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Abstract

Until the authenticity of the unique games conjecture is proven, it can be thought to be false. There-
fore, I request you, dear reader, to read this paper carefully, and if you don’t find any mistake in it, think
about the option that maybe unique games conjecture is not correct! If the unique games conjecture
is true then it is impossible to produce a less than 2 approximation ratio for the vertex cover problem.
Vertex cover problem is a famous combinatorial problem, which its complexity has been heavily studied
over the years and while a 2-approximation for it can be trivially obtained, researchers have not been able
to approximate it better than 2-o(1). In this paper, by a combination of a new semidefinite programming
formulation along with satisfying new proposed properties, we introduce an approximation algorithm for
the vertex cover problem with a performance ratio of 1.999999 on arbitrary graphs, en route to answering
an open question about the unique games conjecture.

1 Introduction

In complexity theory, the abbreviation NP refers to ”nondeterministic polynomial”, where a problem is in
NP if we can quickly (in polynomial time) test whether a solution is correct. P and NP-complete problems
are subsets of NP Problems. We can solve P problems in polynomial time while determining whether or not
it is possible to solve NP-complete problems quickly (called the P vs NP problem) is one of the principal
unsolved problems in Mathematics and Computer science.

Here, we consider the vertex cover problem (VCP) which is a famous NP-complete problem. It cannot
be approximated within a factor of 1.36 [1], unless P=NP, while a 2-approximation factor for it can be
trivially obtained by taking all the vertices of a maximal matching in the graph. However, improving this
simple 2-approximation algorithm has been a quite hard task [2, 3].

In this paper, we show that there is a (2-ε)-approximation ratio for the vertex cover problem, where the
value of ε is not constant. Then, we fix the ε value equal to ε=0.000001 and we show that on arbitrary
graphs, a 1.999999-approximation ratio can be obtained by solving a new semidefinite programming (SDP)
formulation.

The rest of the paper is structured as follows. Section 2 is about the vertex cover problem and introduces
new properties about it. In section 3, by using the satisfying properties, we propose a solution algorithm for
VCP with a performance ratio of 1.999999 on arbitrary graphs. Finally, Section 4 concludes the paper.

2 Performance ratio based on a VCP feasible solution

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each
edge of the graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover
is a typical example of an NP-complete optimization problem. In this section, we calculate the performance
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ratios of VCP feasible solutions which lead to an approximation ratio of 2-ε, where the value of ε is not
constant and depends on the produced feasible solution. Then, in the next section, we fix the value of ε
equal to ε=0.000001 to produce a 1.999999-approximation ratio for the vertex cover problem on arbitrary
graphs.

Let G = (V,E) be an undirected graph on vertex set V and edge set E, where |V|= n. Throughout
this paper, z∗V CP is the optimal value for the vertex cover problem on G, where z∗V CP ⩾ n

2 and we have
produced a feasible solution for the problem with vertex partitioning V = V1 ∪ V0 and objective value |V1|.
Moreover, we know that we can efficiently solve the following well-known SDP formulation as a relaxation
for the VCP formulation, where, to produce the exact solution of the VCP problem, the last constraint should
be transformed as vovj ,vivj ∈ {0,+1},

(1)mins.t.z =
∑
i∈V

vovi

+vovi + vovj − vivj = 1 ij ∈ E

+vivj + vivk + vjvk ⩾ +1 i, j, k ∈ V ∪ {o}

+vivj − vivk − vjvk ⩾ −1 i, j, k ∈ V ∪ {o}

vivi = 1, 0 ⩽ vovj ⩽ +1 0 ⩽ vivj ⩽ +1 i, j ∈ V ∪ {o}

Theorem 1. Although it is hard to exactly produce the VCP optimal value, let’s assume that we have a
lower bound on the VCP optimal value and we know z∗V CP ⩾ n

2 + n
k = (k+2)n

2k . Then, for all vertex cover
feasible partitioning V = V1 ∪ V0, we have the approximation ratio |V1|

z∗V CP
⩽ 2k

k+2 < 2.

Proof. If z∗V CP ⩾ (k+2)n
2k then n

z∗V CP
⩽ 2k

k+2 . Hence, |V1|
z∗V CP

⩽ n
z∗V CP

⩽ 2k
k+2 < 2 ⋄

Theorem 2. Suppose that the vertex cover problem on G is hard (i.e. z∗V CP ⩾ n
2 ) and we have pro-

duced a VCP feasible partitioning V = V1 ∪ V0, where | V1 |⩽ kn
k+1 and | V0 |⩾ n

k+1 (or | V1 |⩽ k | V0 |).
Then, based on such a solution we have an approximation ratio |V1|

z∗V CP
⩽ 2k

k+1 < 2.

Proof. If | V1 |⩽ kn
k+1 then n ⩾ k+1

k | V1 |. Hence, z∗V CP ⩾ n
2 ⩾ k+1

2k | V1 | which concludes that
|V1|
z∗V CP

⩽ 2k
k+1 < 2 ⋄

3 A (1.999999)-approximation algorithm on arbitrary graphs

In section 2 and based on a produced feasible solution for the vertex cover problem, we introduced a (2-ε)-
approximation ratio where ε value was not a constant value. In this section, we fix the value of ε equal to
ε=0.000001 to produce a 1.999999-approximation ratio on arbitrary graphs. To do this, we introduce the
following assumption about the solution value of the SDP (1) relaxation.

Assumption 1. By solving the SDP (1) relaxation, both of the following conditions occur:
a) For less than 0.000001n of vertices j ∈ V and corresponding vectors we have v∗ov

∗
j < 0.5.

b) For less than 0.01n of vertices j ∈ V and corresponding vectors we have v∗ov
∗
j > 0.5004 .
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Theorem 3. If the solution of the SDP (1) relaxation does not meet the Assumption (1) then we can produce
a solution with a performance ratio of 1.999999.
Proof. If the solution of the SDP (1) relaxation does not meet the Assumption (1.a), then we can introduce
V0 = {j ∈ V | v∗ov∗j < 0.5} and V1 = V − V0, to have a feasible solution with | V0 |⩾ 0.000001n and
| V1 |⩽ 0.999999n ⩽ 999999 | V0 |. Then, for such a solution and based on Theorem (2), we have an
approximation ratio |V1|

z∗V CP
< 2(999999)

999999+1 = 1.999998 < 1.999999.
Otherwise, if the solution of the SDP (1) relaxation meets the Assumption (1.a) but it does not meet the

Assumption (1.b) then we have

z∗V CP ⩾ z∗SDP (1) ⩾ (0)(0.000001n){s.t. v∗ov∗j<0.5}
+(0.5)(0.989999n){s.t. 0.5⩽v∗ov

∗
j⩽0.5004}

+(0.5004)(0.01n){s.t. v∗ov∗j>0.5004}
= n

2 + 0.0000035n.

Note that, due to the correctness of Assumption (1.a) we have less than 0.000001n of vertices j ∈ V with
v∗ov

∗
j < 0.5 and due to the incorrectness of Assumption (1.b) we have more than 0.01n of vertices j ∈ V with

v∗ov
∗
j > 0.5004. Therefore, in the above inequality, the first summation is the lower bound on the vertices

j ∈ V with v∗ov
∗
j < 0.5 and the third summation is the lower bound on only 0.01n of the vertices j ∈ V

with v∗ov
∗
j > 0.5004 (only 0.01n of the vertices with v∗ov

∗
j > 0.5004 are considered in third summation and

beyond the 0.01n of such vertices are considered in second summation). Moreover, the second summation
is the lower bound on the other vertices; i.e. the vertices j ∈ V with 0.5 ⩽ v∗ov

∗
j ⩽ 0.5004 or the vertices

j ∈ V with v∗ov
∗
j > 0.5004 and beyond the 0.01n of such vertices which have been considered in third

summation.
Therefore, based on the above lower bound on z∗V CP value and based on Theorem (1), for all VCP fea-

sible solutions V = V1 ∪ V0, we have the approximation ratio |V1|
z∗V CP

⩽
2( 1

0.0000035
)

1
0.0000035

+2
< 1.999999 ⋄

Definition 1. Let ε=0.0004 and Gε = {j ∈ V | 0.5 ⩽ v∗ov
∗
j ⩽ 0.5 + ε}.

Based on Theorem (3), after solving the SDP (1) relaxation,
⋄ If the solution of the SDP (1) relaxation does not meet the Assumption (1) then we have a performance
ratio of 1.999999,
⋄ Otherwise (if the solution of the SDP (1) relaxation meets the Assumption (1)), for more than 0.989999n
of vertices j ∈ V , we have 0.5 ⩽ v∗ov

∗
j ⩽ 0.5 + ε; i.e. | Gε |⩾ 0.989999n. Moreover, for each edge ij in

Gε, we have v∗i v
∗
j ≃ 0; i.e. the corresponding vectors of each edge in Gε are almost perpendicular to each

other.

Therefore, to produce a VCP performance ratio of 1.999999 on arbitrary graphs, we need a solution for
the SDP (1) relaxation which does not meet the Assumption (1). To do this, we introduce a new SDP model
based on the SDP (1) formulation, as follows.

Let G2 = (Vnew, Enew) be a new graph based on the connection of two copies of graph G (G′ = G” =
G), where each vertex in G′ (one copy of G) is connected to all vertices of G” (the other copy of G). Then,
based on SDP model (1), we introduce a new SDP (2) relaxation model as follows:
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(2) mins.t.z =
∑

i∈Vnew

vovi

SDP (1) constraints on G′ and G” and common vector v0

+vovi + vovj − vivj = 1 i ∈ V ′ , j ∈ V ”

−1 ⩽ vivj ⩽ +1 i ∈ V ′ , j ∈ V ”

Lemma 1. z∗(SDP (2)) ⩾ 2z∗(SDP (1))

Note that, the VCP feasible solutions on G and G2 are corresponding to each other and z∗V CP (G2) =
2z∗V CP (G). In other words, for each VCP feasible partitioning V = V1 ∪ V0, we have V1new = V ′

1 ∪ V ”1
and there are two opposite vector sets V ′

0 , V ”0 where V1 = V ′
1 = V ”1 and V0 = −V ′

0 = V ”0.
Now, we are going to prove that by solving SDP (2) relaxation, it is not possible to produce a solution

which meets Assumption (1) on both graphs G′ and G” unless G2ε is bipartite on both parts V ′
ε and V ”ε.

Theorem 4. For 4 normalized vectors v1, v2, v3, v4 which are perpendicular to each other, there exist
exactly one normalized vector v where v.vi = 0.5 i = 1, 2, 3, 4. Such a vector v satisfies the equation
v = 0.5(v1 + v2 + v3 + v4).
Proof.

v1.v2 = 0 and then we have | v1 + v2 |=
√

| v1 |2 + | v2 |2 =
√
2.

v3.v4 = 0 and then we have | v3 + v4 |=
√
| v3 |2 + | v4 |2 =

√
2.

(v1 + v2).(v3 + v4) = 0 and then we have

| v1 + v2 + v3 + v4 |=
√
| v1 + v2 |2 + | v3 + v4 |2 = 2.

Finally, we have (v1 + v2 + v3 + v4).v = 2. Hence, | v1 + v2 + v3 + v4 | . | v | .cos(θ) = 2 and this
concludes that θ = 0 and v = 0.5(v1 + v2 + v3 + v4) ⋄

Corollary 1. For 4 normalized vectors v1, v2, v3, v4 which are almost perpendicular to each other, a normal-
ized vector v where v.vi ≃ 0.5 i = 1, 2, 3, 4, satisfies the equation v ≃ 0.5(v1 + v2 + v3 + v4).

Theorem 5. By solving SDP (2) relaxation on G2, it is not possible to have an optimal solution which
meets Assumption (1) on both graphs G′ and G” unless G2ε is bipartite on both parts V ′

ε and V ”ε.
Proof. Suppose that we have an optimal solution which meets Assumption (1) on both graphs G′ and G”.
Therefore, for an edge ab in G′

ε and an edge cd in G”ε (a complete subgraph of G2 on four vertices a, b, c, d)
we have 4 normalized vectors va, vb, vc, vd which are almost perpendicular to each other.

Moreover, we have a normalized vector vo where vovh ≃ 0.5 h = a, b, c, d. Hence, based on Corollary
(1) we have vo ≃ 0.5(va + vb + vc + vd). This means that for each edge ij in G′

ε we have vo ≃ 0.5(vi +
vj + vc + vd), and for each edge ij in G”ε we have vo ≃ 0.5(va + vb + vi + vj).

Therefore, for each edge ij in G′
ε we have vi + vj ≃ 2vo − vc − vd = U , and for each edge ij in G”ε

we have vi + vj ≃ 2vo − va − vb = W , where, due to almost perpendicular property of vi and vj we have
| U |≃| W |≃

√
| vi |2 + | vj |2 =

√
2.

Now, suppose that we have an odd cycle on t vertices 1, 2, ..., t, in G′
ε, where t = 2k+1 is an odd number.

Then, by addition of the vectors in this cycle, we have S = (v1 + v2) + (v2 + v3) + ...+ (vt + v1) ≃ tU .
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But, the above summation can do as S = 2(v1 + v2 + v3 + ... + vt−2 + vt−1 + vt) to produce the
following results, which all of them must be ≃ tU .

S = 2((v1 + v2) + (v3 + v4) + ...+ (vt−2 + vt−1) + vt) ≃ 2(kU + vt) = (t− 1)U + 2vt

S = 2((v2 + v3) + (v4 + v5) + ...+ (vt−1 + vt) + v1) ≃ (t− 1)U + 2v1

S = 2((v3 + v4) + (v5 + v6) + ...+ (vt + v1) + v2) ≃ (t− 1)U + 2v2

...

S = 2((vt + v1) + (v2 + v3) + ...+ (vt−3 + vt−2) + vt−1) ≃ (t− 1)U + 2vt−1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

v1 ≃ v2 ≃ ... ≃ vt−1 ≃ vt ≃ 0.5U

Hence | U |≃ 2 | v1 |≃ 2 ̸=
√
2 and this is a contradiction; e.g. v1v2 ≃ (0.5U).(0.5U) ̸= 0. Therefore,

there is not any odd cycle in G′
ε, and similarly, there is not any odd cycle in G”ε. Therefore, if the optimal

solution of SDP (2) relaxation on G2 meets the Assumption (1) on both graphs G′ and G”, then both of the
subgraphs G′

ε and G”ε are bipartite ⋄

In other words, to produce a performance ratio of 1.999999, we should solve the SDP (2) relaxation.
Then, if the solution of the SDP (2) relaxation does not meet Assumptions (1), we have a performance ra-
tio of 1.999999. Otherwise, VCP problem on G′

ε is simple and produce a performance ratio of 1.999999.
Therefore, our algorithm to produce an approximation ratio 1.999999 on arbitrary graphs is as follows:

Mahdis Algorithm (To produce a vertex cover solution with a ratio factor less than 1.999999)
Step 1. Solve the SDP (2) relaxation.
Step 2. If for more than 0.000001n of vertices j ∈ V ′ and corresponding vectors we have v∗ov

∗
j < 0.5, then

produce a suitable solution V1∪V0, correspondingly, where V0 = {j ∈ V ′ | v∗ov∗j < 0.5} and V1 = V ′−V0.

Hence, the solution does not meet Assumption (1.a) and we have |V1|
z∗V CP

⩽ 1.999999. Otherwise, go to Step
3.
Step 3. If for more than 0.000001n of vertices j ∈ V ” and corresponding vectors we have v∗ov

∗
j < 0.5, then

produce a suitable solution V1∪V0, correspondingly, where V0 = {j ∈ V ” | v∗ov∗j < 0.5} and V1 = V ”−V0.

Hence, the solution does not meet Assumption (1.a) and we have |V1|
z∗V CP

⩽ 1.999999. Otherwise, go to Step
4.
Step 4. If for more than 0.01n of vertices j ∈ V ′ and corresponding vectors we have v∗ov

∗
j > 0.5004, then

for all feasible solutions V = V1 ∪ V0 we have |V1|
z∗V CP

⩽ 1.999999 and it is sufficient to produce an arbitrary
VCP feasible solution. Otherwise, go to Step 5.
Step 5. If for more than 0.01n of vertices j ∈ V ” and corresponding vectors we have v∗ov

∗
j > 0.5004, then

for all feasible solutions V = V1 ∪ V0 we have |V1|
z∗V CP

⩽ 1.999999 and it is sufficient to produce an arbitrary
VCP feasible solution. Otherwise, go to Step 6.
Step 6. Based on Theorem (5), the solution does not meet the Assumption (1) and then G2ε is bipartite on
both parts V ′

ε and V ”, where | V ′
ε |, | V ”ε |⩾ 0.989999n. Solve VCP problem on bipartite subgraph G′

ε to
produce a feasible solution V1 ∪ V0 for which we have |V1|

z∗V CP
⩽ 1.999999.
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Corollary 2. Based on the proposed 1.999999-approximation algorithm for the vertex cover problem, the
unique games conjecture is not true.

4 Conclusions

One of the open problems about the vertex cover problem is the possibility of introducing an approxima-
tion algorithm within any constant factor better than 2. Here, we proposed a new algorithm to introduce a
1.999999-approximation ratio for the vertex cover problem on arbitrary graphs, and this lead to the conclu-
sion that the unique games conjecture is not true.
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