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Summary 

We present a method for determining the order parameters of the spin 
glass Ising model (a general Ising model) in its ground state. This 
solution is valid specifically for the ground state, revealing the final 
outcomes of interactions and providing a solution to combinatorial 
optimization problems. The solution is presented through differential 
equations related to the inverse temperature, which can be solved 
using Euler's method. If the tracing of states through inverse 
temperature allows for the determination of state variables in a 
practically finite time, it becomes relevant to the P=NP problem. 
Furthermore, the set of equations obtained is also shown to be 
equivalent to those used in Boltzmann machines. 

 

 

Introduction 

The Ising model is the simplest and most fundamental model for interactions, where spins 
(nodes) that can take on states of either -1 or 1 change over time due to interactions at a 
temperature T, eventually settling into a state known as the ground state at T=0. In this ground 
state, the system's energy is at its lowest, and the order parameters, which are the expected values 
of each state, take on values of either -1 or 1. These parameters indicate the final state of the 
system as a result of the interactions. In complex systems, this state results from interactions, 
while in combinatorial optimization problems, it represents the solution. The outcome of these 
interaction systems and combinatorial optimization solutions has potential applications across a 
wide range of fields in the real world. The spin glass Ising model, a variant of the Ising model, 
incorporates both positive and negative individual interactions [1], and can model various 
interaction systems and combinatorial optimization problems. This text will describe a method 
to obtain the ground state of the spin glass Ising model. Specifically, it involves deriving a set of 
simultaneous equations for the expected values of the state variables, which include derivatives 
with respect to t=1/(Tk) (where T is temperature and k is the Boltzmann constant) and tracing 
the solution from t=0 using Euler's method. 

 

Results 

At t=1/(Tk)=∞ (in the ground state), the following results were obtained. 

𝑥𝑖 =  
1

1 + 𝑒−𝜉𝑖𝑡
 (1) 

𝑥𝑖 =  〈𝑛𝑖〉 ,  𝜉𝑖 =  ∑ 𝜀𝑖,𝑗𝑥𝑗

𝑁

𝑗=1≠𝑖

,  𝑡 =  
1

𝑘𝐵𝑇
 

Take the derivative. 



�̇�𝑖 − 𝑥𝑖(1 − 𝑥𝑖)𝑡𝜉�̇� =  𝑥𝑖(1 − 𝑥𝑖)𝜉𝑖 (2) 

Multiply by the inverse matrix. 

�̇�𝑖 = 𝐴−1 ∙ �⃗� = 𝑓(𝑥) (3) 

𝐴𝑖,𝑗 = {
1                              (𝑓𝑜𝑟 𝑗 = 𝑖)

−𝑥𝑖(1 − 𝑥𝑖)𝑡𝜀𝑖,𝑗    (𝑓𝑜𝑟 𝑗 ≠ 𝑖)
 ,     �⃗� 𝑖 = 𝑥𝑖(1 − 𝑥𝑖)𝜉𝑖 

Use Euler's method. 

�̇�𝑖 = 𝑓𝑖(𝑥𝑗)   

�̃�𝑖
(𝑡+𝑑𝑡)

= 𝑥𝑖
(𝑡)

+ 𝑓𝑖(𝑥𝑗
(𝑡)

)𝑑𝑡   

𝑥𝑖
(𝑡+𝑑𝑡)

= 𝑥𝑖
(𝑡)

+
1

2
(𝑓𝑖(𝑥𝑗

(𝑡)
) + 𝑓𝑖(�̃�𝑖

(𝑡+𝑑𝑡)
)) 𝑑𝑡 (4) 

By tracing x from an initial value of 0.5, it is possible to find the ground state at t=∞. Equation (1) 

is 0.5 at t=0, so if there is continuity between the initial value and the final ground state, regardless 

of the different paths taken in between, adding up the variations of Equation (3) will lead to the 

ground state. 

 

 

 

 

This implies that by adding up variations step by step, one can obtain the solution for an Ising 

model with any interaction. This is equivalent to obtaining the solution for combinatorial 

optimization problems. Therefore, the number of steps of adding variations needed to ensure 

the practical accuracy of the solution suggests that, practically, P=NP. (To obtain an exact 

solution, an infinite number of steps would be necessary.) 

 

Theory 

Assume there are state variables for each node i=1 to N, each having the following state. 

𝑛𝑖 = 0 𝑜𝑟 1  (5) 

A model whose system Hamiltonian can be represented as follows is called the Ising model [1]. 

(While the Ising model generally uses n=-1 or 1, it can be simplified for calculations by treating 

n as 0 or 1.) 

−𝐻 = ∑𝜀𝑖,𝑗𝑛𝑖𝑛𝑗

𝑖≤𝑗

  (6) 

However, εij can take any value within the following range (spin glass Ising model [1]). 

𝜀𝑖,𝑗 = −1 ~ 1  (7) 

The order parameter <ni> is determined as follows. 

The exact solution = the trajectory of <ni>. 

The solution to the equation = the trajectory of xi. 

t = 0 t = ∞ 
t 𝑡 + 𝑑𝑡 

𝑑𝑡 

𝑑𝑥𝑖  



〈𝑛𝑖〉 =
𝑍𝑖

𝑍
  (8) 

𝑍 = ∑𝑒−𝐻𝑡

{𝑛}

 , 𝑍𝑖 = ∑𝑛𝑖𝑒
−𝐻𝑡

{𝑛}

 , 𝑡 =
1

𝑘𝐵𝑇
  (9) 

From equations (8) and (9), 

〈𝑛𝑖〉 =   〈𝑛�̅�𝑒
𝜀𝑖,𝑖𝑡 ∏ 𝑒𝜀𝑖,𝑗𝑛𝑗𝑡

𝑁

𝑗=1≠𝑖

〉  (10) 

Given nj=0 or 1, the following is equivalent. 

〈𝑛𝑖〉 =   〈𝑛�̅�𝑒
𝜀𝑖,𝑖𝑡 ∏ ((𝑒𝜀𝑖,𝑗𝑡 − 1)𝑛𝑗 + 1)

𝑁

𝑗=1≠𝑖

〉  (11) 

The right-hand side becomes the expected value of the multiplication of nj, but at t=∞, 

〈𝑛𝑎𝑛𝑏〉 = 〈𝑛𝑎〉〈𝑛𝑏〉  

Therefore, 

〈𝑛𝑖〉 =   〈𝑛�̅�〉𝑒
𝜀𝑖,𝑖𝑡 ∏ ((𝑒𝜀𝑖,𝑗𝑡 − 1)〈𝑛𝑗〉 + 1)

𝑁

𝑗=1≠𝑖

 (12) 

〈𝑛�̅�〉 = 1 − 〈𝑛𝑖〉 

𝑛𝑗 = 0𝑜𝑟1 

More 

〈𝑛𝑖〉 =   (1 − 〈𝑛𝑖〉) 𝑒
𝜀𝑖,𝑖𝑡 ∏ 𝑒𝜀𝑖,𝑗 〈𝑛𝑗〉 𝑡

𝑁

𝑗=1≠𝑖

 (13) 

Here, 

𝜉𝑖  =  𝜀𝑖𝑖 +  ∑𝜀𝑖𝑗⟨𝑛𝑗⟩

𝑗≠𝑖

 (14) 

Using the above, it can be expressed as, 

〈𝑛𝑖〉 =   (1 − 〈𝑛𝑖〉) 𝑒
𝜉𝑖𝑡 (15) 

Summarizing <nj> from here, 

〈𝑛𝑖〉  =  
𝑒𝜉𝑖𝑡

1 + 𝑒𝜉𝑖𝑡
 (16) 

Therefore, the following is obtained. 

〈𝑛𝑖〉  =  
1

1 + 𝑒−𝜉𝑖𝑡
 (17) 

𝜉𝑖  =  𝜀𝑖𝑖 +  ∑𝜀𝑖𝑗⟨𝑛𝑗⟩

𝑗≠𝑖

 



Equation (17) holds for all i=1 to N and is a system of simultaneous equations for N values of <ni>. 

In other words, it was possible to represent the order parameter <ni> at t=∞ (ground state) as a 

system of simultaneous equations. 

Furthermore, the above equation involves taking the sum of the weights εij applied to each site 

and then passing it through an activation function to binarize it to 0 or 1, which is the structure 

of a perceptron in machine learning. Originally, this equation is derived from the mathematical 

development of statistical mechanics interaction systems (the spin glass Ising model), reflecting 

natural phenomena. Therefore, it is equivalent to validating machine learning and neural network 

models. The Ising model addresses the problem of determining the values of nodes, while 

machine learning focuses on determining the values of weights. Because the above equation is 

mathematically sound or represents natural phenomena, it suggests the possibility of analyzing 

and understanding machine learning. Consequently, there is potential for creating more accurate 

models or machine learning models through numerical analysis without the need for learning. 

Next, differentiating both sides of equation (17) yields the following. 

𝜕〈𝑛𝑖〉

𝜕𝑡
 =  〈𝑛𝑖〉(1 − 〈𝑛𝑖〉) (𝜉𝑖 +

𝜕𝜉𝑖

𝜕𝑡
𝑡)  (18) 

Since equation (18) is only valid at t=∞, expressing it in terms of the variable xi, which holds for 

all t, results in the following. 

𝜕𝑥𝑖

𝜕𝑡
 =  𝑥𝑖(1 − 𝑥𝑖) (𝜉𝑖 +

𝜕𝜉𝑖

𝜕𝑡
𝑡)  (19) 

𝜉𝑖  =  𝜀𝑖𝑖 +  ∑𝜀𝑖𝑗𝑥𝑗

𝑗≠𝑖

 

Express the derivative as follows, 

�̇�𝑖 

Transforming it results in, 

�̇�𝑖 − 𝑥𝑖(1 − 𝑥𝑖)𝑡𝜉�̇� =  𝑥𝑖(1 − 𝑥𝑖)𝜉𝑖 (20) 

By multiplying by the inverse matrix of A, the following is obtained. 

�̇�𝑖 = 𝐴−1 ∙ �⃗� = 𝑓(𝑥) (21) 

Matrix A and vector b are as follows. 

𝐴𝑖,𝑗 = {
1                              (𝑓𝑜𝑟 𝑗 = 𝑖)

−𝑥𝑖(1 − 𝑥𝑖)𝑡𝜀𝑖,𝑗    (𝑓𝑜𝑟 𝑗 ≠ 𝑖)
 ,     �⃗� 𝑖 = 𝑥𝑖(1 − 𝑥𝑖)𝜉𝑖 

Therefore, this is subject to Euler's method [2]. 

�̇�𝑖 = 𝑓𝑖(𝑥𝑗)   

�̃�𝑖
(𝑡+𝑑𝑡)

= 𝑥𝑖
(𝑡)

+ 𝑓𝑖(𝑥𝑗
(𝑡)

)𝑑𝑡   

𝑥𝑖
(𝑡+𝑑𝑡)

= 𝑥𝑖
(𝑡)

+
1

2
(𝑓𝑖(𝑥𝑗

(𝑡)
) + 𝑓𝑖(�̃�𝑖

(𝑡+𝑑𝑡)
)) 𝑑𝑡 (22) 

Starting from an initial value of 0.5 for x, it's possible to determine the ground state at t=∞. 

Furthermore, if the number of steps required for practical accuracy is on the order of polynomial 

time, it can be said that P=NP. 



Discussion 

In mathematics, there exists an unsolved problem known as the P vs NP problem. This problem, 

a major question in computer science, raises the issue of whether all problems for which solutions 

can be efficiently verified can also be efficiently found. Here, "efficiently" means that the solution 

can be computed within polynomial time relative to the size of the problem. "Polynomial time" 

refers to an algorithm's efficiency, indicating that the algorithm takes time proportional to n 

raised to a constant power (where n is the size of the problem). In essence, the P vs NP problem 

asks whether all problems that can be verified quickly (NP) are also solvable quickly (P). 

Now, in response to this problem, it has been possible to determine the ground state of the spin 

glass Ising model using Euler's method [2]. Since solving the problem of finding the ground state 

of the spin glass Ising model is equivalent to solving all NP-complete problems [1], if the number 

of steps required for the Euler method's variations to be added up is on the order of polynomial 

time, it implies that P=NP. 

In summary, if P=NP to a practical degree, it holds significant potential for solving various 

business and societal issues that were previously challenging. If you are interested, please feel 

free to contact the email address provided below. 
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