
   
 

  

 

 

 

 

AB485: A Simplified Data Transfer Protocol for Process Control and 

Automation 

 

 

 

Abdalrhman Alquaary 

ALQUANIX 

Sakarya, Türkiye 

apo@alquanix.com, apoalquaary@gmail.com 

ORCID: 0000-0002-8105-4101 

Hasan Bayhan 

Bayhanelektroteknik 

Sakarya, Türkiye 

bayhan@bayhanelektroteknik.com 

ORCID: 0009-0003-1664-9605 

Abstract 

 

In industrial environments, achieving effective communication between electronic devices poses a 

multifaceted challenge that hinges on the seamless integration of both hardware and software 

protocols. This paper introduces AB485, a purpose-built data transfer protocol designed primarily 

for microcontroller-based systems, offering a streamlined solution to the complexities of software 

protocol implementation. We delve into AB485's design principles and features, underscoring its 

minimal hardware and software requirements. Notably, AB485 stands out for its ease of 

implementation, enabling engineers or system integrators to seamlessly integrate it into their 

projects. We also explore potential applications where AB485's efficiency and low overhead make 

substantial contributions to ensuring reliable data transmission. By presenting AB485, our research 

contributes to the field of data transfer protocols, offering an accessible and efficient solution for 

resource-constrained applications, while addressing the intricate interplay of hardware and 

software in data communication. 

 

Keywords: AB485, serial communications, data transfer, software protocol, RS-485 interface 

 

 

 

 

  

mailto:apo@alquanix.com
mailto:bayhan@bayhanelektroteknik.com


  

 

  

 

1. INTRODUCTION 

 

As civilization advanced, communication 

became the cornerstone of human progress. 

Similarly, in the world of industries and 

devices, effective communication is the 

linchpin for building complex systems and 

powering modern technologies. While 

hardware protocols serve as reliable means of 

communication, they often come with 

limitations, including reduced flexibility, 

higher costs, and complex implementation. In 

contrast, software protocols offer adaptability, 

customization, and compatibility across diverse 

hardware platforms, making them the preferred 

choice in many applications. 

 

Amidst the myriad of complex protocols, 

AB485 stands out as a streamlined and efficient 

solution. It simplifies the art of device 

communication by employing just two primary 

functions: one for reading and the other for 

writing. What makes AB485 particularly 

noteworthy is its minimum data transfer unit – 

a single byte. This choice stems from the 

increased storage capacity of modern 

EEPROMs, which enables more efficient and 

versatile data exchange. 

 

AB485 is strategically built upon the 

established framework of RTU in serial 

communications, ensuring seamless operation 

across diverse hardware protocols. While 

AB485 maintains compatibility with various 

communication mediums, our preference lies in 

its deployment over the RS-485 interface. RS-

485, known for its robust features, plays a 

pivotal role in enhancing the effectiveness of 

AB485. The RS-485 interface offers 

advantages such as differential signaling, 

enabling reliable communication over long 

distances by minimizing signal degradation and 

susceptibility to electromagnetic interference. 

Additionally, its multi-point capability allows 

multiple devices to communicate on the same 

bus, enhancing the scalability of the network. 

These features make RS-485 an ideal choice, 

reinforcing the decision to leverage it in 

conjunction with the AB485 protocol. In this 

paper, we will delve into the intricacies of 

AB485, exploring its design, implementation, 

and the symbiotic relationship it shares with the 

robust RS-485 interface, thereby fostering 

efficient and straightforward device-to-device 

communication. 

 

2. LITERATURE OVERVIEW 

 

Serial communication is a cornerstone in 

industrial automation and control systems. This 

is exemplified in the use of TMS320C6748DSP 

for DSP-PC communication, highlighting its 

precision and real-time interfacing capabilities 

[1]. Similarly, the study by Auccahuasia et al. 

underscores the relevance of RS-232 in 

industrial settings, particularly through 

Labview software for effective data exchange 

[2]. The importance of low-power transceivers, 

as detailed in the 

MAX481/MAX483/MAX485/MAX487–

MAX491/MAX1487 documentation, aligns 

with the need for efficient data transmission in 

industrial control [3]. 

 

The versatility of the Modbus protocol in 

various configurations, as analyzed by Gaitan 

and Zagan [4], and its implementation on 

single-chip microcomputers by Su Ying et al., 

point towards its adaptability and efficiency [5]. 

Tools for response time analysis in Modbus 

networks, as developed by Künzel and 

colleagues, further enhance the reliability of 

serial communications [6]. The advancements 

in Modbus for high-speed data transmission by 

Yao Yuanyuan et al. indicate evolving needs in 

big data scenarios [7]. 

 

Xu, et al’s research on C8051F020 

microcontrollers demonstrates the practicality 

and reliability of single-chip systems in serial 

communication [8]. Xunwen et al.’s work on 

RS-485 pseudo-full-duplex communication 



   

 

  

 

highlights its applications in remote control and 

aerospace engineering [9]. The development of 

USB to RS485 converters caters to the need for 

seamless integration of RS485 devices with 

modern computer systems [10]. 

 

Huang’s exploration of STM32 

microcontrollers in serial communication 

showcases their utility in short-distance 

networks [11], while Cao, Chen, and Li's study 

on UART emphasizes its wide-ranging 

applications despite certain limitations [12].  

 

Expanding on the landscape of electronic 

device control, the prevalence of hardware 

serial communication protocols, including RS-

232, RS485, I2C, and SPI, emerges as a crucial 

foundation for seamless data transfer between 

personal computers or mobile devices and 

peripheral devices [13]. Within this context, the 

integration of the PIC16F876A in the discussed 

system accentuates the pivotal role of serial 

communication, operating with a secure and 

reliable set of rules, in efficiently controlling 

electronic devices. This perspective 

complements existing research and further 

underscores the paramount importance of 

hardware protocols in shaping the landscape of 

contemporary electronic device control. 

 

In light of the diverse studies in serial 

communication, the introduction of AB485 

addresses a critical need in industrial 

environments where effective communication 

between electronic devices necessitates a 

harmonious integration of both hardware and 

software protocols. AB485, being purpose-built 

for microcontroller-based systems, stands out 

as a streamlined solution, minimizing the 

complexities associated with software protocol 

implementation. Its design principles and 

features emphasize efficiency with minimal 

hardware and software requirements, offering 

engineers and system integrators an accessible 

and user-friendly option for seamless project 

integration. As we delve into the potential 

applications of AB485, its efficiency and low 

overhead become paramount, contributing 

significantly to reliable data transmission in 

resource-constrained environments. In essence, 

the emergence of AB485 reflects the ongoing 

demand for tailored software protocols that not 

only simplify implementation but also address 

the intricate interplay of hardware and software 

in the dynamic landscape of data 

communication. 

 

3. METHODOLOGY 

 

In our research endeavor, we present the 

AB485 software serial protocol, a 

communication solution tailored to the needs of 

development and research entities, as well as 

individual users. AB485 offers a user-friendly 

and straightforward approach, making it 

particularly suitable for these audiences. The 

protocol's steps are intentionally designed to be 

concise, comprehensive, and devoid of 

unnecessary complexity. 

 

AB485, with its focus on data read and write 

operations between master and slave devices, 

stands out for its simplicity and efficiency. It is 

positioned as an accessible and practical 

alternative for development and research 

companies, as well as individual users. 

 

For connectivity, AB485 operates seamlessly 

above RS232, providing a reliable 

communication channel for applications 

requiring shorter distances. Additionally, 

AB485 is designed to run efficiently above 

RS485, offering enhanced performance over 

longer distances. Supporting the connection of 

a master device to up to 255 slave devices 

simultaneously, AB485 demonstrates its 

scalability and versatility. Furthermore, it 

accommodates data transfers ranging from 1 to 

255 bytes per frame, thus catering to a wide 

array of data transfer requirements. 

 



  

 

  

 

In AB485 software serial protocol, a deliberate 

10-bit response delay has been strategically 

introduced as a crucial element in ensuring 

precise and reliable communication. This delay 

serves multiple key purposes within the 

communication framework, as illustrated in 

Figures 2 and 4, particularly in the "Write 

Answer" and "Read Answer" frames. Firstly, it 

plays a vital role in synchronizing the timing 

between transmitting and receiving devices, 

mitigating timing misalignments and ensuring 

accurate reception. Secondly, the calibrated 

delay contributes to effective buffering and 

flow control mechanisms, providing the 

receiving device with sufficient time to process 

and clear its buffer before the next data set 

arrives, thereby preventing buffer overflow and 

maintaining communication stability. 

Calculating the response delay will depend on 

the baud rate speed. So it will be: 

 

                     10 * 1/baudrate                  (1) 

Within the AB485 protocol, we encounter four 

distinct scenarios that revolve around data 

frames. These scenarios encompass a thorough 

exploration of both transmission directions: 

from the master to the slave and from the slave 

to the master. To facilitate a comprehensive 

understanding, each scenario is discussed in 

detail, and dedicated visualizations are 

provided. It's worth noting that while these 

visualizations help illustrate the protocol's 

operation, Table 1 exclusively features the 

variables used within the data frames. This 

distinction serves to clarify the specific 

constants employed in the protocol while 

presenting a visual representation of each 

scenario for enhanced comprehension. 

 

 

 

 

 

 

 

 
Table 1: Section Names in AB485 Data Frame 

N Section 

Name 
Meaning 

1 Enable (0xAA) simple acknowledgment 

byte to confirm readiness for 

communication. 

2 Slave ID ID of the slave device. 0 < X < 255 

3 Function 

Code 

"w" (0x77) for writing data and "r" 

(0x72) for reading data. 

4 Byte 

Count 

The number of the bytes that will be 

read or written. 0 < X < 255 

5 Address 

HH 

The high and low sides of the 

address. 

6 Address 

LL 

0 < X < 65535 

7 EOT (0x55) is the end of the tail. 

8 BCC The control code that we calculate 

 

 

To calculate the Block Check Character (BCC), 

you need to sum all the bytes between the 

"enable" and "EOT" bytes, byte by byte. After 

this summation, the least significant byte is 

extracted and used as the BCC for the data 

frame. The following equation provides a 

mathematical representation of this operation 

(2). In this equation, "B[k]" represents the value 

of the byte at position "k" within the data frame. 

 

𝐵𝐶𝐶 = 𝐿𝑒𝑎𝑠𝑡 𝑆𝑖𝑔𝑖𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝐵𝑦𝑡𝑒(∑(𝐵[𝑘]))  

𝑛

𝑘

 

(2) 

𝑓𝑜𝑟 𝐵 = 𝐵𝑦𝑡𝑒𝑠 𝑎𝑟𝑟𝑎𝑦, 𝑎𝑛𝑑 𝑘 = 0 𝑡𝑜 𝑛 − 1 

 

Read Request 

 

The Read Request Format, designed for 

requesting data reads, encompasses critical 

components. The "Enable" byte (1 Byte) 

signals the device's readiness for 

communication, initiating the data exchange 

process. The "Slave ID" byte (1 Byte) identifies 

the target device, ensuring that the request is 

directed to the intended recipient, with Slave 

IDs ranging from 1 to 254. The "Function 

Code" byte (1 Byte) specifies the type of 

operation to be executed, typically indicating a 



   

 

  

 

read operation. The "Byte Count" byte (1 Byte) 

provides information about the number of bytes 

to be included in the response, aiding in 

understanding the payload size. The "Address 

HH" (2 Bytes) represents the high-order section 

of the memory address from which data is to be 

read, while "Address LL" (2 Bytes) 

corresponds to the low-order section of the 

memory address. The "EOT" byte (1 Byte) 

marks the conclusion of the request, and the 

"BCC" byte (1 Byte) is included for error 

checking and data integrity validation Figure 1. 

 

 
Figure 1. Read Request Data Frame Structure 

 

Read Answer 

 

The Read Answer Format, used for responding 

to read requests, is structured with essential 

elements. The "Enable" byte (1 Byte) 

acknowledges the request and indicates 

readiness for further data transmission or 

reception. The "Slave ID" byte (1 Byte) 

identifies the responding device, confirming the 

recipient of the response, with Slave IDs 

ranging from 1 to 254. The "Function Code" 

byte (1 Byte) specifies the type of operation 

performed, typically confirming a read 

operation. The "Byte Count" byte (1 Byte) 

specifies the number of data bytes included in 

the response, aiding in understanding the 

payload size. The "Bytes" section (N Bytes) 

contains the data read from the specified 

memory location. The "EOT" byte (1 Byte) 

signifies the completion of the response, while 

the "BCC" byte (1 Byte) is used for error 

checking, ensuring data integrity Figure 2. 

 

 

  
Figure 2. Read Answer Data Frame Structure 

 

Write Request 

 

The Write Request Format consists of several 

crucial fields. The “Enable” byte (1 Byte) 

indicates the device’s readiness for data 

transmission or reception. The “Slave ID” byte 

(1 Byte) plays a critical role in identifying the 

specific target device within the network, with 

Slave Ids ranging from 1 to 254. The “Function 

Code” byte (1 Byte) specifies the type of 

operation to be performed, often indicating a 

write operation. The “Byte Count” byte (1 

Byte) provides essential information about the 

number of bytes that will follow in the request, 

helping determine the request’s payload size. 

The “Address HH” (2 Bytes) represents the 

high-order part of the memory address where 

data is to be written, while “Address LL” (2 

Bytes) corresponds to the low-order portion of 

the memory address. The “Bytes” section (N 

Bytes) contains the actual data to be written to 

the specified memory location. The “EOT” byte 

(1 Byte) marks the conclusion of the data 

transfer process. Finally, the “BCC” byte (1 

Byte) is the Block Check Character, calculated 

for error checking and ensuring data integrity 

Figure 3. 

 

 
Figure 3. Read Answer Data Frame Structure 

 

Write Answer 

 

The Write Answer Format, used for 

acknowledging write requests, comprises 

essential fields. The “Enable” byte (1 Byte) 

acknowledges the request and signals readiness 



  

 

  

 

for further data transmission or reception. The 

“Slave ID” byte (1 Byte) identifies the 

responding device, confirming the recipient of 

the acknowledgment, with Slave Ids ranging 

from 1 to 254. The “Function Code” byte (1 

Byte) specifies the type of operation performed, 

typically confirming a write operation. The 

“EOT” byte (1 Byte) signifies the completion 

of the response. Lastly, the “BCC” byte (1 

Byte) serves as the Block Check Character for 

error checking and data integrity validation 

Figure 4. 

 

 
Figure 4. Read Answer Data Frame Structure 

 

4. EXPERIMENTAL RESULTS 

 

To assess the practical effectiveness of the 

AB485 protocol, our research incorporates a 

comprehensive experimental approach. We will 

execute the protocol using a computer as the 

master device and a PIC chip as the slave 

device, both in computer-based simulations and 

oscilloscope-based hardware tests. These dual 

methodologies ensure a thorough evaluation of 

the protocol’s performance and its 

compatibility with real-world applications. The 

following examples showcase the outcomes of 

these experiments, shedding light on the 

protocol’s capabilities and reliability in 

different settings. 

 

Hardware 

 

We constructed a slave device in the 

BayhanElektroteknik Lab using the 

DSPIC33MC64 as the main microcontroller 

Figure 5. To store data, we integrated an 

EEPROM chip. For data transmission, we 

employed the MAX485 chip to send data from 

the slave device. To receive data on the 

computer’s COM port, we utilized an RS485 to 

TTL converter. Additionally, we developed a 

Python program capable of interpreting and 

retrieving data using the AB485 protocol. 

 

 

 
Figure 5. BETCOM Device Connected to 

Controlling System 

 

Software 

 

We configured the computer as the master 

device and designed a user-friendly GUI 

software using PyQt5 Figure 6. This software 

facilitated the transmission of requests and 

retrieval of responses from the slave devices. 

After thorough testing, we achieved a high level 

of efficiency in serial communication, ensuring 

seamless and reliable data exchange between 

the master and slave devices. It's important to 

note that this program was developed in our lab 

and is not currently open source. However, we 

utilized it extensively to rigorously test the 

communication between the chip and the PC. 

Detailed examples and outcomes of these tests 

will be elucidated next, shedding light on the 

practical applications and performance of our 

developed software. 

 

Moreover, the use of software serial protocols 

such as AB485 provides developers with the 

ability to create programs that simulate 

processes inside the chips and memories more 

easily and efficiently. This capability not only 

enhances the development and testing phases 

but also contributes to a more streamlined and 



   

 

  

 

effective exploration of the intricate 

functionalities within electronic devices 

 

 
Figure 6. AB485 Communication Program 

 

In these visual examples, we’ve illustrated the 

AB485 protocol’s frames in distinct scenarios, 

allowing us to gain a deeper understanding of 

how the protocol operates. By interpreting these 

signals, we can discern the intricacies of the 

protocol’s functionality in various situations. 

These visual representations serve as valuable 

tools for enhancing our comprehension of the 

AB485 protocol and its real-world applications. 

 

The visual representation includes four distinct 

frames, each serving a specific purpose within 

the protocol. The “Read Request” and “Read 

Answer” frames exemplify the request-

response cycle associated with read operations. 

In the “Read Request” frame, the master 

initiates communication, indicating its intent to 

obtain data from a specific address in the slave 

device. Conversely, the “Read Answer” frame 

serves as the response from the slave to the 

master, providing essential information, 

including the data received. 

 

Similarly, the “Write Request” and "Write 

Answer" frames symbolize the exchange for 

write operations. The "Write Request" frame 

signifies the master's transmission of data to the 

slave, encapsulating both the address and the 

data to be written. The corresponding "Write 

Answer" frame indicates the acknowledgment 

or response from the slave device, confirming 

the successful execution of the write operation. 

 

To enhance the clarity of the visual 

representation, annotations have been 

thoughtfully incorporated into the graphs. "DF" 

(Data Frame) and "Clock" annotations have 

been strategically placed to distinguish and 

clarify the components of the signals. 

Additionally, the titles of each graph provide 

further contextual information, including 

addresses and details regarding the data 

received or transmitted. 

 

Moreover, it is important to note that data 

transmission in the AB485 protocol occurs over 

RS485, a communication standard that excels 

in long-distance communication. This feature 

extends the protocol's utility to scenarios where 

data needs to be reliably transmitted over 

extended distances. It is particularly well-suited 

for applications that require secure and error-

resistant communication over substantial 

distances, making it an ideal choice for 

industries where the need for long-distance 

communication is paramount. Industries such 

as manufacturing, industrial automation, 

agriculture, and utilities can greatly benefit 

from the AB485 protocol's ability to ensure 

dependable data transfer over extended network 

lengths. 

 

 
Figure 7. AB485 Communication Program 

 

Read Request Data Frame 

 

In Figure 8., we present a captured data frame 

representing the "Read Request" within our 



  

 

  

 

data communication system. This figure 

includes a visual depiction of the data frame 

itself, showcasing the specific content and 

structure of the request. The oscilloscope-

captured data frames were executed using 

address other than 10BE. 

 

 
Figure 8. Read Request Data Frame Signals 

 

Read Answer Data Frame 

 

 
Figure 9. Read Answer Data Frame Signals 

 

Figure 9. illustrates the "Read Answer" data 

frame captured from our oscilloscope. This 

figure represents the response data frame 

generated in response to a "Read Request." The 

automatic transmission feature of the MAX485 

chip is evident once again, displaying both the 

request and response data frames due to the 

chip's direct forwarding of transmitted data to 

the receive line. These figures collectively offer 

a comprehensive view of the bidirectional data 

communication process in our system, 

highlighting the operation of the MAX485 chip 

and the interactions between request and 

response data frames. 

 

Write Request Data Frame 

 

Figure 10. illustrates the "Write Request" data 

frame captured from our oscilloscope. This 

figure, similar to Figure 8., provides a visual 

representation of the requested data frame. 

 

 
Figure 10. Write Request Data Frame Signals 

 

Write Answer Data Frame 

 

 
Figure 11. Write Answer Data Frame Signals 

 

In Figure 11, we present a captured data frame 

representing the "Write Answer" within our 

data communication system. This figure 



   

 

  

 

showcases the response data frame generated in 

response to a "Write Request." As in the 

previous figures, the simultaneous presence of 

the request and response data frames is a result 

of the MAX485 chip's automatic transmission 

mechanism. 

 

Modbus RTU remains a widely used protocol 

in various industries, offering reliability in 

many applications [13]. However, our protocol 

stands out as more suitable for specific 

implementations, as highlighted in Table 2. 

While both protocols have additional 

properties, our focus centers on the key 

distinctions that make our protocol more 

appropriate in certain aspects. 

 
Table 2: Comparison between AB485 and Modbus 

RTU/ASCII 

N Property AB485 Modbus 

RTU/Ascii 

1 Functions 2 Function More than 10 

2 Least Data 

Unit 

1 Byte 1 bit 

3 Error Check BCC – 1 

Byte 

CRC – 2 

Bytes 

4 Response 

Delay 

10 bits 3.5 Bytes 

5 Complexity Easier to 

implement 

Harder to 

implement 

 

Functions: 

 

AB485's simplicity in offering two main 

functions is a positive aspect, streamlining 

applications where a straightforward approach 

is preferred and reducing unnecessary 

overhead. Conversely, Modbus RTU/ASCII's 

array of more than 10 functions provides 

versatility but may introduce complexity, 

particularly in scenarios favoring simplicity. 

 

Least Data Unit: 

 

AB485's use of a 1-byte data unit strikes a 

balance, offering a granularity suitable for 

various applications without unnecessary 

complexity. In contrast, Modbus RTU/ASCII 

operates at the bit level, potentially introducing 

challenges in data handling and processing due 

to its finer granularity. 

 

Error Check: 

 

AB485's utilization of a 1-byte Block Check 

Character (BCC) for error checking is resource-

efficient and effective for ensuring data 

integrity. On the other hand, Modbus 

RTU/ASCII's more robust 2-byte Cyclic 

Redundancy Check (CRC) enhances error 

detection but adds overhead to the 

communication process. 

 

Response Delay: 

 

AB485's relatively low response delay of 10 

bits contributes to faster communication 

between devices. In contrast, Modbus 

RTU/ASCII incurs a higher response delay of 

3.5 bytes, potentially impacting real-time 

responsiveness, a critical factor in certain 

applications. 

 

Complexity: 

 

AB485's ease of implementation is a positive 

aspect, offering a user-friendly approach that 

accelerates development and reduces the 

likelihood of errors. In contrast, Modbus 

RTU/ASCII, while versatile, comes with 

increased complexity, which may pose 

challenges in projects where simplicity is a 

priority. 

 

The choice between AB485 and Modbus 

RTU/ASCII hinges on specific application 

requirements. AB485's simplicity and 

efficiency make it favorable for streamlined 

communication with fewer functions, while 

Modbus RTU/ASCII's versatility may be more 

suitable for complex systems requiring a 

broader range of functionalities despite the 

associated increase in complexity. 



  

 

  

 

5. CONCLUSION 

 

The introduction of AB485 signifies a 

substantial leap in addressing the intricate 

challenges of effective communication in 

industrial environments, emphasizing the 

integration of both hardware and software 

protocols. Designed specifically for 

microcontroller-based systems, AB485 stands 

out for its minimal hardware and software 

requirements, offering an efficient and 

accessible solution for engineers and system 

integrators. Its ease of implementation allows 

seamless integration into diverse projects, 

showcasing adaptability across applications. 

Notably, AB485's efficiency and low overhead 

contribute significantly to reliable data 

transmission, making it a valuable asset in 

resource-constrained environments. An 

additional noteworthy application of AB485 

lies in its compatibility with chips that use 

internal/external EEPROM, presenting a 

versatile alternative to traditional 

Programmable Logic Controllers (PLCs) in 

industrial settings. By presenting AB485, our 

research makes a noteworthy contribution to 

the field of data transfer protocols, offering a 

streamlined solution that balances accessibility 

and efficiency, particularly in the complex 

interplay of hardware and software in data 

communication within industrial settings. 

 

6. FUTURE STUDIES 

 

We aspire to enhance the capabilities of our 

protocol by doubling the byte count to 2 bytes, 

thereby extending the potential data range to 

65,536. This modification aims to elevate the 

protocol's versatility and accommodate a 

broader spectrum of data-intensive 

applications, ensuring adaptability to evolving 

industry needs. Additionally, we plan to 

enhance the security of data transfer by 

expanding the BCC to 2 bytes, reinforcing the 

robustness and reliability of the communication 

protocol. Furthermore, our future endeavors 

include the development of an IP/TCP version, 

necessitating adjustments to certain aspects of 

the data frame to align with the requirements of 

this networking protocol. These advancements 

represent our commitment to continual 

improvement and innovation in the realm of 

data transfer protocols. 

 

Acknowledgments  

We extend my heartfelt gratitude to 

BayhanElektroteknik lab for their exceptional 

craftsmanship in crafting all the hardware 

devices used in this project. Their expertise and 

dedication greatly contributed to the success of 

the hardware implementation. Additionally, I 

would like to acknowledge ALQUANIX lab 

for their support in developing the master 

software, which played a pivotal role in the 

overall functionality of the project. It's 

important to note that this project was 

accomplished without external funding, 

highlighting the commitment and collaborative 

spirit of all involved parties. 

 

The Declaration of Conflict of Interest/ 

Common Interest  

No conflict of interest or common interest has 

been declared by the authors.  

 

The Declaration of Ethics Committee 

Approval 

This study does not require ethics committee 

permission or any special permission. 

 

REFERENCES 

 

[1] X. Wu, Y. Mei, J. Yu, T. Yu, J. Li, “A 

Design of UART Serial Communication 

Between the TMS320C6748 DSP and 

PC,” Applied Mechanics and Materials, 

vol. 380-384, no. 1, pp. 3657-3660, 2013. 

 

[2] W. Auccahuasia, K. Urbanob, C. Ovallec, 

M. Felipped, O. Pachecoe, M. Bejarf, C. 

Ledezmag, A. Farfanh, E. Felixi, M.  



   

 

  

 

Ruizj, “Application of serial 

communication in industrial automation 

processes,” Workshop on Computer 

Networks & Communications,  Chennai, 

India, 2021. 

 

[3] Maxim Integrated. (2023, Nov. 17).  
MAX481/MAX483/MAX485/ 

MAX487–MAX491/MAX1487 Low-

Power, Slew-Rate-Limited RS-485/RS-

422 Transceivers [Online]. Available: 
https://www.analog.com/media/en/techni

cal-documentation/data-

sheets/MAX1487-MAX491.pdf. 

 

[4] V. G. GĂITAN, I. ZAGAN, "Modbus 

Protocol Performance Analysis in a 

Variable Configuration of the Physical 

Fieldbus Architecture," IEEE Access, 

vol. 10, pp. 123942-123955, 2022. 

 

[5] S. Ying, H. Jin, X. Wu, J. Chunjie, G. 

Wei, W. Ping, “Research on Modbus Bus 

Protocol Implementation Technology 

Based on Single Chip Microcomputer,” 

3rd International Conference on 

Information Systems Engineering, vol. 

18, pp. 2160-1291, 2018. 

 

[6] G. Künzel, M. A. C. Ribeiro. C. E. 

Pereira, (2014). “A Tool for Response 

Time and Schedulability Analysis in 

Modbus Serial Communications,” IEEE 

Xplore, 2014. 

 

[7] Y. Yuanyuan, C. Meng, “The design of 

adaptive communication frame 

supporting high-speed transmission 

based on ModBus protocol,” Procedia 

Computer Science, vol. 183, pp. 551–

556, 2021. 

 

[8] L. Xu, Z. Chen, S. Zhang, “Research of 

Serial Communication System based on 

C8051F020 Singlechip,” International 

Conforence on Computer Application 

and System Modeling (ICCASM 2010), 

IEEE Xplore, 2010. 

 

[9] S. Xunwen, W. Shaoping, Z. Dongmei, Z. 

Qisherr, “RS-485 Serial Port Pseudo-full-

duplex Communication Research and 

Application,” IEEE Xplore, 2010. 

 

[10] Rishabh. (2023, Nov. 17). USB to RS485 

Converter [Online]. Available: 

https://rishabh.co.in/uploads/product/RS

485-USB_Converter1.pdf. 

 

[11] J. Huang. “Research of Serial 

Communication Based on STM32,” In 

Proceedings of the 7th International 

Conference on Education Management 

Information and Computer Science, vol. 

73, 2017. 

 

[12] L. Cao, J. Chen, J. Li, “Working principle 

and application analysis of UART,” 2nd 

International Conference on Electrical 

Engineering, Big Data and Algorithms, 

Changchun - China, 2023. 

 

[13] ModbusTool. (10 November, 2023). 

Modbus [Online]. Available: 

https://www.modbustools.com/modbus.h

tml#:~:text=MODBUS%C2%A9%20Pr

otocol%20is%20a,sum%20(LRC%20or

%20CRC). 

 

[14] H. N. Y. Pwint, T. T. E. Aung, T. Kywe, 

“PC and PIC based electronic devices 

controller using serial communication,” 

IJCIRAS, vol. 2, pp. 129-133, 2019. 

 

 


