be any cross terms dxidxj , i Ó= j, in (3) because local Cartesian
coordinates are orthogonal in the inherited metric. If we get cross terms dxidxj ,
i Ó= j, then the local coordinates are not orthogonal. The coordinates X are
coordinates of an inertial frame of reference R.

Let us take a frame of reference R′ that moves with the constant velocity v with
respect to R to the direction xi. We assume that all inertial coordinate systems
are in a similar position. Therefore we can select local Cartesian coordinates for
R′ inheriting the coordinates and the inner product from R4. We can express
P = X ′ = (x′

0, x′
1, x′

2, x′
3). We can define a line element in these coordinates

ds′2 =
∑

dx′2
i (5)

and again we cannot have any cross terms dx′
idx′

j , i Ó= j because the local
coordinates are orthogonal.

We will change the Riemannian metric to a Minkowski metric by defining
t = c−2ix0 and t′ = c−2ix′

0. The line elements are

ds2 = −c2dt2 + dx2
1 + dx2

2 + dx2
3 (6)

ds′2 = −c2dt′2 + dx′2
1 + dx′2

2 + dx′2
3

where we have the sign convention (-,+,+,+) because it naturally came from
this derivation. Einstein preferred to put the signs as (+,-,-,-). Notice that in
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this Minkowski metric we do get cross terms dx′
idx′

j , i Ó= j, in (6) in these local
orthogonal coordinates.

Let now X and X ′ be related by a Lorentz transform

x′
i = γ(xi − vt) xi = γ(x′

i + vt) (7)

t′ = γ(t − (v/c2)xi) t = γ(t′ + (v/c2)x′
i)

x′
j = xj if j Ó= i.

Then
dxi = γdx′

i + γvdt′ dt = γdt′ + γ(v/c2)dx′
i. (8)

Inserting to (6) we get

ds2 = −c2γ2dt′2 − c22γ2 v

c2
dt′dx′

i − c2 v2

c4
γ2dx′2

i (9)

+γ2dx′2
i + 2γ2vdt′dx′

i + γ2v2dt′2 +
∑

j Ó=i

dx′2
j

= γ2

(

1 − v2

c2

)

(

−c2dt′2 + dx′2
i

)

+
∑

j Ó=i

dx′2
j .

Thus
ds2 = −c2dt′2 + dx′2

1 + dx′2
2 + dx′2

3 = ds′2. (10)

So, in these coordinates the line element is invariant in a Lorentz transform. Let
us look at the local speed of light (in vacuum). We set dxj = 0 if j Ó= i and
require that light travels on light-like world paths. Light-like world paths have
ds2 = 0 in R. In R′ the condition is ds′2 = 0. Thus

0 = −c2dt2 + dx2
i (11)

0 = −c2dt′2 + dx′2
i .

We see from (11) that the speed of light is constant in these coordinates

c = |dxi

dt
| (12)

c = |dx′
i

dt′ |.

Equation (10) seems to be the source of the first error, the false belief that the
Lorentz transform makes the speed of light constant in every inertial frame R′.
It seems to do so in these coordinates, but these coordinates are not independent
coordinates. The condition for coordinates to be independent means that the
projection of the n-tuple (x1, x2, x3, ..., xn) in the ith coordinate axis is xi. Notice
that this is a different condition that the condition that the coordinate vectors are
linearly independent. Coordinate vectors can very well be linearly independent
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though the coordinates are not independent in the above sense. Consider our
familiar timezone time. It is an example of coordinates that are not independent.
Travel from London to Beijing and you have to turn your watch to the local
time. Timezone time depends on the location. The time coordinate axis of this
system is a Greenwitch. If you want to know the flight time from London to
Beijing you cannot subtract the local times, you have to project the Beijing time
to the Greenwich time (i.e., London time) and then subtract the times. This
does not in any sense mean that time does not tick forward in Beijing. It is
not so that the time and space coordinates are linearly dependent. Were that
the case, then if you fix your location to Beijing, you would also fix the time to
one single value. But time certainly can have any values. The dependency in
coordinates that are dependent means that if you fix the time coordinate time to
some value, then the local times depend on the location. In the timezone system
they depend on the location noncontinuously, while in the Lorentz transform
the time t′ depends on the location x′ continuously if you keep t fixed.

In order to calculate the speed of light in R′ two points X ′
1 = (t′

1, x′
1,1, x′

1,2, x′
1,3)

and X ′
2 = (t′

2, x′
2,1, x′

2,2, x′
2,3) are needed and we have to calculate the time

and space difference between these two points. The space difference is obtained
correctly even without a projection on the space coordinate, but the time
difference requires taking the projection. Taking the projection shows that the
speed of light in R′ is not c. We can do the projection in at least three ways:
we can remove the time offset like when we change the local time to Greenwich
time in our timezone coordinates, or we can draw the coordinate axes (x′

i, t′)
on the coordinates of (x, t), which gives two non-orthogonal lines, and make the
projection by drawing parallel lines to the coordinate axes (x′

i, t′), or we can
take a point X ′, find its preimage X, project X to the t-coordinate and find X1

that maps to X ′
1 on the t′-coordinate axix. All three ways give the same result:

the projection of (x′, t′) where t′ = γ(t − (v/c2)x) on the coordinate axis t′ is
t′

1 = γ−1t. The coordinate system of R′ with independent coordinates comes
from the transform

x′ = γ(x − vt) t′ = γ−1t x′
j = xj j Ó= i. (12)

The line element ds2 is not invariant under the transform (12). Let us see this
in a simple case of the Galileo transform: we set γ = 1 in (12), dx = dx1 and
dx2 = dx3 = 0. Then

ds̄ = dtē0 + dxē1 (13)

ds̄′ = dt′ē0 + dx′ē1

Then
ds2 = dt2 + dx2

ds′2 = dt′2 + dx′2 = dt2 + (dx + vdt)2

= dt2 + dx2 − 2vdxdt + dt2 = ds2 − 2vdxdt + dt2. (14)
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Notice that we get a cross term dxdt in (14). It is not possible to cancel this cross
term by any other means than by the time transform in the Lorentz transform,
but then the coordinates are not independent. The local coordinates of R and
R′ must be independent as they are inherited from the Cartesian coordinates of
R4 and in Cartesian coordinate system coordinates are independent. Thus, it is
impossible to get (10) if we use correct coordinates.

One may ask if it would not be possible to define that in the Special Relativity
Theory (SRT) we use the coordinates X ′ even thought the coordinate system does
not have independent coordinates. It is not possible. It leads to contradictions.
For instance, if we define that we use coordinates X ′, then we can set the
universal constant c to any chosen value c′ ≤ c simply by selecting the rest
frame of the laboratory as R′ and selecting (i.e., imagining) R that moves with
the speed −v with respect to the laboratory. We can e.g. set c′ to one meter
per second in the laboratory and measure if the speed of light is now smaller
than walking speed. It is not. Therefore it is not possible to define that we use
coordinates X ′ in SRT. This is so because even if we define that we use the
coordinates X ′, there remains the valid way of going from X ′ to X, making
a projection in X to X1 and coming back to X ′

1. This is what creates the
contradiction.

Let us now take a metric where there is a field:

ds2 = −c2A0(X)dt2 + A1(X)dx2
1 + A2(X)dx2

2 + A3(X)dx2
3. (15)

Making the Lorentz transform we get

ds2 = γ2

(

A0(X(X ′)) − v2

c2
Ai(X(X ′))

)

(

−c2dt′2 + dx′2
i

)

(16)

+
∑

j Ó=i

dx′2
j + 2γ2 v

c
(−A0(X(X ′)) + Ai(X(X ′))) dt′dx′

i.

From (16) follows that the cross term dt′dx′
i disappears for every i = 1, 2, 3 only

if the field is induced by a scalar field Ak(X) = φ2(X), k = 0, 1, 2, 3. If this
condition is true, then (16) simplifies to

ds2 = −c2φ2dt′2 + φ2dx′2
1 + φ2dx′2

2 + φ2dx′2
3 = ds′2 (17)

and
ds2 = −c2φ2dt2 + φ2dx2

1 + φ2dx2
2 + φ2dx2

3. (18)

Then also the speed of light in vacuum is c to each direction in both coordinates
X and X ′, but notice that the coordinate system X ′ has non-independent
coordinates.

Consider calculating the Christoffel symbols from the two metrics (17) and (18).
The numerical values are not the same, as in the metric of R we derivate with
respect to components of X and in R′ with components of X ′, but the form of
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the equations for Christoffel symbols are the same. Then calculate the Ricci
tensor entries and the Ricci scalar. Again, the numeric values are not the same,
but the form of the equation is the same. With the Ricci entries and the Ricci
scalar we can form the left side of Einstein equations

Rab − 1
2

Rgab = k0Tab − λgab (19)

The right side does not have the same numeric value because the numeric
values are not the same in (17) and (18), only the form. This means that if
in coordinates X the right side of (19) is zero, it does not need to be zero in
coordinates X ′. However, the form is the same. The Einstein equations are
invariant (in fact, covariant) under the Lorentz transform assuming that the
field is scalar.

Pay attention: the Einstein equations are Lorentz covariant only if the cross
term in (16) disappears and this happens only if the field is a scalar field φ. I
have mentioned to many people that the metric in the General Relativity Theory
(GRT) has locally constant speed of light only if the field is scalar, which is true
and easily verified from (16), compare it to (11)-(12), but these people have
not understood that this is a mandatory condition in GRT: the speed of light
must be locally constant. Now, notice that if the field is not scalar, then the
Einstein equations are not Lorentz covariant. That certainly is a mandatory
condition in GRT. Let us simply add that if the field is scalar, then the Einstein
equations do not have any solutions that approximate Newtonian gravity in the
simplest possible case, the one in the Schwarzschild solution: a point mass in
empty space. This is the second major error. It is a fatal error of GRT.

As some people think that the Schwarzschild solution does approximate Newto-
nian gravitation field sufficiently well, and as Einstein used the Schwarzschild
solution in his verifications of GRT, e.g, in the precession of Mercuryäs perihelion,
let us mention one fatal problem in the Schwarzschild solution. More problems
are shown in [1]. The one we can mention here is that if the Schwarzschild metric,
which is expressed in spherical coordinates, is expressed in Cartesian coordinates,
then there are cross terms. This is impossible meaning that the Schwarzschild
metric is not a valid metric. There cannot be cross terms in any metric expressed
in local orthogonal coordinates. If is a different issue if we express a metric
in R with coordinates of a moving coordinate system of R′. Then we do get
cross terms. But if we change orthogonal spherical coordinates of R to equally
orthogonal Cartesian coordinates of R, then there cannot be any cross terms in
either coordinate system. This is simply the meaning of orthogonal coordinates.

These are the two major error in the Relativity Theory. The first is a fatal
error in SRT, the second is a fatal error in GRT. There are more errors in the
Relativity Theory. We can mention the fatal error in the relativistic mass and
Einstein’s proof of E = mc2. Einstein used the formula how to get force from
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work

F =
d

ds
W (20)

in order to get force from kinetic energy. The way to get force from kinetic
energy is

F =
d

dt

∂

∂ṡ
Ek(ṡ). (27)

Force can be obtained from kinetic energy by the formula (20) only if the kinetic
energy has the Newtonian form Ek = (1/2)mv2 where the mass is constant.
Einstein uses the formula when the mass is not constant, which is a fatal error.

There is also a fatal error in Einstein’s geodesic Lagrangean. It does not make a
stone falling freely in a gravitational field to accelerate, thus it fails Galileo’s
Pisa tower stone dropping test.

The following is a selection of my papers from 2022-2024 proving beyond any
doubt that the Relativity’Theory has all these errors and many more errors. In
some cases, as in 3.5, it is clear that Einstein cheated intentionally.

As for the question how this could happen, how can a hundred years old theory
be wrong, your guess is as good as mine. Anyway, it did happen. It is impossible
to get the main stream to accept this truth. I tried and got the following answer
(as the only one, from other journals I did not get any answers): "It is not the
role of the referee to pinpoint errors and misunderstandings in this paper." Many
people, also competent people, have tried to pinpoint errors in my claims of
serious errors in Einstein’s relativity theory. They have all failed.
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PART 1. RELATIVISTIC MASS AND E = mc2

Paper 1.1 is my final argument refuting the relativistic mass formula. Papers
1.2 and 1.3 are earlier versions of the argument, but they include material that
is not in Paper 1.1. Papers 1.4 and 1.5 are attempts to find the real explanation
to the apparent increase of mass by velocity in the experiments that first were
made by Lorentz. The mass does seem to increase according to the relativistic
mass formula, but it is only apparent, in reality the inteaction force gets weaker
when the relative speed of the test mass and the field grows.

In this introductory part I give the strongest argument from Paper 1.1 refuting
relativistic mass. The main error in Einstein’s calculations and his proof of
E = mc2 is that he did not understand that energy is not work and force is not
obtained from kinetic energy with the formula F = d/dsEk. Force is obtained
from work with the formula F = d/dsW and we can use this formula by replacing
W by Ek only if the kinetic energy is of the form (1/2)mv2 where m is constant.

The error in Einstein’s proof of m = γm0 and his proof of E = mc2 is that he
gets to the equation

d

ds
(m − m0)c2 =

d

dt
(mv) (1)

where m = γm0. The right side Einstein presents as a force. If it is a force, then
it comes from kinetic energy Ek(v) that has the form

d

dt

d

dv
Ek(v). (2)

This is so because consider the Lagrange-Euler equation. A test mass falls in a
gravitational field along a minimum energy path and this minimum energy path
minimizes the action

S =
∫

Ldt (3)

where
L = Ep(s) + Ek(v). (4)

The Euler-Lagrange equation is

∂

∂s
Ep(s) − d

dt

∂

∂v
Ek(v) = 0. (5)

Notice that the left term in (1.4) is the force given by the potential energy.
Therefore the second term is also a force. It is the force given by the kinetic
energy.

Notice that the force given by the kinetic energy does not equal

F =
d

ds
Ek(v) (6)

except in the special case Ek(v) = Cv2 where C is constant. That is, let us solve

d

ds
Ek(v) =

d

dt

d

dv
Ek(v) (7)
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dv

ds

d

dv
Ek(v) =

d

dt
E′

k(v) (8)

where E′
k(v) = dEk(v)/dv. We multiply both sides with v = ds/dt

ds

dt

dv

ds
E′

k(v) = v
dv

dt

d

dv
E′

k(v) (9)

dv

dt
E′

k(v) = v
dv

dt
E′′

k (v) (10)

E′
k(v) = vE′′

k (v) (11)

E′′
k (v)

E′
k(v)

=
1
v

(12)

ln E′
k(v) = ln v + ln 2C (13)

where C is a constant
E′

k(v) = 2Cv (14)

Ek(v) = Cv2 + B (15)

where B is a constant that we must choose as zero so that Ek(0) = 0.

The kinetic energy that creates the force at the right side of (1) is

Ek(v) = (1 − γ−1)m0c2 (16)

because
d

ds
(1 − γ−1)m0c2 =

d

dt
(γm0v) =

d

dt
(mv). (17)

In (16) we have added a constant so that the kinetic energy has the leading term
(1/2)m0v2. The work that the force at the right side of (1) makes is the left side
of (1) because

W =
∫

Fds
d

ds
W = F. (18)

The kinetic energy (16) is not of the form (15). Therefore the work Ws that the
force F coming from the kinetic energy (16) does not equal the kinetic energy.
Indeed

F =
d

dt
(mv) (19)

F =
d

dt

d

dv
Ek(v) (20)

F =
d

ds
W (21).

Then
Ek(v) = (1 − γ−1)m0c2 (21)

W = (m − m0)c2 (22)

Ek(v) < W. (23)
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The result (23) is impossible and shows that m = γm0 is impossible. The kinetic
energy that creates the force cannot be smaller than the work that the force
makes. As (1) is also the basis of Einstein’s proof if E = mc2, this proof is wrong.
The formula m = γm0 is equivalent with the so called total energy formula

mc2 =
√

(m0c2) + (pc)2. (24)

The equation (24) is simply a rewrting of m = γm0

m2γ−2 = m2
0 (25)

m2c4 − m2v2c2 = m0c4 (26)

(mc2)2 = (m0c2)2 + (mv)2c2. (27)

Therefore this total energy formula is also wrong. The error made by Einstein is
to think that the force from kinetic energy Ek is obtained as

F =
d

ds
Ek (28)

and that the right side of (1) is kinetic energy. The right side of (1) is work.
The force is obtained from kinetic energy by the formula

F =
d

dt

∂

∂v
Ek(v). (29)
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1.1 Irrefutable proof that the relativistic mass formula
is wrong and Einstein did not prove E = mc2

Abstract:

I was challenged with a proposed "irrefutable proof" to the relativistic mass
formula. It was a fake proof, essentially the same Einstein’s proof, but this
"proof" could be turned into an irrefutable proof that the relativistic mass formula
is false and that Einstein did not prove E = mc2.

1. The "irrefutable proof" that the relativistic mass is real

Let us first calculate a mathematical identity for the Lorentz factor γ.

γ =
(

1 − v2

c2

)− 1
2

(1)

γ2

(

1 − v2

c2

)

= 1 (2)

v

c2
γ3

(

1 − v2

c2

)

= γ
v

c2
(3)

dγ

dv

(

1 − v2

c2

)

= γ
v

c2
(4)

dγ

dv
=

dγ

dv

v2

c2
+ γ

v

c2
(5)

c2

v

dγ

dv
=

dγ

dv
v + γ (6)

dv

dt

dγ

dv

c2

v
=

dv

dt

(

dγ

dv
v + γ

)

(7)

dv

dt

dγ

dv

c2

v
=

dv

dt

d

dv
(γv) (8)

dγ

dt

c2

v
=

dv

dt

d

dv
(γv) (9)

dγ

dt

dt

ds
c2 =

dv

dt

d

dv
(γv) (10)

dγ

ds
c2 =

d

dt
(γv). (11)

d

ds
(γc2) =

d

dt
(γv). (12)

Thus, (12) is a mathematical identity. It is an equation that γ satisfies. It does
not have any physical meaning as such. We can derive mathematical identities
for any functions.
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In Newton’s mechanics the force that a mass m0 with the speed v creates when
it slows down when meeting an obstacle is

F = ∇Ekinetic =
d

ds

(

1
2

m0v2

)

(13)

this force is against the obstacle. This force must equal the deacceleration of the
mass m0

F = m0a =
d

dt
(m0v). (14)

Indeed, they do equal

d

ds

(

1
2

m0v2

)

= m0v
dv

ds
= m0

ds

dt

dv

ds
= m0

dv

dt
=

d

dt
(m0v), (15)

This must be so, the only energy that the moving mass can release when slowing
down is its kinetic energy. It does not release it’s heat energy, or its caloric value
if it is edible, or its rest energy Erest = m0c2 while slowing down when hitting
an obstacle. You can try, a mass, like a stone, hitting an obstacle in a slow speed
really does not start any atomic reactions. So, he equation (14) works quite well
in small speeds.

The "irrefutable proof" goes like this:

In the Special Relativity Theory the mass of a moving object is the relativistic
mass m = γm0. Multiplying both sides of the mathematical identity (12) by the
constant m0 we get

d

ds
(γm0c2) =

d

dt
(γm0v). (16)

d

ds
(mc2) =

d

dt
(mv). (17)

This is supposed to be a proof. You are supposed to be impressed by the fact
that (12) is a mathematical identity.

The error is the step (16). It is actually: assuming that mass grows in movement
and assuming that the mass grows by the formula m = γm0, then by multiplying
(12) by m0 we get (17). But (17) does not prove the assumption that mass grows
in movement and that mass grows with the formula m = γm0. If we assume
that mass does not grow, or that it grows according to some other function
m = f(v)m0, then multiplying (12) by m0 does not give a force F because γm0

is not a mass.

What is even more weird is that (17) and its variants are thought to prove
E = mc2. There is nothing resembling a proof of this formula in (17). The
equation (17) simply says that the left side equals the right side. It does not say
that any relativistic mass is created by movement or that the rest mass of m0

should be E = m0c2. It says nothing of the energy released in atomic reactions
as in those reactions the mass is not moving.
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2. The irrefutable proof that the relativistic mass is not real

The result (17) however does prove that the relativistic mass is not real under
the condition that the kinetic energy is (1/2)mv2 or (1/2)mov2.

We can calculate how to get (17) from the Newtonian equation (15):

F =
d

dt
(m0v) =

d

ds

(

1
2

m0v2

)

(18)

Adding to both sides the positive force that we express in several equivalent
forms

F1 = γ2 v2

c2

d

ds

(

1
2

m0v2

)

(19)

F1 = γ−1γ3 v

c2
v

d

ds

(

1
2

m0v2

)

(20)

F1 = γ−1 dγ

dv
v

d

ds

(

1
2

m0v2

)

(21)

F1 = γ−1 dγ

dv

dv

ds
vm0v (22)

F1 = γ−1 dγ

ds
vm0v (22)

F1 = γ−1 dγ

ds

ds

dt
m0v (24)

F1 = γ−1 dγ

dt
m0v (25)

we get by adding F1 to the left side of (18) in the form of (25)

F + F1 =
d

dt
(m0v) + γ−1 dγ

dt
m0v = γ−1

(

γ
d

dt
(m0v) +

dγ

dt
m0v

)

(24)

= γ−1 d

dt
(γm0v) (26)

and by adding F1 to the right side of (18) in the form (21)

F + F1 =
d

ds

(

1
2

m0v2

)

+ γ−1 dγ

dv
v

d

ds

(

1
2

m0v2

)

(27)

= γ−1

(

γ
d

ds

(

1
2

m0v2

)

+
dγ

dv
v

d

ds

(

1
2

m0v2

))

(28)

= γ−1 d

ds

(

1
2

γm0v2

)

(29)

Multiplying both sides by γ which is larger than one we get

d

dt
(γm0v) =

d

ds

(

1
2

γm0v2

)

(30)
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In order to get (30) we first added a positive force F1 to both sides of (18) and
then multiplied both sides by a function γ which is larger than one. That means,
we increased the force on both sides of (18). What force allows us to increase
the force on both sides?

The only force we have is from the kinetic energy. Let us assume the kinetic
energy of the relativistic mass is

F2 =
d

ds

(

1
2

γm0v2

)

. (31)

We can applie the same proof to the case that the kinetic energy is Newtonian.

We can express this force as:

F2 = γ
d

ds

(

1
2

m0v2

)

+
1
2

dγ

ds
m0v2 (32)

F2 = γ

(

d

ds

(

1
2

m0v2

)

+
1
2

γ−1 dγ

ds
vm0v

)

(33)

From (22) we recognize F1 in the second term

F2 = γ

(

d

ds

(

1
2

m0v2

)

+
1
2

F1

)

(34)

Notice that the left side of (30) is according to (18) and the steps we did:

F3 =
d

dt
(γm0v) = γ

(

d

dt
(m0v) + F1

)

(35)

F3 =
d

dt
(γm0v) = γ

(

d

ds

(

1
2

m0v2

)

+ F1

)

. (36)

Comparing (33) and (36) we have a conflict. The mass m = γm0 having the
velocity v and hitting an obstacle cannot give a bigger force than F2 in (33). Yet,
the decelerating mass m has the acceleration that gives the force F3, which is
strictly larger than F2. This is impossible. The relativistic mass cannot release
the energy of its rest mass, or its heat energy, or its caloric energy if it is food,
or its spiritual energy if the mass belongs to some religious supporter of the
relativity theory. The mass m can only release the kinetic energy and the force
it can give is F2. This force already has the energy that can be released by the
decreasing relativistic mass.

The only way the mass m could give a bigger force, under the assumption on
the kinetic energy, is that the relativistic mass has in addition to its kinetic
energy also the energy E = (m − m0)c2 of the mass m − m0. Most people
working on the relativity theory deny that there is such additional energy, and
for good reason: if the mass has its kinetic energy Ek = (1/2)mv2 and the energy
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E = (m − m0)c2 of the mass m − m0, then it must release over twice as much
energy when it hits an obstacle than the Newtonian mechanics tells. This would
also happen with small speeds v, though the mass m − m0 is very small, the
energy E = (m − m0)c2 is not at all small, it is larger than the kinetic energy
Ek = (1/2)mv2 at any speed v. This is why most supporters of the relativity
theory must claim that there is no additional energy E = (m − m0)c2 of the
mass m − m0, the mass m hitting an obstacle can only release its relativistic
kinetic energy Ek = (1/2)mv2 and that energy includes the released energy of
the additional mass.

But this explanation means exactly that the force that the moving mass can
release is F2 and it is strictly smaller than the force F3 that is obtained from the
deceleration of the mass m. This is an irrefutable proof that the relativistic mass
concept is incorrect. There is no relativistic mass. And as there is no relativistic
mass, Einstein’s proof of E = mc2, which is nothing else than (17), is invalid.

Some relativity theory people probably would like to take the way out that is
discussed in the next section: redefining the kinetic energy formula.

3. The last way out: the relativistic mass formula is a definition

In this and the next section we refute all attempts to redefine the kinetic energy.

In this way out of the problem the idea is that Newton’s kinetic energy formula
is incorrect and the correct kinetic energy formula is

Ekinetic = (γ − 1)m0c2 (37)

This means that the equation

d

dt
(mv) =

d

ds
(m − m0)c2 (38)

is a definition stating that the gradient of the kinetic energy equals the force
accelerating the mass.

Notice that in this way there is still no argument that shows correct the as-
sumption that the mass grows with velocity and that it grows with the formula
m = γm0. A proof that the relativistic mass does exist requires such an argu-
ment. The experiments where it appears that mass does grow as m = γm0 do
not make a sufficient argument because there are other explanations for those
experiments, we will briefly discuss this issue in the last section. Additionally, in
this last way out the kinetic energy formula is redefined in an effort to get the
kinetic energy equal to the work that the force makes.

There are arguments against this way out. A definition must make sense and be
without contradictions. In this section we give two common sense arguments,
but they are also strong. In the next section we give first a physical and then a
mathematical argument proving that the kinetic energy cannot be redefined.
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Firstly, we ask if the kinetic energy formula looks like it can be redefined.
Consider the following differentials. The first one (39) is the differential of work
done by the force corresponding to F = ma when the mass is m = γm0

d

dt
(mv)ds = v2dm + mvdv (39)

The second one is the differential of the Newtonian kinetic energy when the mass
is m = γm0

d

(

1
2

mv2

)

=
1
2

v2dm + mvdv (40)

These differentials are not equal, (39) is strictly larger. If the Newtonian kinetic
energy formula still holds, it means that some work is lost. Can this happen? I
think it can very well happen in the equation (39).

New mass dm = d(γm0) is created in (39). Does it have the velocity v or does
it need to be accelerated to the velocity of the rest of the mass? If dm needs
to be accelerated to the velocity of the rest of the mass, then the work cannot
be conservative and the kinetic energy of the mass at the end must be smaller
than the work used to accelerate the mass. Thinking of an analogous case of
accelerating a car and small stones jump up from the ground, they hit the car,
get stuck to the car, and get very fast accelerated to the velocity of the car,
usually doing considerable damage to the car. In this case the situation is not
energy conserving. I do not see any reason why this situation would not be the
same here. This is because the mechanism how new mass is created in (39) is
not described. Mass simply appears from nowhere in (39). No energy is spent on
making this mass dm. I would say that without spending the energy dE = dmc2

the mass cannot appear to the formula. I would also say that the mass dm, as it
appears from nowhere, probably does not have the velocity v. It looks like some
daemon creating mass from nowhere is throwing stones on the mass and they
get stuck to it.

As a conclusion from this consideration: the process where new mass is created
and it is given the velocity of the moving mass cannot be energy conserving and
the kinetic energy cannot equal the work used. An effort to define kinetic energy
so that the process would be energy conserving cannot work.

Secondly, we ask if mass can grow by velocity. This is a killing argument. Though
it is simple and common sense, there is no way to refute it.

Velocity is velocity with respect to some coordinate system In the Special
Relativity Theory there is no preferred inertial frame of reference. We can select
whatever frame of reference we want. If we have a mass m0 that is not moving
in a frame of reference R and we select a frame of reference R′ that is moving
with the speed v with respect to R, then the mass m0 moves with the speed v
in R′. If the relativistic mass formula holds, then the mass in R′ is m = γm0.
We can make the mass m as large as we want simply by selecting the speed v.
Mass creates gravitational effects and changes energy levels of the electron belt
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in atoms, and many other observable effects. Thus, in R′ we should see some of
these effects. For instance, if we select v so large that m0 surely must turn onto
a black hole in R′, then in R′ it will draw to itself all nearby masses. Thus, I put
a kilo of flour on a table and call it m0. Then I select v to be extremely close to
c and imagine the frame R′. In R′ I must be drawn to the black hole creates by
m. But whatever happens in R′ must also happen in R because we are seeing
the same world in both frames of reference, only from a different viewing point.
So, I look around. I am still here. This means that the kilo of flour cannot be a
black hole in R′. This means that mass cannot grow because of velocity as in
the formula m = γm0.

These two considerations prove that the definition that the kinetic energy is (37)
do not make sense and they lead to contradictions. The first argument shows
that (37) does not make sense. The mass dm is appearing from nowhere in (39)
and the work should not be conservative, so (37) cannot be the correct kinetic
energy. The second argument proves that the relativistic mass idea contradicts
common experience and cannot be correct. As a conclusion from these two
common sense arguments, it is not possible to define the kinetic energy as in
(37).

4. The Euler-Lagrange equations refute relativistic mass

In this section we give both a physical and a mathematical argument that
redefining kinetic energy does not work.

The question is the equation (17), which we rewrite here

d

ds
(m − m0)c2 =

d

dt
(mv) (17′)

We will first take the physical argument. Is the entity (m − m0)c2 work or
energy? If it is work, then the expression in the left side of (17’) is a force
because

W =
∫

Fds
d

ds
W = F. (41)

Then there is no problem, but work is not energy. Both work and energy have
the unit Joule, but the concepts are different. Energy is ability to do work,
but in order to get work out of energy, there must be energy gradient. What
the gradient is depends on the type of energy. If energy is heat energy, then
there must be a temperature gradient, else we cannot get any work from the
energy, We must take the gradient, or partial derivative, of the heat energy by
T , the temperature. If the energy is field energy and the field φ is a function of
space coordinates qi only, then we must take the gradient of the field by space
coordinates, F = ∇φ. Especially, if we are interested in one dimension only in
our case, we take the partial derivative

F =
∂

∂qi
φ(q). (42)
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If φ depends only on q = s, i.e., there is only one dimension

F =
d

ds
φ. (43)

If the energy is kinetic energy, then the energy depends on v, and usually only
on v = q̇, or if there are several dimensions, on vi = q̇i where q̇ = dq/dt. In order
to get work out of kinetic energy, there must be a veocity gradient. That is, if
all masses move with equal speed, kinetic energy cannot do any work, but if a
moving mass hits a mass that is not moving, then it does make work and creates
a force on the impact. Thus, we must take a partial derivative with respect to
v, but the result of the partial derivative does not have the units Newton, it is
not a force. It has the units Newton times second. Clearly, we have to divide
with time in some sense. What the division with time must be can be seen in
the Euler-Lagrange equations: it is not actually division with time, it is a total
derivative with respect to time, which will make the units into Newton. The
force that kinetic energy produces if there is a speed gradient is (and can only
be)

F =
d

dt

∂

∂q̇i
Ekinetic. (44)

In case when there is only one dimension and Ekinetic is a function of v only, we
get

F =
d

dt

d

dv
Ekinetic. (45)

This is the only possible way to get a force out of kinetic energy. When this force
affects for some distance, we get work as in (41). The entity X in the following
expression

X =
d

ds
Ekinetic (46)

has no physical sense. If we take a partial derivative with respect to s = q from
kinetic energy, we get zero because Ekinetic is a function of ṡ = q̇ and q and
q̇ are independent variables. The only reason why we could replace a partial
derivative ∂/∂s with a total derivative d/ds is that the function we derivate is a
function of s only. This was the case in (43). With kinetic energy this is not the
case: even in a one dimensional case, kinetic energy is not a function of q = s.
It is a function of q̇ = ṡ. We have no justification of taking a total derivative
with respect to t. The force can only be (45).

We see now that the left side of (17’) is a force only if (m − m0)c2 is work. It is
work done by the force at the right side of (17’). The right side must be force
because the left side is force. The force in the right side must come from some
kinetic energy. We can easily find the kinetic energy Ek(v) that gives this force

d

dt

d

dv
Ek =

d

dt
(mv). (47)

d

dv
Ek(v) = mv + C. (48)
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Ék(v) =
∫

mv + C = −γ−1m0c2 + Cv + B. (49)

In order to have the leading term of the kinetic energy as Newtonian kinetic
energy, we set C = 0 and B = m0c2, thus

Ek(v) = (1 − γ−1)m0c2 (50)

Notice that
d

ds
Ek(v) = m

dv

dt
Ó= F =

d

dt
(mv). (51)

Especially we point out that in (17’) the left side is not

d

ds
Ekinetic =

d

ds
Ek(v) = m

dv

dt
. (52)

We see that it is not possible to redefine kinetic energy to be (m − m0)c2 in (17’).
This last way out fails. The entity (m − m0)c2 can only be work. The equation
(17’) does not say that the kinetic energy of a moving mass is (m − m0)c2. It
says that the kinetic energy of the moving mass is Ek(v) and the work that the
force makes in (17’) is larger than the kinetic energy

(m − m0)c2 > (1 − γ−1)m0c2 (53)

(γ − 1) > (γ − 1)γ−1. (54)

This physical argument proves beyond any doubt that (17’) is impossible. There
cannot be any relativistic mass.

The following argument is mathematical. The primary dynamic equation for
Newtonian mechanics is not the one in (15) that we for convenience rewrite

d

ds

(

1
2

m0v2

)

=
d

dt
(m0v). (15′)

The dynamic equation for Newtonian mechanics is derived from the Euler-
Lagrange equation minimizing total energy

E = Epotential + Ekinetic = mφ +
1
2

mv2 (55)

The total energy is taken as the Lagraqngean as

L = E = mφ +
1
2

mq̇2 (56)

where q is the position, q̇ = v is the velocity and q̈ = a is the acceleration. In
(56) the mass m is constant and φ depends on q. We calculate

∂L

∂q
= ∂qφ (57)
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∂L

∂q̇
= mq̇ (58)

d

dt

∂L

∂q̇
= mq̈ (59)

The Euler-Lagrange equation for q is

0 =
∂L

∂q
− d

dt

∂L

∂q̇
(60)

0 = ∂qφ + mq̈ (61)

which is the Newtonian equation of motion F = m∇φ = ma.

If (17’) makes any sense, then it should be derived from an Euler-Lagrange
equation minimizing the total energy. Let us skip the calculations (they are
straight-forward, though give a bit long expressions) and only give the Lagrangean
and the Euler-Lagrange equation.

If the kinetic energy is (m − m0)c2, then the Lagrangean is

L = E = mφ − (m − m0)c2 (62)

Here m = γm0. The Euler-Lagrange equation is (dividing m away)

0 = ∂qφ − q̈γ4

(

1 +
φ

c2

) (

1 + 2
q̇2

c2

)

− q̇

c2
γ2φ̇. (63)

The first order approximation is

0 = ∂qφ − q̈ − q̈

(

4q̇2

c2
+

φ

c2

)

− q̇

c2
φ̇ + O(c−4). (64)

If the kinetic energy is 1
2 mv2, then the Lagrangean is

L = E = mφ − 1
2

mv2 (65)

The Euler-Lagrange equation is (dividing m away)

0 = ∂qφ − q̈

(

1 +
γ2

c2

(

φ +
5
2

q̇2

)

+
γ4

c4
3q̇2

(

φ +
q̇2

c2

))

− q̇

c2
γ2φ̇. (66)

The first order approximation is

0 = ∂qφ − q̈ − q̈
1
c2

(

φ +
5
2

q̇2

)

− q̇

c2
φ̇ + O(c−4). (67)

The force in (17’) has the following expression

d

dt
(mv) = mq̈γ2 (68)
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The dynamic equation this force gives is

0 = ∂qφ − q̈γ2 (69)

The first order approximation is

0 = ∂q(−φ) − q̈

(

1 +
q̇2

c2

)

+ O(c−4). (70)

We see that equation (17’) is not a valid dynamic equation at all if the mass
is not constant. There is no sense in saying that the kinetic energy could be
(m − m0)c2 and then equation (17’) is satisfied and the theory is fine with this
new definition of kinetic energy. The equation (17’) does not minimize the total
energy and therefore the equation is wrong and satisfying it is incorrect and the
new definition of kinetic energy is also wrong. Let us explain this a bit more.

The term in the Euler-Lagrange equation that gives the dynamic equation
F = ma is

d

dt

∂

∂q̇
Ekinetic (71)

If Ekinetic only depends on v = q̇, we can write the equation as

d

dt

d

dv
Ekinetic. (72)

In Newtonian mechanics m is constant and Ekinetic = (1/2)mv2, then

d

dt

d

dv

1
2

mv2 = m
dv

dt
. (73)

For v2 holds
d

ds
v2 =

d

dt

d

dv
v2 (74)

but this holds only for v2. In general

d

ds
Ó= d

dt

d

dv
. (75)

You cannot use this identity for m = γm0 or for kinetic energy (m − m0)c2. It
only works for the Newtonian kinetic energy.

If the kinetic energy is (m − m0)c2, then the force is

d

dt

d

dv
(m − m0)c2 = m

dv

dt
γ4

(

1 + 2
v2

c2

)

(76)

and the right side is your dynamic equation replacing F = ma. While

d

dt
(mv) = m

dv

dt
γ4

(

1 +
v2

c2

)

(77)
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is not the correct force. Einstein made an incorrect generalization thinking that
this should be the force for a changing mass. It is not the force. The term

d

ds
(m − m0)c2 = m

dv

dt

(

1 +
1
2

v2

c2
γ2

)

(78)

is again a different function. It is not the correct force (76) for this kinetic energy,
and it is not the force (77) that Einstein thought was the force.

The issue is that Einstein mixed up Newtonian formulas, changed the mass to be
non-constant, did not check how this changes the dynamic equation, and those
who think they can redefine the kinetic energy do an even bigger error. If the
kinetic energy formula changes, then the dynamic equation formula also changes.

Trying for some time with the Euler-Lagrange equations you will soon be
convinced that the only thing that makes any sense is that the mass is constant.
Else you get the time derivatives of the field φ and other unwanted things. The
conclusion from Euler-Lagrange equations is that the mass is not changing.
Newtonian mechanics has the correct formulas, all Newtonian mechanics needs is
an interaction mechanism between a force field and a test mass. This mechanism,
if worked out, see [4][5], should give the gravitational time dilation, time dilation
in acceleration, E = mc2, the relativistic mass formula, and all what you need
to upgrade Newtonian mechanics. Einstein’s approach is fundamentally flawed,
as will be seen in the next section when the references of this article are outlined.
For more discussion on the error in the relativistic mass formula, see [2][3].

5. Comment on the relativistic mass

The relativistic mass formula appears in some experiments, as was noticed before
Einstein. When electrons are accelerated, they behave as if their masses were
m = γm0. This does not mean that the mass actually has grown. It means that
the force that tries to accelerate the mass (to any direction) when the electron
is moving fast needs to be stronger than when the electron is not moving fast.
This phenomenon can be explained by the force becoming weaker if the relative
speed between the field and the mass is higher, see [4][5]. The force is obtained
from a field ψ and is F = m0∇ψ. In slow speeds it seems that the force that
the moving mass m0 feels is the Newtonian force

F = m0
dv

dt
(79)

but the interaction needs some time and the interaction gets slower when the
mass moves. The force actually is

F = m0
dτ

dt

dv

dτ
(80)

The mass feels the force as

F1 = m0
dv

dτ
(81)
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while the external force sees the mass as

m =
dτ

dt
m0 (82)

Geometric considerations show that we get the Lorentz factor

dτ

dt
= γ. (83)

There is no mystery in the experiments where the mass of an electron seems to
be growing. The force becomes weaker because the interactions takes a longer
time.

In a similar way one can at least partially explain the formula E = mc2 as
coming from the interaction of exchanging messages that contain a negative or
positive impulse ±∆mc and are moving with the local speed c.

The relativistic mass idea is only one of the serious errors in the relativity
theory. The references of this article are not literature references, except for
[1] just to honor Einstein. They are a list of preprints that prove beyond any
doubt that there are very many serious errors in the relativity theory, thus, they
are a continuation of this article, but left outside the article because of space
constraints. As the character of this article is to point out that the relativity
theory is completely wrong, there is no need to refer to published literature
on the relativity theory as this literature accepts the theory, or parts of it, as
correct. It is all wrong and beyond any repair.

The main error in the Special Relativity Theory (SRT) is that the main claim of
SRT is wrong: the speed of light is not constant in every inertial frame. This
error is caused by Einstein not taking a projection on the t′ axis when calculating
the time difference of two points (x′

1.t′
1) and (x′

2.t′
2) in the moving frame R′.

He calculates T ′ = t′
2 − t′

1, but the coordinate system (x′, t′) is a time-shift
coordinate system where

t′ = γ−1t − v

c2
x′ (84)

The second term to the right is the time shift and it depended on x′. The time
in R′ depends on the place in the same way as local time depends on the place
in the timezone system. The projection on the t′-axis is made by removing
this timeshift term, just like in the timezone system we get the Greenwich time
by removing the timezone offset. The difference in time in R′ of two points is
calculated as the difference of the projections on the t′ axis. When this is done,
the speed of light is not constant. As a consequence of this, whole SRT collapses.
See [6], [7], [8].

The main error in the General Relativity Theory (GRT) is that if the speed of
light is constant c in vacuum at every point to every direction, as it must be if
the tangent space is a Minkowski space at each point, then there are no solutions
to the Einstein equations that approximate the Newtonian gravitation potential,
see [7],[9], [10], [11]. This means that all experiments that claim to verify GRT
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are invalid because GRT cannot provide a solution to the field equations that
can be used in these experiments.

A special concern is the Schwarzschild solution. The Schwarzschild metric is
not a valid metric, the speed of light is not constant in that solution, but
also, the geodesics that have been calculated for this solution are incorrectly
calculated, see [12][13][14]. Let us especially mention what happens to a test
mass that falls freely in the gravitational field created by a point mass in this
Einstein’s geometric explanation of gravitation: the test mass practically does
not accelerate, see [14]. We know that the test mass does accelerate, so the
whole approach is wrong. When the geodesic concept is corrected in this respect,
we notice that according to this concept light should bend around the world,
which is does not do, see [13]. It is all totally wrong, Einstein even calculated
the geodesic equation incorrectly, see [14].

Thus, no experiments that have been explained with the Schwarzschild metric
can be considered as verification of GRT. For a discussion on the precession of
the perihelion of Mercury, see [15] and for the Shapiro delay see [16].

For the problems in the field equation in the geometrization idea see [17][18], the
first one also shows errors in Einstein’s presentation of Friedman’s cosmological
results in chapter 5 of [1]. Quantization of gravitation is briefly discussed in
[19] and gravitational time dilation in [20], but my ideas have changed since
that time towards [4][5]. The relativity theory and also Nordström’s ideas are
incorrect.

Let us still explain what is wrong in Einstein’s proof of E = mc2, his most
famous result. Einstein’s proof is that he derived the equation

(m − m0)c2 =
∫ s

0

d

dt
(mv)ds (85)

by inserting the formula m = γm0. Derivating (85) gives (17), which for clarity
we repeat here

d

ds
(m − m0)c2 =

d

dt
(mv). (17′′)

There are several problems with (17”) that were mentioned in previous sections.
The main ones are the following: there is no argument why m = γm0 should hold,
mentioned in section 1 under (16). If the kinetic energy is taken as (1/2)mv2 or
(1/2)m0v2, then the kinetic energy is not enough for giving the force in the right
side of (17”) proven in section 2. The mass cannot depend on velocity, proven
in section 3 at the end. The physical argument in section 3 in (54) is that it is
not possible to redefine the kinetic energy to (m − m0)c2 and the kinetic energy
that we get is smaller than the work done by the force in (17”). Finally, the
mathematical argument in section 4 shows that (17”) gives a dynamic equation
that does not minimize total energy and cannot be a correct dynamic equation.

As a conclusion, equation (17”) is pure nonsense. It is Einstein’s E = mc2 proof.
The equation E = mc2 itself is correct and can be attributed to Olento di Pretto.
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1.2 Einstein did not prove E = mc2 and
the relativistic mass formula is wrong

Abstract: It is generally believed that Einstein proved Olinto di Pretto’s formula
E = mc2 but Einstein’s calculation does not show anything like that. Einstein’s
proof of E = mc2 only shows that if a mass m0 that is originally at rest is
accelerated by force F and the mass grows by the relativisic mass formula
m = γm0, then the work W made by the force F accelerating the mass equals
the energy (m − m0)c2, but in the calculation the force F does not create new
mass of the size m − m0. This mass simply appears in the calculation without
being created by any energy. This is demonstrated in the first section by an
example where the speed v of the mass is small. The rest mass m0 originally
has potential energy Ep in the Earth’s gravitational field, then the mass falls
freely under the gravitationa force F . Practically all potential energy Ep goes to
the kinetic energy of m0 and there is no energy to create the new mass m − m0.
Though the mass m − m0 is tiny, creating this mass would require the same
amount of energy as W . If Einstein’s relativistic mass formula were correct, his
calculation would show that no energy is needed for making the mass m − m0 as
there is no energy for making it. Mass m − m0 just appears from nowhere. Such
from nowhere appearing mass would make it possible to construct a perpetual
motion machine. But no perpetual motion machine is pssible and the relativistic
mass formula is wrong because it comes from the Lorentz transform which is
wrong. The fourth section of the paper shows that the Lorentz transform is
seriously wrong. Thus, Einstein’s calculation proves nothing at all.

1. The fake formula E2 = m0c2 + (pc)2

Some people think that the total energy E, which they identify with E = mc2

satisfies the following formula:

E2 = m0c2 + (pc)2. (1.1)

Let us see what is the error in this formula and why it is identical to the
relativistic mass formula

m = γm0 (1.2)

which is also wrong.

We start from the equation of motion of a mass m that can change in time.
Then Newton’s formula F = ma can be written as

F = d/dt(mv) (1.3)

The work done by this force is

W =
∫

Fds. (1.4)

The differential of the work W can be written as

dW =
d

dt
(mv)ds =

dm

dt
vds + m

dv

dt
ds (1.5)
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=
ds

dt
vdm + m

ds

dt
ds = v2dm + mvdv (1.6)

=
1

2m
d(m2v2) =

1
2mc2

d((pc)2). (1.7)

Thus, we can write an equation
∫

2mc2dW = C + (pc)2. (1.8)

Here C is an integration constant. By, and only by, setting

dE = dW E = mc2 (1.9)

we get the equation to the form
∫

2EdE = C + (pc)2 (1.10)

E2 − E2
0 = (pc)2 (1.11)

and if E = mc2, then E0 = m0c2. We have the equation (1.1)

E2 = E2
0 + (pc)2 = (m0c2)2 + (pc)2. (1.12)

Notice the error in (1.9). The mass is growing in the equation (1.3), but there is
no work in the total work differential for the growing mass in (1.9). As the mass
is growing by dm, we have to write

dE = dW + c2dm (1.13)

instead of (1.9), but then the equation cannot be integrated as E is not mc2.

Notice also that the equation (1.1) is simply a form of (1.2). Squaring (1.2) and
multiplying both sides by c4, we get from (1.2)

m2c4γ−2 = m2
0c4 (1.14)

m2c4(1 − v2/c2) = (m0c2)2 (1.15)

(mc2)2 = (m0c2)2 + m2v2c2 = (m0c2)2 + (pc)2. (1.16)

That is, m = γm0 is equivalent with (1.1). (1.1) comes from (1.16) and mass
in (1.3) appears from nowhere. No energy is used for making the mass m − m0.
Einstein’s proof that E = mc2 is that if dE = dW and m = γm0, then E = mc2.
There are two errors: dE is not dW and m is not γm0 as will soon be seen.

2. Why (1.2) is not experimentally verified and why mass cannot
grow with speed?

Some people claim that there are several experiments where the mass of an
electron has been measured to grow according to the formula m = γm0. They
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say that an engineers designing television catode tubes have been using this
formula and it works, so it must be correct. They also say that the phenomenon
was observed already by Kaufmann before Einstein and m = γm0 is a verified
formula that has been known for a hundred years.

This all is in a sense true, but the formula is still wrong. The experiments
are correct, but they do not verify m = γm0, they falsify it. An engineer who
uses this formula must set the velocity v of the electron with the (rest) mass
m0 to exactly one number if he wants a correct result. This correct number is
the speed of the electron with respect to the field. Thus, the phenomenon is a
relation involving the field and the mass. The relation between the field and
the mass is an interaction, a force. It is the force that changes when the speed
between the field and the mass changes. If the relative speed is very high, the
interaction is more difficult. We can easily think of some reasons for this. The
interaction takes some small time and progresses with the speed of light. If the
mass moves with nearly the speed of light, the interaction takes more time and
if the time for the interaction is limited, the interaction may fail. The force gets
weaker. Instead of having the mass transform m′ = γm between two inertial
frames R′ and R where R′ moves with the speed v with respect to R, we can
get the exactly same dynamical equation (1.3) in R′ by using a force transform
F ′ = γ−1F . As the dynamical equation is the same, the measurements seem
to verify the formula m = γm0 but in fact they verify F ′ = γ−1F and falsify
m = γm0.

The equation (1.2) where everything is in one inertial frame R is directly obtained
from the transform equation of the mass between R and R′ by considering the
acceleration of a mass in R from rest to the speed v. In (1.3) the speed v is a
variable speed in R. It is not the constant speed of the frame R′. Therefore we
denote the constant speed of R′ by w. Then γw = (1 − w2/c2) is a constant in
the equation (1.3). The mass transform formula between the frames R and R′ is
thus

m′ = γwm. (2.1)m

We consider two rest frames of the mass that is being accelerated in R as the
frames R and R′. The first rest frame R is when the acceleration starts and the
mass is at rest in R. Thus, m = m0 in (2.1). The second rest frame is when the
accelerated mass has reached the speed v = w in R. This rest frame is R′. The
mass in R′ is given as m′, but it is m at the speed v. The transform (2.1) takes
the form

m = γwm0 (2.2)

and as w = v, we can write this as the relativistic mass formula

m = γm0. (2.3)

We see that (1.2) is simply the same as (2.1). We can reverse engineer how the
formula (2.1) must have been derived and what it actually means. The equation
(1.2) has certainly not been derived from considerations that the total energy
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E should satisfy (1.1) because nobody in his right mind would suggest that
mass is created from nowhere and would not impose the equation dE = dW in
(1.9). The derivation of (1.2) comes from something else. Clearly, the Lorentz
transform must have been used to derive (1.2) because there is the Lorentz
factor γ. The Lorentz transform only deals with transforms of space and time
coordinates. In order to derive a transform for the mass there is only one way:
one must take some equation containing mass and to require that the equation is
Lorentz invariant. Einstein did want equations of motion to be Lorentz invariant.
He especially demanded that the Einstein equations in the General Relativity
Theory are Lorentz invariant, i.e., Lorentz covariant in those tensor equations.
We can be sure that he wanted (1.3) to be Lorentz invariant and as he uses
m = γm0 in the equation (1.3), we can conclude that the mass transform formula
(2.1) comes from making (1.3) Lorentz invariant and (1.2) is derived from (2.1)
in the way given above.

In order to make (1.2) Lorentz invariant, we need the transforms for length
s, time t and the force F . Then we get the transform for m. The transform
for s is from the Lorentz transform s′ = γs. The Lorentz transform actually
gives t′ = γ−1t, but Einstein used the transform t′ = γt. This we know because
this formula is in his book The Meaning of Relativity. The form t′ = γ−1t is
impossible in a Minkowski space, though it is what the Lorentz transform gives,
see Section 4. The transform that Einstein selected for the force F is easy to
find: there is no transform formula for force in the Special Relativity Theory.
Therefore F is invariant: F ′ = F . Now we get the mass transform formula (2.1)

F ′ = d/dt′(m′v′) = d/dt′(m′ds′/dt′) = d/d(γwt)(m′d(γws)/d(γwt)) (2.4)

Notice that γ is γw in this calculation where w is the constant speed of R and
not to be confused with the variable speed v. Simplifying

F ′ =
d

dt

(

m′

γw
v

)

(2.5)

F =
d

dt
(mv) (2.6)

Setting F ′ = F we get
m′ = γwm. (2.6)

Writing w = v in the coordinate transform we have (2.1)

m′ = γm. (2.7)

This is the way how (1.2) has been derived. There is no other way to get correctly
to this formula, ignoring fake derivations that use steps like (1.9). We see now
that there are two errors in this derivation. Firstly, t′ = γt is not the equation
from the Lorentz transform. However, this error can be accepted because the
formula t′ = γ−1t is impossible and it cannot be accepted. Instead we have to
remove the term −(v/c2)x from the time transform in the Lorentz transform.
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Thus, this error is not serious, it merely shows that the Lorentz transform is
wrong.

The second error is serious. There is no sense at all to choose that the force F is
invariant. It is exactly the force that should change if the speed between a field
and a mass changes. We can now see that we can equally well get (1.3) Lorentz
invariant by requiring m′ = m and F ′ = γ−1F . Then

F ′ =
d

dt

(

m

γw
v)

)

= γ−1
w

d

dt
(mv) (2.8)

F ′ = γ−1F. (2.9)

Now we have explained why (1.2) has not been experimentally verified, indeed,
it has been falsified by these experiments because a very simple argument shows
that the mass cannot change with the speed. The argument is the following.

Consider a frame R and some masses and fields in this frame. There are some
observable phenomena in this frame R, like the field interacts with a mass in
some way. Next select another frame R′ that moves with a constant speed w
with respect to R and look at what happens with your fields and masses. You
see exactly the same observable phenomena, only you see them from a moving
coordinate system: everything is moving with the same additional speed that
comes from adding the constant speed w (according to some formula) to the
speeds that these objects have in R. It is the same world. There cannot be any
new observable phenomena. You cannot e.g. by selecting w to be very close to c
make some mass m0 that was at rest in R to grow to so enormous quantity that
it would turn into a black hole. You cannot with any experiment notice that the
very high speed of any mass in R′ changes anything that you can measure in R.
Expecially, you cannot have any experiment that verifies the formula m = γm0

by looking at R′ because everything you can see in R′ is exactly the same that
you can see in R. This means that the speed of a mass does not cause any
observable changes because the speed of a mass is determined by the coordinate
system that you choose to measure the speed of the mass.

But what does not change when you change your coordinate system from the
coordinates of R to the coordinates of R′ is the relative speed between your
objects. The speed between the field and the mass does not change when
changing the coordinate system to any moving coordinate system of an inertial
frame of reference. This means that the observable difference that has been
measured and what is claimed to verify m = γm0 is caused by the speed between
the field and the mass and therefore it is a phenomenon that derives from the
interaction between the field and the mass. The force between the fiend and the
mass becomes weaker if the relative speed is higher.

3. The relativistic mass formula gives a perpetual motion machine

Consider driving a car of mass m0 on a cliff of height h with respect to the
ground level. The car has the potential energy Ep = ghm0. Then push the car
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off the cliff. The gravitational force F accelerates the car to the velocity v before
it crashes on the ground and makes a hole. In Newtonian physics the equation
of motion is

F = m0a = m0
dv

dt
(3.1)

and the work is

W =
∫

Fds =
∫

m0
dv{dt

d
s = m0

∫

ds

dt
dv = m0

∫

vdv =
1
2

m0v2 = Ek. (3.2)

The work done by the force F equals the kinetic energy the mass m0 gets. The
work also equals the potential energy Ep and setting Ep = Ek we get the velocity
as v =

√
2gh.

In the relativity theory the equation of motion is F = d/dt(mv), thus, the mass
is allowed to change. Notice that this equation does not include any mechanism
for making new mass. We can use this equation for instance if we model an
airplane that is tanked in the air, the mass increases, or a rocket that is burning
its fuel, the mass decreases. There is no term in this equation that corresponds
to making the new mass. If the mass grows as in the formula m = γm0, it simply
appears to the equation from nowhere.

Let us calculate in a similar way as for F = ma what the work W is

W =
∫

Fds =
∫

v
dm

dt
ds +

∫

m
dv

dt
ds (3.3)

=
∫

v
ds

dt
dm +

∫

m
ds

dt
dv (3.4)

=
∫

v2dm +
∫

mvdv (3.5)

Thus, dW = v2dm + mvdv. The right side can be obtained from the relativistic
mass formula

m = γm0 (3.6)

m2(1 − (v − c)2) = m2
0

m2c2 − m2v2 = m2
0c2 (3.7)

Differentiating
2mdmc2 − 2mdmv2 − m22vdv = 0 (3.8)

which is
c2dm = v2dm + mvdv. (3.9)

The fake proof of E = mc2 is obtained by writing

∫

c2dm =
∫

v2dm +
∫

mvdv = W (3.10)
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(m − m0)c2 = W (3.11)

and then setting the initial energy to E0 = m0c2. The equation (3.11) is correct,
but it does not in way say that W is the energy content of the mass m − m0.
The work W is almost completely used for giving the mass m0 kinetic energy
and all of W is used to give kinetic energy to the mass m. Notice especially that
there is no energy to make the mass m − m0.

Assuming that the mass indeed grows and the car has the mass m = γm0 when
it hits the ground, then the energy that is released is the whole kinetic energy,
i.e., practically all of W , and the energy contained in m − m0, i.e., another
energy of the size of W . This is so because the car cannot have either kinetic
energy, or relativistic mass when m0 is not moving as it is in the hole in the
ground. We see that the hole must be twice as big as it should be according
to Newton’s mechanics, but Newton’s mechanics works well in small speeds v.
Alternatively, we can collect the energy when the car crashes to the ground and
get about twice the potential energy. Thus, we not only have a perpetual motion
machine, but a perpetual motion machine that produces lots of energy from
nothing. Clearly, the mass of the car cannot increase as in Einstein’s relativistic
mass formula.

Let us reflect a bit where the error is.

The mass m − m0 must come from somewhere. Either this mass is taken from
another mass or it is made from energy. We can think of two scenarios to
demonstrate these alternatives. The car is on the cliff and falls down. In the
first scenario there is a rope from the cliff to the ground and mountain climbers
are hanging from the rope, spaced by one meter. When the car falls passing
the level of the mountain climber, he throws a stone through the car window
to the car. In this way the mass of the car grows and by suitably selecting the
stones the mass can grow as m = γm0. In the second scenario there is a nuclear
physicist in the car. He has two high power photon guns and it using them
to make particle-antiparticle pairs. He throws the antiparticle off the window,
so the mass of the car grows. But the energy he needs is at least (m − m0)c2.
Clearly, as we do not have either of these cases, the mass of the car cannot grow
as m = γm0 because there is no energy for it. All potential energy the car had
goes to making kinetic energy.

Here is a small but important point. The the relativity theory the energy
equivalent E − E0 = (m − m0)c2 of the new mass m − m0 is called relativistic
kinetic energy. It is not the kinetic energy Ek = (1/2)mv2 of the mass relativistic
m. Indeed, from m = γm0 we get

mc2 = m0c2 + (1/2)mv2 + A (3.12)

where

A = m0c2
∞

∑

n=1

(1 ∗ 3 ∗ 5 ∗ · · ∗(2n − 3)(n − 1)n!−12−n(v2/c2)n (3.13)
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Here A is O(v4c−2), A is positive and not zero.

This A is a part of the work W that the force F makes, W = (m − m0)c2 and
W = (1 − 2)mv2 + A, but this work is not in the energy of the mass when it falls
to the ground. What is this work A? It is easy to explain with the mountain
climber example. When a stone is thrown to the car from the level l, 0 < l < h,
it trushes to the back window of the car because it does not have the speed
that the car has on that level. When it is on the window, it gets accelerated
to the same speed as the car. This takes some additional work and A is the
sum of this work on all levels l. The potential energy equals the work W , but
it is necessary to count to the potential energy also the potential energy the
additional mass has on the levels l. However, the kinetic energy that the mass
m has when it crashes to the ground is not W , it is a bit smaller than W . We
cannot say that the energy (m − m0)c2 to make the mass m − m0 is the kinetic
energy (1 − 2)mv2 of the relativistic mass m. This is false.

We also cannot say that the energy (m − m0)c2 to make the mass m − m0
includes the kinetic energy (1 − 2)m0v2 of the rest mass m0. We can only say
that the first term of the Taylor series of (m − m0)c2 has the same expression as
the kinetic energy (1/2)m0v2 of the rest mass m0. In order to see that the kinetic
energy of m0 really is not included in (m − m0)c2 and it is simply a coincidence
that the expressions are the same, try changing the formula m = γm0 slightly.
Replace it e.g. with m = (1 − av2/c2)−1/2m0 where a is a constant very close to
1. You see that the first term of the Taylor series of (m − m0)c2 is a(1/2)m0v2

while the term (1/2)m0v2 is still in the Taylor series of W and a only influences
the terms O(v4c−2). This kinetic energy term in W is there whether m changes
or does not change at all and it does not change if the formula for the mass
change is modified.

In the end of this section, we make some calculations to better see what happens.

We can calculate what W is

W =
∫

v2dm +
∫

mvdv (3.14)

=
∫

v2dm +
∫

(m − m0)vdv +
∫

m0vdv (3.15)

=
∫

v2m0dγ +
∫

(m − m0)vdv +
1
2

m0v2. (3.16)

First
dγ

dv
=

v

c2
γ3 (3.17)

thus
dγ =

v

c2
γ3dv (3.18)

and
∫

v2m0dγ =
m0

c2

∫

v3γ3dv (3.19)
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=
m0

c2

1
4

v4 + O(v6c−4) (3.20)

where we used the Taylor expansion

γ = (1 − (v/c)2)−1/2 = 1 +
1
2

v2

c2
+

3
8

v4

c4
+ O(v6c−6) (3.21)

We obtained
∫

v2dm =
1
2

(

(1/2)m0
v2

c2

)

v2 + O(v6c−4) (3.22)

The second term in (3.16) is

∫

(m − m0)vdv = m0

∫

(γ − 1)vdv = m0

∫

1
2

v3

c2
dv + O(v6c−4) (3.23)

=
1
4

(

1
2

m0
v2

c2

)

v2 + O(v6c−4). (3.24)

Thus

W =
1
2

m0v2 +
3
4

(

1
2

m0(v/c)2

)

v2 + O(v6c−4). (3.25)

As
m − m0 = m0(γ − 1) = (1/2)m0(v/c)2 + O(v4c−4) (3.26)

we can insert
(1/2)m0(v/c)2 = (m − m0) + O(v4c−4) (3.27)

to (3.25) and get the final result

W =
1
2

m0v2 +
3
2

(

1
2

(m − m0)v2

)

+ O(v6c−4). (3.28)

The entity in the parenthesis is the kinetic energy of the new mass m − m0. This
mass is very small because in our car example v is very small compared to c.
The term O(v6c−4) is still much smaller. We see that W is almost completely
the first term in the right side of (3.28) the kinetic energy of m0.

The calculation that W = (m − m0) is correct, indeed from (3.21)

(m − m0)c2 = m0(γ − 1) =
1
2

m0v2 +
3
4

(

(1/2)m0(v/c)2
)

v2 + O(v6c−4) (3.29)

and by inserting (3.25) we get the result that has an identical right side as in
(3.28)

(m − m0)c2 = m0(γ − 1) =
1
2

m0v2 +
3
2

(

1
2

(m − m0)v2

)

+ O(v6c−4) (3.30)

but the result (m − m0)c2 = W does not say anything of the kind that the
energy contained in the mass m − m0 would equal (m − m0)c2. It says that the
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kinetic energy of m0 is almost all of W in this example when v is small, and that
terms corresponding to the increased mass in W are very small, they mostly
correspond to the small kinetic energy of m − m0. There are no terms in W
that correspond to creating the mass m − m0 because the energy for creating
this mas is as large as W itself.

4. Error in the Lorentz transform

As argued in section 2, the relativistic mass formula must have been derived by
requiring Lorentz invariance of the equation of motion F = d − dt(mv). There
is no reason to demand Lorentz invariance of any equations of motion because
the Lorentz transform is wrong.

In order to see why the Lorentz fransform

x′ = γ(x − vt) t′ = γ(t − (v/c2)x) (4.1)

is wrong, think about flying a plane from New York to London. The distance
is 5700 km and the time zone difference is five hours. The flight time is seven
hours and from that we get the average speed of the plane as 812 km/h.

There usually is a panel showing the local time in over-Atlantic planes. Let us
assume that the programmer who made this application was a bit lazy and did
not care of time zones, after all, the plane mostly flies over the ocean. Thus, he
wrote the program that the local time in the panel is

t′ = t − ax where a = 5h/5700km. (4.2)

The time t is the London time and x is the distance from London. This equation
works fine in both London and New York. In London x = 0 and t′ = t, the
London time. In New York x = 5700km and t′ = t − 5h, the New York time.
The programmer also wanted to define a space coordinate x′ for the plane, so
that x′ would give the location of the seat of a passenger. He lazily ignored that
the plane does not always fly exactly v = 812 km/h and defined

x′ = x − vt. (4.3)

The coordinates (x′, t′) can be used as a coordinate system for the plane and the
transform from (x, t) coordinate system is very much like the Lorentz transform,
only with γ = 1

x′ = x − vt t′ = t − (v/c2)x. (4.4)

Assume you get to the plane in New York at the local time 12 AM, and you sit
on a seat on the last row so that your x′-coordinate is x′

1 = 0. The t′-coordinate
is t′

1 = 12 AM as it shows the local time. Thus, in the plane coordinates your
point is (x′, t′) = (0, 12AM). The x-coordinate is 5700 km as it is the distance
from London and t is the time in London, 5 PM. The plane arrives to London at
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the local time 12 PM. The plane time shows t′
2 = 12 PM and if you are sitting

on the same seat, then x′
2 = 0. The flight time is seven hours. How do you get

the flight time? The flight time is the time difference between starting time and
ending time, but it is not the time difference between the local time 12 AM
when the plane leaves New York and the local time 12 PM when you arrive to
London. Indeed, t′

2 − t′
1 = 12PM − 12AM = 12 hours. You must project the

point (x′
1, t′

1) to the t′-axis, which is the Greenwich time i.e., the London time.
The projection of (0, 12AM) on the t′-axis is 5 PM. The point (0, t′

2) already has
the time in the Greenwich time. The flight time is 12 PM-5 PM=7 hours. Notice
that if you move your seat to another row, then your t′ time changes because a
seat that is more in the front is a bit closer to London. Thus, your time t′ in the
plane depends on your x′-value. The coordinates x′ and t′ are not independent.

Compare this situation to the Lorentz transform. The time defined by the
formula t′ = γ(t − ax) is a local time at the place x. The coefficient a gives the
ration of time offset in time units divided by the space distance. In the plane
coordinate system a = 5h/5700km, in the Lorentz transform a = v/c2, that is,
it depends on v, which means that this timeoffset coordinate system works in
the same way as the plane timeoffset coordinate system (only) if v is always the
same, but in our example v is constant.

Also in the Lorentz transform the coordinates x′ and t′ are not independent.
Indeed, the line x = γ−1x′ +vt maps in the Lorentz transform to x′ = γ((γ−1x′ +
vt) − vt) and the corresponding time is

t′ = γ(t − (v/c2)(γ−1x′ + vt)) = γ(t − (v/c2)vt) − (v/c2)x′ (4.5)

We have a linear dependence between t′ and x′

t′ = γ−1t − (v/c2)x′. (4.6)

This linear dependency means that in order to take the projections on the
x′-axis and t′-axis from a point (x′, t′) we cannot simply take the number in the
2-tuple (x′, t′). We must project to point to the coordinate axis. Let us do the
projections, first the projection on the x′-axis.

The projection on the x′-axis.

1. The projection is some point x′
1 on the x′-axis. The preimage of (x′

1, 0) is a
point on the line t = (v/c2)x

2. The line x = γ−1x′ + vt maps to a point that has the x′-coordinate value x′.

3. The intersection point of the lines t = (v/c2)x and x = γ−1x′ + vt is
(x, t) = (γx′, (v/c2)γx′). The image of this intersection point is (x′, 0). This is a
point on the t′-axis. The projection of (x′, t′) on the x′-axis is x′.

The projection of the t′-axis. We try to do the same as for the x′-axis.

1. The projection is some point t′
1 on the t′-axis. The preimage of (0, t′

1) is the
line x = vt.
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2. The line x = γ−1x′ + vt maps to a point that has the x′-coordinate value x′.

3. There is no intersection point of the lines x = vt and x = γ−1x′ +vt. They are
parallel lines meaning that each line gives a clock that has a different time offset.
In order to project the point (x′, t′) on the t′-axis, we must use the projection
in the coordinates (x, t). We project (γ−1x′ + vt, t) on the t-axis. It gives the
point (0, t). We project (vt1, t1) on the t′-axis. It gives the point (0, t1). In order
that the image (0, γ−1t1) of (vt1, t1) is the projection of (x′.t′) on the t′-axis, we
must have t = t1. Thus, the projection of (x′, t′) on the t′-axis is t′

1 = γ−1t.

Doing the projections on the x′ and t′-axes we notice that the speed of light is
not c in (x′.t′) coordinates of the moving frame.

Indeed, let the frame of reference R have the independent coordinates x and t,
let light have the speed c in R, and let there be a rod of (moving) length L in R.
At the time t = 0 the left end of the rod is at x = 0 and the rod moves to the
right with the speed v. Let R′ be the moving frame of the rod and let R′ have
the coordinates (x′, t′) from the Lorentz transform. We sent light in R from the
left end of the rod to the right end. Light arrives to the right end at the time T .
Then light moves as x = ct and the right end of the rod as x = L + vt. Light
arrives to the right end when cT = L + vT giving L/T = c − v. The Lorentz
transforms of the points are as follows. The starting point (0, 0) maps to (0, 0).
The ending point (L + vT, T ) maps to (L′, γ(1 − v/c)T ) where L′ = γL. The
speed of light in R′ is NOT as Einstein calculated

c′ = L′/(γ(1 − v/c)T ) =
c

c − v

L

T
= c. (4.7)

The time in R′ is not γ(1 − v/c)T = γ−1T − (v/c2)L′. It is T ′ = γ−1T and the
speed of light in R′ is

c′ = L′/T ′ = γ2(c − v). (4.8)

We conclude that the rest time of R′ from the Lorentz transform is τ = γ−1t,
but Einstein has more errors. The rest time, or proper time, of R′ cannot be
τ = γ−1t because in a Minkowski space the speed of light can be read from the
line element:

ds2 = dx2 + dy2 + dz2 − c2dt2 (4.9)

If light is sent to the direction x, then dy = dz = 0 and for light ds = 0. Thus

c2 =
dx2

dt2
(4.10)

must hold. It also must hold in R′, thus

c2 =
dx′2

dt′2 (4.11)

Here (x′, t′) are obtained from (x, t) through a transform. If x′ = γx, then
necessarily the transform must give t′ = γt. This is why the Lorentz transform
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cannot have the timeshift term −(v/c2)x in the time transform. We must drop
this term and the transform can only be

x′ = γ(x − vt) t′ = γt. (4.12)

But this is also wrong because the transform relates two frames of reference A
and B that can be billions of light years apart and their world paths never need
to meet, yet the transform allows us to compare the rest times of the frames. We
can make the twin paradox. Assume that the frames are identical and they have
mutual velocity v. Both frames have their rest times ta and tb respectively and
nothing we can do by selecting which frame to take as the frame R or R′ can
change these rest times. If we choose R = A and R′ = B, then tb = γta while if
we choose R = B, R′ = A, then ta = γtb. Necessarily γ = 1. Einstein cheated
when he claimed that the world paths must meet in order to compare the times
in the twin paradox. Naturally they do not need to meet as the transform gives
the comparison.

We are now left with the Galileo transform.

x′ = x − vt t′ = t. (4.13)

but this is still not correct. It is widely believed (and seems correct) that if we
have two planets far away from each other and with mutual speed, then the speed
of light is c close to both planets. This can easily be so if we e.g. assume that the
speed of light is set by the local gravitational field. But it means that we cannot
have global coordinate systems where the speed of light is c everywhere and a
global coordinate transform relating these coordinate systems. The whole idea
of having such a transform like the Lorentz transform (with whatever changes
you might imagine) is false. There is no such global transform, though we can
use the transform x′ = γ(x − vt), t′ = γt in a smaller environment and get (2.9).

Consequently, there is absolutely no justification for requiring Lorentz invariance
from equations of motion. This means that the relativistic mass formula is
completely unjustified, and it is wrong as the car example of Sections 1-3 show.

5. Ten serious errors in the Relativity Theory

One should not get the false impression that Einstein’s only serious errors are
giving a fake proof of E = mc2, a false relativistic mass formula and making
false claims of the Lorentz transform. The whole of the Relativity Theory in [4]
and [5] is false. I give ten errors, and these are all serious:

1. Einstein defines infinite number of times to the moving frame R′ though
R′ has only one time. That is, Einstein treats the t′ value in (c′, t′) as a time
value in the time of R′. The t′ value is a local time. There are infinitely many
local times in a continuous timeshift coordinate system, like the coordinates
(x′, t′) from the Lorentz transform are. These local times have the same length
of seconds, but a different starting time. But Einstein makes it worse than this
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by treating the time difference of two different local times as a time value in the
time of R′. This way he gets infinitely many times that have different seconds.
This is explained in [7] and [6].

2. Einstein does not take the projection on the t′-axis and therefore falsely claims
that the speed of light is constant in all inertial frames of reference. When this
error is corrected, whole Special Relativity Theory falls down. It is not possible
to DEFINE that the time should be treated as Einstein does. Such an attempt
leads to a contradiction: simply by imagining a moving frame you can set the
universal constant c to any value you want, like to 1 m/s. This is explained in
[7] and [6].

3. The Lorentz transform gives the proper time for R′ as t′ = γ−1t while from
the definition of the proper time and from Minkowski space we get t′ = γt. This
means that the timeshift term −(v/c2)x must be dropped. Without dropping
the term, the speed of light has no upper bound: if light is sent backward, the
speed of light in R′ is c2/(c − v). See Section 4 and [6].

4. The twin paradox shows that γ = 1 and the transform is the Galileo transform,
but finally we notice that there cannot be any global coordinate transform where
the speed of light is constant in the coordinate system. This is explained in
Section 4. Notice that when the Lorentz factor is dropped because of the twin
paradox, as it has to be, Einstein has not proof that c is the maximal speed.

5. Requiring Lorentz invariance (like covariance) from any equation is a grave
error because there is no justification for it. It gives a false formula for the
relativistic mass. This error alone invalidates the General Relativity Theory
(GRT) as that theory is Lorentz covariant. See Section 4 and [7]. There are valid
nontrivial transforms of coordinates, e.g. when there is a gravitational field, so
one may get a mass transform formula, but it is better to place the growing
mass to the rest coordinates of the mass if such changing mass is needed.

6. Einstein did not prove E = mc2. The whole proof is fake. See Sections 1-3.

7. The field equation of GRT does not have any solutions which have speed of light
constant c in vacuum at every point to every direction and which approximate
Newtonian gravitation field. This invalidates GRT in all applications in our solar
system and it invalidates all experiments that are claimed to verify GRT. See [6].

8. This is a stronger form of error 6: even if we allow the field to have speed of
light that differs in the gradient of the gravitational field, there is no solution for
the case of a point mass in empty space that has the speed of light c to every
direction that is orthogonal to the gradient of the gravitational field. See [13]
and [12]. The calculation in [13] is just like in the Schwarzschild solution, but
there is no solution.

9. Einstein’s calculation that GRT satisfies the Shapiro delay test is wrong.
This is because the Schwarzschils solution (a convenient example for doing this
calculation) does not have a constant speed of light. Einstein also calculated
that Nordström’s theory (see [1]-[3], [10]-[12]) fails the Shapiro test. It does
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not fail the test, it passes it. See [10]. But as GRT does not approximate the
Newtonian gravitation field and we know that it is a good approximation to the
reality, GRT cannot pass any tests anywhere in our solar system.

10. Einstein gave a false calculation of the precession of the perihelion of
Mercury. GRT cannot correctly predict anything in our solar system as it cannot
approximate Newtonian gravitation. Therefore the calculation is false. Einstein
also gave a false calculation that Nordström’s gravitation theory predicts the
precession incorrectly. The calculation is nonsense. Nordström’s theory does not
predict anything as the situation is very complicated to model. See [8].

I guess that is enough for one theory. Of course one could add problems in the
theory, like that GRT is not quantized. (One can quantizise a scalar gravitation
theory, like Nordström’s theory, see [9]), but such are merely problems. It is
more relevant that the Relativity Theory has at least ten fatal errors. Those
errors show that Einstein cheated intentionally, and that his theory is totally
wrong.

There is an old saying that nobody ever convinces the supporters of the old
theory. The old die and the new generation accepts the new theory. This may
be so, and in most cases the new theory is better. But this saying can also be
applied to a situation when the new theory is completely false. It gets accepted
by this mechanism and a better old theory is discarded. This is what happened
with the Relativity Theory. I very much doubt such can happen unless several
high level journals and academic positions and media support the false new
theory and their pressure gets the theory to schools and universities as the
scientific truth. And this is what must have happened. This has nothing to do
with common and healty reservation towards new theories.
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1.3 A calculation showing that
the relativistic mass formula is wrong

Abstract: This is a calculation showing that the relativistic mass formula
m = γm0 is wrong. In case it seems that I am adding too many intermediate
steps, then the reason is that without all these steps the supporters of the
relativity theory are unable (or unwilling) to follow the argument. Naturally,
they are unwilling even when all steps are written down, but that’s another
thing.

1. The calculation

Let us consider the situation where a mass m0 is on the height h in the grav-
itational field of the Earth. The place is chose so that the acceleration of a
mass under the gravitational force is very precisely g, or we measure g in this
place. The height h is ten meters and the gravitational acceleration can be
assumed constant in this short distance. From Newtonian mechanics we get an
approximation to the speed of the mass when it falls from the height h to the
ground: the mass m0 hits the ground with the speed that is closely approximated
by v =

√
2gh.

The Special Relativity Theory (SRT) claims that the mass grows because of the
speed v according to the formula m = γm0. The speed of the falling mass is so
small in this case that the increase of the mass is very small

m = m0 + O(v2/c2) (1)

and the approximation of the potential energy of the mass when it is on the
height h is very good. This approximation of the potential energy is

Ep = ghm0. (2)

When the mass falls, the gravitational force F accelerates it. We do not need to
model the gravitational force. It suffices to agree that the following two formulas
are correct and accepted both in SRT and in Newtonian mechanics:

F =
d

dt
(mv) (3)

W =
∫

Fds (4)

Then

dW = Fds =
d

dt
(mv)ds =

dm

dt
vds +

dv

dt
mds (5)

=
ds

dt
vdm +

dv

dt
mds (6)

= v2dm +
dv

dt
m(s)ds. (7)
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The potential energy of the mass at the height h − s is

Ep(s) = g(h − s)m (8)

where m now can change because of speed v. As v depends on s, we can consider
m as a function of s, m = m(s). Differentiating (8) we get

dEp(s) = Ep(s + ds) − Ep(s) = g(h − s − ds)m(s + ds) − g(h − s)m(s) (9)

= g(h − s)(m(s + ds) − m(s)) − gdsm(s + ds) (10)

Writing dm = dm(s) = m(s+ds)−m(s) and taking the first order approximation
of

gdsm(s + ds) = gdsm(s) + O(ds2) (11)

we get
dEp(s) = g(m − s)dm − gm(s)ds (12)

If the mass dm is real mass, it just cannot appear from nowhere. Making this
new mass takes the energy dE = c2dm. There are so far no terms in any of the
given equations for making this new mass. Let us consider three cases.

Case 1 is that there is no energy used for making the mass dm and this mass is
real mass.

Case 2 is that the mass dm is real mass and potential energy is used for making
this mass. The relativistic mass formula holds: m = γm0.

Case 3 is that the mass dm is not real mass. It is some effective mass, no
energy is needed for making this mass. The mass does not in reality increase,
the relativistic mass formula is just one way of expressing that the force gets
weaker when the relative speed between a mass and the field grows larger. The
relativistic mass formula holds: m = γm0.

Case 1

The mass dm is real mass and there is no term containing the energy to make it.
The term g(h − s)dm contains the potential energy of the mass dm and the term
v2dm comes from the calculation of the kinetic energy, therefore it is kinetic
energy of dm even though it is not of the classical form (1/2)dmv2. There is no
term for dE = c2dm. Therefore the mass cannot grow and we must set dm = 0.
Then

dEp(s) = −gm(s)ds (13)

dW (s) =
dv

dt
m(s)ds (14)

The energy conservation equation is

0 = dEp(s) + dW (s). (15)
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The equation is not dE(s) = dW (s) because the variable s appears as negative
in Ep(s) = g(h − s)m. The solution is the classical solution

0 =
(

dv

dt
− g

)

m(s)ds (16)

thus dv/dt = g, as it is in Newtonian mechanics, and W = (1/2)m0v2.

Case 2

The mass dm is real mass and potential energy is used to create this mass. We
divide the potential energy differential to two parts

dEp(s) = dEp,1(s) + dEp,2(s) (17)

where dEp,1(s) is used to create the kinetic energy W and Ep,2(s) is used to
create the mass dm. We also assume that m = γm0 holds.

The energy conservation equations are

0 = dEp,1(s) + dW (s) (18)

dEp,2 = dE = c2dm (19)

The reason why in (19) the sum of the differentials is not zero is that in (19)
there is no negatively signed s that changed the sign of dEp,1 to negative.

Thus

dEp,1(s) = dEp(s) − Ep,2(s) = (g(h − s) − c2)dm − gm(s)ds

and the equation is

0 = (g(h − s) + v2 − c2)dm +
(

dv

dt
− g

)

m(s)ds (20)

which simplifies

(

g − dv

dt

)

m(s)ds = (g(h − s) + v2 − c2)dm (21)

g − dv

dt
=

1
mds

(g(h − s) + v2 − c2)dm
dv

dv
(22)

g − dv

dt
=

1
mds

(g(h − s) + v2 − c2)
dm

dv
dv (23)

Using m = γm0 we have dm/dv = m0(v/c2)γ3. Inserting to (23) and multiplying
the equation by dt

gdt − dv =
1

γm0

dt

ds
(g(h − s) + v2 − c2)m0

v

c2
γ3dv (24)
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gdt − dv =
1
v

(g(h − s) + v2 − c2)
v

c2
γ2dv (25)

gdt − dv =
1
c2

γ2(g(h − s) + v2 − c2)dv (26)

g − dv

dt
=

1
c2 − v2

(g(h − s) + v2)
dv

dt
− γ2 dv

dt
(27)

Notice that we have a contradiction in (27). The term

1
c2 − v2

(g(h − s) + v2)
dv

dt
(28)

is very small as v is very small compared to c. The Lorentz factor γ is practically
one. The equation (27) claims that

g − dv

dt
= −dv

dt
+ O(c−2) (29)

which is not possible: g = 9.81m/s2 and not close to zero. We can solve (27)
exactly, but because there is a contradiction with the physical reality, the result
is absurd. Simplifying

g =
dv

dt

(

1 +
1

c2 − v2
(g(h − s) + v2 − c2)

)

(30)

g =
dv

dt

c2 − v2 + g(h − s) + v2 − c2

c2 − v2
(31)

g =
dv

dt

g(h − s)
c2 − v2

(32)

dv

dt
=

c2 − v2

h − s
. (33)

Of course (33) is wrong, a result of a contradiction. It is not possible to treat
dm as real mass and assume that m = γm0 holds.

Case 3 The mass dm is not real mass. It is effective mass and actually describes
that the interaction force depends on the relative speed of the mass and the
field. As the mass dm is not mass, we will not include any term containing the
energy to make it. Instead, we assume that m = γm0 holds.The potential energy
differential is

dEp(s) = g(h − s)dm − gm(s)ds (34)

and the equation is

0 = (g(h − s) + v2)dm +
(

dv

dt
− g

)

mds. (35)
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The calculation is very similar to the Case 2. The equation corresponding to
(31) is

g =
dv

dt

c2 − v2 + g(h − s) + v2

c2 − v2
(36)

there is just missing the term −c2 from −c2dm in Case 2. The result is

dv

dt
= gγ−2 1

1 + g(h − s)/c2
(37)

Clearly, the acceleration of v is very close to g for small values of v. This result
is possible but what is really says is that m = γm0 is possible only if the mass
is not really growing. The relativistic mass is simply one way to calculate the
change of the interaction strength when the relative speed grows. Thus also
means that Einstein’s proof of E = mc2 is not any proof or anything. The mass
that he has in his proof is not mass, it is virtual mass that does not even need
energy to be made. The formula E = mc2 does hold and the mass there is real
mass.

Conclusions

Mass is not growing with velocity. There are certain cases when the formula
m = γm0 seems to work, especially in electro-magnetism. The real explanation
of such phenomenon is not that the mass grows. The natural explanation is that
the interaction force depends on the relative speed of the particle and the field.
Let us add that the energy-momentum formula

E2 = (m0c2)2 + (pc)2 (38)

where E = mc2 is equivalent with m = γm0 and it is also only a phenomenological
formula, or maybe heuristic is a better word as the formula is known to be wrong.
But such formulas can be used where they work. At some point somebody should
revise the theory of relativity, it has too many errors.
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1.4 Explanation of the Lorentz factor
and the relativistic mass formula

Abstract:

H.A. Lorentz derived the relativistic mass formula m = γm0 for the mass of an
electron and it was verified in β-radiation. Therefore is formula does work, but
it does not mean that the mass in reality grows. A. Einstein confused the issue
in his Special Relativity Theory. The article recovers the correct understanding
of this formula and also what the Lorentz factor really is.

1. The derivation of m = γm0

Consider the interaction of a field with a mass. The mass m0 is moving with
the speed v with respect to the field. There is an interaction between the field
and the mass.

A common understaiding of an interaction is that it is an exchange of virtual
interaction bosons. We assume that this exchange requires a two-way exchange
of interaction bosons. There is a time constraint in virtual bosons, therefore
the interaction may take too long and fail. If so, it consumes energy from field
but does not change the orbit of the mass. We also assume that the boson is
massless and travels with the speed of light c.

The interaction time T ′ (i.e., the roundtrip time) over the distance L is

T ′ =
L

c − v
+

L

c + v
=

2L

c
γ2 = γ2T (1)

Here T is the interaction time if the mass is not moving. Light sent to any
direction from the mass makes the distance X ′ = cT ′ assuming that the speed
of light sent from the mass is c. Then X transforms like

X ′ = γ2X (2)

where X is the distance if the mass is not moving.

We assume that the force F decreases as r−2, which is true for the Coulomb
force and for the gravitational force. It is not true for all forces. As the distance
is transforming X to X ′, the force is transforming

F ′ = C(X ′)−2 and F = CX−2 (3)

where C is a constant. The force transform must be

F ′ = γ−4F (5)

The energy differential transform is

dW ′ = γ−3dW. (6)

49



This is not derived analytically, it follows from the empirically verified formula
that Lorentz used for eletron’s mass:

m = γm0 (7)

This formula and a reference to Lorentz is in Einstein’s book [1] as the formula
(46). Thus, Einstein also justified this formula with the work of Lorentz.

The derivation of (6) is simple. Starting from

dW = Fds = d/dt(mv)ds =
dm

dt
vds +

dv

dt
mds = v2dm + mvdv (8)

and inserting m = γm0, dm = (v/c2)γ3dvm0 we get

dW = v2 v

c2
γ3dvm0 + mvdv (9)

= mvdv

(

v2

c2
γ2 + 1

)

(10)

= γ3m0vdv = γ3dW ′ (11)

As
dW ′ = F ′ds′ = γ−4Fds′ = γ−3dW = γ−3Fds (12)

we must set the transform of ds′ as ds′ = γds. Then dt′ = γdt because we want
the speed v to be the same

v =
ds′

dt′ =
ds

dt
(13)

to have the same orbit for the mass in both coordinate systems ds, dt and ds′, dt′.

2. The meaning of the Lorentz transform

The term γ2 comes naturally from a two-way exchange of interaction bosons in
equation (1).

How to understand what ds′ and dt′ are? One way of understanding them is
that they are infinitesimal coordinates of the frame of the moving mass. The
transform giving ds′ = γds, dt′ = γdt is

x′ = γ(x − ct) t′ = γt (14)

It is the Lorentz transform that Einstein uses in SRT when discussing Minkowski
spaces, and it is the transform the Einstein uses in the General Relativity Theory
(GRT) when requiring Lorentz covariance.

It is not the Lorentz transform that Einstein gave in the Special Relativity
Theory (SRT) by which he claims (incorrectly) that the speed of light is c in all
inertial frames. That Lorentz transform is

x′ = γ(x − ct) t′ = γ(t − (v/c2)x) (15)
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The coordinates x′ and t′ in (15) are not independent and cannot be used as
local coordinates in the Minkowski space. When the coordinates are made
independent by projecting (x′, t′) on the t′-axis, the differential coordinates we
get are ds′ = γds, dt′ = γ−1dt. Einstein never noticed that he is using two
different transforms that he calls with the same name, the Lorentz transform,
which incidentally is not the transform Lorentz used. That transform was

x′ = γ(x − ct) t′ = γ−1t (16)

the only transform that gives c as the roundtrip speed of light in the moving
frame.

There are other understandings of ds′ and dt′ and we can define them differently.
A rather natural definition would be dt′ = γ2dt, ds′ = γ2ds because it corresponds
to the interaction time delay transform. The negative result of this choice is
that then the force transfrom is

F ′ = γ−5F (17)

Another possible choice is dt′ = dt, ds′ = ds, which has the advantage of having
only one coordinate system. Then the force transform formula would be

F ′ = γ−3F (18)

The energy differential transform formula is always (6). The issue with force
transform formulas like (17) and (18) is that then the force does not grow as r−2.
This inverse square law is in reality a statement that the space is flat and the
surface of a sphere grows to square as a function of the radius. We can naturally
select a different geometry.

There are still different ways of understanding ds′ and dt′. The interaction
of the field and the mass is expected to be very short range and the growth
of the surface of a sphere in the space geometry probably plays no role. The
interactions can well fail because of time constraints of virtual bosons and the
force relation F ′ = γ−5F need not have anything to do with geometry. Indeed,
interactions must be very short range and very fast because if something is
exchanged between the Sun and planets in gravitational interaction with the
speed of light, then the solar system becomes unstable. We may not need the
r−2 behavior for the force in the situation of the interaction between the field
and the mass and the Lorentz-type transforms of ds′ and dt′ can very well be
wrong. A model for the interaction would be needed. Maybe something new
would arise from such a model.

3. Relativistic mass m = γm0 is not mass

It should be clear from section 1 that m is not mass. It is simply a way to express
that the force becomes weaker if the relative speed between the field and the
mass is larger. The equation m = γm0 fits to measurements: we can measure
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the energy used and we need the energy that is sufficient for the mass m, and
we can measure the orbit of the mass and obtain v. But both measurements
give the same numbers whether the real reason is that the mass really grows or
that the force gets weaker.

There are several reasons why the mass does not really grow with speed.

1. The speed v of a mass m depends on what coordinates we use. We can take a
mass m0 that is at rest in our coordinates, for instance, m0 can be one kilo of
flour on the table. Then we select a coordinate system that is moving with the
speed −v where v is so close to c that according to the formula m = γm0 the
mass in this moving coordinate system is so enormous that it must collapse to a
black hole. Looking at the same world from two different coordinate systems we
must see the same behavior. There cannot be any observable differences because
all that changes is our view point. It m0 is a black hole in one coordinate system,
then it is a black hole in every coordinate system. We just look around and
notice that the kilo of flour is still just a kilo of flour. Therefore it cannot be a
black hole in the moving coordinate system. The mass cannot grow with speed.

2. In the experiments, like that of Lorentz, where the relativistic mass formula
has been verified, the speed v can only be the relative speed of the field and the
mass. If we select a moving coordinate system where the mass moves very fast
and insert this velocity to the formula, then the result is wrong. This means that
the measured phenomenon is not about the speed of the mass. It is about the
relative speed between the mass and the field. It is a relation though m = γm0

does not show that it is a relation. The relation between the field and the mass
is the interaction, the force. This phenomenon is caused by the force changing.
The force becomes weaker when the relative speed between the field and the
force grows.

3. Consider a nuclear experiment where the amount 2(m − m0) of mass turns
into energy. Half of this energy, E1 = (m − m0)c2 escapes as radiation, half
E2 = (m − m0)c2 escapes as kinetic energy of the moving particle with the rest
mass m0. The energy E2 gives the mass m0 the velocity v and the work needed
to give the mass this kinetic energy is W = (m − m0)c2. Now, if this mass
m0 did really grow to m because of the velocity v, then how much matter was
turned to energy? First 2(m − m0) mass turned to energy, then m − m0 new
mass was created, so only m − m0 mass was turned to energy. It released the
energy (m − m0)c2, which is just enough to explain the energy E1 that escaped
in raditation. So, where did the kinetic energy to accelerate the mass m0 to the
speed v come from?

It is easy to invent more similar arguments and though Einstein’s book [1]
quite clearly says that mass grows with speed under the equation (44), most
researchers of relativity try to explain this problem off by stating that the mass
actually does not grow, the relativistic mass is the kinetic energy of the moving
mass.

This explanation is wrong because the kinetic energy of the moving mass is
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smaller than the energy equivalent of the mass m − m0. When the moving mass
stops, it must release the energy (m − m0)c2 but this energy cannot be released
from the kinetic energy (1/2)mv2 that the moving mass has because (1/2)mv2

is strictly smaller than (m − m0)c2. The energy cannot be released from the
energy m0c2 that the rest mass contains because the rest mass is still there when
the moving mass stops. Therefore the moving mass would have to turn some
of its moving mass to energy in order to release the energy (m − m0)c2. But
if the moving mass turns some of the mass m − m0 to energy, then certainly
it must turn all of the mass m − m0 to energy. What would be the sense of
turning only a small bit of this mass to energy? If the mass turns all of the
mass m − m0 to energy and additionally releases the kinetic energy (1/2)mv2,
then we have a perpetual motion machine. We get more energy than we put
it. Consider dropping mass m0 from height h in the Earth’s gravitational field.
The potential energy of this mass very closely approximates the kinetic energy
of the mass when it hits the ground, as Newtonian mechanics works quite well
in this situation. The energy of the additional moving mass m − m0 in this case
equals the potential energy and is a bit larger than the kinetic energy of the
falling mass when it hits the ground. We collect this energy and get about twice
the potential energy. We can make a hydropower plant without a river: simply
have a pool of water, let it fall to the turbines, with half of the collected energy
pump the water back to the pool and sell the rest to the national grid. It would
be nice, but naturally, this does not work.

Let us show for those who claim that the relative mass is or is contained in
the kinetic energy that this is not the case. The kinetic energy is smaller than
(m − m0)c2. We do this first with a simpler example. The mass m0 is on the
height h and falls. We will not approximate the potential energy at all in order
to avoid all approximations, but us select the height h to be so small that we
can ignore all relativistic effects. The mass m0 falls to the level s = s0 < h. The
kinetic energy that the mass gains on the trip s ∈ [0, s0) is solved from

dW = v2dm + mvdv (19)

by setting dm = 0 and m = m0. Then

W1 = (1/2)m0 v(s0)2 (20)

Then we add the mass ∆m, which is small in this example and can be considered
as dm in the equation (19) as

∆W = v(s0)2∆m (21)

On the trip s ∈ (s0, h] the mass is constant m = m0 + ∆m. The kinetic energy
is solved from (19) as

W2 = (1/2)(m0 + ∆m)(v2 − v(s0)2) (22)

The total energy used to give the mass its kinetic energy is

W = W1 + ∆W + W2 = (1/2)(m0 + ∆m)v2 + (1/2)∆mv(s0)2 (23)
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The kinetic energy of the mass when it hits the ground is

Wk = (1/2)(m0 + ∆m)v2 (24)

Notice that W > Wk. This is so because the mass ∆m must be accelerated to
the speed v(s0) very fast. This mass is not accelerated by the gravitational force,
it is accelerated by the falling mass that already has quite high velocity.

We can do a similar calculation from the formula m = γm0. Here there are small
additions of mass dm all the time when s grows from zero to h.

dW = c2dm = v2dm + mvdv (25)

Notice that

c2dm = vmdv

∞
∑

k=0

(v2/c2)k (26)

v2dm = vmdv
∞

∑

k=1

(v2/c2)k (27)

The first term in c2dm gives the kinetic energy (1/2)mv2 and the other terms
are in v2dm. Indeed

Ek = (1/2)mv2 = γ

∫

γ−1(c2dm − v2dm) (28)

We get
W = (m − m0)c2 (29)

Wk = (1/2)mv2 (30)

and again
Wk < W (31)

The relativistic mass is not in the kinetic energy of the moving mass. The mass
m − m0 does not exist. It is simply a mathematical trick to calculate with an
effective mass and to get correct results in some situations. The real explanation
of the mass m − m0 is that the force gets weaker if the relative velocity of the
field and the mass grows.

4. References
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1.5 Gravitational time dilation and
weakening of the interaction force

Abstract:

The article explains why there cannot be speed dependent time dilation or mass
change and how all measured effects come from a change of interaction forces.
Then the article gives a simple model for an interaction and from this model
derives explanations for the relativistic mass formula and gravitational time
dilation.

1. A model for the interaction force

Speed and acceleration of an object are determined by our choice of the coordinate
system. Our choice of the coordinate system cannot in any way change anything
that happens in the world, it only shows the same behavior from a different
coordinate system. Therefore no property that can be observed to change can
depend on the velocity or acceleration of the object. Especially this means that
the mass cannot depend on velocity as in the relativistic mass formula and
time cannot depend on the velocity of an inertial frame as it is in the Lorentz
transform. What has been measured and seems to verify formulas of this type
has alternative explanations.

One explanation possibility is that there is a preferred frame of reference, but
there seems to be no single preferred frame of reference. The speed of light
on the Earth seems to be constant to each direction and the inertial frame of
reference of the Earth hardly can be the single preferred frame of reference in
the Universe. Instead, there seem to be many local frames of reference moving
with large mass bodies and these frames of reference may therefore depend on
the rest frame of the gravitational field of the mass body.

A simple explanation is that the speed and acceleration of an object that can
cause observable changes can only be the relative speed or acceleration with
respect to a force field.

The Lorentz transform comes naturally if we assume that the cause of mass
change is the weakening of a force if the object moves very fast. First we need a
model for an interaction.

In Newton’s gravitation law the interaction is between two masses. An inter-
actions between the Sun and the Earth should take eight minutes, or sixteen
minutes if the interaction is two-ways. Such a long delay should give a different
orbit for a planes than what comes from Newton’s gravitation law where the effect
of the force is immediate from any distance. Yet Newtonian physics predicts the
orbit of a planet rather well. This means that the action of the force must be
very fast, yet gravitation should proceed with a finite speed, probably with the
speed of light. This apparent problem is solved by assuming that a gravitational
interaction is local between the field and the test mass, and we will make this
assumption.
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Let us assume that in one chosen interaction the interaction distance is some
short distance ∆L. We will propose a model for a gravitational interaction, but
it can also be used for attractive Coulomb force.

Some point of the field that is close to the test mass m contains a small mass
that sends to the mass a message with the content

1) a mass at P sends (−∆m)(c̄) —> m

The mass m absorbs this message and gets the momentum ∆p = −(∆m)c, which
causes the mass m to move towards the point P in the field where this message
came from.

2) the test mass m receives the message and moves towards P

The mass responds by sending two messages, one towards the point where the
message from the field came from and the other to the opposite direction. The
sum of the momentums of these two messages is zero. We need these messages
because the mass m must respond to the mass at P :

3) <—- (−∆m)(−c̄) m sends —-> (−∆m)(c̄)

Sending the message in the step 1) takes the time ∆T and sending left the
message in the step 3) takes the time ∆T if the field and the mass m do not
have relative speed.

The field passes the message 3) forward in the following way. The field has very
many small masses, one of them being at the point that generated message 1).
The field is basically incompressible but for a short time it can be compressed

4) the mass at P absorbs (−∆m)(−c̄) and moves to the right

but very soon it returns to where it was and sends the message

5) <—- (−∆m)(−c̄) mass at P returns to its place and sends.

The mass at P also sends two messages, similarly as m sends the messages in 3),
because it is a mass and all masses should behave in the same way:

6) <—- (−∆m)(−c̄) mass at P sends —-> (−∆m)(c̄)

The interaction passes many similar points P , always staying as a local two-way
exchange of messages. Finally the interaction comes to the mass M that created
the gravitational field.

The mass M absorbs this message and gets the momentum ∆p = −(∆m)c,
which causes the mass to move towards the point in the field where this message
came from.

7) M receives the message and moves towards the last point P

The mass M sends two messages, one towards the point where the message from
the field came from and the other to the opposite direction. The sum of the
momentums of these two messages is zero.
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8) <—- (−∆m)(−c̄) M sends —-> (−∆m)(c̄)

The two-way interaction between the field and the test mass m is 1) and the left-
side message in 3). The two-way exchange of messages is because a force always
causes a counter force and because if two masses move because of gravitation
attraction between them, they both move. The force is both ways. We must
make this two-way exchange local, not between the end-points, because the
interaction must be very fast. This is why there are the sendings of pairs of
messages to both directions.

The interaction can go through all possible paths: in Newtonian gravitation
theory the field created by a point mass M at the origin at the distance r is
the same as a field created at the distance r by the same size mass M which is
distributed with constant density over a ball of radius R centered at the origin.
Iteratively this result shows that the field is the same if we let the force lines
come from the mass M to the test mass m at the distance r through all possible
paths.

The additions of momentum in this interaction model have negative masses
−∆m. This is necessary because the force is attractive. It does not need to
mean anything mystical, like negative masses or negative frequencies. If there is
a baseline frequency and the momentum is e.g. p = hλ, then λ that is sufficiently
much above the baseline means negative momentum if we assume that a baseline
momentum does not make a test mass move, e.g., the energy is consumed by
the process and atoms can buffer the baseline momentum packets. Something of
this type could be proposed, but at the moment the model does not have such
details.

2. The explanation of the relativistic mass formula

Let the mass move with the speed v with respect to the field in two situations. In
the first case the distance ∆L is in the same direction as v̄. Then the time ∆T1

for sending 1) is solved from c∆T1 = ∆L + v∆T1, i.e., ∆T1 = L/(c − v). The
time ∆T2 for sending 3) comes from c∆T2 = ∆L − v∆T2, i.e., ∆T2 = L/(c + v).
The other messages need not be considered. The interaction time is

∆Tv = ∆T1 + ∆T2 =
2∆L

c
γ = γ∆T

where γ = 1/
√

1 − (v/c)2 is the Lorentz factor.

In the second case ∆L is orthogonal to v̄. Then

(c∆T1)2 = (∆L)2 + (v∆T1)2

(c∆T2)2 = (∆L)2 + (v∆T2)2

Again

∆Tv = ∆T1 + ∆T2 =
2∆L

c
γ = γ∆T

57



In both cases we get the same result. If we imagine that the force Fv that is
applied in the situation that the mass m moves with the speed v with respect
to the field is the same F that is applied when there is no relative speed, then
we will conclude that the mass m has grown to mv because we get the same
trajectory. One interaction adds v by ∆v. The acceleration is

a =
∆v

∆T

in the case that there is no relative speed. The force is

F = ma = m
∆v

∆T

If there is relative speed, the acceleration is

av =
∆v

∆Tv
= γ−1a

The force is
Fv = mva = mvγ−1a

The equation gives
mv = γm

the relativistic mass.

Notice that all forces in the rest frame of the field will see the mass as the
relativistic mass. Above we have two situations: one where the force accelerates
the mass (v points to the same direction as ∆L) and one where the force deviates
the trajectory of the mass (v is orthogonal to ∆L). Both cases give the same
relativistic mass.

3. The explanation of the gravitational time dilation formula

All clocks do not slow down in a stronger gravitational field. A pendulum clock
speeds up, but an atomic clock does slow down. We will show in this section
that gravitational time dilation does not mean that a local time is different in
a stronger gravitational field. The question is of the interaction between the
gravitational field and an atomic clock.

An atomic clock measures time from resonant frequencies of atoms. Electron
states in an atom are on different energy levels and electrons make transitions
between states. One can calculate the energy levels e.g. from the Schrödinger
equation. The Schrödinger equation includes the mass m. For an atomic clock
the mass m that is in the equation is the mass of the nucleus. If the mass m
changes, the time that the clock is measuring changes.

Let us consider two identical atomic clocks. One is on the Earth surface at the
distance R from the center of the Earth and the other one is at the distace
r from the center of the Earth. The second atomic clock can e.g. be a GPS
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satellite clock. We will denote the masses of the atomic nucleus in these two
clocks by m = mR and mr and the energy levels by E and Er.

In simple applications of the Schrödinger equation the energy levels are inversely
proportional to the mass of the nucleus m and mr. Therefore the ratio of the
energy levels E an Er is inversely proportional to the ratio of the masses

Er

E
=

m

mr

It follows that the energy level difference is also be inversely proportional to
the ratio of the masses. The energy level differences determine the resonance
frequency and the resonance frequency divided by a large constant is the ticking
time of the clock.

Fortunately, gravitational time dilation has been measured in many experiments
and we know that the result in the General Relativity Theory is correct. The
correct time dilation is

tr = t
1

√

1 − 2GM
rc2

and the resonance frequency therefore is

fr =
1
tr

= f

√

1 − 2GM

rc2

Assuming that the energy levels are inversersely proportional to the masses m
and mr (as it seems to be in this case), we get the correct result if

mr = m
1

√

1 − 2GM
rc2

.

Thus, we should get a kind of a relativistic mass formula.

In the Schrödinger equation potential energy is changed to kinetic energy. One
can say that an atomic clock has a mass, the mass of the nucleus, and a spring.
The spring is the electrostatic force between the positive charge of the nucleus
and the negative charge of the electron belt. We can express this spring as a
force that moves the mass of the nucleus. The question is what mass of the
nucleus this force sees.

The force that moves the mass in an atomic clock is in the same frame of reference
as the gravitational field, both rotate once in 24 hours. The gravitational force
acts as acceleration. A stronger gravitational field means stronger acceleration.
Stronger acceleration makes the relativistic mass bigger, thus the mass appears
bigger when there is stronger gravitational field. It appears bigger to all forces
in that same frame of reference, especially the mass of the nucleus seems bigger
for the oscillating force of the atomic clock, the electrostatic spring. In the GPS
satellite clock the acceleration is smaller. For force that makes the mass of the
nucleus oscillating in the GPS satellite clock the mass seems lighter.
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The gravitational accelerations are:

g = G
M

R2

gr = G
M

r2

We can treat the situation as if the mass of the nucleus were accelerating because
of gravitation. Using the same method as in Section 2, we can calculate the
forces

F = ma = m
2∆L

∆T

Fr = mrar = mr
2∆L

∆Tr

where ∆L is he interaction distance and ∆T and ∆Tr are the interaction times.
We set Fr = F in order to get the relativistic mass mr.

mr

m
=

∆Tr

∆T

It remains to find ∆Tr. In Section 2 we derived

∆Tv =
1

√

1 − v2

c2

∆T

but now we do not have velocity. We have potential.

This problem can be solved with a special application of the equivalence principle.
Einstein wanted that the equivalence principle should hold always. An example
at the end of this section shows that it does not hold always, but it is very
convincing that it must hold in the lift example: if a mass is placed on a lift, the
mass cannot know if the lift is going up in accelerated motion or if the lift is
in a gravitational field, provided that the acceleration equals the gravitational
acceleration.

The mass mr is in a lift in a gravitational field with the gravitational acceleration
g. The potential energy of the mass mr of the nucleus on the distance r from
the center of the Earth with mass M is

E = G
Mm

r
.

If the mass mr would be in an accelerated lift, then instead of potential energy,
the mass would have equal amount of kinetic energy:

1
2

mv2 = G
Mm

r
.

This gives us v2

v2 =
2GM

r
.
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We insert this v2 in the expression of ∆Tr = ∆Tv. Then

∆Tr

∆T
=

1
√

1 − 2GM
rc2

We get the same expression for gravitational time dilation as in the General
Relativity Theory

Er

E
=

m

mr
=

∆Tr

∆T

f

fr
=

tr

t
=

1
√

1 − 2GM
rc2

tr = t
1

√

1 − 2GM
rc2

.

Notice that the gravitational time dilation is also phenomenological. The time
is not in reality changed. The force is weakened. The mass growth is not real.
But what is completely real is the changed energy levels. The gravitational force
keeps the nucleus mass is its grep so that the mass cannot oscillate as it used to.
Therefore the gravitational time dilation is a real measurable behavior. Only
it does mot mean that in high gravitational field time is actually any different,
only masses are more difficult to move, so the oscillation time is different and an
atomic clock shows a different time.

In the General Relativity Theory explanation of the GPS clock dilation the
dilation is the sum of the gravitational time dilation and the Lorentz transform
time dilation. The latter time dilation cannot exist, but there is the acceleration
time dilation because the orbit of the satellite is curved. In order to get the
acceleration dilation we only need to derive v from acceleration and insert it to
the expression of ∆Tr = ∆Tv.

In the muon in laboratory experiment there cannot be Lorentz transform time
dilation for the muon, but the muon is created and accelerated before it comes to
the bubble chamber. Because of acceleration time dilation the muon is younger
and lives longer.

Consider two identical masses that exercise to each others an attractive force and
both have already reached a high velocity because of this force. Which mass is
larger? Of course, the situation is fully symmetric and the masses must be equal.
Both masses feel that the other mass has grown and has higher both inertial
and gravitational masses. But at the same time, the gravitational force coming
from the other mass is smaller, so its gravitational mass is larger only when it
is seen as the test mass, but smaller when it is seen as the mass creating the
field. This example shows that the equivalence principle does not hold always.
It is always better just to think of how the force has changed and not to go to
changes of masses or times or lengths. All that is only an illusion.
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Mass means many different things. There is mass that turns to energy when
a nucleus is splitted. That is binding energy. It appears as gravitational mass
when the results of a reaction are weighted. There is relativistic mass, which
is an illusion of inertial mass. But there are masses of elementary particles.
They are discrete, but a particle, antiparticle pair can turn to energy. Mass also
appears as residues in the Laplace operator equation. There it is singularities
and if the singularities are replaced by a continuous function, then there are no
residues and the Laplace operator gives zero. Mass is something real and active,
it sends messages, i.e., force lines. Therefore mass does not change, but mass
may seem to be changing.

Time is not a coordinate of our space. The space that we have is a three-
dimensional space, and there is additionally time. Space and time should not be
treated as space-time. This is why time does not have real dilation.

This short note is a part of the series [1]-[3].
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PART 2. SPECIAL RELATIVITY THEORY

Paper 2.1 shows that the Lorentz transform does not make the speed of light
constant in the moving frame of reference. Einstein forgot to take a projection
of the points in the moving frame coordinates to the time axis when calculating
the time difference. As a consequence of this error. whole SRT is false. Section 4
of rPaper 2.1 includes my first proof that the General Relativity Theory cannot
approximate Newtonian gravitation field of a spherical mass, meaning that no
empirical tests of GRT can possibly verify GRT as the theory cannot even
produce a field that could apply to those experiments.
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2.1 Essential Questions in the Relativity Theory

Abstract: Though the Relativity Theory is over 100-years old, some questions
still remain. Section 2 asks if the time values in the moving frame of reference
R′ in the Lorentz Transform should not be taken by projecting the values on
the t′-axis because the coordinates of R′ have a time shift. Section 3 asks if the
Lorentz Transform leads to a contraction: if the Earth is taken as the moving
frame R′ and a fixed frame R is imagined, then apparently the speed of light
c can be set to any chosen value. This seems curious. Section 4 asks if the
General Relativity Theory actually can approximate the Newtonian gravitation
potential in our solar system because locally constant speed of light does imply
that the gravitation field is a scalar field and the Einstein equations do not allow
any solutions that approximate the Newtonian gravitation field in the case of
a single point mass in an empty space. This also seems a bit strange. Finally
Section 5 asks if the Relativity Theory really is verified by several experiments
and if the reason that the Relativity Theory is considered verified could be that
manuscripts that raise questions like the presented one are not given a careful
review.

1. Introduction

The Lorentz Transform in two dimensions is

x′ = γ(x − vt), t′ = γ
(

t − v

c2
x

)

, where γ =
(

1 − v2

c2

)− 1
2

. (1)

Let us take two points (x1, t1) = (0, 0) and (x2, t2) = (L+vT, T ). The coordinates
x and t are orthogonal, thus the projection to the x-axis is simply the first number
x in the pair (x, t), and the projection to the t-axis is simply the second number
t. Therefore the difference of the two points in the projection to the x-axis is
L + vT = x2 − x1 and difference of the two points in the projection to the t-axis
is T = t2 − t1. The coordinates x′ and t′ obtained from the Lorentz Transform
for the moving frame of reference R′ by transforming the normal orthogonal
coordinates (x, t) of the fixed frame R are not normal orthogonal coordinates:
they have a time shift. This time shift means that the time difference between
points (x′

1, t′
1) and (x′

2, t′
2) where x′

1 Ó= x′
2 must be done by first projecting both

points to the same vertical line x′ = a, usually to the t′-axis, x′ = 0. When the
projections are made, the speed of light of light is not constant c in R′. Section
1 Figure 1 shows how to do the projection in R and Figure 2 shows how the
projection looks like in R′.

One may think that the Lorentz Transform could still be used without taking
these projections as one possible way to define a coordinate system in R′. Section
3 shows that this is not possible. The time shift −(v/c2)x in the time transform
formula causes a contradiction. This time shift cannot be in the transform and
as it is the only possible time shift that makes the speed of light constant in R′
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(albeit with a wrong calculation that is not taking the projections correctly), the
speed of light in R′ cannot be constant c in any linear transform.

Section 4 shows two issues in the General Relativity Theory (GRT). The first is
that the Newtonian gravitation potential does not nearly satisfy field equation
of GRT. This is not necessarily an error because there still might be a solution
for the GRT field equation that is close to the Newtonian gravitation potential,
that is, it might work in the other direction. This is not the case. The second
issue shown in Section 4 is that if light has locally constant speed c, then the
gravitation field must be a scalar field and GRT does not have scalar field
solutions that are close to the Newtonian gravitation field.

Section 5 discusses briefly why many experiments that seem to show that
the Relativity Theory is verified do not prove the theory correct. In general,
experiments where a theory predicts correctly do not prove the theory: there
can always be alternative theories that also predict all these cases correctly, but
a single experiment where a theory fails does refute the theory. Section 5 gives
such a refuting experiment for the Special Relativity Theory (SRT): from SRT
follows that it is possible to set c, the speed of light in vacuum, to any chosen
value, like to 1 m/s, simply by imagining a frame R. If this experiment is made,
the prediction from SRT is certainly not fulfilled: imagination does not change
the speed of light. In the case of the General Relativity Theory it is shown
in Section 4 that GRT cannot give solutions that are close to the Newtonian
gravitation potential in a situation that is close to the situation in our solar
system. Therefore none of the experiments of GRT that have been done in our
solar system and are claimed to verify GRT can do it: GRT cannot be used in
our solar system as it cannot give the gravitation field that there is in our solar
system. It is the single experiment that refutes the theory.

2. Projections of time shifted coordinates in the Lorentz Transform

Let us set x′ = 0 as a vertical line. Thus, the line t = v−1x is shown as a vertical
line from the origin, it is the t′-axis. The line when t′ = 0 is line t = ( v

c2 )x. It is
the x′-axis and shown as a horizontal line in the (x′, t′)-plane.

Figure 1 shows in the (x, t)-plane the lines t = v−1x, t = ( v
c2 )x, the line of light

sent to the positive x-axis from the origin: t = c−1x, and the line t = v−1(x − L)
of the receiver of light starting at the position (L, 0) and ending to the position
(L + vT, T ) at the time T when light sent from the origin arrives to the receiver.
As L + vT = cT we get L = (c − v)T .

Additionally Figure 1 shows point P 1 where the preimage of the t′-axis, i.e., the
linet = v−1x, intersects with a line parallel to the preimage of the x′-axis, i.e.,
the line t = ( v

c2 )x, going through the point (L + vT, T ). The line parallel to the
line t = ( v

c2 )x and going through the point (L+vT, T ) is t = ( v
c2 )x+γ2T −( v

c2 )L.

Intersecting it with t = v−1x gives the point P1 as
(

cv
c+v T, c

c+v T
)

. Its image in

the (x′, t′)-plane is P1′ which is
(

0, γ
(

1 − v
c

)

T
)

.
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Figure 1 still shows one point, P2, which is the intersection of a line parallel
to the preimage of the x′-axis, i.e., the line t = ( v

c2 )x, going through the point
(L, 0) and the the preimage of t′-axis, i.e., the line t = v−1x. The line parallel to
the line t = ( v

c2 )x going through (L, 0) is t = ( v
c2 )(x − L). Intersecting it with

t = v−1x gives P 2 as (−( v2

c2 )γ2L, −( v
c2 )γ2L) and its image is the point P 2′ which

is (0, −γ v
c2 L). Figure 2 displays the points P1′ and P2′ in the (x′, t′)-plane.

Figure 1. The points and lines shown in the (x, t)-plane.
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Figure 2. The points P1′ and P2′ shown in the (x′, t′)-plane. The time light
travels in R′ is the time from P2′ to P1′.

In Figure 2 we have denoted

T ′
1 = γ(1 − v

c
)T =

√

c − v

c + v
T. (2)

Light starts in (x.t)-coordinates at the point (0, 0) at the time t = 0, but Figure
1 shows that the projection of (L, 0) is P2 and the projection of (L + vT, T ) is
P 1 in (x, r). The projection P 2 means that according to a clock placed in x = L
the starting time on the t′-axis (i.e., the line t = x/v) is the time coordinate in
P , which is t = −γ2(v/c2)(c − v)T . This shows that fixed clocks placed in R′ to
x′ = L′ and x′ = 0 do not have the same originl in their times. There is a time
shift.

We are familiar with time shifted coordinate systems, they appear in our everyday
life as timezone differences between countries and regions. As an example, flying
from Helsinki to Warsaw takes two hours and there is one hour timezone difference.
If time is measured by local clocks at the end points, then the flight takes three
hours one way and one hour the other way. The flight time is not three hours
one way and one hour the other way. In order to calculate the flight time we
must project both times to a single time, for instance to the Greenwich time,
and only then subtract them. Should the flight from Helsinki to Warsaw some
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day take two hours both ways, then we can be certain that there is very heavy
wind and the flight time is not the same both ways.

Let us measure the travel time of light by using one clock that is stationary
in R′. We can use a clock that is stationary in R′ at L′ = γL. According to
this clock light starts at x′ = 0 at the time −γ( v

c2 )L′. According to this clock
light is received at x′ = L′ at the time T ′

1. The time T ′ that light travels in
(x′, t′)-coordinates is the time difference between the points P 2′ and P 1′. We get

T ′ = γ(1 − v

c
)T + γ(

v

c2
)L = γ(1 − v

c
)T + γ(

v

c2
)(c − v)T = γ−1T. (3)

Thus, the speed of light in R′ to the positive x′-axis is

c′ =
L

T ′ =
γL

γ−1T
= γ2 L

T
= γ2(c − v). (4)

The time T ′ is the same as what we get by measuring the time in (x′, t′)-plane
with a clock fixed at the origin of (x′, t′), i.e., having the equation x = vt. Then

T ′ = t′ = γ(T − (
v

c2
)vT ) = γ(1 − v2

c2
)T = γ−1T. (5)

This is natural, in time shifted coordinates we can measure the travel time by
using any clock that is stationary in R′.

The error in the Lorentz Transform is to think that the projection on the t′-axis
is T ′ = t′

2 − t′
1. If this were the case, then we would get

T ′
1 = γ

(

t − v

c2
x

)

= γ
(

T − v

c2
cT

)

= γ(1 − v/c)T. (6)

as the time light travels in R′. Then the speed of light would be

c′ =
L

T ′
1

=
γL

γ(1 − v
c )T

=
γ(c − v)T

γ(1 − v/c)T
= c. (7)

However, this is wrong. Figure 1 shows that the line from (0, 0) to P1 has the
same length and direction as the line from (γ2L, (γ2 − 1) L

v ) to (L + vT, T ). Both

have the x-coordinate difference T cv
c+v and the t-coordinate difference T c

c+v . Thus,
the time value T ′

1 = γ(1 − v
c )T in the time coordinate of P1′ is the time light

travels from the image of (γ2L, (γ2 − 1) L
v ) to the image of (L + vT, T ).

Yet, some supporters of SRT may argue that we can in some way ignore the
projections and calculate as in SRT. This is not possible as the next section
shows: it leads to a serious contradiction.
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3. The time shift in the Lorentz Transform gives a contradiction

The contradiction is derived in Steps 1-4.

Step 1. The one-way speed of light has been directly measured in the close
vicinity of the Earth e.g. by relaying them through a satellite. We know that
the speed of light c′ in the close vicinity of the Earth is about 3 ∗ 108 m/s. Let
us select orthogonal (x′, t′) coordinates on the Earth and and send a microwave
signal from the origin (0, 0) to a receiver that is at (−L′, 0) in the time t′ = 0.
The length L′ can be for instance 30 km. Light travels the path (0, 0) to (−L′, T ′)
and T ′ is about 100 microseconds, quite in a measurable range. The speed of
light c′ = L′/T ′ is about 3 ∗ 108 m/s. It is in fact the speed of light in the
atmosphere, but does not much differ from the speed of light c in vacuum.

Step 2. Next we consider the Earth as the frame R′ for some other frame R
that we can either imagine or select. R has normal orthogonal coordinates (x, t)
and the Lorentz Transform gives the transform (x, t) → (x′, t′). Thus, the origin
of (x, t) is mapped to the origin (x′, t′) and so on, all as it is in the Lorentz
Transform. Notice that the (x′, t′) coordinates of R′ are not the same as the
(x′, t′) coordinates of the Earth in Step 1. In the (x′, t′) coordinates of the Earth
in Step 1 there is no time shift and the signal travels the path (0, 0) to (−L′, T ′).
In the (x′, t′) coordinates of R′ the light beam (i.e., the microwave signal) travels
the path from (0, 0) to (−L′, T ′ − (−(v/c2)(−L′)) because this coordinate system
has a time shift. On the t′-axis there is no time shift and we select the (x′, t′)
coordinates of R′ so that both (x′, t′) coordinate systems completely agree on
the t′-axis. Thus, the line segment (0, 0) to (0, T ′) in the (x′, t′) coordinates of
the Earth maps to the line segment (0, 0) to (0, T ′) in the (x′, t′) coordinates
of R′. We notice that L′ of the coordinates of the Earth maps to L′ of the
coordinates of R′, i.e., on the Earth the wave is received is at the point (−L′, T ′)
and in R′ the wave is received at the point (−L′, T ′

2), T ′
2 = T ′ − (v/c2)L′ giving

T ′
2 = γ(1 + v/c)T . The x′-coordinate of these points is the same. Thus, we have

transformed L′ and T ′ from the (x′, t′) coordinates of the Earth to the (x′, t′)
coordinates of R′ and L′/t′ = c′ is about 3 ∗ 108 m/s.

Step 3. In this step we consider only R. The preimage of the line segment (0, 0)
to (0, T ′) in R′, i.e., the sending and receiving times of the wave on the Earth,
is the line segment (0, 0) to (vT, T ) in R. The coordinates (x, t) of R are normal
orthogonal coordinates, there is no time shift: the time difference between the
points (0, 0) and (vT, T ) is T . It is the time the wave travels in R. From the
Lorentz Transform we get T ′ = γ(T − (v/c2)vT ) = γ−1T . In R the length L′

corresponds to a moving rod with (moving) length L. The left end of the rod
is at the point (−L, 0) at the time t = 0 and moves with the speed v to the
right, i.e., has the equation x = −L + vt. Light is sent from (0, 0) at the time
t = 0 and it moves to the left. According to the Special Relativity Theory the
speed of light in R is c, thus the equation of light is x = −ct. The receiver
meets the light beam in R at the time T which satisfies −L + vT = −cT , thus
L = (c + v)T . The meeting is at the x value x = −cT . Transfering the line
segment (0, 0) to (−cT, T ) to R′ gives the line segment (0, 0) to (x′, t′) where
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x′ = γ(−cT − vT ) = −γL and t′ = γ(T − (v − c2)cT ) = γ(1 + v/c)T . Thus,
L′ = γL and we can verify that γ(1 + v/c)T is indeed T ′

2 = T ′ − (v/c2)L′, as it
is.

Step 4. We already have all that is needed for the contradiction: c′ = L′/T ′,
T ′ = γ−1T , L′ = γL and L = (c + v)T . Thus

c′ = L′/T ′ = γ2L/T = γ2(c + v) = c2/(c − v) = kc

where k = c/(c − v) i.e., v = v(1 − 1/k). The value c′ is measured on the Earth
and is about 3 ∗ 108 m/s. We can by selecting k set the speed of light to any
chosen value c = c′/k. Considering that in SRT, the speed of light in vacuum is
a universal constant, we hardly should be able to set it to any value simply by
imagining frame R.

This contradiction shows that it is not possible to have a theory with the time
offset −(v/c2)x′ in the transform formula for t′. Therefore it is not necessary to
argue at all with people who maintain that the time values in the time shifted
coordinate system R′ do not need to be projected to the time axis and there is
some mathematically sound way to calculate in SRT. There is no such sound
way, there is a serious contradiction in SRT.

4. The General Relativity Theory does not approximate Newtonian
gravitation

The gravitation field on the Earth and close to the Earth appears to be very close
to the Newtonian gravitation potential. We will first show that the Newtonian
potential does not nearly satisfy the field equation of GRT as one might expect
if Newtonian gravity is an approximation of the more correct theory GRT. The
Newtonian potential is

ϕ = ϕ(r) = −Gρ

r
. (8)

It is the solution to the Newtonian field equation

∆ϕ = −4πGρ. (9)

Let us assume that the mass is a spherical mass with a finite radius. In the
empty space outside this radius ρ is constant and we have

∂2

∂x2
ϕ = Gρ

1
r5

(r2 − 3x2). (10)

By symmetry
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∆ϕ =
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ϕ = Gρ
1
r5

(3r2 − 3x2 − 3y2 − 3z2) = 0.

(11)

Thus, in the empty space outside the mass the solution fulfills the equation

∆ϕ = 0. (12)

In the same way, if we solve the field equation of GRT

Rab − 1
2

Rgab = k0Tab − λgab (13)

in the empty 4-space outside a spherical mass. The equation reduces to

Rab =
(

1
2

R − λ

)

gab. (14)

The Newtonian gravitational potential (8) yields in orthogonal local coordinates
the following metric

ds2 = c−2g00φ2 − g11φ2 − g22φ2 − g33φ2 (15)

For easier notations in equations of GRT c is usually set to one by rescaling
seconds and meters. In (13) and (14) c = 1. We will follow this convention, but
in (23) c is shown as (23) is needed later. For any scalar potential field ψ, the
metric gab corresponding to the field ψ in Cartesian coordinates (t, x, y, z) where
x0 = t, x1 = x x2 = y, x3 = z and the signs are (+,-,-,-), is given by

g00 = ψ2, g11 = −ψ2, g22 = −ψ2, g33 = −ψ2,

and gab = 0 if a Ó= b. (16)

In spherical coordinates (t, r, θ, φ), where x0 = t, xź = r, x2 = θ, x3 = φ and the
signs are (+,-,-,-), the metric is given by

g00 = ψ2, g11 = −ψ2, g22 = −ψ2r2, g33 = −ψ2r2sin2θ,

and gab = 0 if a Ó= b. (17)

For any orthogonal metric (i.e., gab = 0 if a Ó= b) holds

gaa = 1
gaa

(18)

and the Christoffel symbols satisfy (the notation gab,c = ∂cgab) the following:

Γa
aa = 1

2 gaagaa,a, (19)
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Γa
ba = 1

2 gaagaa,b , if a Ó= b

Γa
bb = − 1

2 gaagbb,a , if a Ó= b

Γa
bc = 0 , if a Ó= b, a Ó= c and c Ó= b.

In order to get the Einstein equations we calculate the Christoffel symbols for
the metric in both coordinate systems. Then we calculate the Ricci entries

Rbd = Ra
bad = Γa

bd,a − Γa
ba,d + Γe

bdΓa
ae − Γe

baΓa
ed. (20)

All ways to do the calculation are tedious. One way to calculate is the following,
it may be easier to program as an algorithm than some others. In an orthogonal
metric

Rjj =
4

∑

i = 0
i Ó= j

{

1
4

giigii,j

(

gjjgjj,j − giigii,j

)

− 1
2

∂j

(

giigii,j

)

}

(21)

− ∑4

i = 0
i Ó= j











1
4 giigjj,i







∑4

k = 0
k Ó= j

gkkgkk,i − gjjgjj,i






+ 1

2 ∂i (giigjj,i)











, j = 0, 1, 2, 3

In an orthogonal metric the off-diagonal Ricci entries have the equation

Rij = 1
4

∑4

k = 0
k Ó= i, k Ó= j

gkkgkk,i

(

giigii,j − gkkgkk,j

)

+ 1
2 ∂i (giigii,j)

− 1
2 ∂j







∑4

k = 0
k Ó= j

gkkgkk,i






+ 1

4 gjjgjj,i

∑4

k = 0
k Ó= i, k Ó= j

gkkgkk,j . (22)

The off-diagonal Ricci entries are zero both in Cartesian and in spherical coordi-
nates. After a fairly long calculation the result is as follows.

For Cartesian coordinates the nonzero Ricci entries are:

R00 = − 1
c2

ψ−1
�ψ + 3ψ−2

(

∂ψ

∂t

)2

+
1
c2

ψ−2
3

∑

i=1

(

∂ψ

∂xi

)2

− 2ψ−1 ∂2ψ

∂t2
(23)

Rii = ψ−1
�ψ + c2ψ−2

(

∂ψ
∂t

)2

− ψ−2
∑3

i=1

(

∂ψ
∂xi

)2

− 2ψ−1 ∂2ψ
∂x2

i

+ 4ψ−2
(

∂ψ
∂xi

)2

for i = 1, 2, 3
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where we wrote xi as xi in order not to confuse an index with a power. The
box � is the D'Alembertian and the signs (i.e., ηab) are (+,-,-,-). In Cartesian
coordinates

� = c2∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 . (24)

The Ricci scalar

R = gaaRaa (25)

for the metric given by a scalar field is

R = c2ψ−2R00 − ψ−2R11 − ψ−2R22 − ψ−2R33 = −6ψ−3
�ψ. (26)

For spherical coordinates the nonzero Ricci entries are (when c = 1)

R00 =
1
2

ψ−2

{

∂2ψ2

∂r2
+

1
r2

∂2ψ2

∂θ2
+

1
r2sin2θ

∂2ψ2

∂φ2
− 3

∂2ψ2

∂t2

}

(27)

+
1
2

ψ−2

{

2
r

∂ψ2

∂r
+

1
r2

cotθ
∂ψ2

∂θ

}

+
3
2

ψ−4

(

∂ψ2

∂t

)2

R11 =
1
2

ψ−2

{

−3
∂2ψ2

∂r2
− 1

r2

∂2ψ2

∂θ2
− 1

r2sin2θ

∂2ψ2

∂φ2
+

∂2ψ2

∂t2

}

+
1
2

ψ−2

{

−2
r

∂ψ2

∂r
− 1

r2
cotθ

∂ψ2

∂θ

}

+
3
2

ψ−4

(

∂ψ2

∂r

)2

R22 =
1
2

ψ−2

{

−r2 ∂2ψ2

∂r2
− 3

∂2ψ2

∂θ2
− 1

sin2θ

∂2ψ2

∂φ2
+ r2 ∂2ψ2

∂t2

}

+
1
2

ψ−2

{

−4r
∂ψ2

∂r
− cotθ

∂ψ2

∂θ

}

+
3
2

ψ−4

(

∂ψ2

∂θ

)2

R33 =
1
2

ψ−2

{

−r2sin2θ
∂2ψ2

∂r2
− sin2θ

∂2ψ2

∂θ2
− 3

∂2ψ2

∂φ2
+ r2sin2θ

∂2ψ2

∂t2

}

+
1
2

ψ−2

{

−4rsin2θ
∂ψ2

∂r
+ 3sinθcosθ

∂ψ2

∂θ

}

+
3
2

ψ−4

(

∂ψ2

∂φ

)2

.

The Ricci scalar in sperical coordinates gives the same equation also in spherical
coordinates
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R = gabRab = ψ−2R00 − ψ−2R11 − ψ−2r−2R22 − ψ−2(r−2sin−2θ)R33

= −6ψ−3
�ψ (28)

when the D'Alembertian is expressed in spherical coordinates and the signs are
set to (+,-,-,-). Ricci entries in Cartesian coordinates are easier to work with,
and in a small area in the empty space outside the mass we certainly can use
Cartesian coordinates.

The Newtonian gravitational potential (8) is a solution to the case of empty
space with a point mass at the origin. The Ricci tensor entries for the metric
are obtained from the potential field φ in (8) in Cartesian coordinates from (23).
∂0φ = 0 and �φ = −∆φ = 0, thus

R00 =
1
c2

3
∑

j=1

(∂jφ)2 =
1
c2

(

(

∂r−1

∂x

)2

+
(

∂r−1

∂y

)2

+
(

∂r−1

∂z

)2
)

=
1
c2

1
r2

Rii =
1
r2

+ 2
x2

i

r4
for i = 1, 2, 3. (29)

We notice that these entries are not zero, but the Ricci scalar is zero. In the
classical limit R00 = 0 but Rii Ó= 0 for i = 1, 2, 3. Especially Rii − c−2R00 is not
zero and it does not tend to any small number in the classical limit c → ∞.

In the case of a scalar field ψ and Cartesian local coordinates as in (16) and a
point mass in an empty space as in (14) any solution of the Einstein equations
(13) satisfies

R00 − c−2Rii =
(

1
2

R − λ

)

(

c2g00 − gii

)

=
(

1
2

R − λ

)

(

ψ2 − ψ2
)

= 0. (30)

Next we show that if the speed of light is constant, then the metric must
necessarily be induced by a scalar field. We assume that light travels along
geodesics of the gravitational field. From the place (x, y, z) and the time t light
can move an infinitesimally small distance to any direction. We can consider the
3-space and the time as a four-dimensional Euclidian space. In the Euclidean
4-space the infinitesimal movements would be (dx, dy, dz, dt), but we want to
give this 4-space a different metric. Therefore let the infinitesimal movements at
the place (x, y, z) and the time t be (Adx, Bdy, Cdz, Ddt) where A, B, C, D are
functions of the place (x, y, z) and the time t. The 3-dimensional sphere of the
metric at the place (x, y, z) and the time t is

dr2 = (Adx)2 + (Bdy)2 + (Cdz)2. (31)
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The requirement that light has the same speed c to each direction implies that
in any place (x, y, z) and at any time t holds

c =
Adx

Ddt
=

Bdy

Ddt
=

Cdz

Ddt
. (32)

Thus Adx = Bdy = Cdz. In the Euclian metric the infinitesimals in each
direction are equally long, i.e., |dx| = |dy| = |dz|. It means that A = B = C,
that is, the infinitesimal spheres of our 3-dimensional metric are round:

dr2 = A2dx2 + A2dy2 + A2dz2 and D =
1
c

A. (33)

Let us write A = −ψ, where ψ < 0 is a scalar gravitational field. The location
of our light spot in an infinitesimal sphere of the 4-dimensional space in the
geometry for gravitation field metric is

(−ψdx, −ψdy, −ψdz, −c−1ψdt) and the line element is

dr2 = ψ2dx2 + ψ2dy2 + ψ2dz2 + c−2ψ2dt. (34)

In the Minkowski space there is a pseudometric where ηaa = (+, −, −, −) the
line element in Cartesian local coordinates is

ds2 = −ψ2dx2 − ψ2dy2 − ψ2dz2 + c−2ψ2dt2. (35)

Identifying gii for a general metric in Cartesian local coordinates in a Minkowski
space

ds2 = −g11dx2
1 − g22dx2

2 − g33dx2
3 + g00dx2

0. (36)

we see that g00 = c−2ψ2 and gii = ψ2, i = 1, 2, 3. There is no other metric that
can yield the velocity of light as a scalar constant in the local environment. If
the speed of light is not a scalar constant, then it becomes a vector function
ci(x0, x1, x2, x3), i = 1, 2, 3. It is necessary that the speed of light is locally
constant in Einsteinian relativity theory as c appears in many equations in that
theory.

We notice that the metric that gives equal speed c of light to each direction
in any place (x, y, z) and any time t is necessarily created by a scalar field ψ
and the geometry is conformal: the space can expand and contract in any place,
but the infinitesimal sphere, if taken as a sphere of a 4-dimensional manifold, is
always perfectly round. This condition implies that angles are preserved.

Let us proceed to solve the Einstein equations in the case of an empty space
with a point mass at the origin. As the metric is induced by a scalar field,
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the case with a point mass in the origin gives �ψ = 0. Therefore also holds
R = −6ψ−3

�ψ = 0. The Einstein equations reduce to (30), which can be written
as

c2R00 = Rii. (36)

For everyi ∈ {1, 2, 3} in the expression of Rii in (23) there are only two terms
that are different for different i. We move all other terms in the expression (23)
for Rii to the left side of (36). Then the left side is the same for every i:

c2R00 − ψ−1
�ψ − c2ψ−2

(

∂ψ

∂t

)2

+ ψ−2
3

∑

i=1

(

∂ψ

∂xi

)2

= −2ψ−1 ∂2ψ

∂x2
i

+ 4ψ−2

(

∂ψ

∂xi

)2

(37)

and the right side can be written more compactly by using

∂

∂xi

(

∂ψ

∂xi
ψ−2

)

= ψ−2

(

∂2ψ

∂x2
i

− 2
(

∂ψ

∂xi

)2

ψ−1

)

(38)

The right side of (37) for i, j ∈ {1, 2, 3} gives the equations which lead to
the contradiction in finding an approximation for the Newtonian gravitation
potential:

∂

∂xi

(

∂ψ

∂xi
ψ−2

)

=
∂

∂xj

(

∂ψ

∂xj
ψ−2

)

. (39)

Equations (39) are solved by any function the form ψ = ψ(ρ) where ρ =
∑

xj ,
but the solution we need is close to the radially symmetric Newtonian gravitation
field in this special case of a single point mass in the origin. We will first show
that there is no solution ψ = ψ(r). Inserting ψ(r) to the left side of (39) gives

∂

∂xi

(

∂ψ

∂xi
ψ−2

)

= r−3ψ′ψ−3(−1 + x2
i r−3(3r − f + f ′/f)) (40)

where ψ′ = ψ′(r) = dψ(r)/dr and f = f(r) = ψ(r)′/ψ(r). The only way (39)
can hold is that the coefficient of x2

i is zero. Thus

3r = f − f ′/f = ψ′/ψ − f ′/f. (41)

Integrating gives
3
2

r2 + c = ln ψ − ln f = − ln(ψ′/ψ2) (42)

i.e.,
ψ′(r) = ψ(r)2Ce− 3

2
r (43)
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where c and C = exp(−c) are intergration constants.

Equation (43) is not possible. As ψ approximates the Newtonian gravitation
potential −GM/r, it grows as r−1. Therefore ψ′ grows as r−2 and not with
exponential dumping as in(43). Next, let usconsider if the solution ψ can be
something else than ψ = ψ(r). If the solution has cylinder symmetry, like the
Schwarzschild solution, the proof above still works as we only need a plane
(xi, xj) where the solution depends on the radius on that plane r = (x2

i +x2
j )−1/2.

The Schwarzschild solution is not a scalar field solution and does not have locally
constant speed of light. Let us consider a more general solution ψ = a/r where
a is a function that is close to −GM . Inserting ψ = r−1 + a to the left side of
(39) gives

∂

∂xi

(

∂ψ

∂xi
ψ−2

)

= r−1ψ−1

(

−1 +
x2

i

r2
+

∂a

∂xi

x

a

(

1 − r−2
)

− 2
a2

(

∂a

∂xi

)2

+
1
a

∂2a

∂x2
i

)

(44)

The term that should be cancelled is x2
j/r2. Keeping other xj constant, a is a

function only of xi.

If the term x2
j/r2 is obtained by the ∂a/∂xi term, then a as a function of xi

grows as
x

a

da

dxi
∼ −x2

i

r2
(45)

giving for the leading term of a

1
a

da

dxi
∼ −xi

r2
. (46)

Integrating yields for the leading term of a

ln(a) = − ln(r2) i.e., a = Cr−2 (47)

where C is an integration constant. This is impossible as a is close to −GM .

If the x2/r5 term is obtained from the (∂a/∂xi)2, then a as a function of xi

grows as

2
a2

(

da

dxi

)2

∼ x2
i

r2
(48)

giving for the leading term of a

√
2

a

(

da

dxi

)

= −xi

r
. (49)

Integrating yields the leading term of a

ln(a) = −2−1/2 ln(r) i.e., a = Cr−
√

1/2 (50)
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where C is an integration constant. This is impossible as a is close to −GM .

If the x2/r5 term is obtained from the ∂2a/∂x2
i term, then a as a function of xi

grows as
1
a

d2a

dx2
i

∼ x2
i

r2
. (51)

Writing
1
a

d2a

dx2
i

=
1
a2

da

dxi
+

d

dxi

(

1
a

da

dxi

)

(52)

∫

−x2
i

r2
dxi = −x2

i

r2
+

∫

2 ln(r)dxi

and integrating gives the leading term of a

−1
a

+
1
a

da

dxi
= −x2

i

r2
+

∫

2 ln(r)dxi. (53)

We get

a = exp
(∫ (

1
a

− x2
i

r2
+ C

)

dxi

)

exp
(

2
∫

ln(r)dxi

)

. (54)

Here C is an integration constant. The function a is almost constant. The first
integral can stay near a constant value when we let xi grow to large values where
xi/r is nearly one, or the first integral may grow or decrease as exp(C1xi), but
the second integral grows with a smaller speed than

∫

C1xi for any C1. It cannot
be compensated by the first integral, threfore a cannot stay close to −GM when
xi grows. Either a goes to zero, or a grows without limit.

All three cases fail to cancel the x2 term while keeping a close to −GM . This
means that ψ is not an approximation of the Newtonian gravitation field. This
result is natural. In Cartesian coordinates the terms Rii, i = 1, 2, 3, are all
symmetric but they depend on xi. If the solution is a function of r, we get the
term x2

i from Rii. Summing all terms Rii, i = 1, 2, 3, we get a function of r2.
This happens in the Ricci scalar. But in Einstein’s equations there is an equation
for each i. We can form the equation (40) relating i and j. The x2

i term cannot
be cancelled with the term x2

j and they cannot make r2. Thus, (40) cannot be
satisfied.

We conclude that there are no solutions to the Einstein equations (13) that ap-
proximate the Newtonian gravitation potential in the single point mass situation
and that have locally constant speed of light in vacuum.

5. About experiments that verify the Relativity Theory

There are many experiments that claim to verify the Special Relativity Theory,
but no finite number of experiments where a theory predicts correctly can ever
prove a theory correct, because there can be an alternative explanation that also
satisfies all these experiments and we can never know all possible alternative
theories. A single experiment where a theory predicts incorrectly refutes the
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theory. Let us give an experiment that refutes the Lorentz Transform and the
Special Relativity Theory. It is the contradiction from Section 3 formulated as a
physical experiment.

An experimenter has tools to measure speed of light in vacuum. Then he
considers the Earth as R′, the moving frame in the Lorentz Transform, and
imagines that there is frame R such that the frames have the mutual speed
v = 3 ∗ 108(1 − 1/3 ∗ 108) m/s. He can just imagine the frame R, the Lorentz
Transform states that now the speed of light c is about 1 m/s, see Section 3. The
experimenter checks if his imagining the frame R really did change the speed of
light in vacuum to 1 m/s. Needless to say, it did not. This experiment can be
repated: any number of experimenters can try to set the speed of light c to their
chosen value by imagining frame R. The speed of light never changes.

This impossible result comes because the Lorentz Transform has the term
−(v/c2)x in the time transform. This term must have this exact value it has or
else the speed of light is not constant in R′, but this time offset term cannot be
in the transform because if it is in the transform, then we can prove that c = 1
m/s. The proof does not violate or modify anything in the Special Relativity
Theory (SRT), Steps 1-4 in Section 3 are in accordance with SRT as can be
checked by the reader. Notice that the proof that c = 1 m/s does not need
the knowledge that times must be projected on the t′-axis in R′. It does not
make any projections in R′ and it does not need the traveling time of light in
R′. The proof uses the formula T ′ = γT . This formula comes because there is
the time shift and this formula is very, very wrong. The length L′ = γL and the
time T ′ = γ−1T are transforming in inverse way: the infinitesimal unit sphere
is deforming. This cannot be so. It is clear that Einstein knew this problem
because he defined the proper time as

t′ = γt

and not as t′ = γ−1t which would come from the Lorentz Transform as the
time experienced by an observer that is not moving in R′. The formula t′ = γt
comes only if you drop the term −(v/c2)x′. So, Einstein obviously did drop this
impossible term, but he forgot (or did not want to) to tell anybody that the
Lorentz Transform is wrong, and because the Lorentz Transform is wrong, all
Lorentz invariant theories, like the General Relativity Theory, are also wrong.

Notice also that the twin paradox between the frames R and R′ does show that
γ = 1. Some physicists have claimed to me that the twin paradox has been
explained in numerous textbooks and it does not imply that γ = 1. This is
not so. The twin paradox in the basic form is that if there are two identical
systems in fully symmetric positions (like R and R′ in the Lorentz Transform),
then whatever is true to one system is equally true to the other system. As an
example, consider two planets that are identical to the Earth and have mutual
constant velocity v. In which planet time ticks slower? If it tick slower in the
first planet, then just as correctly it ticks slower in the second planet. Thus,
γ = 1, the times of the planets must tick with the same speed. There are these
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numerous textbooks that try to claim otherwise. This is easily explained: on one
planet there is a group of physicists who have numerous textbooks that explain
how time ticks slower on one of the planets. On the other planet there is an
identical group of physicsts with identical numerous textbooks that explain how
time ticks slower on the other planet. Clearly, the explanations are wrong: fully
identical systems in fully symmetric positions are really fully identical systems
in fully symmetric positions: whatever is true for one is equally well true for the
other. The only way for breaking full symmetry is a spontaneous breakdown of
logical thinking.

Indeed, the twin paradox does work. When we drop the time shift term from the
Lorentz Transform, we get x′ = γ(x − vt) and t′ = γt. The twin paradox implies
that γ = 1, thus the transform reduces to the Galileo transform x′ = x − vt,
t′ = t and this is all that can be obtained in the setting of SRT.

If we go to the setting of GRT we can include gravitation fields and accelerated
motions. Then the transform upgrades to x′ = α(x − vt), t′ = αt where α
depends on the gravitation field and the derivative of v. The Pound-Rebka
experiment shows that there is gravitational redshift and by the equivalence
principle (which does seem like a good assumption) the transform should also
depend on acceleration. We can additionally impose a rule that the speed of light
in vacuum is locally always constant c to each direction. This locally constant
speed of light is then caused by the local gravitation field. Locally constant
speed of light does not mean that ligth seen from a longer distance should have
the constant speed c, thus light in a frame R or R′ need not have the speed c
everywhere. Indeed, it cannot because we must drop the time shift from the
linear transform.

The condition that the speed of light is locally constant implies that the grav-
itation field is scalar, as was shown in Section 4. Solutions of Einstein's field
equations for GRT, such as the Schwarzschild solution, do not have a round
infinitesimal sphere. Therefore the speed of light is different in different places
(x, y, z) and times t.

When the gravitation field is scalar, the field equation of GRT does not have any
solutions that are close to the Newtonian gravitation potential in a situation of
one point mass in the empty space. This situation is closely approximated by
our solar system. Thus, GRT does not work in our solar system. Therefore all
experiments that claim to verify GRT and have been done in our solar system
must necessarily be wrong: they do not use a valid solution of the field equations
of GRT. All experiments that claim to verify GRT by observations that have
been done outside our solar system must depend on some theory, as we have
never been outside our solar system. The theory behind these observations
usually derives from GRT and SRT, thus it may not be able to verify GRT.

A note on references: it is customary to have many references in a published
article, though Einstein did not have many references in his SRT paper and
interestingly Henry Poincaré, who should have been referreed to and who would
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have been the best referee for the SRT paper, never accepted SRT. I agree with
this principle in a typical case, but do not want to include references to numerous
textbooks that claim that the fully symmetric situation in the twin paradox is
in some sense not fully symmetric, or that SRT and GRT have been verified. I
also cannot include references to any papers written by people who accept what
these numerous textbooks say.
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2.2 The relativity theory needs some fixing

Abstract: Section 2 refutes the basic claim of the Special Relativity Theory: that

the speed of light is constant in all frames of reference moving with a constant

speed with respect to each others. The Michelson-Morley experiment is shown

to be flawed in Section 3. Section 4 demonstrates that there are issues in the

derivation of the moving mass formula. Section 5 shows that if the gravitation

field is Newtonian and the moving mass formula is true, then the trajectory of

a freely falling mass is unphysical. A physical solution is obtained if the field

has an additional term preventing the speed of a moving mass from exceeding

the speed of light and assuming that the mass does not depend on the velocity.

The proposal is that the moving mass formula is dropped as unjustified. If this

formula is dropped, then Einstein’s proof of E = mc2does not work. As this

equation is correct and should be preserved, Section 6 gives a very simple proof

of E = mc2for a discrete space model.

Keywords: Special Relativity Theory, Energy=Mass equation, Michelson-Morley
experiment.

1. Introduction

This article was peer-reviewed for a long time, accepted and published by
IntechOpen in a book edited by Professor Brian Robson. Then IntechOpen
cancelled the publication of the book and did not inform Robson or any authors
of the articles. I noticed that there is a big text Cancelled with my name in a
IntechOpen page. They had nothing against my article, so they claimed, the
problem was that Robson had reused some of his articles, so IntechOpen claimed.
Robson denied this. In any case my article was cancelled. I had great trouble
getting the publication fee back because IntechOpen sent it to an inactive PayPal
account that PayPal once had created for me, but I had neved had a password
for it. I did finally manage the get the fee back.

However, Robson required that I should not write that relativity theory is
seriously wrong. I should write that the relativity theory is incomplete to get
the paper accepted. Now the reviewed, accepted, paid and published article is
cancelled, therefore I write as it is in reality. The relality theory is not incomplete.
It is all wrong and it is hopeless to try to fix it. Everything in relativity theory is
wrong, except for gravitational time dilation, which is given a wrong explanation,
and apparent relativistic mass growth, which is also explained in a wrong way.

The presented article proves the following claims:

It is not true that the speed of light is constant in every frame of reference which
move with a constant speed with respect to each other. The argument that
this should be the case is based on the Lorentz transform. A direct calculation
from the Lorentz transform does give the constant speed c in the moving frame
of reference to every direction, but only by defining a different time for every
direction. The moving frame of reference must have a single time only, therefore
the Lorentz transform does not define a valid (proper) time for the moving frame.

82



Because the Lorentz transform does not define a valid time, the transform
between two frames of reference moving with a constant speed with respect to
each other can only be a conformal transform. The twin paradox shows that
the time cannot be faster in either one of the frames, therefore the time is the
same for all frames of reference that move with a constant speed. (There is no
need in the twin paradox to have accelerating motion, it is sufficient to ask in
which frame time goes slower and notice that the situation is fully symmetric.)
Consequently there is no time dilation or length dilation in movement with a
constant speed. However there is time and length dilation in accelerated motion
as is shown by the measurement of longer half-time for muons that are speeded
to very high velocities. This longer half-time is caused by the acceleration phase.
When muons move with a constant speed they have the same time as in the
laboratory.

As the Lorentz transform does not give a valid time, there is no reason to require
that equations of motion should be Lorentz invariant. They should be invariant
in conformal mappings. As a consequence, the moving mass concept is not
justified. A similar observable behavior than from a moving mass is obtained
by adding to the force a second component that guarantees that the speed of a
moving mass does not exceed the speed of light in the local environment. The
second term can be understood as the space-time slowing down a mass that
without this term would exceed the speed of light. The speed of light is only
locally constant, i.e., in every point of the gravitational field the speed of light
is constant c to each direction, but as every mass has a gravitational field and
masses have relative movement, this does not imply that the speed of light is
constant in any fixed coordinate system. Indeed, consider two masses having
a constant relative speed. Close to either mass the speed of light is c, but in
the space between these masses the gravitational field is changing and as at
each point the momentary speed of light is always c, the speed of light is also
changing when the field changes.

In the geometric paradigm a gravitation field is modeled as curvature. If the
speed of light is constant c to each direction in each point, then the gravitation
field is scalar. Calculating Einstein equations for a scalar field shows that Einstein
equations of the General Relativity Theory do not have any solutions that are
close to the Newtonian gravitation potential. This means that the Einstein
equations would have to be replaced by the field equations of Nordtröm’s scalar
gravitation theory, but notice that also this theory is hopelessly wrong. Another
reason why these equations cannot be used is that they are Lorentz covariant
and therefore do not hve a valid time in moving frames of reference. Experiments
that claim to prove the relativity theory must be reconsidered.

Einstein’s famous equation E = mc2, which actually should be called Olinto
De Pretto’s equation, is confirmed by experiments, but Einstein’s proof for this
equation is not valid as he uses the moving mass formula that is derived from the
Lorentz transform. The later proof by Max von Laue has the problem that his
proof discusses Lorentz invariant equations and dropping the Lorentz transform
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also this proof loses its validity. A very simple proof of the E = mc2 is added
just to demonstrate that this equation can be derived in many ways, also without
the relativity theory and the Lorentz transform.

The Special Relativity Theory claims that a mass m0 moving with velocity v has
the moving mass m = m0√

1−β2
where β = v

c . From the formula follows that if a

particle with the mass m0 is accelerated to a velocity v close to the speed of light
c, the mass that needs to be accelerated is the moving mass m. As m tends to
infinity when v approaches c, the energy required becomes infinite. This is given
as the reason why a massive particle cannot be speeded to c. The presented
article argues that this moving mass formula should be dropped. The reasons are
that Sections 2-4 show that the Lorentz transform does not work as it is claimed
to work and therefore demanding Lorentz invariance is not justified. Section 5
demonstrates that instead of having a moving mass formula, a freely falling mass
gets the same equation of motion if we assume that the mass remains constant
but the gravitation field has an additional term that prevents the mass from
exceeding the speed of light. This additional term corresponds to the space not
allowing speeds exceeding the speed of light. I still think this calculation can be
interesting and I keep it in the article, though I have found a better way: the
interaction force weakens when the relative speed between the field and a test
mass increases.

The moving mass formula is needed in Einstein's proof of E = mc2, see e.g. [1].
In Einstein’s proof the mass is growing in the frame of reference where the mass
is moving. If the mass transformation formula is dropped, then Einstein’s proof
of E = mc2 does not work. Section 6 proposes a simple proof for E = mc2 in a
discrete space model as a replacement. I do not think proving this formula is
any difficult task. It can be a nice exercise for some beginning student.

2. The error in Einstein’s usage of the Lorentz transform

The problem in Einstein’s usage of the Lorentz transform is that though the
transform does give the constant speed of light in any frame of reference R

′

moving
with a constant speed v with respect to a fixed frame of reference R, it uses
a time concept for R

′

which is not a valid scalar time (a proper time). The
time in the Lorentz transform is a scalar variable, but it is not valid as a scalar
time because it demands that there is a different time in R

′

for sending light
to different directions. In fact, the Lorentz transform only describes how the
Doppler effect shows in new coordinates. Therefore the Lorentz transform cannot
be applied in the situation that Einstein had.

Consider the following experiment. A square box with each side having the
length L is moving with a constant speedv = vev with respect to a rest frame of
reference R. From the midpoint of one of the sides of the square light is emitted.
It shines on the opposite side, reflects from it and returns to the starting point.
In the frame R this roundtrip time is T = T1 + T2 where T1 is the time for the
light beam to reach the mirror and T2 is the time for the light beam to travel
from the mirror back to the starting point. The velocity v is in the direction
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of the positive x-axis. We assume that light travels with a constant speed c to
each direction in R. In the Special Relativity Theory light has always the speed
c, therefore the assumption is fulfilled in that theory. In the Ether Hypothesis,
which was the hypothesis Michelson and Morley tested, we select R so that the
ether is at rest in R.

Figure 1. The scenario of the experiment.

The left side of the box is in x1 at the time t1. Light is sent from this point and
it arrives in the time T1 = t2 − t1 to the right side of the box. The right side has
moved in this time to x2 = x1 + L + vT1. The velocity of light is c in R, thus

c = x2−x1

t2−t1
= L+vT1

T1
, we get T1 = L

c−v . (2.1)

The return trip of the light is from the right side of the box inx2 to the left side
of the box in x3. Light arrives tox3 at the time t3. Then x3 = x1 + v(t3 − t1).
Let T2 = t3 − t2. Thus x2 − x3 = L − vT2 and the speed of the light in R is c
for the return trip:

c = x2−x3

t3−t2
= L−vT2

T2
, we get T2 = L

c+v . (2.2)

Next, we make the Lorentz transformx
′

= γ(x − vt), t
′

= γ(t − ( v
c2 )x). Let us

define (2.3)

L
′

1 ≡ x
′

2 − x
′

1 = γ((x2 − x1) − v(t2 − t1)) = γ(L + vT1 − vT1) = γL

L
′

2 ≡ x
′

2 − x
′

3 = γ((x2 − x3) − v(t2 − t3)) = γ(L − vT2 + vT2) = γL.
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We notice that the length of the box in R
′

is the same to both the positive
and the negative x-direction and that it is L multiplied by a scaling factor γ .
However, let us calculate the time intervals in R

′

T
′

1 ≡ t
′

2 − t
′

1 = γ((t2 − t1) − ( v
c2 )(x2 − x1))

= γ(T1−( v
c2 )(L+vT1)) = γ c−v

c T1 (2.4)

T
′

2 ≡ t
′

3 − t
′

21 = γ((t3 − t2) − ( v
c2 )(x3 − x2))

= γ(T2 + ( v
c2 )(L − vT2)) = γ c+v

c T2,

where we eliminated L by using L = (c − v)T1 = (c + v)T2. Inserting T1 and

T2 we get T
′

1 = T
′

2 = γ L
c , thus we get the speed of light in R

′

as c
′

i = L
′

i

T
′

i

= c,

i = 1, 2.

For the roundtrip we get directly from the Lorentz transform

x
′

3 − x
′

1 = γ(x3 − x1 − v(t3 − t1))

T
′

= t
′

3 − t
′

1 = γ(t3 − t1 − ( v
c2 )(x3 − x1))

= γ(T − ( v
c2 )vT) = γ(1 − ( v2

c2 ))T (2.5)

The length of the roundtrip in R
′

is not x
′

3 − x
′

1, it is L
′

= L
′

1 + L
′

2 = γ2L. The
time in R is

T = T1+T2 = L
c−v + L

c+v = 2L c
c2−v2 (2.6)

The speed of light for the roundtrip in R
′

is L
′

T ′ = c. The Lorenz transform does
give the same constant speed of light in all frames of reference, but (2.4) is highly
problematic. What are the two different times in (2.4)? They are not the times
experienced by a photon moving to either direction. As a photon is moving with
the speed of light, in the Lorentz transform the time does not move at all for a
photon. They are two times for R

′

: there is a different time in R
′

for sending
light to the positive x-direction and to the negative x-direction. We can see what
these times are in reality by a simple thought experiment. Split light from a
single oscillator to both directions and let some information be sent as bits in
the light beam. If the sending times in R

′

are different to the two directions, the
transmission time of the signal is different. Bits get buffered to some invisible
buffer in the direction where the transmission speed is lower. Obviously this
does not happen: bits leave R

′

with the same transmission speed. Let us have
two receivers in the fixed frame of reference R. If the transmission times were
different to the two directions, these receivers would receive signal with two
different frequencies. They of course do receive the signal with two different
frequencies, but it is caused by the Doppler effect. The Doppler effect it is all
we see. It perfectly matches the effect that we should see with the times in (2.4).
This shows that what (2.4) describes is simply the Doppler effect as it appears in
the coordinate system x

′

, t
′

. The whole reason why the Lorentz transform makes
the speed of light constant in all moving frames R

′

is in the formulas in (2.4). As
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it in reality is a description of the Doppler effect, the times T
′

i are not anything
real. The Doppler effect does not require changing the absolute Newtonian time
concept. By directly calculating T

′

from the Lorentz transform we do not get
the real time in R

′

, we get purely mathematical constructs that describe the
Doppler effect. There must be a single time in R

′

, not several different times as
in (2.4) an (2.5).

Is the time T
′

calculated from the Lorentz transform as in (2.3)-(2.4) the time
T

′

for R
′

in the Special Relativity Theory? It is not, we can show it by examples.
Let us consider a muon and speed it to the velocity of 0.9c. The moving frame
R

′

is the rest frame of the muon and the fixed frame R is the rest frame of the
laboratory. Muon is unstable and has a halftime T in the laboratory. We ask
what is the halftime of the moving muon. Or we can consider a spaceship speeded
to a velocity v close to the speed of light c. The moving frame R

′

is the rest
frame of the spaceship and the fixed frame R is the rest frame of the Earth. The
time T is one year. What is the time T

′

in the spaceship? How much slower does
the astronaut age than the people on the Earth? Is the answer by the Special
Relativity Theory to the second question perhaps that the time T

′

depends on
what the spaceship is doing? Is the answer that if the spaceship is sending light
to the direction of movement, then T

′

= γ(1 − v
c )T , while if it is sending light

to the backward direction, then the time T
′

is T
′

= γ(1 + v
c )T (from (2.4)), and

if the light makes a roundtrip, then the time is T
′

= γ(1 − v2

c2 )T (from (2.5))?
Clearly, this is not how the Special Relativity Theory would answer the second
question. The theory answers that the time in R

′

is always the proper time.
The halftime of the muon in R

′

is the proper time T
′

= γTand the astronaut
ages by the proper time T

′

= γT . This is because Einstein did understand that
there cannot be multiple different times in R

′

. This shows clearly that Einstein
did not want to calculate T

′

directly from the Lorentz transform. Had he done
so, he would have got times T

′

that too obviously show that T
′

is not a real
time, it is a mathematical construct that describes the Doppler effect in the
coordinates x

′

, t
′

. Therefore Einstein cheated: on one hand he claimed that he
is using the Lorentz transform and this transform guarantees that the speed of
light is always constant c in all moving frames R

′

, but he in reality used the
proper time τ = γt for calculating the time in R

′

because the time T
′

from the
Lorentz transform is different in different situations.

Thus, in the Special Relativity Theory the intended time is the proper time.
Therefore the length and time intervals transform as

L
′

= γL, T
′

= γT . (2.7)

Let us apply this transform of intervals to the roundtrip delay in Figure 1. The
total time in Ris

T = T1 + T2 = L
c−v + L

c+v = 2L c
c2−v2 . (2.8)

The roundtrip length in R
′

is 2L
′

= γ2L. The roundtrip time in R
′

is T
′

= γT ,
thus the speed of light for the roundtrip in R

′

is
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c
′

= γL
γL

c
c2−v2 = c

c2−v2 Ó= c. (2.9)

We can get the roundtrip speed to the value c by defining T
′

= γ−1T , which is
also a proper time definition for R

′

. However, Einstein's proper time and length
transformation formulae do not give c as the roundtrip speed of light in Figure 1
for R

′

, and in fact, no definition of the type T
′

i = γ1Ti (for any γ1 depending

only on v) can make the speed of light in R
′

the same to the positive and negative
x-axis in Figure 1, in one way it will be smaller than c, in one way higher than c.

Notice that not only the times T
′

i in (2.4) and (2.5) are nothing real, Einstein's
proper time is also nothing real. This is shown by the twin paradox. This
paradox can be presented as the muon-laboratory paradox to avoid the de-
acceleration/acceleration issue with a spaceship that needs to turn: there is no
sense to say that the time in the muon's rest frame goes slower than the time in
the laboratory's rest frame because equally well we can say that the muon's rest
frame is the fixed frame and the laboratory is moving.

3. The error in Michelson-Morley experiment

Figure 1 gives the setting of a simplified Michelson-Morley experiment. This
experiment inspired Einstein to propose the Special Relativity Theory and that
the time and coordinates in a moving frame should be calculated from the Lorentz
transform. In the Ether Hypothesis time and space are universal and there is
substance called ether where light undulates. In the simplified experiment in
Figure 1 the ether is assumed to be at rest in the fixed frame R. Therefore, with
absolute time and space, in the moving frame R' the speed of light calculated
from the time light takes in the roundtrip must depend on the direction of the
vector v: if vpoints to the positive x-axis, as in Figure 1, we get a different speed
of light in R' than if vpoints to the positive y-axis. Michelson and Morley had
two light beams, one pointing to the x-axis and the other to the y-axis and in
both directions light made a rountrip, first to the positive axis, then returning
to the negative axis. Each beam makes a roundtrip that has the length 2L in
R

′

assuming that space and time are universal. These roundtrips are not the
same and if the Ether Hypothesis holds, the roundtrip time is different in the
two paths because the speed of light is different in each path. Michelson and
Morley thought that there should be an interference picture when these two
light beams are added at the end of the roundtrip. The error in this logic is that
Michelson and Morley did not have the same starting time for the two beams:
the beams had the same finishing time but a different starting time. The two
beams had the same frequency and they were in the same phase at any chosen
time. There could not be any interference picture when the beams are combined.

In order to see this with simple equations, let the roundtrip times on the two
paths be denoted by Ti, i = 1, 2. The roundtrip times are different if the speed of
light is different in the two paths. But the frequency is the same on both paths
and only the wavelength is different on each path, thus a frequency component
f has the same oscillation time Tf = 1

f on both paths. In order to interfere

the two beams must be taken to the same place (the end of the roundtrip)
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at the same time TF . In order to be at the end of the roundtrip at the time
TF , the beam i must have left the splitter at the time TF − Ti. That is, the
beams have a different starting time. Before the beam left the splitter it had
made (TF − Ti)/Tf wavelengths on the frequency f . On the roundtrip the beam
i made Ti/Tf oscillations. Thus, at the time TF both beams made in total
(TF − Ti)/Tf +Ti/Tf =TF /Tf oscillations in the frequency f . The situation is
the same for every frequency and we notice that both beams are in exactly the
same phase when the researchers try to make them interfere. Naturally there
is no interference picture. For some reason this obvious logical error was not
noticed. The result of the Michelson-Morley experiment was unexpected and
Einstein proceeded to solve the problem how the speed of light can be the same
in all moving frames by defining new coordinates for the moving frame R'.

That the Michelson-Morley experiment was flawed does not mean that their
result was wrong. The result was correct, but for a different reason. The "ether"
where light undulates may well be the gravitational field. This much of Einstein’s
theory may be correct (but does not need to be). The gravitational field of
the Earth follows the Earth. Thus, the speed of light would be the same to all
directions on the Earth. Even if the experiment had been made correctly, the
result had very possibly been the same, but this result cannot be interpolated
to a situation where a bus is moving on the Earth. A bus creates a very weak
gravitational field and the field inside the bus is essentially the gravitational field
of the Earth. We should not see equal speed of light to all directions in the rest
frame of a moving bus (or a muon in a laboratory).

4. Invariant equations of motion

Maxwell equations are invariant in the Lorentz transform (but only if E and B are
required to transform in a special way to make the equations Lorentz invariant)
and Einstein proceeded to require that all equations of motion must be invariant
in the Lorentz transform. Later the equations were required to be covariant, but
this concept only applies to tensor equations. There is no difference between
these concepts in ordinary partial differential equations. What is meant is that
if (x

′

, t
′

) of the moving frame of reference is inserted to the equations of (x, t)
for the rest frame of reference, then the equation of motion for (x

′

, t
′

) has the
same form as for (x, t).

The basic equation of movement in Newtonian mechanics is F = ma. Let the
frame R' move with a constant speed v and let the mass m move in the same
direction as v. Initially the velocity of the mass in the frame R seems to be

w = dx
dt , (4.1)

but this is not so for the following reason. In the Lorentz transform x and t are
independent coordinates in R. In R' the coordinates x

′

and t
′

are independent.
Thus

x = γ(x
′

+ vt
′

) gives dx
dt′ = γv, (4.2)
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t = γ
(

t
′

+ vx
′

c2

)

yields dt
dt′ = γ

and x
′

= γ(x − vt) leads to the velocity in the frame R'

w
′

= dx
′

dt′ = γ
(

dx

dt′ − v dt

dt′

)

= γ(γv − vγ) = 0. (4.3)

This is not correct: the mass is not at rest in R'. The velocity of the mass is not
obtained by derivation from the Lorentz transform. Again, the Special Relativity
Theory does not use the Lorentz transform directly also here. The velocity is
actually

w = lim ∆x
∆t , (4.4)

and both ∆x and ∆t are intervals. Therefore they transfer as (2.7)

∆x
′

= γ∆x and ∆t
′

= γ∆t. (4.5)

We get the velocity as

w
′

= lim ∆x
′

∆t′ = lim γ∆x
γ∆t = w. (4.6)

If we instead of (4.5) use the transform that gives the speed of light as c in R
′

for the roundtrip in Figure 1

∆x
′

= γ∆x and ∆t
′

= γ−1∆t (4.7)

we get

w
′

= lim ∆x
′

∆t′ = lim γ∆x
γ−1∆t = γ2w. (4.8)

Notice that β = v
c is constant as the velocity v is constant. Only the mass m can

accelerate in this case, not the frame R'. In R the equation of motion (allowing
the mass to change and what Einstein used) is

F = d
dt

(

m dx
dt

)

. (4.9)

In R' , following the transform (4.5), we get

F
′

= d
dt′

(

m
′ dx

′

dt′

)

= 1√
1−β2

d
dt

(

m
′ dx

dt

)

. (4.10)

If we take the transform (4.7) in R' , we have

F
′

= d
dt′

(

m
′ dx

′

dt′

)

= 1
γ−1

d
dt

(

m
′

γ2 dx
dt

)

= 1

(1−β2)
√

1−β2

d
dt

(

m
′ dx

dt

)

. (4.11)

Assuming that the force F
′

equals force F , we notice that there is a solution for
(4.10) where m and m

′

do not depend on the time t. For

F = m d2x
dt2 (4.12)

F = F
′

= m
′

√
1−β2

d2x
dt2 .
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The equations (4.9) and (4.10) are identical (the equation is invariant in the
Lorentz transform) if

m = m
′

√
1−β2

. (4.13)

This is enough for the equation of motion to be invariant, but Einstein went
further and decided that the mass changes in the frame R as

m = m0√
1−β2

(4.14)

and in a frame that is accelerating with the mass he defined m
′

= m0. Notice
this very odd choice. In the cases of T

′

and L
′

the properties in R are kept as
they were and the modified versions are in R', but the mass changes in R. This
is essential for Einstein's proof of E=mc2, the proof fails if the mass change is in
R'.

If we use the transform (4.7), which gives the speed of light in R' in the roundtrip
in Figure 1 as c, then the time independent value of m

′

that makes (4.9) and
(4.10) identical if F

′

= F is

m = m
′

(1−β2)
√

1−β2
. (4.15)

This mass change formula would ruin Einstein's proof of E=mc2, but notice that
(4.5) does not give the speed of light in R' in the roundtrip in Figure 1 as c while
(4.7) does, though neither transform gives the speed of light in R' as c for the
first part of the roundtrip in Figure 1.

From [1] we see that Einstein derived his formulam = m0√
1−β2

from the equation

F = d
dt (m(t) ds

dt ) basically in the way we did it in (4.12)-(4.14). This derivation
raises some questions. What is the sense of requiring invariance of F = ma under
the Lorentz transform, especially in the form F = ( d

dt
)m(t)( ds

dt
)? Why F should

transfer to itself in the Lorentz transform, as it does in (4.12), since force is not a

conserved quantity. If e.g., E = mv2

2 or W = Fs = mas is required to be Lorentz
invariant, then m is not changing. The equation for the moving mass (4.14) is
derived in the situation of an accelerated frame of reference, not when a frame
of reference has a constant velocity. What is the justification of extending the
Lorentz transform to accelerating situations? In fact, what is the justification of
using the Lorentz transform in any situation? After all, the Michelson-Morley
experiment is flawed, the Lorentz transform does not make the speed of light in
the roundtrip in the Michelson-Morley experiment of Figure 1 equal to c (as the
time used in the Special Relativity Theory actually is the proper time), and the
transform that makes the roundtrip speed of light equal to c cannot make the
speed of light in a one-way trip equal c.

5. A test mass falling in the gravitational field of a point mass

Consider a mass m falling freely in a gravitational field created by a point mass
M in Newton's gravitation theory. The movement of the test mass m is in the

91



radial direction: the test mass falls from the initial place r0 towards the origin
set to the position of the mass M . The equation of the motion is

F = GmM
r2 = ma = m d2(r0−r)

dt2 . (5.1)

Writing this with the Newtonian gravitational potential field φ = − GM
r we get

m d
dr

(

− GM
r

)

= m d
dr φ = −m d2r

dt2 . (5.2)

The equation of motion of the test mass m is

m d
dr φ = −m d2r

dt2 , simplifying to d
dr φ = − d2r

dt2 (5.3)

that is, the mass cancels out. This is the equivalence principle in the Newtonian
gravitation theory: m in the equation F = ma (the inertial mass) and m in the
equation F = GmM

r2 (the gravitational mass) is the same mass. Einstein wanted
this equivalence principle to hold also in a relativistic theory of gravitation. Then
it gets some new content: the principle implies that local time also transforms
the same way for the inertial mass and gravitational mass. As in a gravitational
field a clock slows down (as is verified by the Pound-Rebka experiment), then
also in accelerating motion a clock slows down. Let us accept this equivalence
principle.

Inserting the Newtonian potential φ = − GM
r , we can solve the equation of

motion. The solution in the rest frame of the mass M is

r =
(

GM 9
2

)
1
3 t

2
3 (5.4)

implying that the mass m is in the place r0 − r = r0 −
(

GM 9
2

)
1
3 t

2
3 at the time t.

The solution is easily checked:

− d2r
dt2 = −

(

GM 9
2

)
1
3 2

3

(

− 1
3

)

t− 4
3 = (GM)

1
3

(

2
9

)1− 1
3 t− 4

3

= (GM)
1
3

(

2
9

)
2
3 t− 4

3 (5.5)

d
dr φ = GM 1

r2 = GM
(

GM 9
2

)− 2
3 t− 4

3 = (GM)
1
3

(

2
9

)
2
3 t− 4

3 .

If we want the solution to be in a familiar form, then we must change the
parameters. The solution can be expressed with the radius R of the Earth and
g = 9.81m/s2 as

r = R − 1
2 gτ2 ∓ 2g

9T τ3 + · · ·
where τ = T ∓ t and

T = R
3
2

(

GM 9
2

)− 1
2 , g = GM

R2 . (5.6)

If T is large, the trajectory of the falling mass (mass falls to a well from the
surface of the Earth) is exactly what we expect it to be.

In the Newtonian gravitation theory the test mass m does not change size. In
Einstein's relativity theory a mass becomes larger if it is moving with a velocity
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close to the speed of light. Einstein wrote the Newtonian equation of motion
F = ma in the form

F = d
dt

(

m(t) dx(t)
dt

)

. (5.7)

This form allows the mass m to increase as a function of the time. We find
this formula e.g. as the equation before the equation (51) in Einstein’s The

Meaning of Relativity (1922) [1], the lectures he gave in Princeton. It is a better
source than Einstein’s papers because Einstein edited the book still on his late
years. There are errors in Einstein’s theories and the book shows clearly that
Einstein had no intention of admitting or fixing any of these errors. He did not.
forinstance. in 1952 modify the Special Relativity Theory. It is all the same in
his book right to the end, only more errors have been added.

In Einstein’s proof of E = mc2 the mass m to increases in the frame where the
mass m moves, i.e., the test mass m increases in the rest frame of the mass M
that creates the field.

I have better arguments to show that the relativistic mass formula is patently
false, but I want to keep this calculation because is has a remarkable cancellation
at one point and I think it has something relevant to say and should be looked
at. Let us investigate if the test mass m can grow in the rest frame of M : we
now assume that this is possible and we will see where it leads. As the mass
is moving in the radial direction towards the origin, the equation (5.5) has the
form:

F = − d
dt

(

m(t) dr(t)
dt

)

. (5.8)

As m is a function of time in (5.8), the equivalence principle requires that
m(r) = m(r(t)) = m(t) is a function of r. Consequently, we have to write the
gravitational force as

F = d
dr (m(r)φ(r)). (5.9)

The equation of motion (5.3) gets the form

d
dr (m(r)φ) = − d

dt m(t) dr
dt . (5.10)

This yields

dm(r)
dr φ + m(r) d

dr φ = − dm(t)
dt

dr
dt − m(t) d2r

dt2 . (5.11)

As m(r) = m(r(t)) = m(t) we can write

m
(

dφ
dr + d2r

dt2

)

= − dm(t)
dt

dr
dt − dm(r)

dr φ (5.12)

and since in this case r = r(t), we have

m
(

dφ
dr + d2r

dt2

)

= − dr
dt

dm(r)
dr

dr
dt − dm(r)

dr φ (5.13)

which is simplified to
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m
(

dφ
dr + d2r

dt2

)

= − dm
dr

(

(

dr
dt

)2
+ φ

)

(5.14)

and finally to the form

m−1 dm
dr = −

(

dφ
dr + d2r

dt2

) (

(

dr
dt

)2
+ φ

)−1

. (5.15)

Let us denote

f =
(

dr
dt

)2
+φ (5.16)

then

df
dr = d

dr

(

(

dr
dt

)2
+ φ

)

= dφ
dr +2 d2r

dt2 . (5.17)

We can write the equation of motion (5.10) as

m−1 dm
dr = −

(

dφ
dr + 2 d2r

dt2

) (

(

dr
dt

)2
+ φ

)−1

+ d2r
dt2

(

(

dr
dt

)2
+ φ

)−1

(5.18)

and if dm
dr is not zero we can write (5.18) in the form

d
dr log (mf) = d2r

dt2 f−1. (5.19)

Let
∣

∣

dr
dt

∣

∣ and
∣

∣

∣

d2r
dt2

∣

∣

∣ be so small that the mass m does not move with a speed

close to the speed of light and the increase of the mass m can be ignored. This

does not imply that
∣

∣

dr
dt

∣

∣ and
∣

∣

∣

d2r
dt2

∣

∣

∣ are very small. They are not infinitesimally

small, they are only small compared to c. We say that they are sufficiently small.
According to Einstein’s relativity theory, the increase of mass m must be very
small, thus

m
(

dφ
dr + d2r

dt2

)

= − dm
dr

(

(

dr
dt

)2
+ φ

)

≈ 0 (5.20)

and the solution must be very close to the solution in the Newtonian gravitation
theory

r ≈
(

GM 9
2

)
1
3 t

2
3 . (5.21)

However, if
∣

∣

dr
dt

∣

∣ and
∣

∣

∣

d2r
dt2

∣

∣

∣
are sufficiently small, the value of the mass m cannot

have any effect to the right side in the equation (5.19) because mass m cancels
out in the Newtonian gravitation theory: in Newtonian mechanisms all masses
fall in a gravitation field with the same speed. Integrating (5.19) with respect to
r

log(mf) =
∫ r d2r

dt2 f−1dr , f =
(

dr
dt

)2
+ φ =

(

dr
dt

)2 − GM
r . (5.22)

We see that f does not depend on m. We also see that the total energy is

E = Ek +Ep = 1
2 m

(

dr
dt

)2
+mφ = mf − 1

2 m
(

dr
dt

)2
. (5.23)

If the total energy is constant, mf depends linearly on m, so log(mf) depends on
mass. The right side (5.18) does not depend on mass. This is not because there
is no parameter m in the right side. It is because Galileo showed that all masses
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fall in the same way: the equation of r in the field φ does not depend on the
mass m of the test particle. This mass cancels out in (5.3). In order to make it
clear that the right side of (5.19) does depend on m, compose the mass m from
N small parts ∆m, m = N∆m and let N depend on r, so that m(r) = N(r)∆m.
Every small mass ∆m falls in the same way, so they all give the same function
in the right side of (5.19). The dependence of m(r) on r means that ( d

dr )log(m)
is not zero and it depends on m(r).

We assume that dm
dr Ó= 0. One way to remove the dependency of the left side

of (5.19) from mass is to set f = 0 exactly (and not approximately) if
∣

∣

dr
dt

∣

∣ and
∣

∣

∣

d2r
dt2

∣

∣

∣ are sufficiently small. This is because even a small nonzero value of f lets

a large value of m influence the right side. We notice that

f =
(

dr
dt

)2
+ φ = 0 (5.24)

has a solution that is similar to the previous exact solution, but not the same

r = (GM)
1
3 t

2
3 for φ = −GM

r . (5.25)

Inserting this solution we get
(

dφ
dr + d2r

dt2

)

= (GM)
1
3 t− 4

3 − (GM)
1
3 2

9 t− 4
3 = 7

9 (GM)
1
3 t− 4

3 (5.26)

Thus (5.20)

m
(

dφ
dr + d2r

dt2

)

≈ 0 (5.27)

is not satisfied. This way of solving the problem in (5.19) is not possible, yet it
had to be checked.

Let us now assume that dm
dr Ó= 0 and f Ó= 0. There is still one way left to try to

satisfy (5.19). If

m = exp
(∫ r

a
h(r)dr

)

= eH(r)e−H(a) (5.28)

for some smooth function h(r) = dH(r)/dr, then

d
dr log(m) = h(r) and we can set m0 = e−H(a). (5.29)

The H(r) can depend only on the trajectory which is the same for all masses.
Explicitly, we can demand that

m = m0

(

1 − 1
c2

(

dr
dt

)2
)−α

. (5.30)

For α = 1
2 we have Einstein’s formula for moving mass. Let us assume this is

the case, then

h(r) = d
dr H(r) = −α d

dr log
(

1 − 1
c2

(

dr
dt

)2
)

= α 1

1− 1

c2 ( dr
dt )2

d
dr

1
c2

(

dr
dt

)2
(5.31)

= α
(

c2 −
(

dr
dt

)2
)−1

dt
dr

d
dt

(

dr
dt

)2
= 2α

(

c2 −
(

dr
dt

)2
)−1

d2r
dt2 .
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From (5.15)

h(r) = m−1 dm
dr = −

(

dφ
dr + d2r

dt2

) (

(

dr
dt

)2
+ φ

)−1

(5.32)

we get an equation

2α d2r
dt2

(

(

dr
dt

)2
+ φ

)

= −
(

dφ
dr + d2r

dt2

) (

c2 −
(

dr
dt

)2
)

. (5.33)

We make a small calculation

0 = 2α d2r
dt2 φ + (2α − 1) d2r

dt2

(

dr
dt

)2
+ dφ

dr

(

c2 −
(

dr
dt

)2
)

+ c2 d2r
dt2 (5.34)

0 = 2α d2r
dt2

dr
dt φ + (2α − 1) d2r

dt2

(

dr
dt

)3
+ dr

dt

(

dt
dr

dφ
dt

) (

c2 −
(

dr
dt

)2
)

+ c2 d2r
dt2

dr
dt

0 = αφ d
dt

(

dr
dt

)2
+ d

dt

(

1
4 (2α − 1)

(

dr
dt

)4
)

+ dφ
dt

(

c2 −
(

dr
dt

)2
)

+ 1
2 c2 d

dt

(

dr
dt

)2

and finally we have

d
dt

{

c2
(

φ + 1
2

(

dr
dt

)2
)

+ 1
2

(

α − 1
2

) (

dr
dt

)4
}

= dφ
dt

(

dr
dt

)2 −αφ d
dt

(

dt
dt

)2
. (5.35)

Let us insert α = 1
2 . Then the equation is easily solved:

c2 dφ
dt + 1

2 c2 d
dt

(

dr
dt

)2
= dφ

dt

(

dr
dt

)2− 1
2 φ d

dt

(

dt
dt

)2
(5.36)

gives

dφ
dt

(

c2 −
(

dr
dt

)2
)

= − 1
2

d
dt

(

dt
dt

)2 (

c2 + φ
)

(5.37)

and

dφ
dt

(

c2 + φ
)−1

= − 1
2

d
dt

(

dt
dt

)2
(

c2 −
(

dr
dt

)2
)−1

, (5.38)

which can be integrated

log(c2 + φ) = 1
2 log

(

c2 −
(

dr
dt

)2
)

+ logB (5.39)

where B is an integration constant. Thus,

c2 + φ = B

√

c2 −
(

dr
dt

)2
. (5.40)

We must set B = c in order to cancel the leading term in

c4 + 2c2φ + φ2 = B2c2 − B2
(

dr
dt

)2
. (5.41)

The final equation of movement is

2φ + 1
c2 φ2 = −

(

dr
dt

)2
. (5.42)

This equation looks rather strange, but we can put it to a more familiar form by
differentiating it with respect to time:

2 dφ
dt

(

1 + 1
c2 φ

)

= −2 d2r
dt2

(

dr
dt

)

(5.43)
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and writing it as

dt
dr

dφ
dt

(

1 + 1
c2 φ

)

= − d2r
dt2

that is

dφ
dr

(

1 + 1
c2 φ

)

= − d2r
dt2 . (5.44)

From this form it is clear that the classical limit is (5.3). Notice that this formula
does not have mass. The rest mass of the test mass is in m0 = exp(−H(a)).
What (5.44) is claiming is that all sizes of test masses fall according to (5.44).
The situation is spherically symmetric. We notice that the equation (5.44) can
be written as

dΨ
dr = − d2r

dt2 where Ψ = φ + 1
2c2 φ2 (5.45)

and be interpreted as an equation of two forces

Ffield = m∇Ψ = Facceleration = ma = m d2(r0−r)
dt2 (5.46)

where the mass m stays constant. This understanding is possible only if α = 1
2

in (5.35), which seems to mean that α = 1
2 is the correct value. There is a

remarkable cancellation only for this value of α, which is the reason I have
preserved this calculation even though I have shown that the mass cannot grow.
Indeed, the mass does not really grow by velicity, but already Lorentz showed
experimenatally that mass appears to grow with velocity and exactly by the
relativistic mass formula. There is something in the value α = 1/2 and the
relativistic mass formula, as an apparent growth, is a true and verified fact. But
it has some other explanation than the one that Einstein gave.

Equation (2.46) agrees with the basic concepts of F = ma and F = m∇Ψ. Thus,
in a certain sense the gravitation field created by the mass M is not φ = −GM

r
but

ψ = − GM
r + 1

2c2

(

GM
r

)2
. (5.47)

This sense is not that the Newtonian potential is wrong, it is that something in
the space does not allow a test mass to exceed the speed of light.

We have a normal Newtonian equation of motion and a field that stops the test
mass from reaching the speed of light: in small values of r the second term in
Ψ gives a negative force and slows down the test mass. This is correct: if a
test mass is accelerated to speeds close to c, it cannot increase its speed above
c, assuming, as we do, that the speed of light is the maximal speed. A falling
test mass loses potential energy, but cannot gain equally much kinetic energy.
If there is an energy difference, then it must go somewhere. If it does not go
into building moving mass, it goes into some other form of energy. However, in
(5.46) the test mass does not lose much potential energy when it is falling: the
energy stays in the form of potential energy. Equation (2.47) also implies that
there is a radius

r = GM
2c2 (5.48)
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where the field Ψis zero.

Notice that the derivation from (5.10) and (5.30) to (5.44) does not anywhere
use any explicit form of φ. From (5.10) to (5.44) there is no assumption that φ is
the Newtonian gravitation field as in (5.1). One way of understanding (5.44) is
to say that (5.30) is only an apparent dependency of the mass from the velocity,
in reality the mass is constant while (5.10) is incorrect: field φ does not act
as in (5.10). The space does not allow the mass to exceed the velocity c and
there comes an additional term to the equation of movement: the correct form
is (5.44).

The other way of understanding (5.44) is that the equation of motion is (5.10)
and the mass grows as in (5.30). This is Einstein’s understanding. It leads to an
unphysical solution if φ is the Newtonian gravitation field. Equation (5.44) is a
direct consequence of (5.10) and (5.30) with α = 1

2 . We can solve (5.42) exactly
for the Newtonian gravitation potential:

dr
dt = ±

(

−2φ − 1
c2 φ2

)− 1
2 =

(

2GM
r

)− 1
2

(

GM
2c2r

)− 1
2

(

2c2r
GM − 1

)− 1
2

= cr
GM

(

2c2r
GM − 1

)− 1
2

(5.49)

where we selected + from ± because both r and t are positive and inserted
φ = − GM

r . Writing

t =
(

2
9GM

)
1
2 r

3
2 + g(r) (5.50)

for some smooth function g(r) we get from (5.49)

g′(r) = cr
GM

(

2c2r
GM − 1

)− 1
2 −

√
r√

2GM
(5.51)

which is integrated to

g(r) = r
3
2

√

2
GM

{
√

1 − GM
2c2r − 2

3

(

1 − GM
2c2r

)
3
2 − 1

3

}

. (5.52)

The integration constant is zero because if c → ∞, then g(r) = 0. Thus, (5.50)
and (5.52) give the exact trajectory of the test mass m in Einstein’s understanding
of (5.10) and (5.30). We can see from (5.49) that if

r = GM
c2 , then dr

dt = c and F = m∇ψ = d
dr (m(r)φ(r)) = 0

r = 2
3

GM
c2 , then dr

dt =
√

3
2 c (5.53)

r = GM
2c2 , then dr

dt = 0 and ψ = 0.

Firstly, according to (5.43), the mass m does reach the speed c at one point. The
inertial mass does grow to infinity at this point if (5.30) is assumed to describe
the physical reality, but the gravitational mass in the left side of (5.10) also
grows to infinity at the same point: the attraction force also becomes infinite.
Secondly, after this point the mass slows down and its velocity goes to zero at
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the radius (5.48). In Einstein's understanding the gravitational attraction force
in (5.10) always increases when r decreases, so there is no reason why the mass
should start slowing down. We conclude that Einstein's understanding is not
possible if φ is the Newtonian gravitation field.

We cannot based on this calculation only exclude the possibility that the moving
mass formula (5.30) is correct and the field φ is not the Newtonian gravitation
field (yet, I now do have stronger arguments to exclude the possibility), but a
natural way to understand what happens is in (5.45)-(5.47): the gravitational
force induced by the field φ has two components and F = m∇Ψ, not F = m∇φ.
The reason for this is that the field geometry does not allow a test mass to
exceed the speed of light.

The field Ψ can be continued as zero, or some other function, inside the radius
(5.48). Therefore there need not be any singularity in the gravitational field,
which is good as singularities should not appear in physical systems. The field
Ψ is a spherically symmetric scalar field. Such a field cannot be obtained from
the field equation of the General Relativity Theory, but it comes naturally from
Nordström’s first gravitation theory where the field equation is

�φ = 4πGρ when η = (+, −, −, −). (5.54)

with

F = m∇Ψ where Ψ = φ + 1
2c2 φ2. (5.55)

Applied to electromagnetism, this would be similar to a case where the Maxwell
equations (the field equation) are not changed, but the Coulomb force is changed.

Gunnar Nordström collaborated with Einstein, finally Einstein got him confused
with the stress tensor and Nordström’s gravitation theory was discarded. Nord-
ström wrote the equation of motion of the test mass with the proper time of the
Special Relativity Theory. The proper time does work as the gravitational local
time and it explains correctly the Pound-Rebka experiment. The equation of
motion is simply the Newtonian formula written with the proper time:

F = ma = m d2s
dτ2 . (5.56)

Yet, I must add a note to this text that I wrote long ago: though I still think
Nordström’s theory can be a starting point for someone wanting to create a
better theory than GRT, Nordström’s theory is also incorrect: the geometrization
idea fails.

We can now look at Einstein’s proof of E = mc2 as it is often presented in
modern times.

6. The error in Einstein’s proof of E = mc2

The usual proof for E = mc2 is very simple. From m0 = m
√

1 − β2 we get by
squaring
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m2
0c2 = m2c2 − m2v2 (6.1)

Assuming that this equation holds when v is not constant, we can differentiate

0 = 2mc2dm − 2mv2dm − 2m2vdv (6.2)

and obtain

c2dm = v2dm + mvdv. (6.3)

Inserting the equation of motion

F =
d

dt
(mv) =

dm

dt
v + m

dv

dt
(6.4)

to

dWK = Fds = v
dm

dt
ds + m

dv

dt
ds = v

ds

dt
dm + m

ds

dt
dv

= v2dm + mvdv = c2dm (6.5)

and confusing energy with work we get

E =
∫

dWK =
∫ m

m0

c2dm = mc2 − m0c2. (6.6)

When I wrote this article I did not realize that Einstein confused energy with
work, I only had the following objections: If m0 = m

√

1 − β2is not correct, this
proof fails. Notice that this proof works in the frame of reference where the mass
is moving. It is not in the rest frame of the mass. In that frame v = 0.

Section 5 shows in the discussion after (5.44) that there is a more reasonable
explanation to (5.44) where the mass is not growing with velocity, but the field
created by a force has an additional component which slows the mass down and
stops it from exceeding the speed of light. There seems to be no experimental
way to tell the difference between this case and the case where the mass grows.
Considering that Section 2 proves that the Special Relativity Theory is wrong
and Section 4 demonstrates that there is no reason to require Lorentz invariance
from the equation of motion, the natural conclusion is that the mass does not
grow and Einstein’s proof of E = mc2 is incorrect.

The equation E = mc2 is not any deep result and it has nothing to do with the
mass growing when the velocity is increasing. This equation was first published
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by Olinto de Pretto and should be called De Pretto’s equation. In a discrete
model it is trivial to derive it. Consider mass m being originally at rest and then
speeded in the time ∆t to the velocity c. Thus, the velocity difference is ∆v = c
and the acceleration is a = ∆v

∆t = c( 1
∆t ). The force needed for giving the mass

m this acceleration is F = ma = mc( 1
∆t ). In the time ∆t the object moves a

distance ∆s. The force acts for this distance ∆s, thus the work is W = F∆s
and we get

W = F∆s = mc
∆s

∆t
. (6.7)

The term ∆s
∆t is a velocity. In a continuous space-time this velocity would be

the average velocity where the velocity increases linearly from zero to c. Thus,
we would get the usual formula for the kinetic energy for mass m moving with
speed c

W = mc
∆s

∆t
= mc

1
2

c =
1
2

mc2. (6.8)

In a discrete model this is different. The mass accelerates in one discrete time
unit ∆t and the space unit is ∆s = c∆t. The velocity in a space unit can be
either zero or c and nothing between. Then we do get

E = W = mc
∆s

∆t
= mc2. (6.9)

Ups, do I here confuse energy with work? It does not matter here. This is simply
a trivial calculation, not a proof of anything,

Speeding a mass to a velocity c in (6.9) must be understood in the sense that what
gets this velocity c must be massless. The baryon number must be conserved in
any nuclear reaction where mass changes to energy. If the sum of mass before
and after the reaction does not match, then the missing mass has turned to
energy.

A discrete space-time model also explains why the maximum speed is c: it is
the lattice speed of the space. A discrete model with a lattice speed is usually
discarded as such a model is not Lorentz invariant. Sections 2 and 4 show that
the Lorentz transform is incorrect and there is no reason to demand a model
to be Lorentz invariant. The correct demand is that the geometry is conformal.
Indeed, if we replace the Minkowski space with a 4-dimensional Euclidean space,
the transform of space and time intervals as (2.7) means a conformal transform
of R4to R4 and such a mapping defines a conformal geometry to the target space.
Fortunately, demanding that an equation is Lorentz invariant often implies that
it is invariant under conformal mappings and there should be little need to
make changes to existing gauge field theories because of dropping the Lorentz
invariance.
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7. Conclusions

Einstein understood that the Michelson-Morley experiment, which actually
only tested if the Ether Hypothesis is correct, showed that the speed of light
is constant in every frame of reference moving with a constant speed. The
Michelson-Morley experiment has a flaw as shown in Section 3, but the result
what they found is correct - in the experimental setting they should measure
the same speed of light in all directions. Yet, this result does not imply that the
speed of light is constant in every frame of reference moving with a constant
speed. An alternative explanation is that light travels along the geodesics of
the gravitational field. As the gravitational field in the experiment is mainly
caused by the Earth, Michelson and Morley do not have the different directions
where light might have different speed: the gravitational field of the Earth is
spherically symmetric. But I looked at this explanation long after writing this
article. This alternative is also false: light does not follow a geodesic of the
gravitational field, but I am still in the belief that the speed of light in vacuum
is indeed locally constant.

Because of misunderstanding what the Michelson-Morley experiment shows (or
did not show as it had a flaw), Einstein decided to require Lorentz invariance.
The problem is that the time that the Lorentz transform gives to the moving
frame is not a valid time. This is because the Lorentz transform is nothing but
explanation of the Doppler effect with a new set of coordinates: as the Doppler
effect is different to backward and forward directions, Einstein got a time for
the moving frame that is different to backward and forward directions. He did
notice the problem and defined the proper time, which is a valid time, but he
forgot to mention that if the time is the proper time, then the theory is not
Lorentz invariant.

Einstein never gave a mathematically fully satisfactory proof of De Pretto’s
theorem E=mc2, see the discussion in [3]. An accepted proof of the theorem was
given by Max von Laue in 1911 [4], but von Laue’s theorem deals with Lorentz
invariant tensors and from that we can conclude that the proof is not valid: any
Lorentz invariant theory necessarily has a time in the moving frame that cannot
be a valid time. The field equations in the General Relativity Theory (GRT) are
Lorentz invariant. Therefore they do not give a valid time and especially they do
not give Einstein’s proper time. This alone implies that GRT is flawed and von
Laue’s proof applies to field equations that cannot describe gravitation in our
world. Especially von Laue’s theorem does not explain why nuclear reactions
release energy according to the formula E = mc2, as this energy is released in
out real world and not the world of tensor equations having an invalid time and
for that reason being impossible in our world.

There is another serious flaw in The General Relativity Theory and the reason
for this flaw is also that GRT is Lorentz invariant: GRT does not have constant
speed of light in a gravitation field. It is easy to see why this is so: the
infinitesimal line element in GRT satisfies ds2 = gab(x)dxadxb. The square
of the speed of light in the direction of the spatial dimension xi, i = 1, 2, 3,
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is |gii(x)dxi |
| g00(x)dx0|. The infinitesimals (dx0, dx1, dx2, dx3) have the same

absolute values as the infinitesimals (dt, dx, dy, dz) of an Euclidian 4-space, thus

|dxi |
| dx0| = 1 for every i = 1, 2, 3. If the speed of light is constant c, then

|gii(x)| = c2 |g00(x)|. The element ab of the metric tensor gab(x) can be a
complex function, but because ds2 is a real number as the square of the length
of the line element and dxi is a real number, gaa(x) is a real function and the
eigenvalue is simply |gaa(x)| = ±gaa(x). The sign is determined by ηab. We get

the result gab = ηabϕ2, αβ Ó= 00, g00 = η00
ϕ2

c2 for some scalar gravitational field
ϕ(x). The result is that only a scalar gravitational field has a constant speed
of light. As the General Relativity Theory satisfies the equivalence principle,
also accelerating frames do not have constant speed of light. However, a scalar
gravitation theory is not Lorentz invariant: it has a proper time, time intervals
between a fixed and moving frame of reference transform as T

′

= γ1T for some
γ1.

We see that the Lorentz invariance is the reason for both problems: that the
Special and General Relativity Theories do not have a valid time and that
the General Relativity Theory does not have a constant speed of light in a
gravitational field or in accelerating frames of reference. Einstein did know that
there was this problem because he defined the proper time, but he intentionally
confused the issue and claimed that the relativity theory is Lorentz invariant. In
fact, some parts are, some not, the theory is not consistent.

Einstein did not have any references in his article 1905 of special relativity,
therefore a reference to his book [1] should suffice in an article refuting the
Special Relativity Theory. Reference [2] is a longer and older unpublished
version of the presented article (obtainable by request). In Section 8 paper
[2] has calculations of what GRT field equations give for a scalar gravitation
field. These calculations refute the General Relativity Theory. [2] also includes a
discussion of the experimental "proofs" by which the Special Relativity Theory is
"verified". Theoretical proofs of any formula in the Special of General Relativity
Theory are typically of two types: either they directly use the Lorentz transform
to calculate the time in the moving frame and therefore they do not have a valid
time for the moving frame, which is a reason for discarding the proof, or they
use the proper time as the time for the moving frame and in that case the speed
of light is not constant in the moving frame, which is also a reason to discard
the proof. All empirical results that claim to verify the Relativity Theory seem
to have a flaw, or they equally well verify some other theory, like Nordström’s
gravitation theory, as is the case of the test of gravitational refshift. Some
empirical papers seem to refute or question the Special or General Relativity
Theory. One paper that can be mentioned is [11] by Reginald T. Cahill. It
throws some suspicion on Einstein’s results. The problem with such empirical
results is that they are often disputed and not accepted. Einstein’s results can be
better refuted by mathematical arguments, like in this presented paper. There
is no need for an empirical refutation of a theory with logical errors.
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As SRT and GRT have serious errors but something in the relativity theory is
true, like the gravitational redshift (cannot find anything else to mention), it
once seemed to me that GRT could be replaced by some quantized version of
Nordström’s gravitation theory, but I do not think so any more. Nordström’s
gravitation theory is a scalar theory, and it also satisfies the equivalence principle
[6]. As a scalar theory it is easily quantized, see [7] how to quantize a scalar field.
My unpublished paper [8] has a proposal how to connect this scalar gravitational
field to the Higgs field. Something of this type might work and Nordström’s
gravitation theory can be a starting point, but notice that Nordström’s theory
is not correct. The whole geometrization idea is wrong.

Many papers discussing Nordström’s gravitation theory, like [6], repeat false
arguments against this theory. A typical ones are the claims that light does not
bend in Nordström’s gravitation theory, that it fails the Shapiro delay test and
that it does not explain the perihelion of Mercury. All of these claims are false.
Light bends in every theory where light follows the geodesics of the space-time
geometry, as we can define it to do in Nordström’s gravitation theory should we
so want. Because GRT does not have a constant speed of light in a gravitation
field, the Shapiro delay test fails in GRT, while Nordstr/"om’s gravitation theory
passes this test, see [9] for my calculations. As for the perihelion of Mercury, see
my arguments in [10], GRT is not needed in [10] for explaining the perihelion of
Mercury and Einstein knew what the measurement oddity was and could tune
his theory to give a suitable correction. In reality the field equations of GRT, if
we require that the speed of light is constant, do not yield any solutions that are
close to Newton’s gravitation theory and as Mercury circulates close to the Sun,
certainly any theory that explains issues in the perihelion of Mercury must give a
close approximation to Newtonian gravitation theory, see [2] for the calculations.
The Swarzschild solution seems to give an approximation to Newton’s gravity
force, but the speed of light is not constant in the Swarzschild solution and it
must be discarded.
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2.3 Still one more time: the error in the Lorentz Transform

Abstract: this short calculation shows that the error in the Lorentz Transform is
in taking projections from non-orthogonal coordinates that this transform gives.
The result is that the Lorentz Transform does not make the speed of light in
vacuum constant in each inertial frame.

1. Introduction

The Lorentz Transform in two dimensions is

t′ = γ(t − ( v
c2 )x), where γ = (1 − v2

c2 )
−1

2 .

Let us take two points (x1, t1) = (0, 0) and (x2, t2) = (L+vT, T ). The coordinates
x and t are orthogonal, thus the projection to the x-axis is simply the first number
x in the pair (x, t), and the projection to the t-axis is simply the second number
t. Therefore the difference of the two points in the projection to the x-axis is
L + vT = x2 − x1 and difference of the two points in the projection to the t-axis
is T = t2 − t1. The coordinates x′ and t′ obtained from the Lorentz Transform
are not orthogonal and this causes the error in the Lorentz Transform.

2. The correct projections

Let us set x'=0 as a vertical line. Thus, the line t = v−1x is shown as a vertical
line from the origin, it is the t'-axis. The line when t'=0 is t = ( v

c2 )x. It is the
x'-axis and shown as a horizontal line in the (x',t')-plane.

In Figure 1 are shown in (x,t)-plane the lines t = v−1x, t = ( v
c2 )x and the

line of light sent to the positive x-axis from the origin: t = c−1x, and the line
t = v−1(x − L) of the receiver of light starting at the position (L, 0) and ending
to the position (L + vT, T ) at the time when light sent from the origin arrives
to the receiver. As L + vT = cT we get L = (c − v)T .

Additionally Figure 1 shows point P1 where the preimage of t'-axis, i.e., the
linet = v−1x, intersects with a line parallel to the preimage of the x'-axis, i.e.,
the line t = ( v

c2 )x, going through (L + vT, T ). The line parallel to the line
t = ( v

c2 )x and going through (L+vT, T ) is t = ( v
c2 )x+γ2T − ( v

c2 )L. Intersecting

it with t = v−1x gives the point P1 as ( cvT
( c − v), cT

( c − v)). Its image in the

(x',t')-plane is P1' which is (0, γ(1 − v
c )T ).

Figure 1 still shows one point, P2, which is the intersection of a line parallel
to the preimage of the x'-axis, i.e., the line t = ( v

c2 )x, going through the point
(L, 0) and the the preimage of t'-axis, i.e., the linet = v−1x. The line parallel to
the line t = ( v

c2 )x going through (L, 0) is t = ( v
c2 )(x − L). Intersecting it with

t = v−1x gives P2 as (−( v2

c2 )γ2L, −( v
c2 )γ2L) and its image is the point P2' which

is (0, −γ( v
c2 )L). Figure 2 displays the points P1'and P2'in the (x',t')-plane.
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Figure 1. The points and lines shown in the (x,t)-plane.

Figure 2. The points P1'and P2' shown in the (x',t')-plane. The time light

107



travels is the time from P2' to P1'.

In Figure 2 we have denoted T ′
1 = γ(1 − v

c )T =
√

(c − v )
( c + v)T . This is the

time we get from inserting the equation of light t = x
c to the Lorentz Transform

T ′
1 = t′ = γ(t − ( v

c2 )x) = γ(T − ( v
c2 )cT).

It is incorrect to think that this is the time light travels in the (x',t')-coordinates.
Light starts in (x.t)-coordinates at the time t = 0. We must measure the time
when light comes to the receiver in the (x',t')-coordinates by using a clock that
is stationary at L′ = γL. This clock starts at the time −γ( v

c2 )L′,m which is the
time when light starts from the origin.

We notice from Figure 1 that the line from (0,0) to P1 has the same length
and direction as the line from (γ2L, (γ2 − 1)L

v ) to (L + vT, T ). Both have the

x=difference Tcv
( c + v) and the t-difference Tc

( c + v). Thus, the time value

T ′
1 = γ(1 − v

c )T in the time coordinate of P1' is not the time light travels. It is

only the time light travels from the image of (γ2L, (γ2 − 1)L
v ) to the image of

(L + vT, T ). Light starts at the time 0 in the (x.t)-plane and the traveling time
is from 0 to T along the line from (L, 0) to (L + vT, T ). This is equal in length
to the trip from P2 to P1 and the time T ′ that light travels in (x',t')-coordinates
is the time difference between the points P2' and P1'. Thus,

T ′ = γ(1 − v
c )T + γ( v

c2 )L = γ(1 − v
c )T + γ( v

c2 )(c − v)T = γ−1T .

Thus, the speed of light in R' to the positive x'-axis is

c′ = L’/T ′ = γL
( γ−1T ) = γ2 L

T = γ2(c − v).

The time T ′is exactly the same as what we get by measuring the time in (x',t')-
plane with a clock fixed at the origin of (x', t'), i.e., having the equation x = vt.
Then

T ′ = t′ = γ(T − ( v
c2 )vT) = γ(1 − v2

c2 )T = γ−1T .

This is natural, we should be able to measure the speed of light by using one
fixed clock and synchronizing the receiver's clock to the fixed clock.

The error Einstein makes is that he thinks that the projection on the t'-axis is
T ′ = t′

2 − t′
1. If this were the case, then we get

c′ = L’/T ′
1 = γL

( γ(1 − v
c )T ) = ( L

T )(1 − v
c )−1 = (c − v)( c

( c − v)) = c.

However, this is wrong.
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PART 3. THE FIELD EQUATION

Among other issues this part shows that the Einstein Equations, the field equation
of GRT, does not allow any solutions that approximate Newtonian gravity in the
simplest case of a point mass in empty space and have locally constant speed of
light. This is fatal.
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3.1 On the field equation in gravitation

Abstract:

The first section proves that Einstein’s field equation in the General Relativity
Theory is impossible because it does not give any spherically symmetric solutions
in the situation of a point mass in an empty space. The second section explains
why the field equation should not reduce to the Ricci scalar curvature as for
a scalar field it leads to the the D’Alembert operator which has a wrong time
dependency and an incorrect understanding of what the Laplace operator field
equation really is.

1. The Einstein equations are incorrect

The Einstein equations are

Rab − 1
2

Rgab = κ0Tab + λgab. (1)

Lemma 1. If a field gives the speed of light in vacuum as c at every point to
every direction, then the field is a scalar field.

Proof Light travels along light-like world paths in the General Relativity Theory.
They have ds = 0 in the space element

ds2 = c2g00dx2
0 − g11dx2

1 − g22dx2
2 − g33dx2

3 (2)

The speed of light to the direction of xi is obtained by setting dxj = 0, j Ó= i,
j ∈ {1, 2, 3}. Thus

ds2 = 0 = c2g00dx2
0 − giidx2

i (3)

c2 =
gii

g00

dx2
i

dx2
0

=
gii

g00
(3)

as the differentials dxi are Euclidean. We get

gii = c2g00 (4)

and we can define ψ = c−1√
g00. This means that the field ψ is a scalar field. �

Theorem 1. The Einstein equations do not have any scalar field solutions for a
scalar field in the situation of a point mass in empty space.

Proof

The situation of a point mass in empty space is spherically symmetric. Therefore
the scalar field ψ must be spherically symmetric. Let the field be ψ(r, t)

The nonzero elements of the metric tensor are g00 = c2ψ2, g11 = −ψ2, g22 =
−r2ψ2, g33 = −r2 sin2(θ)ψ2.
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The nonzero Ricci tensor entries for this scalar field in spherical coordinates
(r, θ, φ) are:

R00 = ψ−1 ∂2ψ

∂r2
+

2
r

ψ−1 ∂ψ

∂r
+ ψ−2

(

∂ψ

∂r

)2

− 3
c2

ψ−1 ∂2ψ

∂t2
+

3
c2

ψ−2

(

∂ψ

∂t

)2

(5)

R11 = −
(

3ψ−1 ∂2ψ

∂r2
+

2
r

ψ−1 ∂ψ

∂r
− 3ψ−2

(

∂ψ

∂r

)2

− 1
c2

ψ−1 ∂2ψ

∂t2
− 1

c2
ψ−2

(

∂ψ

∂t

)2
)

(6)

R22 = −r2

(

ψ−1 ∂2ψ

∂r
+

4
r

ψ−1 ∂ψ

∂r
+ ψ−2

(

∂ψ

∂r

)2

− 1
c2

ψ−1 ∂2ψ

∂t2
− 1

c2
ψ−2

(

∂ψ

∂t

)2
)

(7)

R33 = sin2 R22 (8)

The Ricci scalar is

R = gabRab = ψ2

(

6ψ−1 ∂2ψ

∂r
+

12
r

ψ−1 ∂ψ

∂r
− 6

1
c2

ψ−1 ∂2ψ

∂t2

)

and from (1)

−R = gab

(

Rab − 1
2

Rgab

)

= gab (κ0Tab + λgab) (9)

In the empty space outside the point mass Tab = 0. The cosmological constant
λ must be zero in the empty space outside the point mass because λg00 = λψ2

cannot match terms R00 and Rg00 that are of the form (5) and (9). Therefore
the Einstein equations in this case require that R in (9) is zero and each Rii for
i = 0, 1, 2, 3 is zero. We set c = 1 for simplier notations.

First we eliminate the time derivatives by calculating the equation

R11 − R22

r2
= 0 (10)

It gives

ψ−1 ∂2ψ

∂r2
− 1

r
ψ−1 ∂ψ

∂r
− 2ψ−2

(

∂ψ

∂r

)

= 0 (11)

Let

ψ′ =
∂ψ

∂r
(12)

y = ψ′ψ−2 (13)
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then

y′ − 1
r

y = 0 (14)

y = 2c1r = ψ′ψ−2 (15)

where c1 is a constant. Then

ψ = (c1r2 + c2) (16)

Including the time depencence we can write

ψ = (c1(t)r2 + c2(t)) (17)

Next we calculate solve the time derivative from the equation

R00 + 3R11 = 0 (18)

It yields

6ψ−2

(

∂ψ

∂t

)2

= 8ψ−1 ∂2ψ

∂r2
+

4
r

ψ−1 ∂ψ

∂r
− 10ψ−2

(

∂ψ

∂r

)2

(19)

From (17) we get
∂ψ

∂r
= −2c1rψ2 (20)

ψ−1 ∂2ψ

∂r2
= −2c1ψ + 8c2

1r2ψ2 (21)

Inserting to (19) and simplifying gives

(

∂ψ

∂t

)2

= −4c1ψ3 + 4c2
1r2ψ4 (22)

Calculating
∂ψ

∂t
= −(c′

1r2 + c′
2)ψ2 (23)

where c′
i = dci/dt, i = 1, 2. Then

(c′
1r2 + c′

2)2 = −4c1ψ−1 + 4c2
1r2 = −4c1(c1r2 + c2) + 4c2

1r2 (24)

Matching the coefficients of r4, r2 and r0 in (24) gives the equations

(c′)2 = 0 2c′
1c′

2 = 0 (c′
2)2 = −4c1c2 (25)

Thus, c1(t) = c1 is a constant and

c′
2 = ±2

√
−c1

√
c2 (26)

2
√

c2 = ±2
√

−c1(t + c3) (27)
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where c3 is a constant. Then

c2 = −c1(t + c3)2 (28)

We get as the only possible result from (10) and (18)

ψ = (c1r2 − c1(t + c3)2) (29)

Lastly, we check if the solution satisfies R00 = 0. Inserting (20), (21) and

∂ψ

∂t
= 2c(t + c3)ψ2 (30)

ψ−1 ∂2ψ

∂t2
= 2c1 + 8c2

1(t + c3)2ψ2 (31)

to (5) and simplifying gives

R00 = −12c1ψ + 12c2
1(r2 − (t + c3)2)ψ2 Ó= 0 (32)

Thus, the only solution from (10) and (18) does not satisfy Einstein’s equations.
�

Another proof that the Einstein equations (1) fail in this situation is given in [2].
In the proof in 2] the scalar field ψ is allowed to depend on all variables (r, θ, φ, t).
In [3] there is a proof that even if the field is not a scalar field but only spherically
symmetric and does not depend on time, then also there are no solutions to the
Einstein equations in the case of a point mass in empty space. In the proof in
[3] the speed of light is allowed to be different in the direction of the gradient
of the gravitational field but equal to c in vacuum in the directions orthogonal
to the gradient of the gravitational field. That is certainly the minimum that
can be demanded of a solution as we know that the speed of light is constant
to all directions on the horizontal plane on the Earth. We conclude that the
Einstein equations are incorrect. The derivation Einstein gave to (1) is not any
valid derivation: he deduced it heuristically from quite questionable principles.

2. Where does the field equation come from?

We start from the conclusion that the field must be a scalar field so that the
speed of light is constant. We can sum (1) setting λ = 0 as this term is of a
wrong form. Then

gabRab − gab 1
2

Rgab = κ0gabTab (33)

R − 2R = κ0T (34)

R = −κ0T = −8πG

c4
T (35)

where T = gabTab. For all scalar fields ψ holds

R = −6ψ−3
�ψ. (36)

113



where the D’Alembert operator is

�ψ = ∆ψ − c−2 ∂2ψ

∂t2
(37)

Inserting (36) to (35) gives

ψ−1
�ψ = −4πG

1
3c4

Tψ2. (38)

This equation also does not work. In the case of a point mass in empty space,
T = 0, then we need a solution to

�ψ = 0 (39)

There are some solutions, like

ψ(r, t) = − ρ0

r2 − c2t2
(40)

and
ψ(x, y, z, t) = ψ(x + y + z −

√
3ct) (41)

but the solution should be close to the Newtonian potential.

The (correct) classical formula for a point mass M at the origin in empty space
is

∆ψ = 0 (42)

outside the origin. ∆ is the Laplace operator.

Let us derive this formula. Let there be a mass M at the origin and a small test
mass m1 at the distance r from the origin in the Euclidean 3-space. The mass M
creates a spherically symmetric time-independent gravitational field ψ = ψ(r).
The gradient points towards the origin. Writing the force F̄ = F ēr, we have

F (r) = −m1
∂ψ(r)

∂r
(43)

where the negative sign is because ēr points away from the origin. The force
spreads to all directions, but the force lines remain. Thus

(A(r + dr)F (r + dr) − A(r)F (r)
dr

= 0 (44)

where A(r) = 4πr2 is the area of a 2-sphere of the radius r. Therefore we get

1
A(r)

d

dr
A(r)F (r) = 0 (45)

which can be written as

1
r2

∂

∂r
r2

(

−m1∂ψ

∂r

)

= 0
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thus
∆ψ(r) = 0 (46)

outside the origin.

One often sees in the literature the formula:

∆ψ = −4πGρ (47)

where ρ is called mass density. This formula is correct, but it is a residue formula.
It does not actually mean that ρ is mass density in the sense that some mass m
is distributed with the density ρ(r) to the area r ∈ [0, R] and there are no point
masses. Let us see what we get if ρ(r) is radially symmetric mass density and
there are no point masses creating singularities of the field ψ.

We place a small test mass m1 to the point z = h in the (x, y, z) coordinates.
Let the total mass m is

m =
∫ R

0

4πr2ρ(r)dr (48)

for some R which we may at the end extend to infinity. The angle φ between
the x and z axes ranges from −π/2 to +π/2. All points on a circle of radius
r on the (x, y)-plane at the height z = r sin φ have the same distance s to m1.
This distance s satisfies

s2 = (r cos φ)2 + (h − r sin φ)2 (49)

We take such circles as small masses of the size

dm(φ) = 2πr cos(φ) rdφ ρ(r)dr. (50)

The gravitation force

dF (φ) = Gm1
2πr2 cos(φ)

s2
dφ ρ(r)dr (51)

created by the mass dm(φ) is in the direction of s̄ and from the test mass m1

towards the small mass dm(φ). The force is not along the z-axis and we need to
take a projection on the z-axis

dFz(φ) =
h − r sin(φ)

s
Gm1

2πr2 cos(φ)
s2

dφ ρ(r)dr (52)

This force we can integrate over the angle φ. The equation is

dF (h) = 2πGm1r2ρ(r)drI (52)

where

I =
∫ π/2

−π/2

(h − r sin(φ)) cos(φ)
s3

dφ (53)
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is easily integrated by the change of the variable to x = sin φ.

I =
∫ 1

−1

a
h
r − x

(b − x)
3
2

dx (54)

where
a = h−1(2hr)− 1

2 (55)

b =
1
2

h

r

(

1 +
r2

h2

)

. (56)

As
∫ 1

−1

a( h
r − x)dx

(b − x)
3
2

= 2a(b − x)
1
2

((

b − h

r

)

(b − x)−1 + 1
)

(55)

we get

I = 2a

(

h

r
− b

)

(

(b − 1)− 1
2 − (b + 1)− 1

2

)

−2a
(

(b − 1)
1
2 − (b + 1)

1
2

)

. (56)

Inserting
h

r
− b =

h

2r

(

1 − r2

h2

)

(57)

b ± 1 =
h

2r

(

1 ± r

h

)2

(57)

we get the final result

I =
2
h2

. (58)

Integrating the force dFz over r gives the force F (h) on the mass m1

F (h) =
∫

dFz = −4πG
m1

h2

∫ R

0

ρ(r)r2dr. (59)

Let ρ(r) be a constant ρ. The force is Newtonian

F (h) = −4πG
m1

h2
ρ

R3

3
= −G

m1m

h2
. (60)

The sign is negative because F̄ (h) = F (h)ēr, which is also the reason why the
force is the negative of the gradient of the field

F (h) = −∂ψ(h)
∂h

. (61)

The Laplace operator gives zero outside singularities

∆ψ(h) =
1
h2

∂

∂h
h2 ∂

∂h
ψ(h)
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=
1
h2

∂

∂h
h2(−F (h)) = 0. (62)

We see that outside point masses, which are singularities in Newton’s gravitation
theory, the Laplace operator vanishes. There is no requirement in the calculation
above that R should be smaller than h or even finite. We can write

F (h) =
∫

dFz = −4πG
m1

h2

∫ ∞

0

ρ(r)r2dr. (63)

Everything happens at one time t and no time derivatives are taken. We can
simply add the time parameter and get

F (h, t) =
∫

dFz = −4πG
m1

h2

∫ ∞

0

ρ(r, t)r2dr. (64)

The Laplace equation outside point masses is still

∆ψ(h, t) = 0. (65)

Naturally, if we want to add a delay to the time, we can use a time difference
equation inserting instead of ρ(r, t) ρ(r, t−s/c) with a suitable s, but differential-
difference equations are difficult to work with.

We can express ∆ in Cartesian coordinates

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ψ(x, y, z, t) = 0 (66)

for a radially symmetric ψ. The form of the expression of (66) should logically
be the same for any ψ. If so, then outside point masses we should get

∆ψ(h̄, t) = 0. (67)

According to literature (67) is correct. We will prove it with point masses in
(68)-(74). The solution of (67) is not radially symmetric and especially not
ψ ∼ r−1 in the general case as ∆ has other parts than the radial part.

The ρ in (47) is a convention that counts the residues of singularities in point
masses in a volume bounded by a closed surface. The value of the residue is
calculated as in the Gauss theorem for electromagnetism: a point mass at the
origin in empty space gives the residue

∆ψ(r) = −4πGMδ(r̄) (68)

where δ(r̄) is the Dirach delta. For any linear transform r̄′ = r̄ − s̄ where s̄ is
some constant 3-vector holds

∆x,y,z =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∂2

∂x′2 +
∂2

∂y′2 +
∂2

∂z′2 = ∆x′,y′,z′ (69)
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Thus, changing from spherical coordinates to Cartesian, making the linear
transform and chanring back we have

∆r,θ,φ = ∆x,y,z = ∆x′,y′,z′∆r′,θ′,φ′ (70)

For any constant vector s̄i and new variable r̄′ = r̄ − s̄i holds

∆r,θ,φψi(r̄ − s̄i) = ∆r′,θ′,φ′ψi(r̄′). (71)

We define the potential as

ψ(r̄) =
∑

i

ψi(r̄ − s̄i). (72)

Then
∆r,θ,φψi(r̄) =

∑

i

∆r′

i
,θ′

i
,φ′

i
ψi(r̄′

i) = −4πG
∑

i

Miδ(r̄′
i) (73)

which is written as
∆ψ()̄ = −4πGρ(r̄) (74)

where
ρ(r̄) =

∑

i

Miδ(r̄ − s̄i). (75)

Equation (74) is (47) and we see from (75) that ρ is not any continuous function.

Notice what this means to the equation (38) that we rewrite as

�ψ = −4πG
1

3c4
Tψ3. (76)

In a time independent situation the equation is

∆ψ = −4πG
1

3c4
Tψ3. (77)

If this equation holds and the force is r−2, then there must be singularities. In
the fifth chapter of Einstein’s book [1] he presents Friedman’s results where the
mass density is assumed to be constant. The results given in [1] reveal that by
constant density Einstein means that the values of Tabψ2 are nonzero constants.
Clearly Einstein and Friedman do not mean that the right side of (76) is nonzero
because of singularities: the situation is as in the calculation (48)-(62) and
Einstein should get zero as the Ricci scalar. Einstein gets something different
meaning that his force is not r−2. The tensor Tab should describe the distribution
and movement of matter, but if it is a continuous function, then it does not
describe matter at all. It changes the curvature of the space from flat to non-flat.
There seems to be some major understanding difference or misunderstanding in
Einstein’s theory of why the right side of (38) should have the matter term T .

Einstein’s theory does create singularities, like a closed surface singularity in
the Schwarzschild solution, but the residues in (47) and (75) are from point
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singularities. In [1] Einstein writes that he would like to remove singularities
from his theory. If so, then (76) can give nonzero right side only if the force is
not r−2. Let us notice that if the force is not r−2, then one should not use a
spherical Laplace or D’Alembert operator. The coordinates should be for non-flat
geometry, but equations (44)-(45) should still hold as force lines spread over the
whole area of a 2-sphere. In suitable coordinates ∆ψ = 0 should hold if there
are no singularities. The matter term should come from residues of singularities.
The singularites are sinks and sources of some flow. Einstein wanted to explain
matter as surved space, but matter is not the gravitational field. Matter is
singularities and something flows in and out.

The time dependency of � in (76) is not motivated. It does not give solutions
that are close to Newton’s gravitation field. In (64) and (65) there is no time
dependency, everything is calculated at the same time moment t and we can
simply add the time variable to the density ρ that describes how mass bodies
move. It is a question what the time dependency of � is intended to model.

Finally let us notice that the Laplace operator assumes that unit 2-spheres have
the area 4πr2. This is why there is division by r2 and multiplication by r2 in
the radial part of ∆. This assumption means that the space geometry is flat.
The geometry of the gravitational field is not flat in the Newtonian gravitation
theory: close to a point charge the infinitesimal spheres of the gravitational
geometry have the radius proportional to ψ, yet it is not expected that the
force lines follow the gravitational geometry. The condition for the force lines in
equation (44) is that the area of a sphere grows as r2. Using � means that one
is assuming flat geometry and force lines spread in that geometry. For a scalar
field the Ricci scalar reduces to � by the equation (36). It seems that there is a
flat space geometry in (1) in addition to the geometry of the gravitational field.
We may ask if light follows the geodesics of the flat space geometry or geodesics
of the gravitational field. Einstein claimed that it is the second alternative, but
more likely it is the first alternative.
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3.2 On the field equation in gravitation, part 2

1. The metric in can only be induced by a scalar field

The metric in the Relativity Theory is derived from Riemannian metric. Rie-
mannian metric is induced by an inner product: the norm in local orthogonal
coordinates Xi, i = 1, . . . , n is defined as

R =

(

n
∑

i=1

x2
i

)
1
2

(1)

thus the line element R satisfies

dR2 =
n

∑

i=1

dX2
i (2)

where n is the dimension of the space. The local orthogonal coordinates can be
defined by

dXi = fi(x)dxi (3)

where dxi are the Cartesian coordinates of the Euclidean space Rn. The local
coordinates can always be orthogonalized, therefore we can assume that the local
coordinates are chosen as orthogonal Cartesian coordinates. When the local
coordinates are orthogonal, there are no cross terms dXidXj in (2) because their
inner product vanishes.

Let n = 3. We can change the Cartesian coordinates xi, i = 1, 2, 3, into spherical
coordinates

x = r cos(φ) sin(θ) (4)

y = r sin(φ) sin(θ)

z = r cos(θ).

Then
r2 = x2 + y2 + z2 (5)

dr =
x

r
dx +

y

r
dy +

z

r
dz (6)

dr2 =
x2

r2
dx2 +

y2

r2
dy2 +

z2

r2
dz2 (7)

+2
xy

r2
dxdy + 2

xz

r2
dxdz + 2

yz

r2
dydz

sin(θ)dθ =
z

r2
dr − dz

r
(8)

sin2(θ) = 1 − z2

r2
=

x2 + y2

r2
(9)
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r2dθ2 =
z2x2

r2(x2 + y2)
dx2 +

z2y2

r2(x2 + y2)
dy2 +

x2 + y2

r2
dz2 (10)

+2
z2xy

r2(x2 + y2)
dxdy − 2

z2xz

r2
dxdz + 2

z2yz

r2
dydz

x

y
= cot(φ) (11)

1
sin2(φ)

dφ =
x

y2
dy − dx

y
(12)

1
sin2(φ)

=
x2 + y2

y2
(13)

dφ2 =
y2

(x2 + y2)2
dx2 +

x2

(x2 + y2)2
dy2 − 2

xy

(x2 + y2)2
dxdy (14)

r2 sin2(θ)dφ2 =
y2

x2 + y2
dx2 +

x2

x2 + y2
dy2 − 2

xy

x2 + y2
dxdy (15)

Inserting (7), (10) and (15) we notice that

dr2 + r2dθ2 + r2 sin2(θ)dφ2 = dx2 + dy2 + dz2 (16)

but if we weight the differentials at the left side of (16) with some functions,
then the right side will not have the form as in (16). Especially, if we make the
transfrom from spherical coordinates to Cartesian coordinates in the so-called
Schwarzschild metric

ds2 = A(r)dt2 − B(r)dr2 − r2dθ2 − r2 sin2(θ)dφ2 (17)

we get

ds2 = A(r)dt2 − (B(r) − 1)dr2 − dr2 − r2dtheta2 − r2 sin2(θ)dφ2 (18)

ds2 = A(r)dt2 − (B(r) − 1)dr2 − dx2 − dy2 − dz2 (19)

= A(r)dt2 −
(

(B(r) − 1)
x2

r2
+ 1

)

dx2

−
(

(B(r) − 1)
y2

r2
+ 1

)

dy2 −
(

(B(r) − 1)
z2

r2
+ 1

)

dz2

−2(B(r) − 1)
xy

r2
dxdy − 2(B(r) − 1)

xz

r2
dxdz − 2(B(r) − 1)

yz

r2
dydz. (20)

Equation (20) does not define a metric in local Cartesian coordinates. There can-
not be cross terms dxdy, dxdz, dydz because the Euclidean differentials dx, dy, dz
are orthogonal and the inner product vanishes. The Schwarzschild metric (17) is
not a valid metric in the Relativity Theory and it does not give the Minkowski
metric as a limit when the local environment becomes infinitely small.
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The Minkowski metric is a Riemannian pseudo-metric (because it is not positive
definite) with the line element

ds2 = c2dt2 − dx2 − dy2 − dz2. (21)

This metric is flat and dt, dx, dy, dz are Euclidean differentials. We get the speed
of light to the direction of the local coordinate Xi, i = 1, 2, 3, by setting dXj = 0
for j Ó= i and setting ds = 0 because light travels on light-like world paths.
Writing dX0 = dt, we have

0 = ds2 = c2dX2
0 − dX2

i (22)

dX2
i

dX2
0

= c2 (23)

In the General Relativity Theory the local coordinates are expressed with
Euclidean differentials:

dXi =
√

giidxi (24)

so that the metric in local Cartesian coordinates is in the form

ds2 = g00dx2
0 − g11dx2

1 − g22dx2
2 − g33dx2

3 (25)

The condition that the speed of light is c to the direction of the local coordinate
Xi, i = 1, 2, 3, at the point x is

gii(x)
g00(x)

= c2. (26)

If the local coordinates Xi are orthogonal Cartesian coordinates, there are no
cross terms dxdy, dxdz, dydz in the expression (25). If there are such cross terms,
the the local coordinates are not orthogonal Cartesian coordinates. We see that
this is the case for the Schwarzschild metric.

The functions gii(x) in (25) give the metric. The differentials dxi, i = 0, 1, 2, 3 are
Euclidean and dx2

i /dx2
0 = 1 for i = 1, 2, 3. In order to verify that the differentials

are meant to be Euclidean, it is enough just to look at the Schwarzschild
metric. There appears r and θ, which are Euclidean coordinates of the spherical
coordinate system, and there appears dr, dθ and dφ. They are Euclidean
differentials of the spherical coordinate system. The metric is made by multiplying
these Euclidean differentials by the functions

√
gii.

If gii are not constants, the geometry is curved, but locally a geometry is always
flat. That is, the surface of the Earth is curved, but if we look at a disc with the
radius of one kilometer, the surface appears quite flat. If we take an even smaller
disc, the surface becomes still flatter. In a limit when the environment becomes
infinitely small, the curvature of the space disappears: the tangent space is flat
and in the Relativity Theory it must become a Minkowski space. The metric
must give the following form line element at any chosen point x = P

ds2 = c2A(P )dx2
0 − A(P )dx2

1 − A(P )dx2
2 − A(P )dx2

3 (27)
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where dx0, dx1, dx2, dx3 are Cartesian coordinates of the Euclidean space R4.
We can define ψ(P ) by the formula

ψ(P ) = −
√

A(P ) (28)

at the point x = P . As P is any point, (28) defined ψ(x) at any point. The
metric is

ds2 = c2ψ(x)2dx2
0 − ψ(x)2dx2

1 − ψ(x)2dx2
2 − ψ(x)2dx2

3

ds2 = c2ψ(x, y, z, t)2dt2 − ψ(x, y, z, t)2dx2 − ψ(x, y, z, t)2dy2 − ψ(x, y, z, t)2dz2.
(29)

We can express the metric (29) in spherical coordinates as

ds2 = c2ψ(r, θ, ψ, t)2dt2 − ψ(r, θ, ψ, t)2dr2

−r2ψ(r, θ, ψ, t)2dy2 − r2 sin2(θ)ψ(r, θ, ψ, t)2dz2. (30)

This is the most general form of a metric in the Relativity Theory.

We can especially look at a spherically symmetric situation. In a spherically
symmetric situation, the solution (i.e., the metric) must be spherically symmetric.
The most general spherically symmetric metric is:

ds2 = c2ψ(r, t)2dt2 − ψ(r, t)2dx2 − ψ(r, t)2dy2 − ψ(r, t)2dz2. (31)

and the most general spherically symmetric metric in spherical coordinates is:

ds2 = c2ψ(r, t)2dt2 − ψ(r, t)2dr2 − r2ψ(r, t)2dy2 − r2 sin2(θ)ψ(r, t)2dz2. (32)

In the situation of a point mass in empty space (or a spherical mass in empty
space considered only in the space outside the mass) the Einstein equations

Rab − 1
2

Rgab = κ0Tab + λgab. (33)

simplify considerably: in the area where the space is empty holds Tab = 0. We
must set λ = 0 because the term λgab grows as ψ(x)2 while Rab grows as ψ′ψ−1

and they cannot match. Multiplying (33) by gab and summing shows that R = 0.

gabRab − gab 1
2

Rgab = κ0gabTab (34)

R − 2R = κ0T (35)

R = −κ0T = −8πG

c4
T (36)

where T = gabTab. We get three independent equations from (33): R00 = 0,
R11 = 0, R22 = 0, but there is only one function ψ(r, t) to solve in (32). It is
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shown in [4] that there are no solutions to the Einstein equations in this situation.
It is also shown in [2] and [3] in different ways.

This means that there can be only one equation. Initially it might appear that
the equation can be (36), but as ψ(x) is a scalar function, we can simplify the
equation with

R = −6ψ−3
�ψ. (37)

where the D’Alembert operator is

�ψ = ∆ψ − c−2 ∂2ψ

∂t2
(38)

We get the equation

ψ−1
�ψ = −4πG

1
3c4

Tψ2. (39)

which is similar to the field equation in Nordströmäs gravitation theory. In
empty space (39) gives

�ψ = 0. (41)

Equation (41) has the following radially symmetric time-dependent solution

ψ(r, t) = − ρ0

r2 − c2t2
(42)

Clearly, ψ(r, t) in (42) is not close to the Newtonian gravitational field. Equation
(41) and therefore (36) are wrong. Nothing can be saved fron Einstein’s field
equations (33). They are completely wrong.

2. Newton’s gravitation potential is correct and the space is flat

Let us look at a situation when the space is empty outside the single mass body
where the mass body is not a point mass. The mass body is a ball of constant
mass density ρ centered at the origin and having the radius R and the mass m.

The situation is spherically symmetric, therefore the field must be radially
symmetric. Measurements show that Newton’s gravitational force is a good
approximation. Let us assume that the force is well approximated in the range
of r that interests us by the formula

F = G
m1m

rα
(43)

where α is a constant and close to two. We are interested in proving that α = 2.

We will assume that the geometry of the space is such that the length of a circle
of radius r is well approximated in the range of r that interests us by the formula

L =
∫ 2π

0

r
γ

2 dφ = 2πr
γ

2 (44)

124



where γ is a constant and close to two. Then the area of a sphere of radius r is
well approximated by

A(r) = 4πrγ (45)

and the volume of a ball of radius r is well approximated by

V (r) =
4π

γ + 1
rγ+1. (46)

We will assume that the space has Riemannian metric, so the square of the norm
is

r2 = x2 + y2 + z2 (47)

and only the area of an r-sphere grows faster (or slower) than in R3. It is possible
to construct such a space and we are interested in proving that γ = 2, the space
is flat.

The mass m is distributed over the R-ball centered in the origin and having a
constant density ρ, thus

m = ρV (R). (48)

The mass m1 is a much smaller test mass that we will place to the z-coordinate
to the place (0, 0, h). The following spherical coordinates are a convenient choice
for this calculation

x = r cos(φ) cos(β) x = r sin(φ) cos(β) z = r sin(β) (49)

The angle β is between the x-axis and z-axis. At a given value of β there is a
circle with the radius r cos(β) with the length 2πr

γ

2 . The volume element having
length r

γ

2 dβ in the β-direction and dr in the radial direction is

dV (β) = 2πrγdr cos(β)dβ (50)

and the mass is dm(β) = ρdV (β). The elements of this circular mass are at the
distance s from m1 where

s2 = (r cos(β)2 + (h − r sin(β))2 = r2 + h2 − 2rh sin(β) (51)

This mass creates a gravitational force dF (β, r) on m1. The force from the
elements of the mass are not in the direction of −z-axis, so we have to add a
projection. It is the first multiplier at the right side in the formula below:

dF (β, r) =
h − r sin(β)

s
G

m1dm

sα
(52)

The force is towards the origin.

The integral over β is

dF (r) = 2πGm1ρrγdr

∫ π
2

− π
2

(h − r sin(β)) cos(β)dβ

s
α+1

2

(53)
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= 2πGm1ρrγdrI

where x = sin(β) simplifies I to

I =
∫ 1

−1

a
( h

r − x)dx

(b − x)
α+1

2

(54)

a = r(2hr)− α+1

2 (55)

b =
r2 + h2

2hr
(56)

A calculation gives the following exact result

I =
1

α − 1
1
2r

h1−αI2 (57)

I2 =
(

1 +
r

h

) (

1 − r

h

)α−2

−
(

1 − r

h

) (

1 +
r

h

)α−2

−
(

1 − r

h

)3−α

+
(

1 +
r

h

)3−α

(58)

From Taylor series we get the expression:

I =
3 − α

α − 1
2h−α + p(α)r2h−α−2 + O(r4h−4) (59)

where

p(α) =
1

2(α − 1)

(

20 − 92
3

+ 15α2 − 7
3

α3

)

(60)

If α = 2, then p(α) = 0 and the O(r4h−4) term is also zero. Thus, α = 2 gives
an exact result as the first term of I.

We integrate −dF (r) over r from zero to R and insert m from (48) and (46).
The result is

F = G
m1m

hα

3 − α

α − 1
+ G

m1m

hα

γ + 1
γ + 3

p(α)
2

R2

h2

(

1 + O(R2h−2)
)

. (61)

Let h >> R, then the second term in the right side becomes insignificant. The
gravitational force created by a ball of radius R and mass m must approach the
gravitational force created by a point mass with the size m. Thus

F = G
m1m

hα

3 − α

α − 1
→ G

m1m

hα
(62)

when h stays fixed and R approaches zero. This can only happen if

3 − α = α − 1 (63)
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that is, α = 2. We have proven that the power α in Newton’s formula must
be two. It does not matter if we make α a function of h because we are not
integrating over h in this calculation. Always (63) must hold in the limit, so
α = 2.

Let us remark that for α = 2 the equation

F = G
m1m

h2
(64)

is exact. For any distance h > R the mass of the shape of an R-ball with constant
density always gives the same gravitational force as a point mass of the same
size.

We did not get any result for the parameter γ from this calculation, but there
is an easy way to conclude that in empty space γ = 2. Force lines from the
gravitational force created by a point mass do not disappear in empty space.
Thus

A(r + dr)F (r + dr) = A(r)F (r) (65)

implying that γ = α = 2, the space geometry is flat.

3. On the possibility of defining a local ether

Let us go to the classical field equation, derived in [4]

∆ψ()̄ = −4πGρ(r̄) (66)

where
ρ(r̄) =

∑

i

Miδ(r̄ − s̄i). (67)

As explained in [4], ρ is not a continuous function. It is an approximation that
describes a cloud of residues of point singularities coming from point masses
Mi at locations s̄i. These point masses could be other mass bodies, but we will
remain in the situation of a mass body at the origin being placed in what looks
like empty space. But now we assume it is not empty space, it is a local ether
containing extremely small point masses Mi.

A local ether can provide the local frame of reference where light has the local
speedarguentm c at each point to each direction. A local ether that has some
very small by mass can be kept around a mass body by the gravitational force,
yet if the ether particles are very small, they do not need to rotate with a high
speed in high altitude. There are several forces that can keep them above the
ground. After all, our atmosphere is not blowing with high speed but seems to
be staying quite well above the ground.

Local ether could possibly explain dark mass, assuming that there is needed such
undetected mass as the arguments usually are based on the General Relativity
Theory, which is false.
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If there is such local ether with mass, it would mean that the gravitational force
does not appear to follow the α = 2 law exactly: ignoring the right side in (66)
would lead to the conclusion that α is not precisely two. But it must be two.

The ether theory was discarded by Einsteinäs false claim that the Lorentz
transfrom makes the speed of light constant c in every inertial frame. It does not.
Einstein forgot to project (x′, t′) in the moving frame of the Lorentz transform
to the t′-axis. The speed of light in the moving frame is not c, nor can it be
made c by any linear transfrom. As Einstein’s relativistic mass formula is also
wrong and his proof of E = mc2 is not a proof of anything, and his General
Relativity Theory is totally wrong, it is time to look again at the ether theory,
but the ether must be a local ether, a part of it moving with a mass body.
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3.3 Failure of the geometrization principle
and some cosmological considerations

Abstract: Section 1 explains why the Schwarzschild solution is not a valid
approximation for Newtonian gravitation. Section 2 shows that the Einstein
equations do not have any solutions for the case of a point mass in empty space
such that the speed of light in the direction orthogonal to the gradient of the
gravitation field is constant. Section 3 explains why the geometrization principle
as used by Einstein and Nordström is false: time cannot be treated similarly
as space coordinates and especially the field equation cannot contain the Ricci
scalar curvature. Section 3 briefly discusses how Newtonian gravitation potential
could be modified and what are astronomical and cosmological implications if
that is done.

1. Introduction

Special Relativity Theory [1] and General Relativity Theory [2] are refuted in my
earlier papers [3]-[7]. The present paper is continuation to [7], as [7] and maybe
the title of [5] may give a too positive impression of Nordström’s theory. In the
presented paper I explain why Nordström’s and Einstein’s way of geometrization
of gravitation is wrong. This does not mean that all ideas in the geometrization
principle are wrong, only that the field equation is wrong if it contains the
Ricci scalar curvature. Time dependency must be made in another way, and
Newtonian gravitation theory already has a valid way of time dependency if it is
correctly understood.

Sections 1 explains why the Schwarzschils solution is not a valid approximation
of Newtonian gravity and Section 2 shows that there is no way for that theory to
approximate Newtonian gravitation even if we allow that in the radial direction
the speed of light is different. The calculation in Section 2 is made in a similar
way as in the Schwarzschild solution. Section 3 explains why the Ricci scalar
curvature should not be included in a field equation for gravitation. The section
also makes some consmological comments, like that the observed Hubble and
CBR redshift can also be explained as a geometric redshift if the area of a
r-sphere grows rather fast for in some cosmic level interval in an otherwise flat
space.

2. GRT does not approximate Newton’s gravitation theory

The Schwarzschild solution is an exact solution for Einstein’s equations

Rab − 1
2

Rgab = κ0Tabgab + λgab. (1)

in the situation of a single point mass in an empty space. The mass is placed
to the origin of spherical coordinates. Outside the origin all entries Tab of the
energy-stress tensor are zero because these entries are derived from the matter
distribution.
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The Schwarzschild solution is constructed to approximate the Newtonian gravity
in the same situation of a point mass in empty space. Newtonian gravitation
potential created by a point mass M is time-independent and satisfies the
equation

∆ψ(r) = ∆
(

−GM
1
r

)

= 4πGMδ(r) (2)

As the Newtonian gravitation field

ψ(r) = −GM/r

is time independent, we can write the field equation outside the origin as

�ψ(r) = 0 (4)

The box � is the D’Alembertian. In Cartesian coordinates and with the signs
(+,-,-,-)

� = ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 = ∂2
0 − ∆. (5)

The geometric form of (3) is

R = 0 (6)

where R is the Ricci scalar curvature. For any scalar field ψ, and the Newtonian
gravitation potential is a scalar, the Ricci scalar curvature is

R = −6ψ−3
�ψ. (9)

The Schwarzshild solution approximates Newtonian gravity in the sense that
R = 0. As the cosmological constant λ is intended to be zero in a flat space,
and as a flat space in GRT means that R = 0, the Schwarzschild solution has
Tab = 0, R = 0 and λ = 0 and the Einstein equations reduce to

Rab = 0. (10)

It suffices to check that Raa = 0, a = 0, 1, 2, 3, because in orthogonal coordinates,
like the spherical coordinates, the off-diagonal entries Rab, a Ó= b, are zero.

The Schwarzschild solution approximates the Newtonian gravitation potential
in several senses. The solution is time-independent and spherically symmetric,
like the Newtonian potential. The difference between the potential field of
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the Schwarzschils solution in the radial direction and the (scaled) Newtonian
potential decreases to zero when r grows to the infinity. This means that
the gravitation force derived from the Schwarzschils solution approximates the
Newtonian gravitation force when r grows to infinity.

In order to call a solution an approximation of something, it must converge to the
approximated solution when something approaches infinity. This something in
the case of a gravitation potential can only be that r approaches infinity. There
is no sense to approximate Newtonian gravity in the case where r approaches
zero as gravitation is the weakest of the four forces. The Schwarzschild solution
does not approximate Newtonian gravitation force when r approaches zero: the
solution has an event horizon. We see that the Schwarzschild solution can in a
certain sense be called an approximation of Newtonian gravitation potential in
the case of an empty space with a single point mass.

Yet, it is incorrect to consider the Schwarzschils solution as an approximation for
the Newtonian gravitation in our solar system, and because of this problem it is
more correct to say that no solution of the Einstein equation is an approximation
Newtonian gravity in a sense applicable to the gravitation field of the Sun or the
gravitation field of the Earth, both sufficiently well approximated by a single
point mass in the empty space. This means that all experiments that are claimed
to verify the General Relativity Theory are void, because the theory does not
apply to the part of the universe where the experiments were made.

The problem is that the speed of light should be c at each point to each direction
as it is in the (flat) Minkowski space metrics

ds2 = c2dt2 − dx2 − dy2 − dz2 (11)

Light moves on light-like world paths and these paths are defined by the condition
ds = 0. The speed of light to the direction e.g. of the y-axis is obtained by
setting dx = dz = 0. Then

0 = c2dt2 − dy2 implying c2 =
dy2

dt2
. (12)

This shows that the speed of light to the y-direction is dy/dt = c as it should be.
More generally, in a gravitation field, the metric is in spherical coordinates

ds2 = g00(ct)2 − g11dr2 − g22dθ2 − g33dφ2 (13)

where gab is the metric tensor in spherical coordinates (gab = 0 is a Ó= b). In
order for the speed of light to be c, we must have

1 =
g11

g00
r2 =

g22

g00
r2 sin2 φ =

g33

g00
. (14)
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Here 1 = g11/g00 means that the speed of light is c because in the notation
x0 = ct, x2 = r, x3 = θ, x4 = φ used in the Schwarzschild solution, the time
coordinate is x0 = ct. In Cartesian coordinates the requirement is gii/g00 = 1
for i = 1, 2, 3.

The speed of light in the Schwarzschild solution is not constant to any direction
r, θ or φ as is seen by the metric of the Schwarzschild solution

g00 = A(r) g11 − B(r) g22 = −r2 g33 = −r2 sin2 θ. (15)

A(r) =
(

1 − rs

r

)

, B(r) =
(

1 − rs

r

)−1

We may be willing to accept that the speed of light in the radial direction is not
c, as it could be that the gravitation force changes the situation, but certainly
in the direction orthogonal to the radial direction, the speed of light in vacuum
should be c. In the orthogonal direction there is no gravitation force in the
direction of the light beam. The speed of light in vacuum has been measured on
the Earth in the horizontal direction with respect to the Earth in high precision

c = 299792458
m

s
(16)

Consider how it would fit our expectations adding to this measurement of c the
following text:

This is the speed of light on the sea level in the particular location where the

measurement was done. The speed of light in vacuum, even when measured in the

direction perpendicular to the gravitation field gradient, is different in different

gravitation field. It is different on a mountain top or if measured on the Moon.

We just say it is a constant, but it is not constant.

Exactly what kind of a universal constant c would be in this case, and why
would there be any sense in measuring it in such a precision. Clearly, the speed
of light must be a constant in the direction orthogonal to the radial direction.
The metric must be of the form

g00 = A(r) g11 = −B(r) g22 = −C(r)r2 g33 = −C(r)r2 sin2 θ

A(r) = ψ(r)2 B(r) = φ(r)2 C(r) = ψ(r)2. (17)
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We will see in the next section that the Einstein equations do not have a solution
that satisfies (17) and approximates the Newtonian gravitation potential in the
same sense as the Schwarzschild solution.

2. GRT does not approximate Newton’s gravitation theory in our
solar system

Let us look for a time-independent and spherically symmetric solution that has
R = 0, λ = 0 and is in the empty space with a point mass in the origin, i.e.,
Tab = 0 outside the origin. We want a metric of the form (17). As g00, g11, g22

only depend on r and g33 depends on r and θ, the Ricci tensor entries are
exceptionally short

R00 = Γ1
00

(

−Γ0
10 + Γ1

11 + Γ2
12 + Γ3

13

)

+ Γ1
00,1 (18)

R11 = Γ1
11

(

Γ0
10 + Γ2

12 + Γ3
13

)

−
(

Γ1
11

)2 −
(

Γ2
12

)2 −
(

Γ3
13

)2

−Γ0
10,1 − Γ2

12,1 − Γ3
13,1

R22 = Γ1
22

(

Γ0
10 + Γ1

11 − Γ2
12 + Γ3

13

)

+ Γ1
22,1 −

(

Γ3
23

)2 − Γ3
23,2

R33 = Γ1
33

(

Γ0
10 + Γ1

11 + Γ2
12 − Γ3

13

)

+ Γ1
33,1 − Γ3

23Γ2
33 + Γ2

33,2

The Christoffel symbols needed above are

Γ1
00 = φ2ψ′ψ Γ0

10 = ψ′ψ−1 Γ1
11 = φ′φ−1

Γ3
23 = cot(θ) Γ2

33 = − sin(θ) cos(θ) (19)

and if C(r) = ψ(r)2

Γ2
12 =

1
r

+ ψ′ψ−1 Γ3
13 =

1
r

+ ψ′ψ−1

Γ1
22 = −φ−2r(ψ2 + rψ′ψ) Γ1

33 = −φ−2r(ψ2 + rψ′ψ) (20)

while if C(r) = 1, we have the Schwarzschild solution where

Γ2
12 =

1
r

Γ3
13 =

1
r

Γ1
22 = −φ−2r Γ1

33 = −φ−2r (21)
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Let us first give the Schwarzschild solution. Let

y = ψ′ψ−1. (22)

The equations are

R00 = φ−2ψ′ψ

(

φ′φ−1 − y +
2
r

)

+
d

dr

(

φ−2ψ′ψ
)

= 0 (23)

R11 = φ′φ−1

(

y +
2
r

)

− y2 − 2
r2

− d

dr

(

y +
2
r

)

= 0

R22 = −φ−2r
(

y + φ′φ−1
)

+
d

dr
(−φ−2r) + 1 = 0

The fourth equation R33 = 0 is sin2(θ) times R22 = 0 and can be ignored. The
two first equations yield

y′ = φ′φ−1y − y2 − 2
r

y (24)

y′ = φ′φ−1

(

y +
2
r

)

− y2

which yields

φ′φ−1 = −y (25)

Inserting this result to the last equation we get

φ2 = 2yr + 1 (26)

Derivating

2φ′φ = 2y′r + 2y (27)

and dividing by φ2

−y = φ′φ−1 =
2y′ + 2y

2yr + 1

y′ = −2
r

y − 2y2 (28)
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which has the solution

φ =
(

1 − rc

r

)−1/2

(29)

ψ =
(

1 − rc

r

)1/2

y =
1
2

rc

r2

(

1 − rc

r

)−1

Let us try to solve the equations with C(r) = ψ(r)2 in a very similar way. The
equations are

R00 = φ−2ψ′ψ

(

φ′φ−1 − y +
2
r

+ 2y

)

+
d

dr

(

φ−2ψ′ψ
)

= 0 (30)

R11 = φ′φ−1

(

y +
2
r

+ 2y

)

−y2−2
(

1
r

+ y

)2

− d

dr

(

y +
2
r

+ 2y

)

= 0

R22 = −φ−2r
(

ψ2 + rψ′ψ
) (

y + φ′φ−1
)

+
d

dr

(

−φ−2r
(

ψ2 + rψ′ψ
))

+1 = 0

The two first equations give

y′ = φ′φ−1y − 3y2 − 2
r

y (31)

y′ = φ′φ−1

(

y +
2
3r

)

− y2 − 4
3r

y (32)

which yields

φ′φ−1 = −y − 3ry2 (33)

The third equation R22 = 0 gives

(1 + ry)
(

y − φ′φ−1 +
1
r

)

− 1
r

φ2ψ−2

+3y + ry′ + 2ry2 = 0 (34)

Inserting (33) and simplifying gives
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φ2 = ψ2
(

3r2y2 + 4ry + 1
)

(35)

Derivating (35) and dividing by (35) gives 2φ′φ−1 = φ−2 d
dr (φ2). Inserting (33)

and simplfying gives the result

y′ = −9r3y4 + 18r2y3 + 14ry2 + 4y

3r2y + 2r
(36)

y′ = −3ry3 − 4y2 − 6y2

3ry + 2
− 8y

3r2y + 2r

We are only interested in knowing if this solution approximates the Newtonian
gravitation potential when r is large.

Let us try solving (36) with y = αr−2. The trial fails, we get

−2αr−3 = −4αr−3 + O(r−4) (37)

The result means that y = αr−2 + O(r−3) is not a solution of (36).

Let us try y = αr−1. Inserting this function (36) gives the equation

−αr−2 = −αr−2(3α + 4)
(

1 +
2

3α + 2

)

(38)

There are solutions for three values of α, but not fof α = 1 or α = −1/3. Thus,
y = αr−1 + O(r−2) is possible only for three values of α.

Solving the second order equation (33) for y yields two roots

y = − 1
3r

+ O(φ′φ−1) (39)

y = −φ′φ−1 + O((φ′φ−1)2) (40)

The first root (39) is not possible because α = −1/3 is not a solution of (36).
Only (40) can be possible.

There are only two behaviors for φ for large r so that φ has the same r−1

behavior as the Newtonian gravitation potential when r grows large. Either
φ = βr−1 + O(r−2) or φ = A + βr−1 + O(r−2). In the Schwarzschild solution it
is the second alternative.

In the first alternative
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φ = βr−1 + O(r−2)

φ′φ−1 = −r−1 + O(r−2) (41)

y = r−1 + O(r−2)

y = αr−1 + O(r−2) with α = 1

By (38) the value α = 1 is not a solution for (36).

The second alternative gives

φ = A + βr−1 + O(r−2)

φ′φ−1 = −βA−1r−2 + O(r−2) (42)

y = −βA−1r−2 + O(r−3)

y = αr−2 + O(r−3) with α = βA−1

By (37) the function y is not a solution to (36).

The calculation shows that the Einstein equations do not have any solutions
that approximate the Newtonian gravitation field in the most basic situation of
a point mass in empty space and have constant speed of light in vacuum in the
direction that is orthogonal to the gradient of the gravitation field. This failure
means that GRT fails the experimental test.

A scalar field is the only possible mathematical form that gives a constant speed c
to light in vacuum at every point and to every direction. GRT does not have any
scalar field solutions that approximate Newtonian gravitation in the situation of
a point mass in empty space, see [7] and [3]. We tried in this section to find a
solution for GRT where the field is not a scalar field: the field we tried to find is
different in the radial direction. But this effort also failed.

It is not possible to satisfy the four equations for ab = aa, a = 0, 1, 2, 3 in (1).
The best that can be done is to sum these four equations with the weights gaa

and to obtain R = gaaRaa and T = gaaTaa, the traces. When this is done, (1)
gives the field equation in Nordström’s gravitation theory:

R = αT (43)

where α is some constant.

Nordström’s theory is a scalar field theory, the gravitation field is scalar and the
speed of light is constant c to all directions at every point. In the next section we
will investigate the idea of geometrization with Nordström’s scalar gravitation
theory and show where the geometrization ideas fail.
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2. Time cannot be treated similarly to space coordinates in the field
equation

Nordström’s gravitation theory’s [8] field equation is only a slight generalization
to the classical result

�φ = −4πGρ(r) (44)

It is a geometric theory and shows the geometrization ideas because � is closely
related to the Ricci scalar curvature by (9) for scalar fields. For time independent
fields, Nordströ’s field equation is exactly the Gauss-type equation in Newtonian
gravitation theory. Also Nordström’s equation of motion is also exactly the same
as F = ma if the field is time independent. Nordström’s theory is not simply
Newton’s gravity: if gives correctly gravitational and acceleration time dilations.

But the field equation (44) seems incorrect if the field is time dependent. The
D’Alembert operator has ∂2

0 , second time derivative. It is like in the wave
equation and it could describe time dependency of a gravitational wave. One can
derive the wave equation from the Maxwell equations. The Maxwell equations
only model the field, not the charges. In a geometric gravitation theory the field
is the space-time geometry. Is the mass in the gravitational field, i.e., in the
space-time, or is it a separate entity in the matter part of the field equation? It
seems that time dependency should also describe movement of mass etc. The
wave equation does not mean that there is a four-dimensional space-time, but
in a geometric theory of gravitation the field is space-time. The idea in the
Ricci scalar curvature (related to �) is that the space has four dimensions.
The Laplacian ∆ for a function ψ(r) shows how the operator is related to the
geometry of the space:

∆ψ(r) =
1
r2

d

dr
r2 d

dr
ψ(r) =

1
4πr2

d

dr
4πr2 d

dr
ψ(r)

=
1

A(r)
d

dr
A(r)

F (r)
m

= 0 (45)

where F (r) is the gravitation force and A(r) is the area of a sphere. This equation
means that through any sphere of radius r goes the same amount of force lines
coming from a point mass at the origin.

A(r)F (r) = constant (46)

Thus, (45) does not come from any Euler-Lagrange equations (Einstein claimed
to have derived the Einstein equations from Euler-Lagrange equations, but they
do not come from the action S he used, see [7]). Equation (45) comes from the
concept of force lines and the reason why Newtonian gravitational force depends
on r as r−2 is that the area of a sphere in the Euclidean geometry is 4πr2. We
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can deduce that our world is 3-dimensional (not 4-dimensional) directly from
the Newtonian gravitation force, or equivalently from the Newtonian gravitation
potential. The D’Alembert operator, and the Ricci scalar, is for a 4-dimensional
space. The operator � fits naturally for a solution

ψ(r, t) = − GM
√

x2 + y2 + z2 − (ct)2
(47)

but this kind of a solution has no sense in our world. This is why time and
space coordinates must not be treated in a similar way in the field equation of
gravitation and the particular form of the geometrization idea that appears in
the Einstein equations and Nordström’s field equation (i.e., that there is R and
�) is false. It is possible and sometimes useful to describe the gravitational field
as a metric and to have this metric as time dependent, thus the theory has four
coordinates, but curvature of the space should be 3-dimensional curvature.

It is easy to deduce what time dependency in a gravitational field should mean:
masses move and cause a changing gravitational field. Masses can also change,
like when a star is burning hydrogen to helium. The change of the gravitational
field propagates with the speed of light. Nothing of this can be described with
the time derivative in �. We can see that all of this is already modelled in the
Newtonian field equation.

Let us consider a point mass Mi in the location r̄i with respect to the origin.
We observe the gravitation field at the location r̄ with respect to the origin. The
gravitation potential at r̄ at the time t of the observer at r̄ is

ψ(r̄, t) = −GMi(t − c−1||r̄ − r̄i||)
||r̄ − r̄i||

(48)

Let us define (xi, yi, zi) = r̄i, x′ = x − xi, y′ = y − yi, z′ = z − zi, r′ =
√

x′2 + y′2 + z′2. By moving the origin to ri, we have a spherically symmetric
field

ψ(r′, t) = −GMi(t − c−1r′)
r′ (49)

This spherically symmetric field can be solved from

F (r′, t) = G
Mi(r′, t − c−1r′)m

r′2 (50)

d

dr′ ψ(r′, t) =
F (r′, t)

m
= G

Mi(r′, t − c−1r′)
r′2

We can describe all masses Mi by a density function
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ρ(r′, t) =
∑

i

Mi(r′, t − c−1r′) (51)

This is possible: the right side is a function of t and r′. The density function is
not necessarily what we think density function should be as it sums masses Mi

at different times. But finding this density function simplifies the calculations.

d

dr′ ψ(r′, t = G
V ol ∗ ρ(r′, t)

r′2 = G
4π

3
r′3 ρ(r′, t)

r′2

r′2 d

dr′ ψ(r′, t) = G
4π

3
r′3ρ(rä, t) (52)

d

dr′ r′2 d

dr′ ψ(r′, t) = G4πr′2ρ(r′, t)

∆′ψ(r′, t) =
1

r′2
d

dr′ r′2 d

dr′ ψ(r′, t) = G4πρ(r′, t)

Notice that in (r′, θ′, φ′) coordinates ψ(r′, t) is spherically symmetric and

∆′ψ(r′, t) =
1

r′2
d

dr′ r′2 d

dr′ ψ(r′, t) (53)

while in (r, θ, φ) coordinates ψ(r′) = ψ(r̄ − r̄i, t) is not spherically symmetric

∆ψ(r, θ, φ, t) Ó= 1
r2

d

dr
r2 d

dr
ψ(r, θ, φ, t) (54)

but

∆ = ∂2
x + ∂2

y + ∂2
z = ∂2

x′ + ∂2
y′ + ∂2

z′ = ∆′ (55)

because dx = dx′, dy = dy′, dz = dz′. Therefore

∆′ψ(r′, t) = ∆′ψ(x′, y′, z′, t) = G4πρ(r′, t) (56)

= ∆ψ(r̄, t) = ∆ψ(x, y, z, t) = G4πρ(r′, t)

We get the result

∆ψ(x, y, z, t) = 4πGρ(x, y, z, t) (57)

and notice that this result already includes the finite speed of light, movements
of masses and the change of masses. We can solve φ(x, y, z, t) from this equation,
but in order to relate this field to individual masses Mi, we have to use a formula
that has time delays from the finite speed of light:
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ψ(x, y, z, t) =
∑

i

−GMi(x, y, z, t − c−1r)
1
r

(58)

As a summary of this section, the geometrization principle as used by Einstein
and Nordström is incorrect: time cannot be treated in the same way as space
coordinates in the field equation and the field equation should not use the Ricci
scalar. Curvature should be 3-dimensional curvature. Newtonian gravitational
theory already has a way to treat time and this way includes the finite speed of
light, if correctly used.

3. Curvature in 3-dimensions and some cosmological considerations

Let us again look at the equation (46)

A(r)F (r) = constant

We see that the fundamental property in the Newtonian field equation (57) is
the force, not the potential. The potential is only more convenient as potentials
are scalars and are additive while force is a vector and needs vector summing.

There are some reasons for investigating the possibility that the gravitational
force from a point source is not growing as r−2 but has an additional term
growing as r−4. This case appeared in my calculations in [4] of the free fall of a
test mass in a gravitational field of a larger mass. If Einstein’s SRT were correct,
a moving mass has a larger mass than a mass at rest. This increased mass leads
to a different equation for the movement of the test mass compared to the case
where the mass does not change because of velocity. Einstein’s moving mass
concept is derived from the Lorentz transform and that transform is incorrect,
as I show in [3] and [4]. There is no theoretical justification for the moving mass
concept because there is no reason why equations of motion should be Lorentz
invariant (see [4]). Therefore, the moving mass concept should be dropped.
However, there are experiments that claim to demonstrate the moving mass. In
[4] it is shown that if the force is given an additional term growing as r−4, then
the equation for the moving test mass is exactly the same as if there is a moving
mass. The calculation in [4] is done for gravitation potential. Experiments that
claim to demonstrate moving mass are from particles in particle accelerators (the
accelerator appears to need more energy than it should, and this is explained by
energy needed for the moving mass). In particle accelerators, charged particles
are accelerated by electric field. A static electric field has the same form as the
gravitational field and if the force in one case needs an additional term, the same
may be true in the other case. In [4] it is mentioned that we can either change
the potential by adding a term r−3 or change the relation of force to potential.

Two other reasons for investigating the possibility of an additional term either
in the gravitational force or in the potential are in [9] and [10]. In [9] it is
shown that a small additional term breaks the double zero that forbids energy
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conserving elliptic orbits in a two-body problem in Newtonian physics. Such
a term may also help to explain the precession of the perihelion of Mercury.
Article [10] speculates that with an additional r−3 term a classical gravitational
field can be connected with the two scalar Higgs fields.

In general, adding a term that grows as r−α to the potential does not cause a
major problem to the field equation (57). As

∆
(

− 1
rα

)

= α(α − 1)
1

rα+2
(59)

we only need to add corresponding terms to the right side of (57)

∆φ(x, y, z, t) = 4πGρ(x, y, z, t)

+GMβα(α − 1)
∑

i

Mi(r̄i, t − c−1||r̄ − r̄i||)
||r̄ − r̄i||α+2

(60)

These terms do not nicely sum, so the vectors r̄, r̄i remain. The solution of (60)
for an empty space with a point mass M at the origin is

ψ(r) = −GM

r

(

1 − β

rα

)

(61)

However, (46) makes a compelling argument that A(r) should be different from
4πr2 if there are additional terms in the force or potential. Let us focus only on
a radially symmetric situation.

Let φ(r) be any field that we want to be the solution for the situation of a point
mass M in empty space. Let us define

D =
1

A(r)
d

dr
A(r)

d

dr
(62)

where

A(r) =
4πGM

φ′(r)
. (63)

Then

Dφ(r) = 0 (64)

and for any ψ(r) holds
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Dψ(r) = ∆ψ(r) − ∆φ(r)
∆φ(r)

ψ′(r) (65)

Dψ(r) = ∆ψ(r) +
(

A(r)′

A(r)
− 2

r

)

ψ(r)′. (66)

We can add a small r−3 term to the Newtonian potential. It does not much
change the area of a sphere as is seen from (63). If we want that A(r) grows
clearly faster than 4πr2, then (63) shows how the field must grow. The right
side of (61), though not a function of r, does approximate a function of r from a
long enough distance if the mass distribution is sufficiently spherical.

Let us finish this article with three cosmological comments.

De Sitter’s space is derived as a positive curvature solution to the Einstein
equations. As the Einstein equations do not approximate Newtonian gravity
in the basic scenario, these equations have no place as models in the universe.
There is no sense in making cosmological deductions from de Sitter spaces, yet
they are used as basic models of accelerating expansion of the universe.

Black holes are also derived from the Einstein equations and the same is true for
them. Something similar to black holes also come in Newton’s or Nordström’s
theories. If a small r−3 term is added to the potential, then gravitation becomes
repulsive at a short distance from the mass center point. Such repulsive gravita-
tion may explain e.g. supernova behavior: if enough matter is pushed by other
matter into the area where gravitation is repulsive, then if in some way the outer
layers of mass are decreased, they cannot keep the center mass from coming out
and an explosion may follow.

One can explain the Hubble redshift and the redshift of cosmic background
radiation without an expanding universe by inserting geometric redshift, i.e.,
if A(r) increases faster than 4πr2 for some range of values r1 < r < r2, then
between those values there is a redshift for emitted EM radiation. It is possible
to insert a function that is very small if r < r1 and will not be noticable close
to our experiences, and gets also small when r > r2 and will not cause any
infinity problems, yet it gives a redshift without a Doppler effect, huge masses
or acceleration.
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3.4 A New Look on Nordström’s Gravitation Theory

Abstract: This article is not a historical look at a rejected theory. It aims
to recover a working scalar theory of gravitation from Nordström’s old theory
because the General Relativity Theory has very serious flaws that cannot be
fixed. Nordström’s theory is not that bad and can work as a classical starting
point for developing a quantum gravitation theory.

1. Introduction

Gunnar Nordström was the first to present a relativistic theory of gravitation [1]
but unfortunately he decised to work on it with Einstein who was developing his
own relativity theory [4][5]. It does seem that Einstein confused Nordström in
many issue, and later he made false claims that Nordström’s theory has serious
flaws. Einstein was believed and work on that theory was stopped. These false
claims are still circulated and believed, see [2][3]. I hope the present article
shows that Nordström’s theory is a quite good simple classical field theory for
gravitation without any serious flaws. It can also be quantized quite easily and
can work as a good starting point for quantum gravity. Instead, Einstein’s both
relativity theories have very serious flaws.

Nordström’s gravitation theory is described in two published articles [1], see also
[2] and [3]. Nordström’s theory essentially contains only of two equations: the
field equation and the dymanic equation.

2. The field equation in Nordström’s gravitation theory

The field equation for classical Newtonian gravitation is usually derived by
modifying the Gauss law in electro-magnetism

∇ · E =
ρ

ǫ0
(1)

.

to match the Newtonian gravitation potential which so is similar to the Coulomb
law. Calculus of residues gives the starting point

∇ · r̄

|r3| = 4πδ(r) (2)

Therefore

∇ ·
(

GM
ēr

r2

)

= 4πGMδ(r) (3)

The term ḡ = GM ēr

r2 is the acceleration in a gravitational field, thus

ḡ = ∇φ
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Inserting this result and replacing Mδ(r) by a continuous mass density ρ(r) we
get

∇ · ∇φ = ∆φ = 4πGρ(r) (4)

Nordström’s theory’s field equation is only a slight generalization to this classical
result

�φ = −4πGρ(r) (5)

The box � is the D’Alembertian. In Cartesian coordinates and with the signs
(+,-,-,-)

� = ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 = ∂2
0 − ∆. (6)

In the second version of Nordström’s theory, the field equation is written as

φ−1
�φ = −4πTmatter (7)

but it is the same equation: Tmatter = Gρφ−1. We can write (5) in a geometric
form by using the geometric concept of the Ricci scalar curvature R. It is useful
to first scale the field so that is is a plain number, φ has the units m2/s2. The
scaled field is

ψ = c−2φ. (8)

For any scalar field ψ the Ricci scalar curvature is

R = −6ψ−3
�ψ. (9)

Writing

T = ρψ−3 (10)

κ = 12πGc−2 (11)

g = ψ2 (12)

the field equation (5) gets the form that intentionally mimics the field equation
in the General Relativity Theory (GRT)

−1
2

Rg = κTg (13)
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With the coordinates x0 = ct, x1 = x, x2 = y, x3 = z and signs η00 = 1,
ηii = −1, i = 1, 2, 3, ηab = 0 if a Ó= b we get

gab = ηabxaxb (14)

and
gaa = g for a =, 0, 1, 2, 3. (15)

so, if we define the stress-energy tensor as Tbb = T , we can write (13) very much
like the Eistein equations in GRT

−1
2

Rgab = κTabgab. (16)

What is missing in (16) from the field equation of GRT

Rab − 1
2

Rgab = κ0Tabgab + λgab. (17)

in addition the λ-term (that Einstein initially did not want to the equation) is
the Ricci tensor entry Rab. Because of this entry, the Einstein equations (17)
are six separate equations. When the field is a scalar field, only the diagonal
entries are nonzero (gab = 0 it a Ó= b for a scalar field), but it is still four separate
equations. This leads to a serious problem when trying to solve (17) for a scalar
field. Let us explain the problem.

2. The General Relativity Theory really is wrong

For Cartesian coordinates the nonzero Ricci entries Raa and the Ricci scalar
R = gaaRaa of a scalar field ψ are: (we write xi instead of xi so that indices are
not confused with powers)

R00 = −ψ−1
�ψ + ψ−2

3
∑

i=1

(

∂ψ

∂xi

)2

+ 3ψ−2

(

∂ψ

∂x0

)2

− 2ψ−1 ∂2ψ

∂x2
0

Rii = ψ−1
�ψ − ψ−2

3
∑

i=1

(

∂ψ

∂xi

)2

+ ψ−2

(

∂ψ

∂x0

)2

− 2ψ−1 ∂2ψ

∂x2
i

+4ψ−2

(

∂ψ

∂xi

)2

for i = 1, 2, 3

R = ψ−2R00 − ψ−2R11 − ψ−2R22 − ψ−2R33 = −6ψ−3
�ψ. (18)
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Let the space be empty with one point mass at the center. The Schwarzschild
solution is an exact solution of (17) in this situation. In the derivation of the
Schwarzschild solution the tensor Tab = 0 is set to zero outside the origin and is
zero in the calculation. Schwarzschild understood correctly, Tab = 0 outside the
origin because in GRT

Tab = −2
δLmatter

δgab
+ gabLmatter (19)

If matter is all concentrated to the origin, then Tab = 0 outside the origin and is
zero in the calculation of the Einstein equations. Every gaa = g is equal. Thus,

Raa =
1
2

Rg + λg. (20)

for every a = 0, 1, 2, 3. Let us take Rii and Rjj , i Ó= j, i, j ∈ {1, 2, 3}, cancel all
common terms in Rii = Rjj coming from (20), and then we get an equation that
cannot be satisfied.

First we subtract

R00 − Rii = (
1
2

R + λ)(g − g) = 0 (21)

and then we insert R00 and Rii from (18) and move all terms that are common
to every i = 1, 2, 3 to the left

R00 + ψ−1
�ψ − ψ−2

3
∑

i=1

(

∂ψ

∂xi

)2

− ψ−2

(

∂ψ

∂x0

)2

= 2ψ−1 ∂2ψ

∂x2
i

− 4ψ−2

(

∂ψ

∂xi

)2

(22)

The terms that are different for Rii and Rjj give the equation

∂

∂xi

(

∂ψ

∂xi
ψ−2

)

=
∂

∂xj

(

∂ψ

∂xj
ψ−2

)

. (23)

Equations (23) are solved by any function the form ψ = ψ(ρ) where ρ =
∑

xj ,
but the solution we need is close to the radially symmetric Newtonian gravitation
field in this special case of a single point mass in the origin, as that is the case in
our solar system. See [6] for a proof that this is not possible. The problem can
be explained easily. A solution for this situation must be close to the Newtonian
gravitation potential, which is spherically symmetric. Thus, the solution is very
closely spherically symmetric. Applying the left side of (23) to a function of
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r =
√

x2
1 + x2

2 + x2
3 gives a function of the form x2

i f(r) + h(r). The right side
gives the function x2

jf(r) + h(r) with the same f and h. We can see that they
cannot cancel and no small addition to the Newtonian potential can give a large
enough term that the equation (23) can hold. Instead, if we sum all three values
of i together, as is done in calculation of R, the terms x2

i add to r2 and R can
be zero.

Let us locate the error in Einstein’s derivation of the Einstein equations. He
claimed to have obtained (17) from the Lagrangian

L =
c4

16πG
(R − 2λ) − Lmatter. (24)

Our Lmatter is zero outside the origin and we set lambda = 0. Then the
Langangian is the Ricci scalar curvature R multiplied by a constant that we can
forget. The Euler-Lagrange equations are

− ∂

∂µ

(

∂L

∂(∂µψ)

)

+
∂L

∂ψ
= 0 (25)

We calculate these terms for the scalar field from (18).

∂Rii

∂(∂iψ)
= −ψ−22∂iψ + 4ψ−22∂iψ = 6ψ−2∂iψ

∂Rii

∂(∂jψ)
= −ψ−22∂jψ

∂Rii

∂(∂0ψ)
= ψ−22∂0ψ

∂R00

∂(∂0ψ)
= 6ψ−2∂0ψ

∂Rii

∂(∂0ψ)
= 2ψ−2∂0ψ

∂R

∂ψ)
= 18ψ−4

�ψ. (26)

From these results we obtain for the Ricci scalar curvature R, which is our L in
this case

R = ψ−2(R00 − R11 − R22 − R33)
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the result

∂R

∂(∂µψ)
= 0

for all µ = 0, 1, 2, 3. Consequently the Euler-Lagrange equations reduce to

∂R

∂ψ)
= 18ψ−4

�ψ = 0 (34)

i.e., to Nordström’s field equation (5) in this empty space situation

�ψ = 0 (35).

Of course, we would get the same result by directly inserting R to (24), but
the goal was to show that the Ricci entries in (17) really are not obtained from
Euler-Lagrange equations.

The Lagrangian gives Nordström’s field equation, not Einstein equations. Ein-
stein must have solved the Euler-Lagrange equations incorrectly, though it is
very difficult to imagine how he could have ever come to (17) from (24)-(25). As
the error in GRT is now demonstrated by an example and also by Einstein’s
incomprehensible assumed derivation of (17) from (25) applied to (24), we can
forget GRT. It is wrong. In [6] it is explained why the gravitational field must
be a scalar field or the speed of light in vacuum is not c in every point to every
direction. But we do not need this result in order to reject GRT. GRT is derived
by incorrect calculation of variations: (25) does not give (17), and in our solar
system the gravitational field is very close to the Newtonian potential. Such a
field cannot be obtained as a solution of (17).

Also the Special Relativity Theory (SRT) is seriously wrong, see [6][7], Einstein
did not project the time values to the time axis in the moving frame in the
Lorentz transform as one must do. This error and the twin paradox in the Lorentz
transform invalidate the whole SRT. Before going to Nordström’s dynamical
equation, let us look at time dilations.

3. Time dilations from Nordström’s gravitation theory

Nordström’s gravitation theory has the gravitational time dilation and the
acceleration time dilation. The acceleration time dilation does not agree with
Einstein’s equivalence principle. Instead, it agrees with the observed time
difference in GPS satellites.

The gravitational time dilation in Nordström’s gravitation theory is simply that
time time unit in a gravitational field ψ can be read from the metric ds2

ds2 = c2ψ2dt2 − ψ2dx2 − ψ2dy2 − ψ2 + dz2 (36)
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The the gravitational field of a mass M makes the length of one second to the
length

ψ2 =
GM

c2r
=

1
c2

φ (37)

in the distance of r from the mass center. This equation is scaled to give seconds.

The acceleration time dilation is derived as follows. Constant acceleration a
leads to the distance s = (1/2)at2 in time t. Work is force times length (or
integral actually) F = ma, W = Fs, thus

W

m
= as =

1
2

a2t2 =
1
2

v2. (38)

What time dilation this work density could cause? A gravitational field is also
energy divided by mass and it produces the gravitational time dilation. A field

φ =
Ep

m
(39)

lenghtens one second to

1
c2

φ. (40)

The acceleration time dilation rule that gives the correct time for GPS satellite
time difference is that the ratio work to mass

W

m
=

1
2

v2 (41)

lenghtens one second to

v2

c2
(42)

This rule works not only in the GPS case but also explains the muon longer
lifetime in the muon-laboratory experiment. The time dilation of SRT can be
removed from the theory. The calculations for the GPS satellite clock delay are
in [11].

4. The dynamic equation in Nordström’s gravitation theory

The second equation that Nordström gave in his theory is a direct modification
of
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F = ma and F = ∇φ. (43)

In GRT we write φ, b = ∂bφ where ∂b is ∂/∂xb (using a lower index for clarity).
The notation u̇a means a derivative with respect to the proper time

u̇b =
d

dτ
ub (44)

where τ = c2ψdt is the proper time scaled by c2, to get seconds remove the c2, ψ
is a plain number and dt is seconds. The dynamic equation is very much what
is should be, a denotes acceleration and u is velocity

F = ma = −m∇φ

The minus sign here is because the acceleration is towards decreasing r.

a = −∇φ

d

dt
ub = −φ,b

c2ψ

c2ψ

d

dt
ub = c2ψ

d

dτ
ub = −φ,b

ψ
d

dτ
ub = −ψ,b. (45)

The only modification Nordström made is that if the field can change in time,
there should be a term containing ψ̇. He inserted it into the equation in a natural
way

d

dτ
ψub = −ψ,b

ψu̇b = −ψ,b − ψ̇ub. (46)

Equation (46) is the dynamical equation and it hardly could be anything else.

We come now to the first false claim: that the Nordström’s theory predicts the
precession of the perihelion of Mercury in the wrong direction. This hardly
is possible. The gravitational field of the Sun is static, so ψ̇ = 0. The field
equation (5) in Nordstrom’s theory gives exactly the Newtonian gravitational
potential and the dynamic equation is exactly the Newtonian dynamic equation.
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How could Nordström’s theory predict anything else than what the Newtonian
theory says? Yet, I did find a strange calculation in [3] that claims it does. The
problem of the precession of Mercury’s perihelion is not solved by Nordström’s
two equations. I did write a text on this problem that may explain it a bit [8],
no new theory is needed to explain the precession.

The second false claim against Nordström’s gravitation theory is that light does
not bend in his theory. Nordström did not consider light. He only gave the
field equation and the dynamic equation for a test mass in a gravitational field.
But Nordström naively believed that the Special Relativity Theory is correct
(which it is not, see [6][7]) and in that theory light has (moving) mass and
is attracted by gravitational fields. Thus, in Nordström’s theory light would
behave like a test mass. GRT has a different, and better, theory for lights
movement: light moves along geodesics of the gravitational field. There is no
problem in adding this postulate to Nordström’s gravitational theory and then
light moves in Nordström’s theory just like in GRT. However, if we mean the
light bending experiment by Eddington, then it is shown in [12] that light does
not travel along geodesics of the gravitational field, see also [8] to be convinced
that Einstein’s geodesic Lagrangean is completely wrong: a freely falling mass
in a spherical gravitational field does not accelerate, so should it be true that
in Nordström’s theory light does not bend, this would be a correct prediction
by that theory. But Nordström did not consider this case at all. The bending
of light in Eddington’s experiment is caused by some medium around the Sun
that bends light. Nordström’s theory agrees with Eddington’s experiment at
least to the extent that it gives a gravitational field that is essentially the same
as in Newton’s theory while Einstein’s GRT does not. Einstein’s equations do
not have any solution that can approximate the at least very closely Newtonian
gravitation potential close to the Sun. Nordström’s theory has exactly that
potential.

5. A suggestion for further work

It is possible to generalize Nordström’s field equation to give a different gravita-
tional potential in the case of an empty space with a point mass in the origin.
The following field equation may not be the most elegant, but it does the job.

�φ − 6GMβ
1
r5

= −4πGρ(r). (47)

M =
∫

dV ρ

This field equation gives the solution

φ = −GM

r

(

1 − β

r3

)

. (48)
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There is some reason for investigating a potential like in (48). Such a potential
may explain how the moving mass of SRT can be removed from the theory, see
[7], and it may help in explaining a strange issue in planet orbits related to the
precession of Mercury’s perihelion, see [8], but the real reason is that it may
help to find a connection between the gravitational field and the Higgs field. I
thouched this question in [9]. Reference [10] shows e.g. that Nordström’s theory
passes the Shapiro delay test while GRT fails it. In [11] there are calculations of
the clock delation in GPS satellites and also a brief look at the muon-laboratory
experiment.

Nordström’s gravitation theory is as close to a valid geometrized gravitation
theory as can be achieved. It is not correct. The field equation should have ∆,
not �, but in a geometric theory ∆ comes from R and R has � as (9) shows. A
fortcoming paper from the author will clarify this issue. The implications of this
issue is that the geometrization idea fails.
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3.5 The error in the General Relativity Theory
and its cosmological considerations

Abstract:

Einstein wrote a new chapter to the 1953 edition of his book The Meaning

of Relativity on Friedman’s results from the field equation in the General
Relalitity claimed to have cosmological implications. The book, originally
published in 1922, is based on Einstein’s lectures of the Relativity Theory in
Princeton. It is especially enlightening for getting an idea of how his views
on the Relativity Theory had changed in his later life. They did not change
much and the basic errors were never corrected by Einstein. This chapter to
the 1953 edition demonstrates clearly that Einstein cheated intentionally, which
gives this text special importance. The article explains in the first and second
sections the model used by Friedman and what the basic error in the General
Relativity Theory is. Section 2 gives the solutions of the Einstein equations
in Friedman’s case. Section three highlightens the unexplainable differences of
the correctly calculated equations with the equations that Einstein gives in this
chapter, indicating intentional fraud. The last section, section four, discusses
the principles in the General Relativity Theory and finds them lacking.

1. The Friedman model for cosmological considerations

Chapter 5 in [1] states that Einstein presents Friedman’s results, but the text
is from Einstein’s pen and the errors are on his responsibility. Friedman, and
Einstein in his chapter, considers a scalalar field of the product type

ψ = A(r)G(t). (1)

The Ricci tensor entries for this scalar field in spherical coordinates (r, θ, φ) are:

R00 =
A′′

A
+

(

A′

A

)2

+
2
r

A′

A
− 3

c2

G′′

G
+

3
c2

(

G′

G

)2

(2)

R11 = −
(

3
A′′

A
− 3

(

A′

A

)2

+
2
r

A′

A
− 1

c2

G′′

G
− 1

c2

(

G′

G

)2
)

(3)

R22 = −r2

(

A′′

A
+

(

A′

A

)2

+
4
r

A′

A
− 1

c2

G′′

G
− 1

c2

(

G′

G

)2
)

(4)

R33 = −r2 sin2(θ)

(

A′′

A
+

(

A′

A

)2

+
4
r

A′

A
− 1

c2

G′′

G
− 1

c2

(

G′

G

)2
)

(5)

The Ricci scalar is

R = gabRab = A−2G−2

(

6
A′′

A
+

12
r

A′

A
− 6

1
c2

G′′

G

)

(6)
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For easier verification of these formulas, the nonzero elements of the metric tensor
are g00 = c2(AG)2, g11 = −(AG)2, g22 = −r2(AG)2, g33 = −r2 sin2(θ)(AG)2,
the sixteen nonzero Christoffel symbols are: Γ0

00 = G′G−1, Γ0
10 = A′A−1, Γ0

11 =
c−2G′G−1, Γ0

22 = c−2r2G′G−1, Γ0
33 = c−2r2 sin2(θ)G′G−1, Γ1

00 = c−2A′A−1,
Γ1

10 = G′G−1, Γ1
11 = A′A−1, Γ1

22 = −(r + r2A′A−1), Γ1
33 = −sin2(θ)(r +

r2A′A−1), Γ2
20 = G′G−1, Γ2

21 = r−1 + A′A−1, Γ2
33 = − sin(θ) cos(θ), Γ3

30 =
G′G−1, Γ3

31 = r−1 + A′A−1, Γ3
32 = cot(θ).

Let us define another metric tensor by giving the nonzero elements as γ00 = c2,
γ11 = −1, γ22 = −r2, γ33 = −r2 sin2(θ). This is simply flat metric expressed in
spherical coordinates. We notice that every Rii, i = 0, 1, 2, 3, gives Rii/γii of
the type

Rii

γii
= a1

A′′

A
+ a2

(

A′

A

)2

+
a3

r

A′

A
+

a4

c2

G′′

G
+

a5

c2

(

G′

G

)2

(7)

where ai, i = 1, , , 7, are real numbers. What is important in (7) is that r and t
separate

Rii

γii
= f(r) + g(t). (8)

From (6) we see that the term Rgii = Rψ2 is also of the same type (7) and r
and t separate.

Thus

Rab − 1
2

Rgab = γab

(

Rab

γab
− 1

2
Rψ2

)

(8)

is of the type (7) and r and t separate.

We sum the Einstein equations

Rab − 1
2

Rgab = κ0Tab + λgab (9)

setting λ = 0 as Einstein does in his chapter. The result is

gabRab − gab 1
2

Rgab = κ0gabTab (10)

R − 2R = κ0T (11)

R = −κ0T = −8πG

c4
T (12)

where T = gabTab. For all scalar fields ψ holds

R = −6ψ−3
�ψ. (13)
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Here ψ = A(r)G(t). Inserting (13) to (12) gives

ψ−1
�ψ = −4πG

1
3c4

Tψ2. (14)

The left side in (14) is of the type (7), therefore Tψ2 must also be of the type
(7). Einstein’s chapter states that the density is constant in Friedman’s model
and the equations in the chapter show that Tab only appears as fixed constants.
Therefore the model must have set the tensor Tab in the following way. The
nonzero tensor values are

T00 = c2b0 T11 = −b1,

T22 = −r2b2 T33 = −r2 sin2(θ)b3 with b3 = b2 (15)

where bi, 0, 1, 2, are numbers. Notice that T33 has the same value b3 = b2 as T22.
It is because the equation

Rii

γii
− 1

2
Rψ2 =

Tii

γii
= bi (16)

is the same for i = 2 and i = 3.

In classical equations the mass density is ρ in the Poisson equation (i.e. Gauss
equation)

∆ψ = −4πGρ (17)

but what is constant in Friedman’s mode cannot be ρ. The density that can be
constant is

ρψ−1 =
1

3c4
Tψ2 (17)

because Tψ2 gives the form (7).

We can now return to λ. Einstein implicitly sets λ = 0 in his chapter. That is
the only choice. The term λgii is not of type (7). It is of type F (r)H(t) because
gii/γii = A(r)2G(t)2. If λ is not zero, we get an equation of the type

f(r) + g(t) = F (r)G(t). (18)

Equation (18) implies that either F (r) and f(r) are constants or H(t) and h(t)
are constants. In order to see that, select two values t1 and t2, then

h(t1) − h(t2) = F (x)(H(t1) − H(t2)) (19)

holds for any x. If F (x) is not constant, H(t) must be constant implying that
h(t) is constant, while if F (x) is constant, then f(x) must also be constant. The
term λgab in the Einstein equations is an error. The term could only be λγab.

The Einstein equations in the situation of the chapter are

2
A′′

A
+

4
r

A′

A
−

(

A′

A

)2

= 3c−2

(

G′

G

)2

− b0 (20)
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4
r

A′

A
+ 3

(

A′

A

)2

= 2c−2 G′′

G
− c−2

(

G′

G

)2

− b1 (21)

2
A′′

A
+

2
r

A′

A
−

(

A′

A

)2

= 2c−2 G′′

G
− c−2

(

G′

G

)2

− b2 (22)

The last equation (22) from R33 is the same as (21) from R22.

2. Solution of the Einstein equations

It will be shown in this section that equations (20)-(23) cannot be satisfied and
that the behavior of all equations is exponential.

Nordström generalized the classical equation (17) into the form

ψ−1
�ψ = −4πT (23)

and Einstein expanded this equation to several independent equations (in this
case to three independent equations) of the type

Rii − 1
2

gii = κ0Tii (24)

which can be summed into (23) as in (10), but this division into three separate
equations does not work, shown clearly by the functions Rii not being close
to zero for ψ = r−1 and because of this the method not working even for the
Newtonian potential, see [2].

Especially the product form field ψ = A(r)G(t) cannot give a solution to (20)-
(22), but Friedman and Einstein thought that it could give some information of
possible solutions. This is not the case. We can solve these equations and notice
that their behavior is not at all similar to what the chapter claims it would be.
We do not get the cosmological results that Einstein’s chapter claims.

Let us start from the first equation (20). We solve separately the radial and the
temporal parts as the equations separate.

2
A′′

A
+

4
r

A′

A
−

(

A′

A

)2

= C (25)

First we use the rule

d

dr
(A′Aα) = A′′Aα + α (A′)2

Aalpha−1 (26)

to change (25) into

y′ +
2
r

y =
C

4
f (27)

where

y = A′′A− 1
2 , f =

∫

ydr = 2A
1
2 (28)
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We have a second order differential equation

rf ′′ + 2f ′ − C

4
rf (29)

which is easily solved by the Laplace transform

− d

ds

(

s2F − sf(0) − f ′(0)
)

+ 2(sF − f(0)) +
C

4
F ′ = 0 (30)

F ′ = − f(0)
s2 − C

4

(31)

F ′ = −f(0)√
C

(

1

s −
√

C/2
− 1

s +
√

C/2

)

(32)

F = −f(0)√
C

(

ln(s −
√

C/2) − ln(s +
√

C/2)
)

(32)

Using the rule: if L{f(t)} = F(s) then L{tf(t)} = −F′(s) we get

f(r) =
f(0)√

C

1
r

(

exp
(

1
2

√
Cr

)

− exp
(

−1
2

√
Cr

))

(33)

and A = f2/4

A(r) =
f(0)2

4C

1
r2

(

exp
(√

Cr
)

− 2 + exp
(

−
√

Cr
))

. (34)

Notice that if this function grows, then it grows exponentially.

The temporal equation in (20) is simply (C here is different than in (25))

G′

G
= C. (35)

The solution is G(t) = C1 exp(Ct). Again the growth is exponential.

The spatial part of (21) is a second order equation for y = A′A−1

4
r

A′

A
+ 3

(

A′

A

)2

= C (35)

y2 +
4
3r

y − C

3
= 0 (36)

y = − 2
3r

±
√

4
9r2

+
C

3
(37)

ln A =
∫

ydr (38)

A = C1r− 2
3 exp

(

±
∫

√

4
9r2

+
C

3
dr

)

. (39)
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The solution is exponential.

The temporal part of (21) is (C is different than before)

2
G′′

G
−

(

G′

G

)2

= C. (40)

We use the method in(26)-(28)

y = G′G− 1
2 f =

∫

ydt = 2G
1
2 (41)

f ′′ =
C

4
f (42)

There is no need for a Laplace transform:

f = C1 exp

(√
C

2
t

)

+ C2 exp

(

−t

√
C

2
t

)

(43)

and G(t) = f2/4. This is also exponential.

The spatial part of (22) is a bit more difficult to calculate. The equation is

2
A′′

A
+

2
r

A′

A
−

(

A′

A

)2

= C (44)

It is almost (25), but when we follows the steps (26)-(31) we get

F ′
(

−s2 +
C

4

)

− sF = 0 (45)

Then
F ′

F
= − s

s2 + C/4
= −

√
C

4

(

1

s −
√

C/4
+

1

s +
√

C/4

)

(46)

F =
(

s2 − C

4

)−
√

C/4

. (47)

It can be difficult to make the inverse Laplace transform analytically (though it
can be made numerically) for a freely chosen C, but for instance for C = 16 it
can be made

F =
1

s2 − C/4
=

1√
C

(

1

s −
√

C/2
− 1

s +
√

C/2

)

(48)

f(r) =
1√
C

(

et
√

C/2 − e−t
√

C/2
)

(48)

and A(r) = f2/4. This is also exponential.
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The temporal part of (22) is

2
G′′

G
−

(

G′

G

)2

= C (49)

We have already calculated this in (40)-(43).

We can finally look at (12), the equation of the Ricci scalar

Rψ2 = −κ0Tψ2 (50)

6
A′′

A
+

12
r

A′

A
− 6

G′′

G
= b0 + b1 + 2b2 (51)

A′′

A
+

2
r

A′

A
=

G′′

G
+

b0 + b1 + 2b2

6
(52)

The spatial part is
rA′′ + 2A′ − CrA = 0 (53)

Laplace transforming we get as in (29)-(33)

A(r) =
A(0)√

4C

1
r

(

exp(
1
2

√
4Cr − exp(−1

2

√
4Cr

)

(54)

This solution is also exponential. The temporal part is

G′′

G
= C (55)

and natually it is exponential.

As a conclusion, the equations (20)-(22) do not give the same answer confirming
that the equation set (20)-(23) does not have solutions, but we also notice that
the equations have a certain form and the solutions to them are exponential both
in r and in t. Also the equation for the Ricci scalar gives exponential solutions.

3. Einstein’s claims in his chapter

Einstein does not solve the equations. He claims that the equations are (equation
(3) in chapter 5 in [1])

−1
r

(

A′

A

)′
+

(

A′

Ar

)2

= 0 (56)

−2A′

Ar
−

(

A′

A

)2

− BA2 = 0 (57)

and then he gets the solution (equations (3a) and (3b) in chapter 5 of [1])

A =
c1

c2 + c3r2
B = 4

c2c3

c2
1

(58)
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The way he supposedly derived these formulas is given in a very hazy way, while
the Einstein equations and the Ricci scalar equation can be quite easily solved
by any technical student who did not sleep on lectures on the Laplace transform.

We notice that Einstein has moved in (56) the term r−1 to the second derivative
of A

1
r

(

A′

A

)′
=

1
r

d

dr

(

A′

A

)

=
1
r

A′′

A
− 1

r

(

A′

A

)2

(59)

In equations (20) and (22) there is the second derivative of A, but the term
r−1 is only a coefficient in the term A′A−1, see the form of the expression in
equation (7). By doing these changes Einstein modified the equations so that he
got the result that he wanted (58).

It is not possible that this is anything other than intentional fraud. In 1952
when this chapter was written Einstein had spent decades with the Einstein
equations and must have known that they cannot be solved with ψ = A(r)G(t)
and that this ψ gives exponential time and space behavior. Growing exponential
behavior is not possible because then the expansion speed of the universe very
fast exceeds the speed of light in vacuum. The Einstein equations do not in any
way support the concept of an expanding universe, though that is what Einstein
implies in his chapter.

Einstein also must have known that the speed of light is constant c in vacuum
only if ψ is a scalar field because the speed of light to direction xi, i = 1, 2, 3 in
Cartesian local coordinates can be read from the space element. Light travels
along light like world paths in relativity theory, thus ds = 0 in

ds2 = c2g00dx2
0 − g11dx2

1 − g22dx2
2 − g33dx2

3 (60)

The speed of light to the direction of xi is obtained by setting dxj = 0, j Ó= i,
j ∈ {1, 2, 3}

ds2 = 0 = c2g00dx2
0 − giidx2

i (69)

c2 =
gii

g00

dx2
i

dx2
0

=
gii

g00
(61)

as the differentials dxi are Euclidean. Thus

gii = c2g00 (62)

and we can define ψ = c−1√
g00 and the field ψ is a scalar field.

The Einstein equations do not have any scalar solutions that are close to the
Newtonian gravitational field in the situation of a point mass in empty space
even if we allow the field to depend on (r, θ, φ, t), see the proof in [2]. In this
situation the tensor Tab is zero outside the origin, and we must set λ = 0 also in
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this case. Then every Rii must be zero, but it is not possible for any scalar field
that approximates the Newtonian gravitation: the potential field r−1 gives zero
Ricci scalar but the Ricci tensor entries Rii are nowhere close to zero.

The Schwarzschild solution does not have a scalar field and the speed of light
is not c at every point to every direction. As the constant speed of light was a
central issue for Einstein, he must have known that the Einstein equations do
not have any solutions where the speed of light is constant c in vacuum at each
point to each direction and the solution approximates Newtonian gravitation.
But Einstein pretended that this is the case.

I cannot avoid the conclusion that Einstein cheated on purpose.

4. Some general considerations

The field must be a scalar field so that the speed of light is constant. Einstein’s
equations do not work and must be discarded: equation (23) cannot be split
into several equations by using Ricci tensor entries. But also (23), originally
from Nordström seems wrong. In it the Laplace operator ∆ in (17) has been
replaced by the D’Alembert operator �. It gives an unfortunate time behavior
for time dependent ψ. In engineering the D’Alembert operator typically appears
in problems of waves and the seacher solution is usually of the type ψ(s − bt)
where b is a constant, often imaginary. Let us give some examples of this type
of nonseparable solutions

�ψ = ∆ψ − c−2 ∂2ψ

∂t2
(63)

Then
ψ(r, t) = − ρ0

r2 − c2t2
(64)

and
ψ(x, y, z, t) = ψ(x + y + z −

√
3ct) (65)

both satisfy
�ψ = 0 (66)

This type of solutions seem to have no physical sense and cannot at least easily
be matched with what the gravitational field should be. I do not say that the
situation is necessarily hopeless, in electro-magnetism there is the Coulomb
force that is formally similar to the Newtonian gravitational force. Possibly by
making the gravitational field complex and identifying the field that we see as
ψψ∗ one could find some usage for the D’Alembert operator. But I have started
to think that the time simply is not similar to space coordinates and the whole
geometrization principle is wrong. It is not at all clear if the metric of the space
is metric of the gravitational field.

For instance, does light travel along geodesics of the gravitational field? Ed-
dington’s experiment does not prove it because light does bend in medium and
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there can well be some medium close to the Sun. Let us take an example. Put a
rather long cylinder standing on a plane. Then smoothen it so that it can be
seen as a smooth mountain. Take two points A and B on the opposite sides of
the base circle of this cylinder. The shortest way from A to B is not over the
mountain. It goes a half circle very close to the plane level. Let this cylinder
be transparent and instead of filling the cylinder with some medium that can
bend light, we let the geometry inside the cylinder be such that the lenght of
a straight line from A to B through this cylinder is as long as the trip from A
to B by climbing the mountain up and then climbing it down. Now we have
space geometry corresponding to a gravitational field. The shortest path from
A to B goes around the half circle and minimizing the straight path through
the cylinder from A to B does give this half circle. Which way does light go? A
normal observation is that it will not go around the half circle. It will go through
the straight line even though it is the longer way. It only takes longer for light
to travel the way. The half circle is a geodesic of the geometry. Light would
follow geodesics of space geometry, so maybe space geometry is not gravitational
field geometry.

Light bends when there is medium, because at many points light gets absorbed
and re-emitted to all directions. The wave front bends if the speed of light is
different to different directions. What is the case in vacuum?

There are very few results and principles in the relativity theory that are valid
and have some sense. The Lorentz transform is wrong because one must take
the projection of the time t′ of the moving frame R′ to the t′-axis and then
the speed of light is not c in the moving frame. The "Lorentz"-transform that
Einstein used in the Minkowski space and in making the Einstein equations
Lorentz covariant is not the same transform, but is also does not make the
speed of light constant in all moving frames. There is nothing to be gained
by these coordinate transforms and the whole of the Special Relativity Theory
is wrong. Einstein’s relativistic mass and his E = mc2 proof are wrong. The
principle of light traveling on geodesics of the gravitational field is in question.
All verifications of the relativity theory have other explanations and they do not
verify the theory. The principle that the space is four dimensional is questionable.
Probably the only result that still remains is the gravitational time delay, but
undoubtedly it also has other explanations. The Relativity Theory is a very bad
theory. What is interesting in chapter five of Einstein’s book [1] is that in that
chapter it is clear that Einstein intentionally cheated. It gives some perspective
to the theory.
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PART 4. THE GEODESIC LAGRANGEAN

Einstein had the idea that he could replace the Lagrangean if Newtonian mechan-
ics, derived from’total energy, by a geodesic Lagrangean. Well, it does not work.
A test mass falling freely in a gravitational field does not accelerate. That is
fatal. Let us first look at the perihelion of Mercury problem, it nicely illustrates
the problem with a geodesic Lagrangean. Then we will see some other strange
results.
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4.1 A better solution the the precession of Mercury’s perihelion

Abstract: The article shows that the explanation that Einstein gave to the
precession of the perihelion of Mercury is incorrect: the dynamic equations
he used do not even accelerate a falling stone, they cannot be used as an
improvement of Newtonian mechanics. Then the article derives a formula for
the precession speed and shows why most of the precession of Mercury can be
explained by gravitational forces from other planets. But these forces change
in time, the last section calculates a long time average of the effect of Jupiter
on Mercury’s precession speed. This effect is about one hundred times smaller
than the relatively short term effect that has been measured. This means that
actually Mercury’s long term precession is much smaller than it seems to us
based on our relatively short time series when the precession has been measured.
This long term precession effect is quite on the range of the unexplained small
part of Mercury’s precession and it might be a mechanism that has not been
considered. The last section shows a serious error in the relativistic calculation
of the precession speed of Mercury.

1. Introduction

The precession of Mercury’s perihelion has been measured to 5600 arcseconds in a
century. Of this figure known mechanisms can explain at most 5557 archseconds
when the error bounds of the estimated precession for each mechanisms is taken
to the maximum limit. Still 43 archseconds in a century remain unexplained
and there must exist some unknown or overlooked mechanism or mechanisms.
Einstein gave a formula derived from the General Relativity Theory. This
formula gives exactly 43 archseconds, which is rather surprising as it means that
all known mechanisms did reach the maximum error limits. A figure that is a
bit higher than 43 archseconds in a century would be more believable. Einstein’s
formula also predicts very well the precession of the perihelion of Venus, but it
is not equally accurate in the precession speed of the Earth. There is no known
reason why the formula would be less accurate in some cases.

Einstein used in his calculation a dynamic equation derived from a geodesics of
the Schwarzschild metric. The first section proves that this approach cannot be
used to calculate corrections to Newtonian gravitational theory because the same
method that Einstein used for Mercury gives a dynamic equation for a stone
falling from the Pisa tower. A stone falling according to Einstein’s dynamic
equation does not accelerate at all. As the method fails to explain the old Pisa
stone dropping experiment, which Newtonian gravity quite correctly explains for
all practical purposes, it cannot be considered as valid method for calculating
fine corrections to Mercury’s orbit. Einstein’s formula must be seen as heuristic:
it gives good results in some cases (there are only few planets and moons), but
lacks a sound theoretical basis.

The second section of the presented article derives an equation for the precession
speed and shows with a simple model that the equation fits well to the gravita-
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tional effect of Jupiter in the rather short time period when the precession of
Mercury has been measured. The whole precession cycle is over 23,000 years,
therefore full precession cycles have never been measured scientifically.

The third section calculates a long term gravitational effect of a planet on the
precession of Mercury. The result shows that Jupiter’s long term effect on the
precession speed of Mercury is about one hundred times smaller than Jupiter’s
effect on the relative short time period when Mercury’s precession has been
measured. The long term effect is about 54 archseconds in a century and such
long term effects may explain the missing 43 archseconds in a century, a value
that more likely is a bit bigger than 43.

The fourth section looks at the way Einstein’s formula for precession is derived.
The section shows that the Lagrangian is incorrectly calculated, L is not constant.
This invalidates the calculation of precession speed. Then the section shows that
the curve that Einstein’s Lagrangian gives is not a rotating ellipse and that it
gives an impossible relation for the impulse momentum. In short, the geodesic
Lagrangean is completely wrong and useless.

2. The error in Einstein’s calculation

In General Relativity dynamic equations of a test mass are Euler-Lagrange
equations calculated from a geodesic Lagrangean

L =
√

gabẋaẋb where ẋa =
d

dτ
xa (1)

and τ is the proper time. The Lagrangian is chose to have the value L = 1 as it
simplifies calculating the Euler-Lagrange equations:

∂L
∂xa

− d

dτ

∂L
∂ẋa

= 0. (2)

In the calculation of the precession of the perihelion of Mercury Einstein derived
the equation of motion from a geodesic in the Schwarzschild metric, probably
because the gravitational field must approximate the Newtonian gravitational
field around the Sun. The field that the Sun creates seems to be time-independent
and spherically symmetric at least to some rather high degree of precision.
The only time-independent and spherically symmetic solution to the Einstein
equations that can be considered as approximating Newtonian gravity in some
sense is the Schwarzschild metric.

The Schwarzschild metric is defined as

c2dτ2 = A(r)dt2 − B(r)dr2 − r2dθ2 − r2 sin2(θ)dφ2 (3)

where

A(r) = c2
(

1 − rs

r

)

B(r) =
(

1 − rs

r

)−1

(4)
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and rs is a constant called Schwarzschild radius. This metric describes the
gravitational field created by a mass at the origin. We will denote this mass by
M .

Let us find the equation of motion for a test mass m falling straight to the mass
center at the origin. This means that φ̇ = 0 and θ̇ = 0. The Lagrangean is

L =
√

A(r)ṫ2 − B(r)ṙ2. (5)

We get Euler-Lagrange equations only for t and for r. For t

∂L
∂t

= 0 (6)

as the field is time-independent, while

d

dτ

∂L
∂ṫ

=
d

dτ

(

2A(r)ṫ
)

(2L)−1 = 0. (7)

Notice how nice it is that L = 1, the division with the square root is division
with one.

The equation (7) implies that A(r)ṫ = C1, a constant. As A(r) = B(r)−1 in (4)

B(r) =
ṫ

C1
. (8)

Taking the partial derivative with respect to r from (8) gives

∂

∂r
B(r) =

∂

∂r

ṫ

C1
= 0. (9)

but as B(r) is only a function of r,

0 =
∂

∂r
B(r) =

d

dr
B(r) = B′(r). (19)

Thus, B(r) = C2, a constant. This observation does not agree with (4), but we
pretend not to know what B(r) is, let us continue. Then A(r) = B(r)−1 = C−1

2

is also a constant and
ṫ = C1C−1

2 (20)

shows that
t = C1C−1

2 τ + C3 (21)

where C3 is yet another constant. Calculating the Euler-Lagrange equation for
r we get

∂L
∂r

=
∂

∂r
(A(r)ṫ2 − B(r)ṙ2)(2L)−1 =

∂

∂r
(C−1

2 ṫ2 − C2ṙ2)2−1 = 0 (22)

and therefore
d

dτ

∂L
∂ṫ

=
d

dτ
(2B(r)ṙ)(2L)−1 = C2

d

dτ
ṙ = 0 (23)
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where we used L = 1. Thus
r = C4τ + C5 (24)

for some constants C4 and C5. Proper times cannot be directly observed, but
we can observe

d

dt
r =

dτ

dt

dr

dτ
= C1C−1

2 c4. (25)

That is a linear equation, thus

d2

dt2
r = 0. (26)

The stone does not accelerate while freely falling in a gravitational field.

This is not the only problem in the Schwarzschild metric and General Relativity.
The Schwarzschild metric is not a valid metric at all: writing it in local Cartesian
coordinates there are cross terms dxidxj , i Ó= j. Such cross terms cannot appear
in any Riemannian metric with orthogonal coordinates and Cartesian local
coordinates are orthogonal. The Schwarzschild metric does not converge to
a Minkowski metric when the local environment shrinks. This is fatal: when
the local environment is made smaller, curvature of the space decreases. The
tangent space is flat and it should be a Minkowski space. It is not for the
Schwarzschild metric. This is the reason why the speed of light is not constant
in the Schwarzschild metric. In the Schwarzschild metric the speed of light sent
horizontally has a speed that depends on the altitude, it would be measurable.
The Einstein equations do not allow any spherically symmetric solution that has
locally constant speed of light in vacuum. For proofs of these statements see
[1]-[5].

3. Deriving a formula for the precession speed

An ellipse is defined by

1 =
x2

a2
+

y2

b2
(27)

where a and b are semi-major and semi-minor axes, a ≥ b > 0. The focus points
are (−c, 0) and (c, 0), c ≥ 0, and in this article the rotation center is at (−c, 0).
Eccentricity is defined as e = c/a. Notice that b2 = a2 − c2. Coordinates (x, y)
are centered at origin. Polar coordinates (r1, φ) are centered at (−c, 0), thus

r1 =
√

(x + c)2 + y2 = ex + a (28)

r1 cos(φ) = x + c r1 sin(φ) = y. (29)

Solving r1 from (28) and (29)

r1 = e(r1 cos(φ) − c) + a (39)

gives

r1 = a
1 − e2

1 − e cos(φ)
. (40)
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The orbital velocity for an orbit that is in the (r1, φ) plane is

ẋ2 + ẏ2 = ṙ2
1 + r2

1φ̇2 (41)

ẏ = − b2

a2

x

y
ẋ if y ≥ 0 (42)

r1φ̇ =
b2

a

1
y

ẋ if y ≥ 0 (43)

Kepler’s law is that the the angular momentum

L = r2
1φ̇ (44)

is constant. It does not follow from the equation of an ellpise. It follows from
Euler-Lagrangian equations for a test mass m1 circulating a spherically symmetric
gravitational field created by a mass m2 at (−c, 0). The Lagrangean function for
dynamic equations should normally be the sum of kinetic and potential energies

L = Ek(t, qi, q̇i) + Ep(t, qi, q̇i) = E. (45)

In order to find the dynamic equations, we minimize the action integral

S =
∫ t2

t1

Ldt = E(t2 − t1). (45)

It is quite fine that the Lagrangean has a constant value like the total energy E,
compare to Einstein’s Lagrangean at (7). The Euler-Lagrange equations give the
dynamic equations that keep the total energy at the constant value E. As an
example, on the Earth surface the potential energy at the height s is Ep = mgs
and the kinetic energy is Ek = (1/2)mṡ2. We get the correct equation of motion
from the Lagrangean

L = Ek + Ep (46)

∂L
∂s

=
d

dt

∂L
∂ṡ

(47)

mg = ms̈. (48)

There is no sense in minimizing the integral over time of a function

L = Ek(t, qi, q̇i) − Ep(t, qi, q̇i) = T − V (48)

that does not have a lower bound. However, if we use radial coordinates, like
(r1, φ), then the acceleration is −r̈1 because the r1 vector points outside. Then
we must write the Lagrangean as in (48), but it is only a question of the direction
of r1. Thus, in (r1, φ) coordinates we write the Lagrangean as

L =
1
2

m1(ṙ2
1 + r2

1φ̇2) − Ep(t, r1, φ). (49)
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Then Kepler’s law
d

dt

∂L
∂φ̇

= m1
d

dt
r2

1φ̇ = 0 (50)

means that
∂L
∂φ

=
∂

∂φ
Ep(t, r1, φ) = 0. (51)

This is true only if m1 is an insignificant test mass that does not disturb the
field with its own field which is circulating on an elliptic orbit and for sure the
position of m1 depends on φ.

That is, Kepler’s law is only approximatively true for planets orbiting the Sun.
As Kepler’s law is one of the postulates of Newtonian mechanics, it is difficult to
understand why some people have thought that Newtonian mechanics should give
an exact result for such a very small effect as the precession speed of Mercury
and if it does not, then there would be needed a new theory like Einstein’s
geodesic Lagrangean.

Assuming that the potential energy is of the type

Ep = −GMm1
1
r1

(52)

Kepler’s law holds, r2
1φ = L is constant and we can solve the Euler-Lagrange

equation for r1:
d

dt

∂L
∂ṙ1

= m1r̈1

∂L
∂r1

= m1r1φ̇2 − GMm1
1
r2

1

r̈1 = r1φ̇2 − GM
1
r2

1

(53)

By using Kepler’s law

d2

dφ2

1
r1

=
d

dφ

(

− ṙ1

φ̇

1
r2

1

)

= − dt

dφ

d

dt

ṙ1

L

= − 1

φ̇L
r̈1 = − r2

1

L2
r̈1 (54)

and inserting to (53) gives an equation that r1 in (40) fulfills

d2

dφ2

1
r1

+
1
r1

= GM
1

L2
. (55)

Thus, the solution is an ellipse (40) and the angular momentum L is constant.
In a gravitational field created by a point mass M the value of L is

L =
√

GM
b√
a

(55)

171



if we assume that M is at the focal point (−c, 0).

The orbital period is calculated as

T =
∫ T

0

dt = 2
∫ π

2

− π
2

1

φ̇
dφ = 2

∫ a

−a

1
ẋ

dx =
b2

aL
2

∫ a

−a

r1

y
dx

=
b2

aL
2

a

b
π = 2π

√

a3

Gm
(56)

for L as in (55).

If the mass M is not at the focal point, then the mass used in (55) is different
and the orbital period (56) is also different. We could in principle find out where
the Sun is related to the focal point by measuring the orbital period, but planets
are so small compared to the Sun that this may be impossible in practice.

The exact position of the Sun is another issue that adds an error in the classical
solution. We have placed the Sun at the focal point, but the Sun actually cannot
be exactly at the focal point. We can see it by thinking of two equal masses m1

and m2 circulating each others. By symmetry, the focal point must be at the
center of mass. If m1 is insignificat test mass and m2 practically infinite, then
m2 is at the focal point. Between these two extreme situations the placement of
the focal point must move continuously depending on the ratio of the masses.
As the ratio of the mass of a planet and the Sun is not zero, the Sun cannot be
exactly at the focal point.

It is also impossible that the focal point of the Sun-planet system is at the
center of mass. If this were the case, then considering the two-body system
Sun-Jupiter the Sun would be circulating the focal point with the orbital period
of Jupiter. This means that every other planet that circulates the Sun would
also have to circulate the same focal point and it would have to have the orbital
period of Jupiter. This is not the case, planets have quite different orbital
periods. Therefore the Sun must be much close to the focal point than it is in
the coordinates where the focal point is the center of mass. The Sun must be so
close to the focal point that the planets can have different orbital periods, yet
the Sun cannot be exactly at the focal point.

This means that the movements of the planets are not quite separated, there
is some small influence through the movement of the Sun. The Sun is in an
orbit with some acceleration and if we choose a coordinate system (r1, φ) where
the Sun is at the focal point, then the origin of the coordinate system (r1, φ) is
accelerating and there are additional forces affecting the Sun.

The Sun, like Jupiter and Saturn, is not a solid mass, it is a gas ball and it
compresses if a force is applied. In an accelerating orbit, or a coordinate system
where the Sun is fixed but the coordinate system’s origin is in accelerated orbit,
there are acceleration forces. They do not need to do any work if the mass
body is solid, but a gas ball compresses and the force makes work against forces
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that try to keep the mass body as spherical. The gas ball acts as a spring that
is compressed by a force, it stores energy and at some other point it releases
this energy. Therefore the total energy is not as in (26). There is additionally
compressed energy. A small planet is reasonably solid and will not compress. As
it mimics the movement of the Sun around the focal point but does not store
energy by compression, it will have a mismatch between potential and kinetic
energy: the sum of these energies is not constant, This mismatch is solved by
precession of the orbit of the planet. This effect is outside Newtonian mechanics
and requires understanding of how the Sun compresses under an acceleration
force.

We see many small effects that can cause that Newtonian mechanics cannot give
a precise result for the precession speed of Mercury. We now proceed to derive
an equation for the precession speed.

Let us assume that the coordinates (r1, φ) rotate around the focal point with
angular velocity ω:

φ = φ1 + ωt

and we assume that the orbit is sufficiently close to an ellipse in (r1, φ1)-
coordinates, i.e.,

r1 = a
1 − e2

1 − e cos(φ1)
.

We also assume the following conditions:

A1. All energy is in kinetic and potential energy, so no compression energy.

A2. The Sun is at the focal point of both planets we consider: Mercury and
Jupiter.

A3. Kepler’s law holds at the perihelion at r1,min and aphelion at r1,max.

A4. The only effect causing precession of Mercury is that other planets change
the gravitational force.

A3 means that the speed vφ1,max at the perihelion relates to the speed of vφ1,min

at the aphelion as

vφ1,max =
r1,max

r1,min
vφ1,min (57)

The speeds in the perihelion and aphelion in (r1, φ) relate to the speeds in (r1, φ1)
as

v1 = vφ1,max + r1,minω (58)

v2 = vφ1,min + r1,maxω

Using (57) we get

v2
1 − v2

2 =
r2

1,max − r2
1,min

r2
1,min

v2
φ1,min − (r2

1,max − r2
1,min)ω2
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=
4ac

(a − c)2
v2

φ1,min − 4acω2. (59)

The assumption that in (r1, φ1) the orbit is an ellipse means that at the perihelion
and aphelion where y = 0 we can calculate the centrifugal force as

ẋ = −a2

b2

y

x
ẏ (58)

ẍ = −a2

b2

1
x

ẏ2 − a2

b2
y

d

dt

ẏ

x
(59)

ẍ|y=0 = ∓a2

b2

1
a

ẏ2 (60)

The absolute value of the centrifugal force at the perihelion is

Fc,1 = m1
a

b2
v2

1 (61)

and at the aphelion

Fc,2 = m1
a

b2
v2

2

We assume that the gravitational force at the perihelion is

Fg,1 = α1Gm1m2
1

r2
1,min

(62)

and at the aphelion

Fg,2 = α2Gm1m2
1

r2
1,max

where α1, α2 describe the change of the gravitational force because of other
planets. Thus,

v2
1 − v2

2 = Gm2
b2

a

α1

(a − c)2
− Gm2

b2

a

α2

(a + c)2
(63)

= Gm2
1
a

α1(a + c)2 − α2(a − c)2

a2 − c2
. (64)

From (61) and (62) comes

v2 =
√

Gm2

√

a − c

a + c

√

α2

a
. (65)

Equations (59) and (64) give two expressions for the left side of the equations.
Inserting (65) gives after some manipulation a second order equation for ω

ω2 − 2ω
b

4ac

√

Gm2

√

α2

a
+

b2

(4ac)2
Gm2

α1 − α2

a
(66)
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The solution is

ω =
b

4ac

√

Gm2

√

α2

a

(

1 −
√

2 − α1

α2

)

(67)

The values to be inserted to (67) are: the gravitation constant G = 6.6743 ∗
10−11m3kg−1s−2, the mass of the Sun m2 = 1.9891 ∗ 1030kg, for Mercury: semi-
major axis a = 5.7895 ∗ 1010m, e = 0.206, c = ea = 1.1926 ∗ 1010m, semi-minor
axis b =

√
a2 − c2 = 5.6653 ∗ 1010m, ra,max = a + c, ra,min = a − c. The

measured precession of 5600 archseconds in a century is ω = 8.6 ∗ 10−12s−1.

We can assume that α1, α2 are small and express them as αi = 1 − γi. In the
first order

1 −
√

2 − α1

α2
=

1
2

(γ1 − γ2) (68)

and the first order approximation for ω is

ω =
b

8ac

√

Gm2

√

1
a

(γ1 − γ2).

Inserting numbers
ω = 4.9 ∗ 10−7(γ1 − γ2) s−1. (69)

We notice that (70) is very much what we would expect: γ1 − γ2 should be
3.51 ∗ 10−5 to give the measured value. Jupiter is about thousand times smaller
than the Sun and its orbit is about ten times larger than that of Mercury, therefore
the gravitational force from Jupiter to Mercury should be about 1/1000*100
of that of the Sun. This is just the 10−5 size. Let us make a very elementary
estimation of the effect of Jupiter on Mercury’s perihelion and aphelion. At the
perihelion the gravitational field from Jupiter might be roughly

−GmJ
1

aJ + r1,min

and at the aphelion roughly

−GmJ
1

aJ − r1,max

where aJ is the semi-major axis of Jupiter, aJ = 77.8473 ∗ 1010m and mJ =
1.898 ∗ 1027kg is the mass of Jupiter. Then

α1(−Gm2
1

r1,min
) = −Gm2

1
r1,min

+ GmJ
1

aJ + r1,min

α1 = 1 − mJ

m2

r1,min

aJ + r1,min
(70)

and
α2 = 1 − mJ

m2

r1,max

aJ − r1,max
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γ1 − γ2 =
mJ

m2

(

r1,min

aJ + r1,min
− r1,max

aJ − r1,max
.

)

Notice that γ1 − γ2 < 0, so ω is negative, opposite to what we observe. We can
ignore this issue because the example only demonstrates the strength of Jupiter’s
influence. We should put Jupiter and Mercury to different positions to get the
direction of ω correct. Ignoring the sign, the strength is correct:

|γ1 − γ2| =
mJ

m2

2a2 − 2c2 + 2caJ

(aJ + c)2 − a2
= 3.863 ∗ 10−5.

This gives the precession speed

ω = 4.9 ∗ 10−7 1
2

3.863 ∗ 10−5 s−1 = 9.46 s−1

which is not bad for such a simple approximation. Using better approximations
19th century astronomers managed to explain over 99% of the measured 5600
archseconds, mostly with the effect of the other planets.

Thus, tracking the positions of the other planets one can get quite good approxi-
mations for the measured precession speed of Mercury. The size of the measured
ω is quite on the range of effects of planets, but here comes a caveat. The time
series of Mercury’s perihelions and aphelions is relatively short. Mercury is at
the perihelion 415 times in a century and precise measurements have been made
maybe for 500 years. There cannot be much more than some 2000 perihelion
points in the record. Compare this to the presumed length of the precession
cycle. With 5600 archseconds in a century one full cycle takes over 23,000 years.
Nobody has ever measured a single full cycle. There is no good reason to assume
that Mercury ever makes a full precession cycle. Instead, there is a reason to
suspect that planet orbits only wobble and do not make full precession cycles:
why else should the orbits of all planets be now pointing to roughly the same
direction.

The question of what in reality is the precession speed of Mercury is not answered
by experimental measurements. From measurements we only get the precession
speed at this our time. In some thousand years the precession speed can be quite
different. The planerary system has existed for billions of years. If there is a long
term force, e.g., from Jupiter or other planets, that gives Mercury some small
precession speed, then this speed continues in our times because of conservation
of angular momentum, while we cannot see in our time any force that causes
this precession. This may be the origin of the 43 archseconds.

Let us next calculate what is the long term effect of Jupiter on Mercury’s
precession. The result may be surprising: the long term effect is one hundred
times smaller than the effect we see now. The forces that cause the effect now
cancel each others when the observation time is very long, but all forces do
not cancel, there remains long term effects. The long term effect of Jupiter
on Mercury’s perihelionic precession is quite in the range of this missing 43
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archseconds. We get roughly 54 archseconds in a century and should remember
that this 43 archseconds is the minimum unexplained precession component: the
unexplained part can be longer because in order to get this 43 archseconds every
explanation has been pushed to its limits, to explain as much as possible. It is
not likely that every mechanism should explain up to its maximum limits.

3. Long term effect of a planet on the precession speed of Mercury

The average gravitational field at a place (h, 0) caused by a mass body m moving
on an elliptic orbit with constant angular momentum is

φave(x1, x2) = −Gm
1

W (x1, x2)

∫ x2

x1

r1

y

1
s

dx (71)

where r1 is in (28), y and x in (27)

s =
√

(x − h)2 + y2 = r1

√

1 − x
2(c + h)

r2
1

+
h2 − c2

r2
1

(72)

and the weight W is from the orbital time formula

W (x1, x2) =
∫ x2

x1

r1

y
dx. (73)

The integral (71) can be calculated to the desired precision from a series expansion
of (72). Let the numbers in (71) correspond to the orbit of Jupiter.

The semi-major axis a = 77.8473 ∗ 1010m, semi-minor axis b = 77.7549 ∗ 1010m,
c = 3.79116 ∗ 1010m, e = 0.0487. The values of h that are of interest to
us are h1 = −(c + r1,min), r1,min = 4.5969 ∗ 1010m and h2 = r1,max − c,
h2 = r1,max = 6.982 ∗ 1010m are the perihelion and aphelion values for Mercury.
We assume that the orbits of Mercury and Jupiter have the same focal point
and the Sun is at this point. The parameter x in (72) ranges from −a to a. We
can insert the numbers to (72) and notice that the term under the square root is

√
1 + z = 1 +

1
2

z +
3
8

z2 + O(z3) (74)

and that |z| is smaller than 0.18. This means that in order to get two significant
numbers (error in 10−3) we need a second order approximation in (72). This
precision is sufficient for us.

Integral (71) can be calculated with the transform

∫

dx

yrk
1

= − ak

b2k

∫

(ez + 1)k−1dz√
1 − z2

(75)

where

z = −a
x + c

cx + a2
(76)
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and either partially integrating or cancelling one term r1 in the denominator.

In the second order approximation we need

∫

dx

y
=

a

b
arcsin

(x

a

)

(77)

∫ a

−a

dx

y
=

a

b
π

∫

dx

yr1
=

a

b2
arcsin

(

a
x + c

cx + a2

)

(76)

∫ a

−a

dx

yr1
=

a

b2
π

∫

dx

yr2
1

=
a2

b3

(

(

x +
a2

c

)−1
√

1 − x2

a2
+

1
b

arcsin
(

a
x + c

cx + a2

)

)

(77)

∫ a

−a

dx

yr2
1

=
a2

b4
π

∫

dx

yr3
1

= −a3

b6

(

−
(

1 +
1
2

e2

)

arcsin(z) +
√

1 − z2

(

1
2

e2z + 2e

))

(78)

∫ a

−a

dx

yr3
1

=
a3

b6
π

(

1 +
1
2

e2

)

∫

dx

yr4
1

=
a4

b8

(

−
(

1 + 3e2
)

arcsin(z) +
√

1 − z2

(

3e +
3
2

e2z +
1
3

e3z2 +
2
3

e3

))

(79)
∫ a

−a

dx

yr4
1

=
a4

b8

(

1 + 3e2
)

π

∫

Ax2 + Bx + C

yr2
1

= A
a2

c2

∫

dx

y
+

(

B
a

c
− A

2a2

c2

) ∫

dx

yr1

+
(

A
a4

c2
− B

a2

c
+ C

) ∫

dx

yr2
1

(80)

∫ a

−a

Ax2 + Bx + C

yr2
1

= Aπ
a

e2b

(

1 − 2
a

b
+

a3

b3

)

+
(

Bπ
a

c
− A

2a3

c2

)

+ Cπ
a2

b4
(81)
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∫

Ax2 + Bx + C

yr4
1

= A
a2

c2

∫

dx

yr2
1

+
(

B
a

b
− A

2a2

c2

) ∫

dx

yr3
1

+
(

A
a3

c2
− B

a2

c
+ C

) ∫

dx

yr2
1

(82)

∫ a

−a

Ax2 + Bx + C

yr2
1

= Aπ
a2

e2b4

(

1 − 2
a2

b2

(

1 +
1
2

e2

)

+
a4

b4

(

1 +
3
2

e2

))

+Bπ
a3

eb6

(

1 +
1
2

e2 − a2

b2

(

1 +
3
2

e2

))

+Cπ
a4

b8

(

1 +
3
2

e2

)

(83)

The second order approximation is

1
s

=
1
r1

(

1 + (c + h)
x

r2
1

+
1
2

(c2 − h2)
1
r2

1

+ (c + h)2 x2

r4
1

)

+
1
r1

(

−3
4

(ch2 − hc2 + h3 − c3)
x

r4
1

+
3
8

(c2 − h2)2 1
r4

1

)

. (84)

Integrating gives
∫ a

−a

r1dx

ys

=
a

b
π − (c + h)

a

b2
π

e

1 − e2
+

1
2

(c2 − h2)
a2

b4
π

+
3
2

(c + h)2 a2

b4
π

(

3
2

a4

b4
− a2

b2
+

e2

(1 − e2)2

)

−3
4

(ch2 − hc2 + h3 − c3)
a3

b6
πe

(

− 1
1 − e2

+
1
2

− 3
2

a2

b2

)

+
3
8

(h2 − c2)2 a4

b8
π

(

1 +
3
2

e2

)

(85)

Derivating the second order approximation of the field with respect to h gives
an approximation of the force, but notice that we have not yet divided by W , so
the result is not yet force. We wll drop terms with e2 because the approximation
has an error term of the size 10−3 and for Jupiter e2 = 2.3 ∗ 10−3.

I =
d

dh

∫ a

−a

r1dx

ys
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= − a

b2
π

e

1 − e2
− h

a2

b4
π

+3(c + h)
a2

b4
π

(

3
2

a4

b4
− a2

b2

)

−3
4

(2ch − c2 + 3h2)
a3

b6
πe

(

−1
2

− 3
2

a2

b2

)

+
3
2

h(h2 − c2)
a4

b8
π (86)

Constant forces cancel when we calculate v2
1 − v2

2 in (63). Therefore we drop
them:

I = −h
a2

b4
π

+3h
a2

b4
π

(

3
2

a4

b4
− a2

b2

)

−3
4

(2ch + 3h2)
a3

b6
πe

(

−1
2

− 3
2

a2

b2

)

+
3
2

h(h2 − c2)
a4

b8
π (87)

We take the leading term of (87) as the other terms are clearly smaller:

I = h
a2

b4
π

(

−1 + 3
a2

b2

(

3
2

a2

b2
− 1

))

= h
a2

b4
π

(

−1 + 3
a2

b2

(

1
2

a2

b2
− −e2

1 − e2

))

Dropping e2 terms

= h
a2

b4
π

(

−1 +
3
2

a4

b4

)

Dividing with W and obtaining the force

W =
∫ a

−a

r1dx

y
=

a2

b
π

F = −Gm1m
I

W
= Gm1m2

h

b3

(

1 − 3
2

a4

b4

)

Since
a4

b4
=

1
1 − e2

2

= 1 + 2e2 + O(e4)

we simplify the force to

F = −Gm1m
h

2b3
. (88)
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This force comes from potential of the type h2, but that is because of the
approximation that we used. The force has a fixed value at both values of h that
we are interested in. We find a potential that is of the correct type

ψ = −Gm
1
r

and gives the same force at h1 and h2. We now denote the values for Jupiter by
an index. Thus, in (89) b = bJ , m = mJ , c = cJ not to confuse them with the
values for Mercury:

Thus, at cJ + h = −r1,min

ψ1 = −Gm
−r1,min − cJ

2b3
r1,min (89)

and at r1,max = cJ + h

ψ2 = −Gm
r1,max − cJ

2b3
r1,max (90)

Then we still have to get αi as in (70) and γi.

γ1 =
mJ

m2

(−r1,min − cJ)r2
1,min

2b3
J

γ2 =
mJ

m2

(r1,ax − cJ)r2
1,min

2b3
J

Now we can estimate the size of the long term effect of Jupiter on the periheliotic
precession of Mercury:

γ1 − γ2 = −mJ

m2

−r3
1,min − cJr2

1,min − r3
1,max + cJr2

1,max

2b3
J

=
mJ

m2

a3
(

1 + 3e2 − 2e cJ

a

)

b3
J

Inserting numbers mJ

m2
= 0.9542 ∗ 10−3, a3

b3
J

= 4.127 ∗ 10−4 and 1 + 3e2 − 2e cJ

a =

0.8575. The result is γ1−γ2 = 3.3625∗10−7 and ω = 4.9∗10−7∗1.813∗10−7 s−1 =
16.5 ∗ 10−14 which is about 107 archseconds per century.

Jupiter’s year is about 12 years, so the planet is at each place in its orbit every
12th year, but in the calculation we also assume that Mercury is at its perihelion
and that this perihelion is in a particular place with Mercury’s orbit pointing to
the same direction as that of Jupiter. This assumption is not fully valid even
today and when Mercury precesses more, this assumption cannot hold. Let us
take half of 107 archseconds per century as a rough estimate to account for the
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angle between the semi-major axes of Mercury’s orbit and Jupiter’s orbit. Thus,
the predicted precession is about 54 archseconds in a century.

This is my proposal for an unknown mechanism that can cause precession of
Mercury’s perihelion. There must exist some unknown or ignored mechanism
that explains the 43 archseconds, and probably a bit more. Einstein’s explanation
cannot be correct. It is difficult to find some mechanisms that has not been
considered, but there are very long time effects, all forces do not cancel even in a
very long time. The solar system has had billions of years time and such long time
effects have been compensated by precession because the energy budget must
hold. If such a long term calculation shows that there is an energy inbalance,
it must result to something that fixes it, like to very small precession. In a
relatively short observation period, like some hundred years, we cannot see these
long term mechanisms. The short term mechanisms are much stronger because
forces do not cancel. Constant potential terms that come out of the integration
in (85) do not mean constant potential in anything than in the average. At
each time moment the potential that is shown as not dependent on h in (85)
is a potential that has a clear gradient pointing to Jupiter. This is why there
appears these hundred times larger forces than in the average.

4. A serious error in Einstein’s formula for the precession

Einstein’s calculation, or a form of it that seems to be used today for teach-
ing students, can be found from Owen Biesel’s paper [6]. The paper derives
the Schwarzschild metric, but let as start from the point where the geodesic
Lagrangean appears to the calculations

L = −
(

1 − Rs

r

)

Ṫ 2 +
(

1 − Rs

r

)−1

ṙ2 + r2φ̇2. (91)

[6] says that L = −1. If this is so, then he can use this Lagrangean instead of

L =

√

(

1 − Rs

r

)

Ṫ 2 −
(

1 − Rs

r

)−1

ṙ2 − r2φ̇2. (92)

as the square root term (2L)−1 is 2−1. Let us assume L = −1 and calculate like
[6]. [6] notices that

∂L
∂T

=
∂L
∂φ

= 0. (93)

Therefore the Euler-Lagrange equations for T and φ give

d

dτ

∂L
∂Ṫ

=
d

dτ
2

(

1 − Rs

r

)

Ṫ = 0

d

dτ

∂L
∂φ̇

=
d

dτ
2r2φ = 0
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and [6] gets Kepler’s law and the energy conservation law:

L = r2φ̇ (94)

E =
(

1 − Rs

r

)

Ṫ

are constants. Then the paper again uses the assumption that L = −1 inserting
(94) to L and solving ṙ2

ṙ2 = E2 − 1 +
Rs

r
− L2

r2
+

RsL2

r3
(95)

Writing

ṙ =
dr

dτ
=

dφ

dτ

dr

dφ
= φ̇r′ =

L

r2
r′

[6] gets (95) to the form

(r′)2 =
E2 − 1

L2
r4 +

Rs

L2
r3 − r2 + Rsr (96)

There are four points when r′ = 0, two of them being R+ = a+c and R− = a−c,
the aphelion and perihelion points of Mercury. Here c = ea = 1.1926 ∗ 1010m
and not the speed of light. One root is r = 0 and the fourth root [6] denotes by
ǫ, but let us denote it by R4 just to remind that it is meters. Thus

E2 − 1
L2

r4 +
Rs

L2
r3 − r2 + Rsr =

1 − E2

L2
r(R+ − r)(r − R−)(r − R4). (97)

[6] solves E2 and L2 using the two roots R+ = a + c and R− = a − c. Then the
paper calculates an integral

∫ R+

R−

dr
√

r(R+ − r)(r − R−)(r − R4)

=
∫ R+

R−

dr

r
√

(R+ − r)(r − R−)(1 − R4r−1)
.

A first order approximation is made

1
√

1 − R4

r

= 1 +
1
2

R4

r
+ error term.

Einstein’s precession speed formula comes from the integral

I =
R4

2

∫ R+

R−

dr

r2
√

(R+ − r)(r − R−)
(98)

The integral gives

I =
1

√

R+R−

πR4

4D
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where

D =
R+R−

R+ + R−
=

b2

2a
.

We used here R+ + R− = (a + c) + (a − c) = 2a and R+R− = a2 − c2 = b2.
Inserting D we get

I =
1
b

πR42a

4b2
=

R4

2
a

b3
π. (99)

[6] notices that
L2

1 − E2
=

R+R−1

1 − Rs

D

and taking the constant from the polynomial (97) shows that

R4 =
Rs

1 − Rs

D

.

The final result that gives the exact 43 missing arch seconds is

φ+ − φ− =
∫ R+

R−

dr

r′ =

√

L2

1 − E2

∫ R+

R−

dr
√

r(R+ − r)(r − R−)(r − R4)

Using the approximation the result is

φ+ − φ− =
1

√

1 − Rs

D

(

π +
1

√

R+R−

R4

2

∫ R+

R−

dr

r2
√

(R+ − r)(r − R−)

)

(100)

which gives Einstein’s formula

φ+ − φ− =
π

√

1 − Rs

D

(

1 + 4
Rs

1 − Rs

D

)

. (101)

Thus, this formula does come from the Lagrangean, but it does not help. There
is a serious error in the assumption that L = −1. Let us assume it is so and
calculate the Euler-Lagrange equation for r that [6] did not do. Thus,

∂L
∂r

=
1

r2
(

1 − Rs

r

)

(

−RsE2 − Rsṙ2 +
2L2

r

(

1 − Rs

r

)2
)

(102)

and
d

dτ

∂L
∂ṙ

=
1

r2
(

1 − Rs

r

)

(

−2Rsṙ2 + 2r̈

(

1 − Rs

r

))

. (103)

From (103) we get

r̈ =
Rs

2r(r − Rs)

(

−E2 + ṙ2
)

− L2

r3
+

L2Rs

r4
(104)
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Inserting ṙ2 from (95) to (104)

r̈ =
Rs

2r(r − Rs)

(

−1 +
1
r

(

Rs − 2L2

Rs
+ 2L2

)

+
L2

r2

)

(105)

We get another equation for r̈ by derivating (95) with respect to τ

2ṙr̈ = −Rs

r2
ṙ + 2

L2

r3
ṙ − 3

RsL2

r4
ṙ

r̈ = − Rs

2r2
+

L2

r3
− 3

2
RsL2

r4
(106)

If L = −1, then

−1 +
1
r

(

Rs − 2L2

Rs
+ 2L2

)

+
L2

r2

equals

=
2r(r − Rs)

Rs

(

− Rs

2r2
+

L2

r3
− 3

2
RsL2

r4

)

= −1 +
1
r

(

Rs +
2L2

Rs

)

− L2

r2
+ 3

RsL2

r3

We see that they are not equal. The assumption L = −1 is wrong. L is not
constant and therefore the Euler-Lagrange equations for this geodesic Lagrangean
are wrong. For a correct calculation of geodesics in the Schwarzschild metric,see
[7]-[9]. The geodesic equations have long and difficult expressions.

Let us still investigate what is the curve that Einstein’s geometric Lagrangean
gives. It is not a rotating ellipse. A rotating ellipse has the formula

r =
a(1 − e2)

1 − e cos(φ − ωt)
(107)

Assuming that ω is small, the orbital time when Mercury is circling the Sun is
closely approximated by

T = 2π

√

a2

GM
(108)

and L is closely approximated by

L =

√

GM

a
b (109)

Derivating r we get

r′ = − e

a(1 − e2)
sin(φ − ωt)

(

1 − ω

φ̇

)

r2.

There are two zeros in the range 0 ≤ φ ≤ π. They are the zeros of sin(φ − ωt)
and they are

φ− = 0 φ+ = π + ω
T

2
.
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The other zeros are not possible: r = 0 does not happen on the orbit of the
ellipse and 1 − ω(φ̇)−1 = 0 does not happen when ω is small.

Eliminating sin(φ − ωt) by using the following equation derived from (107)

cos(φ − ωt) =
1
e

(

1 − a(1 − e2)
r

)

we get after some manipulation

r′2 =
r2

a2(1 − e2)
(R+ − r)(r − R−)

(

1 − ω

φ̇

)2

where R+ = a + c = a(1 + e), R− = a − c = a(1 − e). Thus

r′ =
1

a
√

1 − e2
r
√

(R+ − r)(r − R−)
(

1 − ω

φ̇

)

Noticing that a
√

1 − e2 = b

r′ =
1
b

r
√

(R+ − r)(r − R−)
(

1 − ω

φ̇

)

(110)

This is an equation of a rotating ellipse.

Einstein has in (96)-(97)

r′ =

√

1 − E2

L2
r
√

(R+ − r)(r − R−)

√

1 − R4

r
.

Noticing that
√

1 − E2

L2
=

√

1 − Rs

D

b
=

1
b

√

1 − 2aRs

b2

and that R4 = Rs/(1 − Rs/D) is very close to Rs << r we can approximate

r′2 =
1
b

r
√

(R+ − r)(r − R−)

√

1 − 2aRs

b2

√

1 − R4

r
. (111)

=
1
b

r
√

(R+ − r)(r − R−)
(

1 − Rs

(

a

b2
+

1
2r

))

+ error term (112)

Notice that (111) is not an equation of a rotating ellipse and that the approxi-
mation (112) comparing it to (110) gives a first order approximation

ω

φ̇
= Rs

(

a

b2
+

1
2r

)

(113)

which is totally impossible because though Kepler’s law

L = r2φ̇ (114)
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need not hold exactly, it certainly is a very good approximation in the rotating
coordinates (r, φ).

We calculate as in [6] eliminating φ̇ in (110) by (114)

∫ φ+

φ−

dφ =
∫ R+

R−

1
dr
dφ

dr =
∫ R+

R−

dr

r′

= b

∫ R+

R−

dr

r
√

(R+ − r)(r − R−)
(

1 − ω
φ̇

)

and notice that the insertation x = (a/c)(r − a), r1 = r, changes

∫ R+

R−

dr

rα
√

(R+ − r)(r − R−)
=

a

b

∫ a

−a

dx

yrα
1

for any α. Taking a first order approximation

(

1 − ωr2

L

)−1

= 1 +
ωr2

L
+ error term

we get a good approximation

φ+ − φ− = b

∫ a

−a

dx

yr1
+ b

ω

L

∫ a

−a

r1dx

y
.

We give some more formulas:

∫

r1dx

y
= −ca

b

√

1 − x2

a2
+

a2

b
arcsin

x

a

∫ a

−a

r1dx

y
=

a2

b
π

∫

r2
1dx

y
= −c

b

(

2a2 +
1
2

cx)
)

√

1 − x2

a2
+

a3

b

(

1 +
1
2

c2

a2

)

arcsin
x

a
∫ a

−a

r2
1dx

y
=

a3

b
π

(

1 +
1
2

e2

)

The second formula we do not need here, but it is nice to know. We get

φ+ − φ− = b
(π

b
+

ω

L
abπ

)

and inserting L from (109)

φ+ − φ− = π + π

√

a3

GM
ω.
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The result is

ω =
φ+ − φ− − π

π
√

a3

GM

=
φ+ − φ− − π

1
2 T

as it should be, showing that the errors in the approximations cancel nicely.

In order to reject Einstein’s formula, it is enough to compare (110) and (111).
Whatever (111) is, it is not what it should be: a rotating ellipse. It gives an
impossible result (113).
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4.2 A proof that light does not travel on the geodesics
of the gravitationa field

Abstract:

Arthur Eddington’s experiment in 1919 showed empirically that light bends close
to the Sun. This experiment supposedly proved that Einstein was correct in
the General Relativity Theory: light bends in a gravitational field. However,
the General Relativity Theory claims that light travels on geodesics of the
gravitational field. The article presents a simple mathematical proof that the
geodesics of the gravitational field around the Sun, or around the Earth, are
either on equipotential surfaces or they are radial. The proof calculates geodesics
between two points by solving the Euler-Lagrange equations, i.e., by finding a
minimal length path. Light does not follow geodesics of the gravitational field.
This result is not surprising: already old-time sailors knew quite well that light
does not follow equipotential surfaces of the Earth’s gravitational field: light
goes straight, the sea bends as the Earth is round, and because of this high
masts disappear from sight, even from telescopic sight, when you go far enough
to the sea.

1. Introduction

Arthur Eddington in 1919 announced having observed light beiding close to the
Sun. Light wavefront does bend in an optically active medium and there are
reasons to believe that around the Sun there is such a medium. This is the
natural explanation for Eddington’s findings. However, Eddinton’s experiment
has been taken as a verification that Einstein’s idea in the General Relativity
Theory is correct, that light bends in a gravitational field. In Einstein’s General
Relativity Theory light bends because it follows geodesics of the gravitational
field. Thus, the theory claims more than that light only bends in a gravitational
field. If light does not follow geodesics of the gravitational field, then the theory is
wrong. The article shows that light does not follow geodesics of the gravitational
field, the General Relativity Theory is wrong also in this claim.

In order to prove this we need a model for the gravitational field in the vicinity
of the Sun. We cannot get such a model from the General Relativity Theory
because of the following reason. It is proven in [3] and [4] that the gravitational
field in the General Relativity Theory must be a scalar field so that the metric
gives a Minkowski space to the tangent space at each point and the speed of light
is constant at each point to each direction. This condition cannot be dropped
because if c is not locally constant in a gravitational field, then the theory is
in contradiction with its basic assumptions and also with measurements of the
speed of light on the Earth. The Einstein equations do not have scalar field
solutions that approximate Newtonian gravitation in the case of a point mass
in empty space, see [3], [5] and [6]. Therefore the best and only gravitation
field model that can be used for investigating if light follows geodesics of the
gravitational field is to use the Newtonian gravitation potential field.
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Einstein did use the Schwarzschild solution in several verifications of the General
Relativity Theory, for instance, in his book [1] when discussing the precession of
the perihelion of Mercury Einstein refers to the Schwarzschild solution. Unfor-
tunately this solution cannot be used for any investigation of gravitation. It is
shown in [10] that the Schwarzschild metric is not a valid metric and therefore
the solution is not a valid solution to the Einstein equations. The Schwarzschild
metric is not a metric, it is only a spherically symmetric differential form.

The article solves the Euler-Lagrange equations for a geodesic in the case of a
point mass in empty space, a model that well fits to investigating gravitational
light bending in the gravitational field of the Sun, and finds that a geodesic
connecting two points that have the same distance r to the center of a point mass
are segments of a circle with the radius r centered as the point mass. Needless
to say, light does not make a half circle around a mass. It goes straight, as can
be seen on the sea: the sea bends as the Earth is round, but light goes straight.
This very old observation was probably the first indication that the Earth is
round. The article also explains what are geodesics of the gravitational field of a
point mass in the general case.

2. Calculation of geodesics

In a flat 2-dimensional space a geodesic between points A and B is solved by
minimising

S =
∫ B

A

√

dx2 + dy2 =
∫ b

a

√

1 + y′2dx (1)

where a and b are the x-coordinates of A and B. Minimizing S is done by solving
the Euler-Lagrange equations. The Lagrangian is

L(x, y, y′) =
√

1 + y′2 (2)

and the Euler-Lagrange equations are

∂L

∂y
− d

dx

∂L

∂y′ = 0. (3)

In the General Relativity Theory, the length of a path from A = (−s, 0, 0) to
B = (s, 0, 0) (in Cartesian coordinates) in a scalar gravitational field φ(x, y, z)
centered at the origin and having the Newtonian form

φ(r) = −GM

r
(4)

is

S =
∫ B

A

−φ(x, y, 0)
√

dx2 + dy2 = GM

∫ s

−s

√

1 + y′2
√

x2 + y2
dx. (5)

Section 1 gives refereces that prove that the field must be scalar, that the
General Relativity Theory does not give any solutions that can approximate
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the gravitational field around the Sun or the Earth, and that the Schwarzschild
solution is wrong. We are left with the Newtonian gravitation potential (4) as
the only reasonable model for a gravitational field around the Sun or the Earth.

But there is an even better reason why the gravitation field must be the Newtonian
field. Section 2 of [4] proves that the Newtonian gravitation force and therefore
Newtonian gravitation potential is the correct one. We repeat briefly the main
argument of [4].

Let us take a radially symmetric gravitational field created by a mass m and we
use a small test mass m1 that is so small that the field can still be considered
radial. We modify the Newtonian gravitation law to the form

F = G
m1m

hα(h)
(5)

where h is the distance of m and m1 and α(r) is an unknown function that that
gives the exact gravitational force, not an approximation as Netwon’s law may
give. In a symmetric situation the force F must be radially symmetric, therefore
such α(h) does exist.

In [4] it is proven that α(h) = 2 exactly and everywhere. The area of a sphere
4πr2 is in [4] generalized to the form 4πrγ . [4] also proves in equation (65) that
γ = 2, that is, empty space is flat.

The proof in [4] is given in the case where M is a 3-ball of constant density ρ
centered at the origin. In equations (53)-(64) in [4] it is calculated that equation
(5) gives the force that attracts the test mass m1 as

F =
∫ R

0

2πGρrγ

∫ π/2

−π/2

h − r sin(α)
s

cos(α)dα

sα/2
(6)

where
s =

√

r2 cos2(α) + (h − r sin(α))2 (7)

is the distance of a point on the r-radius sphere around the origin. The number
α in (6) is a constant that approximates the function α(s) in the 3-ball of radius
R. Let R be very small. From (7) we see that α is very close to α(h). When R
goes to zero, α in (6) is α(h) and as h is constant in the calculation in (53)-(61),
we can set α = α(h) in the 3-ball.

The result in (61)-(63) in [4] is that

F = G
Mm

hα(h)

3 − α(h)
α(h) − 1

+ O(R2h−2) (8)

which converges to

F = G
Mm

hα(h)

3 − α(h)
α(h) − 1

(9)
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when R → 0. But when the 3-ball converges to a point mass, we must get (5).
Therefore

3 − α(h)
α(h) − 1

= 1 (10)

for every value h. When α(h) = 2, the O(R2h−2) term in (8) is zero. This
proves that the Newtonian gravitation law is exact for point masses, not an
approximation. Thus, we have no choice but to use the Newtonian gravitation
potential in a situation of a point mass in empty space.

We will first solve the length of horizontal paths, not geodesics. Let y = a, a
constant, then y′ = 0. We will write the integral with the parameter s instead
of x and leave out −GM as it does not matter here. This the integral is

S =
∫ s

−s

ds√
s2 + a2

(11)

The integral is easily calculated by a number of changes of the integration
parameter. First x = s/a. The integral takes the form

S =
∫ s/a

−s/a

dx√
x2 + 1

. (12)

We remove the bounds and take care of them later

I =
∫

dx√
x2 + 1

. (13)

Change to y = x−1

I =
∫

dy

y
√

1 + y2
. (14)

Change cot(θ) = y

I =
∫

dθ

cos(θ)
. (15)

Change to z = sin(θ)

I =
∫

dz

1 − z2
=

1
2

∫

dz

1 − z
+

1
2

∫

dz

1 + z
.

= −1
2

ln(1 − z) +
1
2

ln(1 + z) (16)

Back to θ

I = −1
2

ln(1 − sin(θ)) +
1
2

ln(1 + sin(θ)) (17)

Back to y

I = −1
2

ln(1 − (1 + y2)− 1
2 ) +

1
2

ln(1 + (1 + y2)− 1
2 ) (18)
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Back to x

I = −1
2

ln(1 − x√
x2 + 1

) +
1
2

ln(1 +
x√

x2 + 1
) (19)

Back to s and inserting the bounds

S = ln

(√
s2 + a2 + s√
s2 + a2 − s

)

. (20)

To get the length of the path we must multiply the result with GM . We notice
that if a = 0, the length is infinite: the field has a pole at the origin.

Let us now calculate a geodesic. Let us generalize the Lagrangian by replacing
the square root with power α for a reason that will be explained later. (It is not
for the ease of calculation, we will just comment on something interesting.)

L(x, y, y′) =
(1 + y′2)

1
2

(x2 + y2)α
(21)

The Euler-Lagrange equations are calculated as follows

∂L

∂y
= −2αy(x2 + y2)−α−1(1 + y′2)

1
2 (22)

∂L

∂y′ = (x2 + y2)−αy′(1 + y′2)− 1
2 (23)

d

dx

∂L

∂y′ = −2αx(x2 + y2)−α−1y′(1 + y′2)− 1
2 (24)

−2αy′y(x2 + y2)−α−1y′(1 + y′2)− 1
2

+(x2 + y2)−α d

dx

(

y′(1 + y′2)− 1
2

)

Simplifying the Euler-Lagrange equations we get

d

dx

(

y′(1 + y′2)− 1
2

)

= 2α(xy′ − y)(x2 + y2)−1(1 + y′2)− 1
2 (25)

which still simplifies to

y′′ = 2α(xy′ − y)(x2 + y2)−1(1 + y′2). (26)

Despite the nasty looks, equation (26) is not difficult. We can find the solutions
by simple reasoning. If α = 0, then the equation reduces to

y′(1 + y′2)− 1
2 = C (27)

where C is a constant. Solving the simple second order equation of y′ we get

y′ = ± C√
1 − C2

(28)
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and we notice that there is no need for ± as C can be positive or negative. We
get

y =
C√

1 − C2
x + B (29)

where B is a constant. It is a straight line and the metric here is flat. This result
encourages us to try y = Cx and indeed, the Euler-Lagrange equations give zero
for this y. It is a geodesic, i.e., locally it gives a minimum, but at the origin it
gives infinity, so in a sense this geodesic gives the maximum if you continue it to
the origin. It is the way mass bodies move in the field: to the center of the mass.

The real minimum for our situation is equally easy to find. Notice that with a
potential −GMr−1 the length of a circle with the center at the origin and the
radius as r gives the same length

L = πGM (30)

for a half a circle from (−s, 0, 0) to (s, 0, 0). This means that there must be a
geodesic satisfying

r2 = x2 + y2. (31)

Thus
y′ = −x

y
(32)

and indeed, from the equation

y′′ = −1
y

+
xy′

y2
(33)

2α(xy′ − y)(x2 + y2)−1(1 + y′2) = 2α(xy′ − y)r−2 r2

y2
(34)

= 2α

(

−1
y

+
xy′

y2

)

. (35)

The reason why I put α to the formula is seen in (35): only if α = 1
2 we get

a solution. It is one more reason to think that the Newtonian gravitational
potential has the correct power r−1, as I have started to think that Newtonian
gravitation theory is the more correct one. It only needs an interaction model,
something like I made in [10].

This latter solution of the Euler-Lagrange equations is the minimum for our
case. We can prove that it is the minimum and the only minimum. Let us
take an arch between two angles φ1, φ2 in the radial coordinates (r, φ) of the
(x, y)-plane. For two different values of r, the length of the arch is the same in
this metric. We can make any small variation of the path by moving from r
radially to some other r1, then moving along an arch with the radius r1 between
some angles φ1 and φ2, and then moving radially back to r. The length of the
arch is not changed. The radial parts add length and then the length grows. It
grows whether r1 is larger than r or smaller. This proves that a geodesic must
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always stay at one radius r. The geodesics between two points that are as far
from the origin can only be arches from a circle that is centered at the origin in
this metric.

Consider now if light travels along a geodesic in a metric induced by the Newto-
nian gravitation field. It does not. On the sea we see this very clearly: the sea
bends because the Earth is a ball, but light goes straight. This is why we cannot
see masts or towers from a long distance even though we use a telescope and
visibility is good. Besides, how many times have you seen light make a circle or
half a circle? The geodesic is half a circle.

2. A general solution of the geodesic of a point mass (or a spherical
mass like the Sun)

Let us give a general solution to the geodesic problem in the case of a point
mass. By the result in [4] section 2, a spherical mass gives the same force as a
point mass of the same size. Therefore the discussion applies to the geodesics
around the Sun.

People who have studied the General Relativity Theory (GRT) may think that one
should use the geodesic equation. The geodesic equation is simply the Lagrange-
Euler equations given with the Lagrangian on the variables L(t, xµ(t), ẋµ(t)).
This is unnecessary and complicates the analysis. Light always travels in GRT
on light-like world paths. At each point the metric on the tangent space should
be the metric of a Minkowski space, i.e., the speed of light should be locally
constant c at each point to each direction. A scalar field, like the Newtonian
gravitation potential, satisfies this condition. Therefore the speed of light is c at
each point of the path and the time it takes for light to travel the path is obtained
by dividing the length of the path by c. We only need to look for the shortest
path, a 3-space geodesic. We do not need the time. By dispensing with time,
we get only three variables: x, y(x), y′(t). Keeping the time we have at least
five variables t, x(t), ẋ(t), y(t), ẏ(t). Euler-Langange equations are sufficiently
difficult to solve already with three variables. There is no reason to have five
variables.

Let us change the Euler-Lagrange equation (26) to polar coordinates x = r cos(α),
y = r sin(α). Then

dx = dr cos(α) − r sin(α)dα (36)

gives
dα

dx
=

1
r

cot(α)
dr

dx
− 1

r sin(α)
(37)

while
y

x
= tan(α) (38)

gives

y′ = tan(α) + x
1

cos2(α)
dα

dx
(39)
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y′ = − cot(α) +
1

sin(α)
dr

dx
(40)

From these we calculate

(xy′ − y)(1 + y′2)
x2 + y2

= − 1
r sin3(α)

+
3 cos(α)
r sin3(α)

dr

dx
(41)

−1 + 2 cos2(α)
r sin3(α)

(

dr

dx

)2

+
cos(α)

r sin3(α)

(

dr

dx

)3

Derivating y′ we calculate y′′ as

y′′ = − 1
r sin3(α)

+
2 cos(α)
r sin3(α)

dr

dx
− cos2(α)

r sin3(α)

(

dr

dx

)2

+
1

sin(α)
d2r

dx2
(42)

Equation (26) takes the form

r sin2(α)
d2r

dx2
= cos(α)

dr

dx
− (1 − cos2(α))

(

dr

dx

)2

+ cos(α)
(

dr

dx

)3

(43)

which in coordinates x, r is

d2r

dx2
=

x

r2 − x2

dr

dx

(

1 +
(

dr

dx

)2

− r2 + x2

rx

(

dr

dx

)3
)

(44)

From (44) we can see that the Euler-Lagrange equations (26) have two easy
solutions. If

1 +
(

dr

dx

)2

− r2 + x2

rx

(

dr

dx

)3

= 0 (45)

then we can solve the roots of the second orded equation and get

dr

dx
=

r

x
or

dr
dx

=
x
r

(46)

In the second case
r2 = x2 + C (47)

but this solution does not satisfy (44). In the first case where we get

r = Cx (47)

which is the same as a solution

y = C1x (48)

which we already found. This is the radial geodesic. The length of this geodesic
from r = r2 to r = r1 is

L = GM ln
(

r2

r1

)

. (49)
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This is a geodesic, i.e., it is a minimum length curve in small variations, but if it
reaches the origin, then the length is infinite.

The second type of solution to (44) is

dr

dx
= 0 (50)

This is the arch geodesic, which we also found earlier. The length of an arch of
the angle β is

L = GMβ. (50)

Some trying is enough to show that is seems very difficult to find other solutions
to (44). There is a reason for it. There is always a shortest path between two
point A and B, but this path need not be differentiable at all points. Consider
the arch and radial geodesics. Both are geodesics and they are in a right angle
to each others, but as (44) is not a linear equation, we cannot superposition
these solutions of (44) in order to create intermediate solutions to (44). We can
prove that there are no smooth solutions to (44) and geodesics are composed of
parts of arch and radial geodesics.

First we discuss how to remove the third space dimension. Consider two points
A and B in the three dimensional space. The origin O is the third point. The
point mass is located at the origin. These three points define a two-dimensional
plane R2. In order to get from A to B the geodesic cannot leave this plane
because if it leaves the plane, it must return to the plane and the trip outside the
plane is additional length to the path. We conclude that the geodesic is on the
plane spanned by A, B and 0. In that plane the points A and B can be given
polar coordinates A = (r1, α1), B = (r2, α2). We can choose the coordinates and
naming of the points so that r2 ≥ r1 and α2 ≥ α1.

In the plane any smooth path can be approximated by small parts that are
either radial geodesics or arch geodesics between two points. We orient the path
to be from A to B. The parts of the path that are on radial geodesics must sum
to r2 − r1, else we cannot get from A to B. The parts that are radial geodesics
must grow in r in order to lead towards r2 because going forward and backward
is unnessessary length. Therefore lengths of the parts of radial geodesics must
sum to (49). The parts of the path that are on arch geodesics must sum to
α2 − α1, else we cannot get from A to B. The parts of the path that are on arch
geodesics must sum to α2 − α1, else we cannot get from A to B. The parts that
are arch geodesics must grow in α in order to lead towards α2 because going
forward and backward is unnessessary length. Therefore he lengths of the parts
of arch geodesics must sum to (50).

The length of the path does not change depending on how we select the small
geodesic parts because we can without changing the length of the path reorder
the parts so that the radial geodesic parts are first and then come the arch
geodesic parts. The number of these geodesic parts also does not influence the
length of the path. This constricted piece-wise smooth path has finitely many
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points where it is not differentiable, but in points when it is differentiable, it
satisfies (44).

The smooth path that is approximated by this piece-wise smooth path does not
satisfy (44), but it can be approximated to any desired precision by a piece-wise
smooth path, we only need to add more pieces. Every approximation by piece-
wise smooth path has the same length and these approximations converge to
the smooth path. The length of the smooth path does not need to converge
to the same number and usually does not. We can think about two examples:
approximating the length of the hypotenuse in a straight angled triangle and
approximating a smooth path in a metropol. In the first case, we can approximate
the hypotenuse by small parts parallel to the sides of the triangle to any degree
and the length these parts will always equal the sum of the sides, but the length
of the hypotenuse is always shorter. In a metropol we can first use a map
marking only the main streets and we can approximate a smooth path by going
along these streets. The smooth path would require climbing over buildigs, it is
always faster to go along the streets. Then we can take a better map that shows
more streets and get a better approximation, and there is still a more detailed
map showing more streets and giving an even better approximation. Always the
smooth path requires climbing over buildings and gives a longer length. Thus, a
piece-wise geodesic path can approximate the smooth path to any degree, but
the length of the smooth path can be either shorter of longer than the lenght of
the approximating piece-wise smooth path. Which case is it in (44)? It is the
metropol map. The hypotenuse is not shorter than the sum of the sides because
a line y = cx + b is a solution to (26) only if b = 0. Equation (44) seems to define
a smooth path that satisfies the Euler-Lagrange equations, but the path can
be piece-wise smooth as points do not count in the length. There are no other
smooth solutions to (44) than the radial and arch geodesics because if we take a
proposed smooth geodesic and approximate it with the constructed piece-wise
smooth path, the hypotenuse given by the proposed geodesic in every small
triangle is longer than then sum of the sides in the constructed approximation
meaning that the piece-wise smooth curve is shorter. We notice that any path
that does not go backward and forward but from A always towards B gives the
same length because it does not matter in what order the small geodesic parts
are. A geodesic does not determine how a path goes, unless it a special case
when either r1 = r2 or α1 = α2.

Let us now think about Eddington’s experiment. Was the light beam coming
from a distant star to the camera of Eddington in 1919 following a geodesic?

Firstly we notice that if light from a star bends and comes to Eddington’s camera,
then r1 Ó= r2 and α1 Ó= α2. Therefore a geodesic from the star to the camera
can have taken any path. There is no way in verifying by the measurement if
the observed path is a geodesic. If the observed path agrees with Einstein’s
prediction, it is because Einstein calculated the geodesic incorrectly from the
Swhwarzschild solution.

Secondly, we have already noticed that if A and B have the same distance to
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the point mass, the the geodesic from A to B is an arch geodesic and light does
not follow arch geodesics at least on the sea: sea bends while light goes straight.
If light sent by a light-house would follow an arch geodesic, we would see the
light-house signal much further. We do not. Light does not follow arch geodesics.

Thirdly, consider light from the distant star in Eddington’s experiment. In
order to get even close to the Sun, light from the star must travel very long
very close to a geodesic of the radial type. If light travels along geodesics of
the gravitational field, if would not get out of this geodesic as to get out of the
minimum lenght path means taking a longer path. As a result the light beam
from a distant star would hit the Sun and not bend. We could not see the star.
Notice that we do not see stars behind the Moon because the Moon blocks the
line of sight. The Moon also has a gravitational field, albeit a small one, but the
strength of the field should not matter. It is a scaling issue.

Fourthly, light from the distant star started its trip several years before Eddington
photographed the light and all this trip the direction of light was governed by
some local reasons. With what mechanism this light would have minimized the
length of the trip? Trip where? Light starting the trip did not have the goal of
being photographed. Only after light arrives to B we may ask along what path
this light came. Often light did not come through a straight path. It may have
reflected from something, or light may have for instance bent close to the Sun
because there is some optically active medium around the Sun. Light front does
bend in optically active medium because there is different local speed of light in
different places. In gravitational light bending the local speed of light should be
constant. The bending would be caused by the hypothetical expansion of space
geometry because of the gravitational field. Yet, light does not follow geodesics
of the electro-magnetical fields. Why should if follow geodesics of a gravitational
field? And it does not, the simple case of an arch geodesic from A to B shows it.

I have heard a claim that the geodesics aroud the Sun would be hyperbolic curves.
This is not what I get. The different result that the Relativity Theory has on
this issue may be due to the use of a solution that does not have constant speed
of light at every point to every direction. The Einstein equations do not have any
solutions that approximate Newtonian gravitation field in a situation of a point
mass in empty space, a situation that is close enough to the gravitational field
of the Sun. The solutions that there are, like Schwarzschild solution, have the
local speed of light depending on the altitude, hardly an acceptable model. The
Schwarzschild solution should not be used anywhere because the Schwarzschild
metric is invalid as a pseudo-metric in the Relativity Theory, but Einstein used
this solution in his verification of GRT. Inserting an invalid solution to the
geodesic equation cannot be expected to give correct results. Therefore those
results should be checked.

3. About the Relativity Theory

It was interesting for me to read from Einstein’s book [1] that he knew that
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the geodesics are on equipotential surfaces. Thus, he must have known that
the General Relativity Theory claim that light travels along geodesics of the
gravitational field is wrong, because light certainly does not make a half circle
around the Sun or the Earth. Yet, he allowed the claim to stay.

I made a similar observation in [2], a brief look at chapter 5 in Einstein’s book
[1] where Einstein presents Friedman’s cosmological results. The results are
wrong and Einstein must have known it, but he cheated on purpose. Just exactly
how wrong GRT is see [3] and [4]: Einstein’s field equations cannot be used as
equations of a gravitational field, the Schwarzschild solution is wrong as it does
not have a valid metric. That there are no solutions to Einstein equations in the
case of a point mass in empty space is already proven in [5] and in a different
way in [6], it is already mentioned in [7].

Shortly said, the General Relativity Theory (GRT) is wrong because the Einstein
equations do not have any solutions that approximate Newtonian gravitation field
in the situation of a point mass in empty space, which is a good approximation for
the field of the Sun and the Earth. Because of this, none of the experiments that
claim to have verified the General Relativity Theory can verify it: the theory does
not give any gravitational field that applies to the situation in the experiment, so
it cannot be verified by the experiment. There are always alternative explanations
to results that are claimed to have verified GRT. Alternative explanations to
some of these verifications of GRT are given in [8]-[10].

The Special Relativity Theory (SRT) is wrong because Einstein forgot to make
a projection of (x′, t′) on the t′-axis in the Lorentz transform. The speed of light
is not the same in all inertial frames of reference. When this is corrected, the
whole SRT falls. I explain the problem e.g. in [12], [5] and [11].

Einstein’s relativistic mass formula is wrong and his proof of E = mc2 is not a
proof of anything as is shown in [13]-[15].

For some time I thought that Nordström’s gravitation theory might be workable
(like in [8], [16], [17]), but it is also wrong: the time dependence of the D’Alembert
operator is incorrect for gravitation, see [10].

Still a short time ago I thought that there are some correct claims in GRT,
notably gravitational time dilation and bending of light in a gravitation field. In
[11] I was even thinking that many principles of relativity can be kept. Now I do
not think so any longer. Gravitational time dilation is measurable, but it is not
time dilation, see [10] for an explanation to what really happens. The bending
of light in a gravitational field is not true as I show in this article.

My conclusion now is that the Relativity Theory is false and no part of the
theory is true as science. But it is a religion and religions seldom die out, no
matter how many errors or absurdities you show in them.
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4.3 On light-like geodesics in the Schwarzschild metric

Abstract:

The article calculates light-like geodesics of the Schwarzschild metric. It is shown
that the methods to calculate geodesics that are used in the Relativity Theory
are incorrect.

1. Introduction

The so called Schwarzschild metric is defined as

c2dτ2 = A(r)dt2 − B(r)dr2 − r2dθ2 − r2 sin2(θ)dφ2 (1)

where

A(r) = c2
(

1 − rs

r

)

B(r) =
(

1 − rs

r

)−1

(2)

and rs is a constant, so called Schwarzschild radius. This differential form is not
a valid metric. When we change it to Cartesian coordinates, it gives

c2dτ2 = A(r)dt2 − (B(r) − 1)dr2 −
(

dr2 + r2dθ2 + r2 sin2(θ)dφ2
)

= A(r)dt2 − (B(r) − 1)dr2 −
(

dx2 + dy2 + dz2
)

(3)

= A(r)dt2−((B(r)−1)
x2

r2
+1)dx2−((B(r)−1)

y2

r2
+1)dy2−((B(r)−1)

z2

r2
+1)dz2

−(B(r) − 1)
xy

r2
dxdy − (B(r) − 1)

xz

r2
dxdz − (B(r) − 1)

yz

r2
dydz.

Cartesian coordinates x, y, z are orthogonal and Riemannian metric is indused
by an inner product. The inner product of orthogonal coordinates is zero. There
must not be cross terms dxdy, dxdz, dydz in the expression (3). The most general
valid metric that is radially symmetric, does not depend on time, and has the
speed of light constant at c is a scalar field

c2dτ2 = c2B(r)dt2 − B(r)dx2 − B(r)dy2 + B(r)dz2

= c2B(r)dt2 − B(r)dr2 − r2B(r)dθ2 − r2 sin2(θ)B(r)dφ2. (4)

The failure of the Schawrzschild metric is local, in a small environment of a
point. No global geometric or topological considerations matter: the metric (1)
is not a valid metric. Notice also that light does not have the speed c to each
direction at each point in the metric (1) and that the metric (1) does not give the
Minkowski metric at the tangent space of a point as it should. The metric does
not approximate Newtonian gravitation potential as the speed of light depends
on the altitude in (1).

This article calculates an equation for light-like geodesics in the Schwarzschild
metric and notices that the geodesics are not the same as in Newtonian gravita-
tional potential. The article comments on some calculation methods for geodesics
in the Schwarzschild metric presented in the Wikipedia page [18].
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2. Calculation of the geodesics equation for the Schwarzschild metric

In a flat 2-dimensional space a geodesic between points A and B is solved by
minimising

S =
∫ B

A

√

dx2 + dy2 =
∫ b

a

√

1 + y′2dx (5)

where a and b are the x-coordinates of A and B. Minimizing S is done by solving
the Euler-Lagrange equations. The Lagrangian is

L(x, y, y′) =
√

1 + y′2 (6)

and the Euler-Lagrange equations are

∂L

∂y
− d

dx

∂L

∂y′ = 0. (7)

This is essentially the same in any metric. In the General Relativity Theory
(GRT) light is said to follow geodesics. We will focus on light. Light is said
to travel always with the constant speed c. The Schwarzschild metric does not
give light this constant speed, but we can take only the space part of the metric
and require that light does have the speed c. Then minimizing the time on a
path is the same as minimizing the length of the path in the space coordinates.
The time is obtained by dividing the length by c. The function that we want
to minimize is the length of the path in the space part of the metric (1), see
equation (3)

S =
∫ B

A

√

(B(r) − 1)dr2 + dx2 + dy2 + dz2. (8)

We will require that in our geodesic dz = 0 and write (8) as in (5) with r′ = dr
dx

S =
∫ b

a

√

(B(r) − 1)r′2 + 1 + y′2dx. (8)

The Lagrangian is

L(x, r, r′) =
√

(B(r) − 1)r′2 + 1 + y′2. (9)

We have y′ in the equation, but y, y′, y′′ are all functions of x and r

y =
√

r2 − x2 (10)

y′ =
1
r

(rr′ − x) (11)

y′′ = −y′2

y
+

1
y

(r′2 − 1) +
r

y
r′′ (12)

and we calculate y = y(x, r). We write B′(r) = dB(r)
dx .
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Then
∂L

∂r
=

(

1
2

B′(r)r′2 − r
y′2

y
+ r′ y′

y

)

L−1 (13)

∂L

∂r′ =
(

(B(r) − 1)r′ + r
y′

y

)

L−1 (14)

d

dx

∂L

∂r′ =
(

B′(r)r′2 + (B(r) − 1)r′′ + r′ y′

y
+ r

y′′

y
− r

y′2

y2

)

L−1

+
(

(B(r) − 1)r′ + r
y′

y

)

d

dx
(L−1) (15)

where
d

dx
(L−1) = −1

2
L−3

(

B′(r)r′3 + (B(r) − 1)2r′r′′ + 2yy′′) . (16)

Inserting (12) and moving all terms containing r′′ to the left side of the Euler-
Lagrange equations (7) we get from a direct calculation (four terms cancel)

r′′
(

(B(r) − 1)(1 − Mr′) +
(

r

y
− My′

)

r

y

)

=
(

r

y
− My′

) (

y′2

y
− 1

y
(r′2 − 1)

)

+
1
2

B′(r)r′2(1 + Mr′) (17)

where
M = ((B(r) − 1)r′ + rr′y′y−1)L−2. (18)

.

Inserting M and simplifying

r′′
(

(B(r) − 1)
1 + y′2 − rr′y′y−1

(B(r) − 1)r′(rr′ − yy′) + r

y2

r
+ 1

)

=
1
r

(

y′2 − r′2 + 1
)

(19)

+
1
2

B′(r)r′2 2B(r) − 1)r′2 + 1 + y′2 + rr′y′y−1

(B(r) − 1)r′(rr′ − yy′) + r

y2

r
.

The expression still simplifies with (10) and

rr′ − yy′ = x

rr′y′y−1 =
1
y2

rr′(rr′ − x) (20)

and we get the final equation

r′′
(

(B(r) − 1)
r2 − x2 − x(rr′ − x)
(B(r) − 1)rr′x + r2

+ 1
)

=
1
r

(

(rr′ − x)2

r2 − x2
− r′2 + 1

)

(21)
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+
1
2

B′(r)r′2 (2B(r) − 1)r′2 + 1)(r2 − x2) + (2rr′ − x)(rr′ − x)
(B(r) − 1)rr′x + r2

.

If B(r) = 1, then (21) gives the straight line y = Cx + D as a solution because
always holds

r′′ =
y

r
y′′ +

y′2

r
− 1

r
(r′2 − 1) (22)

while (21) for B(r) = 1 gives

r′′ =
y′2

r
− 1

r
(r′2 − 1) (23)

i.e., y′′ = 0.

Newtonian gravitational potential field has two geodesics. One has r′ = 0, the
geodesic is on an equipotential surface. The other one has r = Cx, it is radial.
The one with r′ = 0 does not satisfy (21), thus the Schwarzschild solution does
not resemble Newtonian gravitation potential also in the geodesics.

In General Relativity the Lagrangean for time-like world paths is different: there
is the time part and then one can find a circular path for the Schwarzschild
metric, but this method fails for a radial geodesic: the equation gives a nearly
linear time dependence (i.e., no or too little acceleration) for a test mass falling
to a mass center. Therefore this method is incorrect.

Instead, one can use (21) also for a mass point: it is the equation of the
shortest path in the space coordinates of the gravitational geometry regardless
of what the speed is. The Newtonian gravitation potential has the geodesic
with r′ = 0, i.e., a circle around a mass point or a spherical mass. We do have
geostationary satellites around the Earth, so an orbit that is very closely a circle
around a spherical mass is certainly possible for a small test mass like a satellite.
We conclude that according to (21) the Schwarzschild metric does not allow
geostationary satellites and the Lagrangean that is used in the General Relativity
Theory and which gives a circle geodesic for the Schwarzschild solution is wrong
because it gives wrong results for a radial geodesic.

The reason why we get so messy geodesic equation as (21) is that the metric (1)
is not a valid metric. The geodesic equation for the metric (4) of a scalar field

ψ(r) =
1
r

(24)

is very simple to calculate. We can use variables x, y, y′, thus:

L(x, y, y′) =
√

ψ(r)2(1 + y′2) (25)

∂L

∂y
= −yψ3(1 + y′2)

1
2

∂L

∂y′ = y′ψ(1 + y′2)− 1
2
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d

dx

∂L

∂y′ = −(xy′ + yy′2)ψ3(1 + y′2)− 1
2

+y′′ψ(1 + y′2)− 1
2 − y′′y′2ψ(1 + y′2)− 3

2

The Euler-Lagrange equation is

y′′ = ψ2(1 + y′2)(xy′ − y) (26)

and it should be about as easy as this for a valid metric.

3. Serious errors in geodesics in GRT

One of the methods to calculate the geodesic in [18] is to use the Euler-Lagrange
equations. It is made in the following way. They means here Einstein and other
relativity people whose methods [18] describes.

They have a Lagrangian T (τ, xµ, ẋµ). There is τ in the left side of (1), but τ in
(1) is always zero for a light-like world path. For a light-like geodesic τ cannot
be a proper time because according to the Relativity Time the proper time of a
photon does not tick at all. Thus, τ can be considered as a variable used in the
method without any deeper meaning.

There are four coordinates xµ, so instead of finding the geodesic in the space
coordinates, they try to find a geodesic with the Lagrangian

T =

√

gmuν
dxµ

dτ

dxµ

dτ
(27)

and the action to be minimized is

S =
∫ b

a

Tdτ. (28)

Sometimes the Langangian in [18] lacks the square root and one does not know
if they minimize the length or the square of the length. It is a different thing to
minimize the norm or the square of the length. In (22) the Lagrangian minimizes
the length, i.e., the norm of the length. Should we minimize the square of the
length by using the Lagrangian

L(x, y, y′) = ψ(r)2(1 + y′2) (29)

the Euler-Lagrange equation we get is

y′′ = ψ2(2xy′ − y + yy′2). (30)

It is a different equation, it gives a different curve. I assume they minimize (28)
as this is the usual way.
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The serious error in [18] is that they assume that the Euler-Lagrange equations
can be treated separately. They solve

∂T

∂xµ
− d

dτ

∂T

∂ẋµ
= 0. (31)

This is not possible for two reasons. One is that there is a constraint, the other
one is that the equations do not separate even without a constraint.

First, the constraint issue. It is important with light-like world paths and less
so (but does exist) with time-like world paths. In light-like world paths τ in (1)
should always be exactly zero. If the equations separate and we solve separately
t(τ), r(τ) and φ(τ), then there is no reason to assume that the speed of light is c.
We must impose a constraint on the Lagrangean that this is so: at every point
of the path c-times the time differential must equal the vector sum of the space
differentials. Constraints are imposed on the Lagrangean with a Lagrangeam
multiplier:

L(τ, xµ, ẋµ, λ) = T (τ, xµ, ẋµ) − λG(τ, xµ, ẋµ) (31)

where G is the constraint and λ is an unsolved Lagrangian multiplier. With this
constraint the equations do not separate and they have ten variables in each
equation. With time-like world paths the speed must not exceed c, but usually
speeds of mass bodies are so small that this constraint does not limit.

The other problem is that even without constraints, the equations do not separate.
It can be shown in the simple three-dimensional example where ψ = r−1, the
Newtonian potential omitting −MG. Consider minimizing

S =
∫ B

A

√

ψ(r)2dx2 + ψ(r)2dy2 + ψ(r)2dz2 (32)

with the τ parameter. We look for a geodesic in the (x, y)-plane and set dz = 0.
With τ the Lagrangean is

L(τ, x, y, ẋ, ẏ) = (x2 + y2)− 1
2 (ẋ2 + ẏ2)

1
2 . (33)

A straightforward calculation gives the Euler-Lagrange equation

∂L

∂x
− d

dτ

∂L

∂ẋ
= 0. (34)

gives the geodesic equation

ẍẏ − ÿẋ = r−2(ẋy − ẏx)(ẋ2 + ẏ2). (35)

The Euler-Lagrange equation

∂L

∂y
− d

dτ

∂L

∂y′ = 0. (36)

gives the same geodesic equation (35). Thus, we can take the Euler-Lagrange
equations separately but they do not separate the variables x and y. Equation
(35) is harder to solve than (26).
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Their method has the following problems. Firstly, what is to be minimized?
For light τ in (1) is must be always zero (a light like world path), so how to
minimize something that always must be zero? They are missing the speed of
light constraint. The equations do not separate the variables.

The way to cope with these problems is first to restrict the geodesic to a plane.
Then we must ignore the time dimension because for light the path that takes
the shortest time is the shortest path in space coordinates, this way we handle
to constraint of the speed of light being constant. This approach works also for
time-like world paths. Finally when we now have only two space coordinates, we
make one of them a function of the other and do not introduce any additional
coordinates like τ . In this way the Euler-Lagrange equations can be written
down and if the metric is something intelligible and not something like (1), then
we can also solve the equations.

Another method in [18] uses the geodesic equation

d2xµ

dq2
+ Γλ

µ ν

dxµ

dq

dxν

dq
. (31)

Notice that this is not the geodesic equation. In the equation there should
be derivatives on the right side. However, [18] calculates a geodesic from (31).
Naturally the result is wrong.

The geodisic equation has been derived in several ways, all wrong as the equation
is wrong. Einstein derived if from from the Euler-Lagrange equations. We will
see later that this derivation is incorrect, but let us first discuss the constraint
issue.

Minimizing the action integral, the Wikipedia page [19] uses Hamiltonian prin-
ciple to get separate equations. Inversely, if we cannot do this step, then the
equations do not separate. There is no discussion of the constraint of the speed of
light in [19]. Checking the referred Wikipedia page on Hamiltonian principle did
not tell anything relevant in this issue. The principle discusses a case when there
is one Euler-Lagrange equation. It is possible to solve a variational problem
with an Euler-Lagrange equation, provided that the Lagrangian is correctly
constructed, that we know and it is true.

Assuming that the Lagrangian lacks an essential constraint, then it will not
solve the problem that one wants it to solve. I think here is such an issue. I
think the equations for several coordinates do not separate because there is the
speed of light constraint. This is because calculating a geodesic as I do is a
correct way and it does not have any possibilities for missing a constraint, while
the geodesics calculated in the ways in [18] look very different and they have
a step that may be missing a constraint. Where exactly is it imposed to the
Euler-Lagrange equations that light has the speed c?

A much worse problem is that the geodesic equation is wrong. The variables do
not separate in (35), while the geodesic equation has only one second order time
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derivative. Let us see what we get from (35). It can be written in another form

ẍẏ − ÿẋ = r−2(ẋy − ẏx)(ẋ2 + ẏ2)

ẏ(ẍ + ψ2x(ẋ2 + ẏ2) = ẋ(ÿ + ψ2y(ẋ2 + ẏ2) (37)

where ψ = r−1. Noticing that

Γa
aa =

1
2

gaagaa,a = ηaaηaaψ−1∂aψ (38)

Γa
ab =

1
2

gaagaa,b = ηaaηaaψ−1∂bψ

Γa
bb = −1

2
gaagbb,a = −ηaaηbbψ−1∂aψ

we get

Γ1
11 = ψ−1∂xψ = − x

r2
= −ψ2x (39)

Γ1
12 = ψ−1∂yψ = − x

r2
= −ψ2y

Γ1
22 = ψ−1∂xψ =

x

r2
= ψ2x

With these we can write

ẍ + ψ2x(ẋ2 + ẏ2) = ẍ − Γ1
11ẋẋ + Γ1

22ẏẏ (40)

but this is not the geodesic equation

ẍc + Γc
abẋaẋb (41)

with x0 = t, x1 = x, x2 = y, x3 = z. We have set the differential of dt = dz = 0
and have only two variables x1 = x, x2 = y. We are missing Γ1

12 and Γ1
11 has the

wrong sign. We get a similar equation for ÿ. Though the expressions somewhat
resemble (41), they are not geodesic equations and they are tied in (37). We
cannot get a separate equation for ẍ and for ÿ.

Einstein thought he had invented a trick to separate the second order differentials.
He first wrote the Lagrangean as

L =

√

gab
dxa

ds

dxb

ds
(42)

and then defined another variable τ satisfying

dτ

ds
= L (43)

Let us use the notations

xc′ =
dxc

ds
(44)
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ẋc =
dxc

dτ

Then
xc′ = Lẋc. (45)

We also assume that the coordinates are orthogonal, so gab = 0 if a Ó= b in this
short refutation of the geodesic equation. Calculating the expressions for the
Euler-Lagrange equations gives

∂L

∂xc
=

(∂cgaa)xa′xa′

2L

∂L

∂xc′ =
gccxa′

L
(46)

and using (45)
∂L

∂xc′ = gccẋa (47)

∂L

∂xc
= L

1
2

∂cgaaẋaẋa

The total derivative is now easy

d

ds

∂L

∂xc′ =
dτ

ds

d

dτ
gccẋa′ = Lġccẋa + Lgccẍa. (48)

The Euler-Lagrange equation for xa is

1
2

∂cgaaẋaẋa − ġccẋa − gccẍa = 0 (49)

which gives

ẍa − 1
2

gcc∂cgaaẋaẋa + gccgccẍa = 0 (50)

Einstein claimed that ġcc = 0, which is not true. He also claimed that the

Γc
aa =

1
2

gcc∂cgaa (51)

which is also not true. Indeed

Γa
bc =

1
2

gad(gbd,a + gdc,b − gbc,a) (52)

and therefore

Γa
aa =

1
2

gaa∂agaa (53)

Γa
bb = −1

2
gaa∂agbb
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and already for this reason the geodesic equation is false, but the worse thing
is that ġcc Ó= 0. We can solve what gcc is in a simple case of a scalar field in
Cartesian coordinates: gii = −ψ2, i = 1, 2, 3, g00 = c2ψ2. Then

L = ψ

√

∑

a

(xa′)2 (54)

and

L = ψL

√

∑

a

(ẋa)2 (55)

Then
∂L

∂xc′ = ψẋc (56)

but also
∂L

∂xc′ =
ψxc′

L
=

ψLẋc

ψL
√

∑

a(ẋa)2
. (57)

We get

ψ =
1

√

∑

a((̇xa)2

(58)

and therefore

ψ̇ = −
∑

a

ẍ2ẋa





√

∑

a

(ẋa)2





− 3
2

. (59)

Clearly, ġcc = 2ψψ̇ for i = 1, 2, 3 does not vanish.

The second order differentials do not separate to different equations. There is no
trick to do it. The best strategy is to reduce the variables to two and to make
one dependent on the other.

Einstein took the concept of a geodesic from Riemannian manifolds. In a four-
dimensional Riemannian manifold you would calculate the shortest path from the
whole metric, but that metric is positive definite and it does not give cross terms
for orthogonal coordinates like the Schwarzschild metric does. In a Riemanninan
manifold the shortest path, a geodesic, is also a straight path in the sense that
the Levi-Civita connection (the Christoffel symbols in the geodesic equation)
give the same path. But in a pseudo-Riemannian manifold with a metric that
is not positive definite the concept of a geodesic is hazy. It can be in a sense
thought of as a straight path, but what is it minimizing? For light-like world
paths the distance that is should be minimizing is always zero if the speed of
light is always c.

There is no constraint between the coordinates in a geodesic of a four-dimensional
Riemannian manifold, but in GRT there is a constraint, or should be, it is not
imposed. The displacement in time should be c times the displacement in space.
It is a constraint that should be imposed by a Lagrangian multiplier and it
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makes the equations nonseparable. Therefore the calculations of geodesics in the
Schwarzschild metric in [18] are wrong. The correct way is as it is made here,
minimizing only the three-dimensional space distance. Then the speed of light is
by definition c as it is not at all in the calculations.

As for Einstein’s trick by which he separated second derivatives to individual
equations, that trick does not work. The geodesic equation is wrong as was
shown in this section.

Eddington’s measurements of light bending close to the Sun do not verify
the calculations done for the Schwarzschild solution because the gravitational
field close to the Sun is not the field from the Schwarzschild solution, or from
any solution of Einstein’s equations. We can verify in this article that the
Schwarzschild solution does not approximate the Newtonian gravitation potential
by noticing that (21) does not have a geodesic with r′ = 0. Already the looks of
(21) show that God did not plan world like that.

This error in the calculation of geodesics is only one of the long list of serious
errors in the Relativity Theory, see [2]-[17].
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4.4 Error in Einstein’s geodesic equation and
the failure of his geometrization idea

Abstract:

The article shows serious errors in the derivation of the geodesic equation in
General Relativity, finds two time-like geodesics for the Schwarzschild metric,
one being rather acceptable and the other not at all, and argues that the
geometrization of gravity is a wrong idea.

1. Einstein’s geometrization idea and the geodesic equation

Newton’s gravitation law can be derived as the Euler-Lagrange equation from
mimimization of the total energy: using the total energy of a test mass m in a
time-independent gravitational field φ divided by the test mass as the Lagrangean

E = Ep + Ek = mφ +
1
2

mv2 (1)

L(t, xi, ẋi) = φ(x1, x2, x3) +
3

∑

i=1

1
2

ẋ2
i (2)

gives
∂L

∂xi
= ∂iφ (3)

∂L

∂ẋi
= ẋi (4)

d

dt

∂L

∂ẋi
= ẍi (5)

The Euler-Lagrange equation

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0 (6)

give
∂iφ = ẍi (7)

which is Newton’s F = ma

F = m∇φ = mẍi = ma. (8)

Einstein wanted to derive the gravitation law from minimizing the geodesic. He
took the Langangean from the line element

ds2 = c2g00dt2 − g11dx2 − g11dy2 − g33dz2 (9)
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where t, x, y, z are orthogonal local coordinates. Writing c2dτ = ds, (t, x, y, z) =
(x0, x1, x2, x3), dxa − dτ = ẋa, setting c = 1, and allowing the coordinates to be
nonorthogonal, we can write (8) as

dτ =
√

gabdxadxb (10)

and dividing by dτ we get a Lagrangean that equals one

1 = L(τ, xa, ẋa) =
√

gabẋaẋb. (11)

The situation that L = 1 simplifies the Euler-Lagrange equations

∂L

∂xc
= ∂cgabẋaẋb 1

2L
=

1
2

∂cgabẋaẋb (12)

∂L

∂ẋc
= gcd2ẋd 1

2L
= gcdẋd (13)

d

dτ

∂L

∂ẋc
= gcdẍd + ġcdẋd. (14)

The Euler-Lagrange equations are

1
2

∂cgabẋaẋb − gcdẍd − ġcdẋd = 0. (15)

Notice that the Lagrangean (11) is only for time-like world paths. For light-like
world paths ds = 0 always, therefore L = 0 and this method cannot be used.
For space-like world paths the sign must be changed as ds is negative.

Let us take orthogonal local coordinates, thus gab = 0 if a Ó= b. Then (15) is

1
2

∂cgaaẋaẋa − gccẍc − ġccẋc = 0. (16)

Multiplying by gcc = g−1
cc we get

ẍc − 1
2

gcc∂cgaaẋaẋa + gccġccẋc = 0. (17)

This is not the geodesic equation of the General Relativity Theory

ẍc + Γc
abẋaẋb = 0 (18)

for two reasons.

The first reason is that there is a clear error in the derivation of the geodesic
equation from the Euler-Lagrange equations because

Γc
ab Ó= −1

2
gcc∂cgab. (19)
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The definition of the Christoffel symbol is

Γa
bc =

1
2

gad(gbd,a + gdc,b − gbc,a). (20)

For orthogonal coordinates gab = 0 if a Ó= b the equation is

Γa
bc =

1
2

gaa(gba,a + gac,b − gbc,a). (21)

Setting a = b = c we get

Γc
cc =

1
2

gcc(gcc,c + gcc,c − gcc,c)

=
1
2

gccgcc,c =
1
2

gcc∂cgcc (22)

while if b Ó= c, we first set c = b in (21)

Γa
bb =

1
2

gaa(gba,a + gab,b − gbb,a). (23)

and then change a to c

Γc
bb =

1
2

gcc(gbc,c + gcb,b − gbb,c). (24)

and the terms gbc and gcb are zeros, thus

Γc
bb = −1

2
gccgbb,c = −1

2
gcc∂cgbb (25)

Using (22) and (24) we can write (17) as

ẍc + Γc
bbẋbẋb − 2Γc

ccẋcẋc + gccġccẋc. (26)

We see that the different signs in (22) and (24) already invalidate (18), but (18)
also has the additional terms

Γc
cb =

1
2

gcc∂bgcc (27)

which we can calculate from (21) by setting a = c with b Ó= c

Γc
bc =

1
2

gcc(gbc,c + gcc,b − gbc,c) =
1
2

gcc∂bgcc. (28)

There are no such terms in (17). The confusion in the relativity theory is created
by writing (10) with nonorthogonal coordinates and then identifying incorrectly
the Christoffel symbols in the step from (17) to (18).

The second reason is that taking ġcd = 0 selects a particular world path and
restricts the equation to this particular world path. In the best case we find a
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solution and it satisties the imposed condition on the world path, then we limited
the set of solutions but found a solution. In the worse case the calculation after
requiring ġcd = 0 in (17) does not give a solution that satisfies the imposed
condition on the world path and imposing ġcd = 0 in (17) is an error. We will
see both situations with the Schwarzschild metric, for time-like world paths we
have the first case, for light-like world paths we have the second case.

Notice especially that the condition ġcd = 0 does not mean that the field is time
independent. The field is time independent if ∂0gcd = 0. If some gab or sum of
several gab gives a function g that only depends explicitly on r, i.e., g = g(r),
and g is not constant, then the condition that every gab in (17) satisfies ġab = 0
implies that ṙ = 0. The world path with ṙ = 0 which is a circular orbit and
imposing this condition in (17) means that we are only checking if there is a
circular geodesic.

Limiting to ṙ = 0 is too restrictive, there are other interesting geodesics. If the
field is time-independent, that is ∂0gcd = 0, the Euler-Lagrange equation for the
time parameter t is very easy. As L = 1 does not depend explicitly on t, the
term ∂L/∂t = 0 and there remains

d

dτ

∂L

∂ṫ
= 0. (29)

Then
∂L

∂ṫ
= g002ṫ

1
2L

= g00ṫ = C (30)

where C is a constant. In this situation a radial geodesic gives a simple equation.
We can find a radial geodesic to the direction of y by setting r = y, x = z = 0.
The Lagrangian takes the form

L =
√

g00ṫ2 − g22ẏ2. (31)

Then
∂L

∂y
=

1
2L

dg00(y)
dy

ṫ2 − 1
2L

dg22(y)
dy

ẏ2. (32)

Writing g′
ii = dgii(y)/dy in the equation (32) gives

=
C2

2
g′

00

g2
00

− 1
2

g′
22. (33)

The term
∂L

∂ẏ
= − 1

2L
g222ẏ = −g22ẏ (34)

and
d

dτ

∂L

∂ẏ
= −ġ22ẏ − g22ÿ = −ẏg′

22ẏ − g22ÿ. (35)

The Euler-Lagrange equation for y is

ÿ +
1
2

g′
22

g22
ẏ2 +

C2

2
g′

00

g2
00g22

= 0. (36)
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We will see that this gives an interesting result for the Schwarzschild metric in
the next section.

2. Circular and radial time-like geodesics of the Schwarzschild metric

The Schwarzschild metric is defined as

c2dτ2 = A(r)dt2 − B(r)dr2 − r2dθ2 − r2 sin2(θ)dφ2 (37)

where

A(r) = c2
(

1 − rs

r

)

B(r) =
(

1 − rs

r

)−1

(38)

and rs is a constant, so called Schwarzschild radius. In Cartesian coordinates
(37) is

c2dτ2 = A(r)dt2 − (B(r) − 1)dr2 −
(

dr2 + r2dθ2 + r2 sin2(θ)dφ2
)

= A(r)dt2 − (B(r) − 1)dr2 −
(

dx2 + dy2 + dz2
)

(39)

= A(r)dt2−((B(r)−1)
x2

r2
+1)dx2−((B(r)−1)

y2

r2
+1)dy2−((B(r)−1)

z2

r2
+1)dz2

−(B(r) − 1)
xy

r2
dxdy − (B(r) − 1)

xz

r2
dxdz − (B(r) − 1)

yz

r2
dydz.

The Lagrangian for (39) can be written as

L =
√

A(r)ṫ2 + (B(r) − 1)ṙ2 − ẋ2 − ẏ2 − ż2 = 1 (40)

The Euler-Lagrange equation for the time in (30) gives ṫ = CA(r)−1 for some
constant C for all r.

We will first do the trick of simplifying (17) by demanding that ġab = 0, as this
is what is done in order to get the geodetic equation. From (31) we see that the
sum

g11 + g22 + g33 = B(r) + 2 (41)

is a function of r. If ġii = 0 for i = 1, 2, 3, then Ḃ(r) = 0, but as B(r) is not
a constant, this implies that ṙ = 0. Imposing ġab = 0 in (17) simplifies the
Lagrangian to the form

L =
√

A(r)ṫ2 − ẋ2 − ẏ2 − ż2. (42)

Next let us calculate the Euler-Lagrange equation for y

∂L

∂y
= ∂yA(r)ṫ2 1

2L
=

y

r
A′(r)ṫ2 1

2

=
y

2r
A′(r)

C2

A(r)2
(43)
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∂L

∂ẏ
=

−2ẏ

2L
= −ẏ (44)

The Euler-Lagrange equation is

y

2r
A′(r)

C2

A(r)2
+ ÿ = 0. (45)

ÿ = − y

2r
A′(r)

C2

A(r)2
. (46)

This equation has solutions as exponent functions, but they cannot give r2 =
x2 + y2. We must take a solution composed of sinuses and cosinuses. Because of
the symmetry of a radially symmetric function, we can select x, y, z so that the
solution is as nice as it can be. Thus, we select z = 0 and

y = r sin(

√

C2A′(r)
2rA(r)2

(47)

x = r cos(

√

C2A′(r)
2rA(r)2

.

With sinusodial solutions, like (47), ÿ and y have opposite signs. The radius r is
positive in (46). This means that A′(r) must be positive in (46). We confirm
from (38) that A′(r) is positive.

From (47) follows that the radial velocity v is constant when r is constant

v2 = ẋ2 + ẏ2 = r
C2A′(r)
2A(r)2

(48)

The centrifugal force is derived purely from geometry, so it has to be valid also
in the relativity theory. For a cicular orbit ṙ = r̈ = 0 and r2 is constant

1
2

d2

dt2
r2 = ẋ2 + ẏ2 + xẍ + yÿ = 0 (49)

v2 = ẋ2 + ẏ2 = −(xẍ + yÿ).

Inserting this to

r̈ =
ẋ2 + ẏ2

r
+

xẍ + yÿ

r
− ṙ

r2
(xẋ + yẏ) = 0

r̈ =
v2

r
− v2

r
(50)

we see that in order for the orbit to be a circle, there is needed acceleration
−v2/r, the second term to the right in (50), to compensate for the centrifugal
acceleration, the first term to the right. This compensating acceleration comes
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from the gravitational force. The gravitational force F on a test mass m must
therefore be

F =
mv2

r
=

C2A′(r)
2A(r)2

(51)

Inserting A(r) from (38) (where we set c = 1, as has been done in this calculation
already earlier)

F =
C2

2
A′(r)
A(r2)

=
C2

2
rs

r2

r2

(r − rs)2
= B

1
(r − rs)2

(52)

which differs from Newton’s gravitation force on higher powers of r. We see
that the Schwarzschild metric does give a circular geodesic for time-like world
paths and the gravitation force it predicts in (52) is not very different from the
Newtonian gravitation force. That does not sound too bad, but let us look at a
radial geodesic. First we calculate the Euler-Lagrange equation for y in the case
when ṙ is not zero.

From (40) we get

∂L

∂y
=

1
2L

(

y

r
A′(r)ṫ2 − y

r
B′(r)ṙ2 − (B(r) − 1)

∂ṙ2

∂y

)

(53)

Inserting A(r)ṫ = C from (30) and expanding

∂L

∂y
=

y

2r

C2A′(r)
A(r)2

− y

2r
B′(r)ṙ2 + (B(r) − 1)

(

y

r2
ṙ2 − 1

r
ẏṙ

)

(53)

∂L

∂ẏ
= −(B(r) − 1)

y

r
ṙ − ẏ (54)

d

dτ

∂L

∂ẏ
= −ṙB′(r)

y

r
ṙ + (B(r) − 1)

ṙ

r2
yṙ

−(B(r) − 1)
y

r
ẏṙ − (B(r) − 1)

y

r
r̈ − ÿ (55)

The Euler-Lagrange equation for y is

ÿ + y

(

C2A′(r)
2rA(r)2

+ B′(r)
ṙ2

2r
+ (B(r) − 1)

r̈

r

)

= 0 (56)

The equation is the same for x and z, only replacing y with x or z, but we are
now interested in a radial geodesic where x = z = 0 and r = y. The equation
takes the form

B(y)ÿ + B′(y)
ẏ2

2
+

C2A′(y)
2A(y)2

= 0 (57)
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Because A(r) = B(r)−1, (57) simplifies further

ÿ +
1
2

B′(y)
B(y)

ẏ2 +
C2

2
A′(y)
A(y)

= 0 (58)

and still because A(r) = B(r)−1

ÿ − 1
2

A′(y)
A(y)

ẏ2 +
C2

2
A′(y)
A(y)

= 0 (59)

It may be difficult to find all solutions to (59) for a general A(y), but one solution
is obvious:

y = Cτ + b r = y (60)

solves (59) and therefore (56) for any A(r), B(r) = A(r)−1. But especially for
A(r) in the Schwarzschild solution we get

A′(y)
A(y)

= rs(y − rs)−2 = rsy−2
1 (61)

2
rs

y2
1 ÿ1 − ẏ2

1 + C2 = 0

which only has the solution y1 = Cτ + b1 and therefore y = Cτ + b. As
ṫ = CA(y)−1, we get

t = Cτ + rs ln τ + t0 (62)

and the relation between t and y is nothing what you would expect. This
radial geodesic does not seem as good as the circle geodesic we found before. In
a gravitational field, a test mass should not move towards the mass center in
(nearly) linear time! This geodesic is a valid geodesic and it shows that something
is very wrong in the Schwarzschild metric or in the geometrization idea.

3. Concerning light-like geodesics

With light-like geodesics dτ in (9)

dτ =
√

gabdxadxb

is always zero and we cannot divide by dτ . There are two possibilities. Either
we separate the time term

c2g00dt2 = gijdxidxj (63)

where i and j range from 1 to 3, and form the Lagrangian as

L =
√

gij

c2g00
ẋiẋj (64)
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In this case L = 1 and calculations are again simplified by this choice, but the
problem with this Lagrangian is that if the speed of light is locally c everywhere,
then

gii

g00
= c2 (65)

and the Lagrangian reduces to the Lagrangian of empty space: the geodesics are
straight lines and light is not at all influenced by the gravitational field. This
was certainly not Einstein’s intention.

It is impossible to release the requirement that light has the constant speed c
in vacuum at every point to every direction. If it does not, then the tangent
space-time of the space-time is not a Minkowski space, but it has to be since the
tangent space-time is flat. Also, c appears in many formulas in the relativity
theory as a constant. If c is not constant, then it is a vector function. The
formulas and calculations should treat c as a vector variable, but they do not.

We have to select the other choice which is to minimize the 3-dimensional path.
Then the Lagrangian is

L =
√

−gij ẋiẋj (66)

and it is not one. We find the shortest space path and as light travels with the
constant speed c, it also is the shortest time path. We will only focus on the
two special geodesics, a circular and a radial.

In a circular geodesic for the Schwarzschild metric for light-like world paths
ṙ = 0, thus instead of (40) we have from (66)

L =
√

ẋ2 + ẏ2 + ż2. (67)

This is a Lagrangean for empty space. The Euler-Lagrange equations are
ẍ = ÿ = z̈ = 0 and the geodesics are straight lines. But we have imposed the
condition that ṙ = 0 in order to get (67). Here we have the error mentioned in
the first section: after the condition ġab = 0 is imposed, the calculations give
a solution that does not allow ġab = 0. Therefore imposing ġab = 0 is an error.
The Schwarzschild metric does not allow circular geodesics for light, which is
correct as light does not follow circular paths around a mass point.

In a radial geodesic for the Schwarzschild metric for light-like world paths the
Lagrangean (64) is

L =
√

B(y)ẏ2 (68)

L

∂y
= B′(y)ẏ2 1

2L
(69)

L

∂ẏ
= B(y)ẏ

1
L

(70)

d

dτ

L

∂ẏ
= B′(y)ẏ2 1

L
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+B(y)ÿ
1
L

− B(y)ẏ
(

1
2

B′(y)ẏ3 + B(y)ÿẏ

)

1
L3

(71)

The Euler-Lagrange equation for y is satisfied for any B(r):

1
2

B′(y)ẏ2L2 − B′(y)ẏ2L2 − B(y)ÿL2 +
1
2

B(y)B′(y)ẏ4 + B(y)2ÿẏ2 = 0

−1
2

B(y)B′(y)ẏ4 − B(y)2ÿẏ2 +
1
2

B(y)B′(y)ẏ4 + B(y)2ÿẏ2 = 0. (72)

Thus, the Schwarzschild metric does allow radial geodesics for light-like world
paths.

However, the Schwarzschild metric does not have constant speed of light at every
point to every direction. Indeed, the speed of light depends on the altitude,
this is in violation with experimental mesurements. The Schwarzschild metric
does not converge to a flat Minkowski space when we approach a point, and it
should: curvature vanishes when the environment becomes infinitely small. The
metric (37) is not a valid metric because it has the cross terms dxdy, dxdz, dydz
in the expression (39) and Cartesian coordinates x, y, z are orthogonal and with
orthogonal coordinates there cannot be cross terms, the inner product that
induced the Riemanninan metric is zero. These are the reasons to reject the
Schwarzschild metric.

Additionally one can mention the following: though the Schwarzschild metric
has a circle geodesic that predicts a gravitational force that is not so much
different from the Newtonian gravity law, there is a proof in [4] why Newton’s
gravitation force is the correct one. This proof has the following argument:
there is a spherical mass M with constant mass density and a test mass m at
a distance r from the center of the mass M . If the force F attracting the test
mass is the same as when we let the radius of the spherical mass approach zero,
then the force F must be ar−2 exactly for some a. In the Schwarzschild solution
it may be questioned if the radius of the spherical mass can completely approach
zero, but the proof applies to letting the radius vary in a large scale, if the force
F does not depend on the radius of the spherical mass but only on its mass,
then the force is r−2.

4. The error in the Lagrangean (11)

If you wonder why a test mass freely falling towards the mass center on a radial
geodesic does not seem to accelerate (or accelerates minimally) when solved from
the Euler-Lagrange equations with the Lagrangian (11), then there is a simple
reason. The Lagrangean (11) does not minimize time or length, it minimises the
difference between t and y. Let us see this with a simple example, we take the
Newtonian potential ψ = r−1 with the line element

ds2 = c2ψ2dt2 − ψ2dx2 − ψ2dy2 − ψ2dz2. (73)
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The Lagrangian in the radial case when x = z = 0 expressed as derivatives of t
instead of τ is

L = ψ
√

c2 − y′2. (74)

The terms for the Euler-Lagrange equation for y are obtained as

∂L

∂y
= ψ′(y)

√

c2 − y′2 (75)

∂L

∂y′ = −ψ(y)y′√c2 − y′2−1

d

dt

∂L

∂y′ = −ψ′(y)y′2(c2 −y′2)−1/2 −ψ(y)y′′(c2 −y′2)−1/2 −ψ(y)y′′y′2(c2 −y′2)−3/2

and after some simplifying we get the equation

y′′ = −ψ′(y)
ψ(y)

(c2 − y′2). (76)

Inserting ψ gives
d

dt
(yy′) = yy′′ + y′2 = c2 (76)

Thus, f ′ = y′y = c2t + b and 2f = y2. We get y2 = c2t2 + 2bt + d and this shows
that y that we get from a Lagrangian like (11) grows like t, not as y = at2 as it
should in accelerating motion.

The error is the Lagrangian in (11). Instead of this Lagrangian, we should use
Lagrangian in (66). In [18] and [19] there are calculations of the geodesics of the
Schwarzschild and Newtonian metrics. The Lagrangian (66) can very well be used
for time-like world paths, it minimizes the space distance regardless of the speed.
The Lagrangean (11) does not minimize anything relevant. Interestingly, with
the correct Lagrangean (66) used in [18] we see that the Schwarzschild metric
does not allow circular geodesics, thus the metric does not allow geostationary
satellites. But we have them and they stay on the orbit. Even more interestingly,
Einstein used the Schwarzschild solution in his calculations of the precession
of the perihelion of Mercury. But clearly a metric that does not allow circular
orbits has no place in the solar system.

4. Conclusions of Einstein’s geometrization idea

The Cristoffel symbol terms in the geodesic equation do not equal the terms
in the Euler-Lagrange equation derived from the Lagrangean (11). This means
that the geodesic equation is not derived from minimization of the length of the
space-time path as in the Lagrangian (11). Though it is possible to define a
straight path to mean a solution of the geodesic equation, i.e., we can define the
geodesic equation as a connection in the manifold, yet physically there should
be some reason why the path is called the straight path. This reason in the
relativity theory is that the geodesics are shortest paths in the sense of the
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Lagrangean (11). They are not because the Euler-Lagrange equation does not
give the geodesic equation. This part of the geometrization idea fails.

It is reasonable that the dynamic law, like Newton’s F = ma, comes from some
Euler-Lagrange equation, like F = ma does come from minimization of energy.
But it appears that the dynamic equation does not come from a geodesic in
the metric of the gravitational field. First we should notice that the speed of
light must be constant c in vacuum at every point and to every direction. This
rule agrees with measurements of the speed of light and it is difficult to see how
the relativity theory could accept that the speed of light is not locally constant.
This requirement means that the gravitational field must be a scalar field and
the most general spherically symmetric field has the line element

ds2 = c2φ2dt2 − φ2(dx2 + dy2 + dz2). (77)

It gives the Lagrangean of the type (11) as

L = φ
√

c2ṫ2 − ẋ2 − ẏ2 − ż2. (78)

There is no way to derive the Newtonian gravitation law F = ma, or something
close to it, as a geodesic from this Lagrangean. This concludes that the ge-
ometrization idea does not work. Notice also that the Einstein equations do not
have any solutions that approximate Newtonian gravity in the case of a point
mass in empty space and that have locally constant speed of light at every point
to every direction, i.e., that are scalar fields.

Einstein made an effort to realize the geometrization idea with tensor gravita-
tional fields, notably with the Schwarzschild solution. We have in this article
looked at some geodesics of this solution. Two cases need to be treated separately.
Time-like geodesics can be treated with the Lagrangean (11) while light-like
geodesics should be treated with the Lagrangean (64). Though we may find
some exotic solution with the Lagrangean (62) because the Schwarzschild metric
does not satisfy (63), the requirement that the speed of light must be locally
constant cannot be easily released.

We found that for time-like world paths the Schwarzschild metric gives a rather
reasonable circular geodesic, but it fails in the case of a radial geodesic: there
is a radial geodesic, but a test mass does not accelerate when falling towards a
point mass. With light-like geodesics the Schwarzschild metric gave no circular
geodesics, which is good as light does not follow circular geodesics. Let us
mention that the Newtonian potential, if treated as a geometry, does give a
circular geodesic for light, which shows that the gemoetric method cannot be
used for the Newtonian potential. The Schwarzschild solution did give a radial
geodesic for light-like world paths. However, the speed of light is not constant
on this path in the Schwarzschild metric.

As the geometrization idea seems incorrect, we need some better idea. My
guess is that they key to this problem is the interaction of a field with a test
mass: there is an exchange of messages. That is where we get a correct proof of
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E = mc2, gravitational time dilation, the Lorentz factor, mass growth formula
and so on.

For finding a whole set of serious errors in the relativity theory, see my preprints
[2]-[19], then, please, dump the theory. It is not only wrong, it is intentional
cheating.
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