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Abstract: This article is the second part of a scientific project under the general name "Geometrized 

vacuum physics". On the basis of the Algebra of Stignatures presented in the previous article [1], 

this article develops the main provisions of the Algebra of Signatures. Both of the above algebras 

are aimed at studying the properties of an ideal vacuum, but at the same time they are universal 

and can be applied in various branches of knowledge. It is shown that the signature of a quadratic 

form is related to the topology of the metric space for which the given quadratic form is a metric. 

Conditions are given under which an additive imposition of metric spaces with different topologies 

(or signatures) leads to a total Ricci flat space similar to a Calabi-Yau manifold. A spin-tensor 

representation of metrics with different signatures is considered and a Dirac bundle of quadratic 

forms is presented. This article does not contain physical applications of the Algebra of Signatures, 

but the potential power of this mathematical apparatus will be demonstrated in subsequent articles 

of this project.  

Resumen: Este artículo es la segunda parte de un proyecto científico bajo el nombre general de 

"Física del vacío geometrizada". Sobre la base del Álgebra de Signaturas presentada en el artículo 

anterior [1], este artículo desarrolla las principales disposiciones del Álgebra de Signaturas. Las dos 

álgebras anteriores están dirigidas a estudiar las propiedades de un vacío ideal, pero al mismo 

tiempo son universales y se pueden aplicar en varias ramas del conocimiento. Se muestra que la 

firma de una forma cuadrática está relacionada con la topología del espacio métrico para el cual la 

forma cuadrática dada es una métrica. Se dan condiciones bajo las cuales una imposición aditiva de 

espacios métricos con diferentes topologías (o firmas) conduce a un espacio plano total de Ricci 

similar a una variedad de Calabi-Yau. Se considera una representación de tensor de espín de 

métricas con diferentes firmas y se presenta un conjunto de formas cuadráticas de Dirac. Este 

artículo no contiene aplicaciones físicas del álgebra de firmas, pero el poder potencial de este aparato 

matemático se demostrará en artículos posteriores de este proyecto. 
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1 Introduction 

This article is the second of a series of articles under the general title "Geometrized vacuum 

physics ", and is devoted to the presentation of the foundations of the Algebra of signatures. 

In the first article [1], a local volume of ideal vacuum was considered, in which, by means of 

probing with mutually perpendicular light rays with a wavelength m,n (from the subrange Δ = 10m 

 10n cm), a 3Dm,n-cubic lattice was obtained (see Figure 1, or Figure 5 in [1]) 
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Figure 1. Non-curved 3D light lattice of m,n-vacuum, revealed from the "vacuum" (emptiness)  by 

means of mutually perpendicular monochromatic rays of light with a wavelength m,n. The cells of 

such a lattice are cubes with edge length  mn  102·m,n. 

The three-dimensional extent revealed from the void using such a luminous 3Dm,n cubic lattice is 

called in [1] m,n-vacuum or 3Dm,n-landscape. 

In § 3 of the article [1], it was found that the number of orthogonal 3-bases that originate at the 

central point O (see Figure 1), taking into account the direction of the time axis, is 16 

3-bases shown in Figure 2 correspond to sixteen types of affine spaces that can be characterized 

by the corresponding signatures (see §4 and Table 1 in [1]). These sixteen stignatures of affine spaces 

form the stignature matrix (3) in [1]: 

 

               𝑠𝑡𝑖𝑔𝑛(𝑒𝑖
(𝑎)
) = (

{+ + ++} {+ + + −} {− + + −} {+ + − +}

{− − −+} {− + + +} {− − + +} {− + − +}

{+ − −+} {+ + − −} {+ − − −} {+ − + +}

{− − +−} {+ − + −} {− + − −} {− − − −}

)               (2) 

 

 Some properties of this matrix and the foundation of the Algebra of stignatures are described 

in [1]. 

 

Figure 2. Sixteen 4-bases starting at point O [1]. 

In this article, a transition is made from sixteen affine spaces with stignatures (2), which originate 

at the point O, to 256 × 4 = 1024 metric spaces, which intersect at the same point, under the condition 

of the "vacuum balance". 
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The conditions of "vacuum (i.e. zero) balance" were formulated in the article [1,2]: "If something is born 

from a vacuum, it is necessarily in a mutually opposite form (particle – antiparticle, convexity – concavity, 

wave – anti-wave, etc.), and on average remains equal to zero". 

Moreover, each metric space is characterized by the corresponding signature. The totality of 

these signatures forms a matrix of signatures, the property of which is investigated in this article. 

Also, in this second part of the "Geometrized Vacuum Physics" the foundations of the Algebra 

of Signatures are laid, which can be applied in various branches of scientific knowledge. 

Together, the Algebra of Stignatures and the Algebra of Signatures form a single universal 

mathematical apparatus that can serve as the basis for describing and explaining many physical 

phenomena that were previously difficult to comprehend. The application of this apparatus to 

solving various physical problems will be presented in the following articles of the proposed project. 

2 Materials and Method 

2.1 Transition from 16 affine spaces to 256 metric spaces 

We pass from the sixteen affine spaces with 4-bases shown in Figure 2 and their corresponding 

signatures (2) to metric spaces. 

To do this, as an example, out of sixteen 4-bases (see Figure 2), we choose the 4-basis 

ei(7)(e0(7),e1(7),e2(7),e3(7)) with signature {+ + + –} and 4-basis ei(5) (e0(5), e1(5), e2(5), e3(5)) with signature {+ + + 

+} (see Figure 3) 

 
a) {+ + + +}    b) {+ + + –} 

Figure 3. Two 4-bases with different stignatures. 

Let’s define two 4-vectors in affine spaces with 4-bases ei(5) and ei(7) 

 

                   ds(7) = ei(7)dxi(7)  = e0(7)dx0(7) + e1(7)dx1(7) + e2(7)dx2(7) + e3(7)dx3(7),         (3) 

                   ds(5) = ei(5)dxi(5) = e0(5)dx0(5) + e1(5)dx1(5) + e2(5)dx2(5) + e3(5)dx3(5),              (4) 

 

where dxi
(k) is the i-th projection of the 4-vector ds(k) onto the xi

(k) axis, whose direction is determined by the 

basis vector ei
(k). 

Let’s find the scalar product of 4-vectors (48) and (49) 

 

                 ds(5,7) 2  = ds(5)ds(7) = ei(5)ej(7)dxi dxj =            

= e0(5)e0(7)dx0dx0 +  e1(5)e0(7)dx1dx0 + e2(5)e0(7)dx2dx0 + e3(5)e0(7)dx3dx0 + 

 + e0(5)e1(7)dx0dx1 +  e1(5)e1(7)dx1dx1 + e2(5)e1(7)dx2dx1 + e3(5)e1(7)dx3dx1 +          (5) 

 + e0(5)e2(7)dx0dx2 +  e1(5)e2(7)dx1dx2 + e2(5)e2(7)dx2dx2 + e3(5)e2(7)dx3dx2 +     

 + e0(5)e3(7)dx0dx3 +  e1(5)e3(7)dx1dx3 + e2(5)e3(7)dx2dx3 + e3(5)e3(7)dx3dx3.   

 

For the case under consideration, the scalar products of basis vectors ei(5)ej(7) are: 

     for  i = j  e0(5)e 0(7) = 1,  e1(5)e1(7) = 1,  e2(5)e2(7) = 1,  e3(5)e3(7) = –1,                              (6) 

for  i ≠ j  all  ei(5)ej(7) = 0.   
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In this case, Ex. (5) becomes the quadratic form     

 

ds(5,7)2 = dx0dx0 + dx1dx1 + dx2dx2 – dx3dx3 = dx02 + dx12 + dx22 – dx32 ,    with signature (+ + + –).        (7) 

 

Recall that the "signature" (the term of general relativity) is an ordered set of signs in front of the 

corresponding terms of the quadratic form. 

To determine the signature of a metric space with metric (7), instead of performing the scalar 

product of vectors (5), it suffices to multiply the signs of the signatures of the 4-bases shown in Fig.3: 

 

                                              {+ + + +}     

                                                   {+ + + –}                                        (8) 

                                                   (+ + + –)  

 

In the numerator of the rank (8), the multiplication of signs in each column is performed 

according to the rules 

                                 {+}  {+} = {+};        {–}  {+} = {–},                          (9) 

 

the result of such multiplication is written in the denominator (under the line) of the same 

column. The performance of actions according to these rules will be called rank multiplication. 

Just as it was done with the vectors ds(5) and ds(7) {see Exs. (3) – (9)}, we scalarly multiply vectors 

from all 16 affine spaces with 4-bases, shown in Figure 3. As a result, we obtain 16  16 = 256 metric 

4-spaces with 4-metrics of the form 

 

                                           ds(а,b)2 = ei(а)ej(b)dxi(а)dxj(b),                                                    (10)       

where  a = 1, 2, 3, … , 16;   b = 1, 2, 3, … , 16.             

The signatures of these 16  16 = 256 metric 4-spaces can be determined, similarly to (8), by rank 

multiplications of the signs of the signatures of the corresponding affine spaces, for example: 

   {+ – + +}                                                               

   {+ + + –} 

    (+ – + –) 

{+ + + +}                                                   

{+ – + –} 

 (+ – + –) 

{– + + +}                                                   

{+ + + –} 

 (– + + –) 

{+ + + +}                                                   

{– + + –} 

 (– + + –) 

 

(11) 

           {+ – – +}                                                       

           {+ + + –} 

    (+ – – –) 

{+ + – +}                                                   

{– + + –} 

 (– + – –) 

{– + + +}                                                   

{– + + –} 

(+ + + –) 

{+ – + –}                                                   

{+ – + –} 

(+ + + +) 

 

   {+ – – –}                                                       

   {+ + + –} 

    (+ – – +) 

{+ + – +}                                                   

{– + – –} 

 (– + + –) 

{– + – +}                                                   

{– – + –} 

 (+ – – –) 

{+ – + +}                                                   

{+ – + –} 

 (+ + + –) 

… … … … 

  {+ + + –}                                                       

  {– – + –} 

   (– – + +) 

{– + – –}                                                   

{+ – + –} 

 (– – – +) 

{– + + –}                                                   

{+ – + –} 

 (– – + –) 

{+ – – +}                                                   

{– + + –} 

  (– – – –) 

 

The point O (see Figure 1) is the intersection point of all 256 metric 4-spaces with 4-metrics (10) 

and the corresponding signature (11). 
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A set of 256 metric 4-spaces (4-maps) form a single 256-page "atlas" with a bonding point at point 

O, with a total number of mathematical measurements 256  4 = 1024. 

The sum of all 256 4-metrics (10) intersecting at the point O is equal to zero 

 

                          ∑ 𝑑𝑠(𝑘)2 =256
𝑘=1 ∑ ∑ 𝑒𝑖

(𝑎)𝑒𝑗
(𝑏)𝑑𝑥𝑖(𝑎)𝑑𝑥𝑗(𝑏) = 016

𝑏=1
16
𝑎=1 ,

                     

(12) 

 

where k = 1,2,3,…,256 corresponds to one of 256 combinations a,b. 

It is easy to verify that sum (12) is equal to zero, since among 256 × 4 = 1024 signs of all 256 

signatures there are 512 {+} and 512 {–}. Thus, Ex. (12) satisfies the "vacuum balance" condition. 

2.2 Four types of rank multiplication and division rules for different types of m,n-vacuums 

Within the framework of the Algebra of Signatures, multiplication and division of signs in the 

numerators of ranks can be performed according to the following four types of arithmetic rules, 

which are assigned to four types of metric m,n-vacuums: 

I - rules for commutative metric m,n-vacuum (or Im,n-vacuum): 

  {+}  {+} = {+}         {–}  {+} = {–}                                                          (13) 

  {+}  {–} = {–}         {–}  {–} = {+}       

 

  {+} : {+} = {+}          {–} : {+} = {–}                                                          (14) 

  {+} : {–} = {–}          {–} : {–} = {+};            

H - rules for non-commutative metric m,n-vacuum (or Hm,n-vacuum): 

  {+}  {+} = {+}         {–}  {+} = {+}                                                          (15) 

  {+}  {–} = {–}         {–}  {–} = {+}        

 

  {+} : {+} = {+}          {–} : {+} = {+}                                                          (16) 

  {+} : {–} = {–}          {–} : {–} = {+};        

V - rules for the commutative metric m,n-antivacuum (or Vm,n-vacuum):              

  {+}  {+} = {–}          {–}  {+} = {+}                                                         (17) 

  {+}  {–} = {+}          {–}  {–} = {–}     

 

  {+} : {+} = {–}            {–} : {+} = {+}                                                        (18) 

  {+} : {–} = {+}            {–} : {–} = {–};         

H' - rules for non-commutative metric m,n-antivacuum (or H'm,n-vacuum): 

  {+}  {+} = {–}          {–}  {+} = {–}                                                         (19) 

  {+}  {–} = {+}          {–}  {–} = {–}        

 

  {+} : {+} = {–}           {–} : {+} = {–}                                                         (20) 

  {+} : {–} = {+}           {–} : {–} = {–}.       

 

 

For example, let's write the ranking (8) and several other rankings from the list (11) for four types 

of m,n-vacuums with the corresponding multiplication rules (13), (15), (17), (19) 
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 {+ + + +}        {+ + + +}          {+ + + +}         {+ + + +}      

 {+ + + –}       {+ + + –}          {+ + + –}          {+ + + –}                                   (21) 

 (+ + + –)I      (+ + + –)H             (– – – +)V             (– – – +)H'  

 

{– + – +}      

{– – + –} 

(+ – – –)I 

{– + – +}      

{– – + –} 

(+ – + –)H 

{– + – +}      

{– – + –} 

(– + + +)V 

{– + – +}                                  (22) 

{– – + –} 

(– + – +) H' 

 

{– + – –}      

{– + + –} 

(+ + – +)I 

{– + – –}      

{– + + –} 

(+ + + +)H 

{– + – –}      

{– + + –} 

(– – + –)V 

{– + – –}                                  (23) 

{– + + –} 

(– – – –) H' 

 

{+ + – +}      

{– – + +} 

(– – – +)I 

{+ + – +}      

{– – + +} 

(– – + +)H 

{+ + – +}      

{– – + +} 

(+ + + –)V 

{+ + – +}                                  (24) 

{– – + +} 

(+ + – –) H' 

 

In this case, the sum of signs in the denominators of each quadruple of ranks (21) – (24) is equal 

to zero, for example, for four ranks (21) we have 

                     (+ + + –)  +  (+ + + –)  +  (– – – +)  +  (– – – +) = 0,                        (25) 

and the sum of these signatures is equal to the zero signature 

                     (+ + + –)  +  (+ + + –)  +  (– – – +)  +  (– – – +) = (0 0 0 0).                 (26) 

This corresponds to the "vacuum balance" condition. 

Taking into account the four rules for multiplication of signs (13), (15), (17), (19), it turns out that 

at the point O under study (see Figure 1) four Lm,n-vacuums or 256 × 4 = 1024 metric spaces intersect, 

which are characterized by metrics (that is, quadratic forms) 𝑑𝑠(𝑙)2 with the corresponding 

signatures. 

The sum of all four metric Lm,n-vacuums and, accordingly, the sum of all 1024 metrics  𝑑𝑠(𝑙)2 is 

still equal to zero 

                  Im,n-vacuum + Hm,n-vacuum + Vm,n-vacuum +  H'm,n-vacuum = 0,             (27) 

                                        ∑ 𝑑𝑠(𝑘)2 =1024
𝑙=1 0,

                                     

(28)  

 

which satisfies the requirement of maintaining the "vacuum balance". The sum of metric Lm,n- 

vacuums (27) {or quadratic forms (28)} will also be called "deep zero". 

Metric Lm,n-vacuums (27) are "supports" for each other and provide complete balancing of the 

metric emptiness. In what follows, each metric Lm,n-vacuum will be assigned a specific factorial of 

zero corresponding to one of the multiplication rules (13), (15), (17), (19): 

                          0I! = 1,      0H! = –1,      0V! = i,      0H'! = – i.                     (29) 

so that the sum of these factorials corresponds to "true zero"               

                             0I! + 0H! + 0V! + 0H'! = 1 + (–1) + i + (– i) = 0.                        (30) 

The identity of "deep zero" and "true zero" will lead to closed completeness of the developed 

theory. 

2.3 Signature matrix 

As shown above, the scalar multiplication of the sixteen 4-bases shown in Figure 2, with each 

other led to the formation of an atlas of 16 × 16 = 256 metric spaces with metrics (10) ds(аb)2 = 

ei(а)ej(b)dxi(а)dxj(b) with the corresponding signatures. However, there are only 16 different signatures, 
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since there is a 16-fold degeneracy. For example, 16 scalar products of 4-bases shown in Figure 4 

result in sixteen quadratic forms (i.e., metrics) with the same signature (– + – +): 

 

Figure 4. Sixteen scalar products of 4-bases, resulting in to metrics with the same signature (– + – +). 

Similarly, we obtain 16-fold degeneracy with all other metric spaces. Thus, it is possible to single 

out only 256 : 16 = 16 types of metric 4-spaces with quadratic forms (i.e., metrics) 

 

ds(+ + + +)2 =    dx02 + dx12 + dx22 + dx32  

ds(– – – +)2 = – dx02 – dx12 – dx22 + dx32  

ds(+ – – +)2 =  dx02 – dx12 – dx22 + dx32   

ds(+– – –)2 =  dx02 – dx12 – dx22 – dx32  

ds(– – + –)2 = – dx02 – dx12 + dx22 – dx32  

ds(– + – –)2 = – dx02 + dx12 – dx22 – dx32  

ds(+ – + –)2 =  dx02 – dx12 + dx22 – dx32  

ds(+ + – –)2  =   dx02 + dx12 – dx22 – dx32   

ds(– – – – )2 = – dx02 – dx12 – dx22 – dx32    

ds(+ + + –)2 =  dx02 + dx12 + dx22 – dx32                  (31) 

ds (– + + –)2 = – dx02 + dx12 + dx22 – dx32  

ds(– + + +)2 =  – dx02 +d x12 + dx22 + dx32  

ds(+ + – +)2 =    dx02 + dx12 – dx22 + dx32  

ds(+ – + +)2 =  dx02 – dx12+ dx22 + dx32  

ds(– + – +)2 = – dx02 + dx12 – dx22 + dx32  

ds(– – + +)2 =  – dx02 – dx12 + dx22 + dx32  

 

with the corresponding signatures, which form a matrix 

 

           𝑠𝑡𝑖𝑔𝑛(𝑑𝑠(а,𝑏)2 ) = (

(+ + ++) (+ + +−) (− + +−) (+ + − +)

(− − −+) (− + ++) (− − ++) (− + − +)

(+ − −+) (+ + −−) (+ − −−) (+ − + +)

(− − +−) (+ − +−) (− + −−) (− − − −)

) .             (32) 
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The elements of the matrix of signatures (32) completely coincide with the elements of the matrix 

of signatures (2) {or (3) in the article [1]}. Therefore, the properties of the signature matrix (32) largely 

repeat the properties of the signature matrix (see [1]) in the next branch of the theory development. 

2.4 Relationship between signature and 4-space topology 

According to Felix Klein's classification [3], metric spaces with metrics (31) can be divided into 

three topological types: 

 

1st type: 4-spaces whose signatures consist of four identical signs [3]: 

 

   x02 + x12 +x22 +x32 = 0         (+ + + +)                       (33) 

  – x02 – x12 – x22 – x32 = 0       (– – – –)        

 

are the so-called null metric 4-spaces. These "spaces" have only one real point, located at the 

beginning of the light cone. All other points of these extensions are imaginary. In fact, the first of the 

Exs. (33) describes not the “extent”, but a single point (or “white” point), and the second describes 

the only anti-point (or “black” point). 

 

2nd type: 4-spaces whose signatures consist of two positive and two negative signs [3]: 

 

   x02 – x12 – x22 + x32 = 0         (+ – – +)                                                      (34) 

   x02 + x12 – x22 – x32 = 0         (+ + – –)            

   x02 – x12 + x22  – x32 = 0        (+ – + –)    

 – x02 + x12 + x22 – x32 = 0         (– + + –) 

 – x02 – x12 +  x22 + x32 = 0        (– – + +) 

 – x02 + x12 – x22 + x32 = 0         (– + – +)     

 

are different variants of 4-dimensional tori. 

 

3rd type: 4-spaces whose signatures consist of three identical signs and one opposite one [3]:  

 

  – x02 – x12 – x22 + x32 = 0         (– – – +)                             (35) 

  – x02 – x12 + x22 – x32 = 0         (– – + –)   

  – x02 + x12 – x22 – x32 = 0         (– + – –)    

    x02 – x12 – x22 – x32 = 0         (+ – – –)                   

    x02 + x12 + x22 – x32 = 0         (+ + + –)                 

    x02 + x12 – x22 + x32 = 0         (+ + – +)       

    x02 – x12 + x22 + x32 = 0         (+ – + +)        

  – x02 + x12 + x22 + x32 = 0         (– + + +)        

 

are oval 4-surfaces: ellipsoids, elliptic paraboloids, two-sheeted hyperboloids. 

 

A simplified illustration of the connection between the signature of a 2-dimensional space and 

its topology is shown in Figure 5. This figure shows that the signature of the quadratic form is 

uniquely related to the topology of the 2-dimensional extent. But not vice versa, the extension 

topology is a much more capacious concept than the signature of its metric. 
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a) signature (+ +)         b) signature (– +)                c) signature (+ 0) 

                x3 = x12 + x22              x3 = x22 – x12                                       x3 = x12  

    parabolic surface;         saddle surface;                U-shaped surface 

Figure 5. Illustration of the connection between the signature of a 2-dimensional space and its topology [3]. 

2.5 Splitting the metric zero 

The sum of all 16 metrics (31) is zero: 

ds2 = ds(+– – –)2  +  ds(+ + + +)2   +   ds(– – – +)2  +  ds(+ – – +)2  +        

    + ds(– – + –)2  +  ds(+ + – –)2    +  ds(– + – –)2  +  ds(+ – + –)2 +                     (36) 

    + ds(– + + +)2  +   ds(– – – – )2  +  ds(+ + + –)2  +  ds (– + + –)2 + 

    + ds(+ + – +)2  +   ds(– – + +)2  +  ds(+ – + +)2   +  ds(– + – +)2 = 0.     

 

Indeed, summing metrics (31), we obtain 

ds2 = (dx0dx0 – dx1dx1 – dx2dx2 – dx3dx3)  +  (dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3) +         (37) 

      + (– dx0dx0 – dx1dx1 + dx2dx2 – dx3dx3) + (dx0dx0 – dx1dx1 – dx2dx2 + dx3dx3) +  

      + (– dx0dx0 – dx1dx1 + dx2dx2 – dx3dx3) + (dx0dx0 + dx1dx1 – dx2dx2 – dx3dx3) +  

      + (– dx0dx0 + dx1dx1 – dx2dx2 – dx3dx3) + (dx0dx0 – dx1dx1 + dx2dx2 – dx3dx3 ) +          

      + (– dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3) + (– dx0dx0 –dx1dx1– dx2dx2 –dx3dx3) +  

      + (dx0dx0 + dx1dx1 + dx2dx2 – dx3dx3)  + (– dx0dx0 +dx1dx1 +dx2dx2 – dx3dx3) +  

      + (dx0dx0 + dx1dx1 – dx2dx2 + dx3dx3)  + (– dx0dx0 – dx1dx1+ dx2dx2 +dx3dx3) + 

      + (dx0dx0 – dx1dx1 + dx2dx2 + dx3dx3)  + (– dx0dx0 + dx1dx1 –dx2dx2 +dx3dx3) = 0. 

 

Instead of summing homogeneous terms in Ex. (37), only the signs in front of these terms can be 

summed. Therefore, the total metric (37) can be represented as a ranking expression: 

0 =  

0 = 

0 = 

0 = 

0 =   

0 = 

0 = 

0 = 

0 = 

0 =  

 

 ( 0  0  0  0) 

 (+  +  +  +) 

 (–  –  –  +) 

 (+  –  –  +) 

 (–  –  +  –) 

 (+  +  –  –) 

 (–  +  –  –) 

 (+  –  +  –) 

 (–  +  +  +) 

 (0  0  0  0) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(0  0  0  0) 

(–  –  –  –) 

(+  +  +  –) 

(–  +  +  –) 

(+  +  –  +) 

(–  –  +  +) 

(+  –  +  +) 

(–  +  –  +) 

(+  –  –  –) 

(0  0  0  0) + 

 

= 0              

= 0 

= 0 

= 0 

= 0     

= 0 

= 0 

= 0 

= 0 

= 0,     

           

                     

               (38)          

where the summation (or subtraction) of signs is carried out according to the rules: 
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            (+) + (+) = 2(+),    (–) + (+) = (0),      (+) – (+) = (0),     (–) – (+) = 2(–),             (39)   

            (+) + (–) = (0),     (–) + (–) = 2(–),     (+) – (–) = 2(+),    (–) – (–) = (0).     

 

The sum of the signs, both in the columns of the ranks (38) and in their lines between the ranks, 

is equal to zero. Therefore, this ranking identity will be called the "splitting of the metric zero". 

2.6 Operations with ranks 

The ranking expression (38) makes it possible to perform some operations in the vicinity of the 

investigated point O (see Figure 1) without violating the “vacuum balance”. Such operations include, 

for example, the symmetrical transfer of the first and last columns to the other side of equality with 

sign inversion, while observing line-by-line and column-by-column vacuum balance: 

 

0 =  

– = 

+ = 

– = 

+ =   

– = 

+ = 

– = 

+ = 

0 =  

  (0  0  0) 

 (+  +  +) 

 (–  –  +) 

 (–  –  +) 

 (–  +  –) 

 (+  –  –) 

 (+  –  –) 

 (–  +  –) 

 ( +  +  +) 

 (0  0  0 ) + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

  (0  0  0) 

  (–  –  –) 

  (+  +  –) 

  (+  +  –) 

  (+  –  +) 

  (–  +  +) 

  (–  +  +) 

  (+  –  +) 

  (–  –  –) 

  (0  0  0)+ 

= 0 

= +   → 0 

= –   → 0 

= +   → 0 

= –   → 0   

= +   → 0  

= –   → 0 

= +   → 0 

= –   → 0 

= 0. 

             (40) 

 

Similarly, any columns of the rank expression (38) can be symmetrically transferred to the other 

side like (40). 

It is possible to transfer any string from the numerators of the rankings (38) to their 

denominators, also with the inversion of signs, and observing the line-by-line vacuum balance, for 

example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mixed line and column transfer operations are also possible, which do not violate the conditions 

of line-by-line vacuum balance, for example 

 

 

 

 

 

0 = 

0 = 

0 = 

0 =   

0 = 

0 = 

0 = 

0 = 

(+  +  +  +) 

(–  –  –  +) 

(+  –  –  +) 

(+  +  –  –) 

(–  +  –  –) 

(+  –  +  –) 

(–  +  +  +) 

(+  +  –  +)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

 (–  –  –  –) 

 (+  +  +  –) 

 (–  +  +  –) 

 (–  –  +  +) 

 (+  –  +  +) 

 (–  +  –  +) 

 (+  –  –  –) 

 (–  –  +  –)+ 

= 0                    (41) 

= 0 

= 0 

= 0     

= 0 

= 0 

= 0 

= 0. 
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– = 

– = 

– = 

+ =   

+ = 

+ = 

– = 

– = 

 (+  +  +) 

 (–  –  –) 

 (+  –  –) 

 (+  +  –) 

 (–  +  –) 

 (+  –  +) 

 (–  +  +) 

 (+  +  –)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

  (–  –  –) 

  (+  +  +) 

  (–  +  +) 

  (–  –  +) 

  (+  –  +) 

  (–  +  –) 

  (+  –  –) 

  (–  –  +)+ 

= +   → 0                  (42) 

= +   → 0 

= +   → 0 

= –   → 0   

= –   → 0 

= –   → 0 

= +   → 0 

= +   → 0. 

 

Such a ranking operations correspond to certain vacuum symmetries, which will be considered 

in the following articles of the proposed project. 

2.7 Bilateral metric space 

We transfer the signatures (– + + +) and (+ – – –) from the numerators of the ranks (38) to their 

denominators 

 

 

 

 

 

 

 

 

 

 

 

 

In expanded form, the ranks (43) have the following form       

                  

ds(+ + + +)2 =    dx02 + dx12 + dx22 + dx32  

ds(– – – +)2 = – dx02 – dx12 – dx22 + dx32  

ds(+ – – +)2 =  dx02 – dx12 – dx22 + dx32   

ds(– – + –)2 = – dx02 – dx12 + dx22 – dx32  

ds(– + – –)2  = – dx02 + dx12 – dx22 – dx32  

ds(+ – + –)2 =   dx02 – dx12 + dx22 – dx32  

ds(+ + – –)2 =    dx02 + dx12 – dx22 – dx32 

ds(+– – –)2 =   dx02 – dx12 – dx22 – dx32 

ds(– – – – )2 = – dx02 – dx12 – dx22 – dx32             (44)     

ds(+ + + –)2 =     dx02 + dx12 + dx22 – dx32  

ds (– + + –)2 = – dx02 + dx12 + dx22 – dx32  

ds(+ + – +)2 =     dx02 + dx12 – dx22 + dx32  

ds(+ – + +)2 =   dx02 – dx12+ dx22 + dx32  

ds(– + – +)2 = – dx02 + dx12 – dx22 + dx32  

ds(– – + +)2 =  – dx02 – dx12 + dx22 + dx32  

ds(– + + +)2  =  – dx02 +d x12 + dx22 + dx32.   

    

The ranking expression (44) is equivalent to the fact that the addition (i.e., additive overlay) of 

7-metric spaces with signatures (topologies) indicated in the numerator of the left ranking (43) form 

a metric Minkowski 4-space with the metric 

 

ds(+ – – –)2 = c2dt2 – dx2 – dy2 – dz2 = dx02 – dx12 – dx22 – dx32  with signature (+ – – –),                 (44) 

 

where  ds(+ – – –)2 = ds(+ + + +)2  + ds(– – – +)2 + ds(+ – – +)2 + ds(– – + –)2 + ds(+ + – –)2 + ds (– + – –)2 + ds(+ – + –)2,         (45) 

 

 (+  +  +  +) 

 (–  –  –  +) 

 (+  –  –  +) 

 (–  –  +  –) 

 (+  +  –  –) 

 (–  +  –  –) 

 (+  –  +  –) 

 (+  –  –  –)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –  –  –) 

(+  +  +  –) 

(–  +  +  –) 

(+  +  –  +) 

(–  –  +  +) 

(+  –  +  +) 

(–  +  –  +) 

(–  +  +  +)+ 

= 0                       (43) 

= 0 

= 0            

= 0  

= 0 

= 0 

= 0 

= 0. 
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this Minkowski 4-space will be conditionally called the outer side of the m,n -vacuum (or subcont 

– short for “substantial continuum”). 

In this case, the additive imposition of 7 metric spaces with signatures indicated in the numerator 

of the right-th rank (43) forms a metric Minkowski 4-antispace with the metric 

 

  ds(– + + +)2 = – c2dt2 + dx2 + dy2 + dz2 = – dx02 + dx12 + dx22 + dx32   with signature (– + + +),      (46)  

 

where   ds(– + + +)2 = ds(– – – – )2 + ds(+ + +  –)2 + ds(– + + –)2 + ds(+ + – +)2 + ds(– – + +)2 + ds(+ – + +)2 + ds(– + – +)2.         (47) 

 

This metric Minkowski 4-antispace will be conditionally called the inner side of the m,n -vacuum 

(or antisubcont – short for “antisubstantial continuum”. 

The concepts of "subcont" and "antisubcont" are mental constructions that are intended only to 

create the illusion of "visibility" of two adjacent mutually opposite sides of one m,n-vacuum. If one 

side of a sheet of paper is painted blue, and the other side of the same sheet is painted red, then the 

blue side of the sheet can be associated with the “subcont”, and its red side with the “antisubcont”. 

The concepts of "subcont" and "antisubcont" are introduced only to facilitate the visualization of intra-

vacuum processes, but they have nothing to do with reality. However, as will be shown in the 

following articles of this project, using these mental concepts it is possible to inspire real vacuum 

effects. 

                                      
The operation described by the ranking expression (43) allows you to mentally “reveal” from 

the void the two-sided m,n-vacuum with the number of mathematical dimensions 4 + 4 = 8 = 23. We 

propose to call such a two-sided 8-dimensional space 23-m,n-vacuum, provided that the 23-m,n-

vacuum balance is maintained 

                                       ds(+ – – –)2 + ds(– + + +)2 = 0,                                 (48) 

with ranking equivalent (+ – – –) + (– + + +) = (0 0 0 0), or in transposed form 

 

         (+ – – –)                                        (49) 

         (– + + +) 

         (0 0 0 0)+ 

 

In the terminology proposed here, the ranking expression (38) is equivalent to the balance 

condition for a 26-m,n-vacuum with 4-dimensional sides (or faces), since the number of mathematical 

dimensions of such a 16-faced extension: 

                                      4 × 16 = 64 = 26.                                    (50) 

Philosophical understanding of the ranking expression (38) can lead to the roots of religious and 

mythological traditions, where the number 7 has the sacred meaning of "Seven Heavens", and two 

mutually opposite sides of the 23-m,n-vacuum corresponds to the perception of reality through 

ascending logic to the Hegelian dialectic. 

Here, for the first time, mathematical (speculative) calculations of the Algebra of Signature led 

to the following very important practical conclusion. The vacuum balance condition led to the need 

to assume that the empty extent surrounding us has at least sixteen 4-dimensional "faces" with 

signatures (32). At the same time, in some cases, the number of faces of such an empty extent can be 

reduced to two with signatures (+ – – –) and (– + + +), and in a number of other problems it can be 

increased to infinity (see section 9). 

In other words, it is necessary to realize that the space around us has at least two sides: "external" 

and "internal", which can be conditionally called "subcont" and "antisubcont". This will require a full 
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review of our speculative attitude to reality, but as it turns out below, one-sided theories inevitably 

lead to unsolvable paradoxes, and 16-sided (or at least two-sided) theories allow us to significantly 

expand the range of tasks to be solved. 

Recall that in A. Einstein's General Relativity there is only one metric 4-space with a signature, 

for example, (+ – – –). Whereas in the geometrized vacuum physics developed here, based on the 

Algebra of Signatures, any m,n-vacuum can have at least two sides (i.e. mutually opposite metric    

4-spaces): the outer side (or subcont) with signatures (+ – – –) and the inner side (or antisubcontent) 

with the signature (– + + +). 

2.8 Binary triads 

Not only the ranking expression (38) leads to the antipodal dyad: "4-space - 4-antispace" 

Minkowski with opposite signatures (+ – – –) and (– + + +). The following ranking expressions also 

lead to this dyad: 

These ranking expressions (binary triads) also satisfy the vacuum balance condition and play an 

important role in "vacuum chromodynamics", which will be described in the following articles of this 

project. 

                             (–  –  –  +)   +  (+  +  +  –)   = 0                            (51)  

                             (+  –  +  –)   +  (–  +  –  +)   = 0 

                             (+  +  –  –)   +  (–  –  +  +)   = 0  

                             (+  –  –  –)+  +  (–  +  +  +) +    = 0, 

 

                             (–  –  +  –)   +  (+  +  –  +)   = 0                            (52) 

                             (+  +  –  –)   +  (–  –  +  +)   = 0 

                             (+  –  –  +)   +  (–  +  +  –)   = 0  

                             (+  –  –  –)+  +  (–  +  +  +) +    = 0, 

 

                             (–  –  +  –)   +  (+  +  –  +)   = 0                            (53) 

                             (+  +  –  –)   +  (–  –  +  +)   = 0 

                             (+  –  –  +)   +  (–  +  +  –)   = 0  

                             (+  –  –  –)+  +  (–  +  +  +) +    = 0. 

2.9 Transverse bundle of m,n-vacuum 

Like the ranking expression (41) and (43), any pair of metric 4-spaces with mutually opposite 

signatures can be represented as a sum of 7 + 7 = 14 metric extensions with other signatures. 

For example, the conjugate pair of metrics ds(– + + –)2 and ds(+ – – +)2 with mutually opposite signatures 

(– + + –) and (+ – – +) can be expressed by summing (i.e., additive superposition) 7 + 7 = 14 metric         

4-spaces with signatures 

  (+  +  +  +) 

 (–  –  –  +) 

 (–  –  +  –) 

 (+  +  –  –) 

 (–  +  –  –) 

 (+  –  +  –) 

 (–  +  +  +) 

 (–  +  +  –) + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –  –  –) 

(+  +  +  –) 

(+  +  –  +) 

(–  –  +  +) 

(+  –  +  +) 

(–  +  –  +) 

(+  –  –  –) 

(+  –  –  +)+ 

= 0                       (54) 

= 0              

= 0     

= 0 

= 0 

= 0 

= 0 

= 0.               
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Similarly, out of 256 metrics with signatures (11), 256 : 2 = 128 conjugate pairs of metrics can be 

distinguished, each of which can be expressed in terms of an additive superposition of 7 + 7 = 14 

metric 4-subspaces with corresponding signatures while maintaining a vacuum balance. 

In turn, the conjugate pairs of 4-subspaces can be similarly decomposed into sums of 7 + 7 = 14 

subspaces, and this can continue indefinitely. 

It turns out that the light-geometry of the void is balanced with respect to zero, in which the 

"vacuum" is first represented as an infinite number of m,n-vacuums nested into each other (see § 1 

and Figure 2 in the article [1]). This representation of emptiness is called the longitudinal stratification 

(bundle) of "vacuum". Then each m,n-vacuum splits into an infinite number of metric 4-subspaces, 4-

sub-subspaces, and so on. with 16 types of signatures (or topologies, see § 4) without violating the 

vacuum balance. Such an infinite splitting of each m,n-vacuum will be called the transverse bundle 

of the "vacuum". 

The longitudinal and transverse stratification (bundle) of the "vacuum" leads to the fact that at 

each point of the void (including the point O under study, see Figure 1) there is an additive imposition 

of an infinite number of metric 4-spaces with 16 types of signatures (i.e., topologies, among which 

are 6 types of tori (34) and 8 types of oval surfaces (35)), which completely compensate for each other's 

manifestations (i.e. the condition of "vacuum balance" is observed). This leads to the formation of a 

zero Ricci-flat space, which is in many ways similar to a compact Calabi-Yau manifold (i.e., a 

multidimensional complex torus) (see Figure 6). 

        

Figure 6. One of the implementations of a 2D projection of a 3D visualization of a local area of a                        

10-dimensional Calabi-Yau manifold [4]. 

2.10 Spin-tensor representation of metrics with different signatures 

Let’s consider the metric 

                          ds(+ – – –)2 = dx02 – dx12 – dx22 – dx32 with signature (+ – – –).                 (55) 

For brevity, we omit the signs of the differentials in the metric (55) 

                                          s2 = x02– x12 – x22 – x32.                                    (56)  

As is known, the quadratic form (56) is a determinant of the Hermitian 22-matrix  

(
𝑥0 + 𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3

)
𝑑𝑒𝑡

= |
𝑥0 + 𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3

| =  𝑥0
2 − 𝑥1

2 − 𝑥2
2 − 𝑥3

2 = 0 with signature (+ – – –). (57) 

It is easy to verify that this matrix is Hermitian by direct calculation 

                         (
𝑥0 + 𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3

)
+

= (
𝑥0 + 𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3

).                         (58)  

In the theory of spinors, matrices of the form (58) are called second-rank mixed Hermitian spin-

tensors [5]. 

Let’s represent 22-matrix (58) in expanded form 

        А4 = (
𝑥0 + 𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3

) = 𝑥0 (
1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) − 𝑥2 (
0 −𝑖
𝑖 0

) − 𝑥3 (
−1 0
0 1

),      (59) 

where  𝜎0
(+−−−)

= (
1 0
0 1

) ;     𝜎1
(+−−−)

= (
0 −1
−1 0

) ;     𝜎2
(+−−−)

= (
0 −𝑖
𝑖 0

) ;     𝜎3
(+−−−)

= (
−1 0
0 1

)  is a 

set of Pauli matrices. 
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In the theory of spinors, A4-matrices of the form (59) are assigned one-to-one correspondence 

with quaternions of the type 

𝑞 = 𝑥0 + 𝑒1𝑥1 + 𝑒2𝑥2 + 𝑒3𝑥3, 

under isomorphism 

                          𝑒1 → (
0 −1
−1 0

) ;     𝑒2 → (
0 −𝑖
𝑖 0

) ;         𝑒3 → (
−1 0
0 1

).                (60)  

Similarly, each quadratic form with the corresponding signature (32): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

can be represented as a spin-tensor or an А4-matrix, which are shown in Table 1: 

Table 1. Spintensors and А4-matrices with different signatures. 

1 

(
𝑥0 + 𝑖𝑥3 𝑖𝑥1 + 𝑥2
𝑖𝑥1 − 𝑥2 𝑥0 − 𝑖𝑥3

)
𝑑𝑒𝑡

= 𝑥0
2 + 𝑥1

2 + 𝑥2
2 + 𝑥3

2 = 0, signature (+ + + +). 

 

(
𝑥0 + 𝑖𝑥3 𝑖𝑥1 + 𝑥2
𝑖𝑥1 − 𝑥2 𝑥0 − 𝑖𝑥3

) = 𝑥0 (
1 0
0 1

) + 𝑥1 (
0 𝑖
𝑖 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
𝑖 0
0 −𝑖

) ; 

where 

𝜎0
(++++)

= (
1 0
0 1

) ; 𝜎1
(++++)

= (
0 𝑖
𝑖 0

) ;  𝜎2
(++++)

= (
0 1
−1 0

) ;  𝜎3
(++++)

= (
𝑖 0
0 −𝑖

).

 

 

2 

 

 

(
𝑥0 + 𝑥3 𝑖𝑥1 + 𝑥2
𝑖𝑥1 − 𝑥2 𝑥0 − 𝑥3

)
𝑑𝑒𝑡

= 𝑥0
2 + 𝑥1

2 + 𝑥2
2 − 𝑥3

2 = 0,             signature (+ + + −). 

 

(
𝑥0 + 𝑥3 𝑖𝑥1 + 𝑥2
𝑖𝑥1 − 𝑥2 𝑥0 − 𝑥3

) = 𝑥0 (
1 0
0 1

) + 𝑥1 (
0 𝑖
𝑖 0

) + 𝑥2 (
0 1
−1 0

) − 𝑥3 (
−1 0
0 1

) ; 

where 

𝜎0
(+++−)

= (
1 0
0 1

) ;  𝜎1
(+++−)

= (
0 𝑖
𝑖 0

) ; 𝜎2
(+++−)

= (
0 1
−1 0

) ; 𝜎3
(+++−)

= (
−1 0
0 1

).

 

 

3 

(
𝑥0 + 𝑖𝑥3 𝑖𝑥1 + 𝑥2
𝑖𝑥1 − 𝑥2 −𝑥0 + 𝑖𝑥3

)
𝑑𝑒𝑡

= −𝑥0
2 + 𝑥1

2 + 𝑥2
2 − 𝑥3

2 = 0,     signature (− + + −). 

 

(
𝑥0 + 𝑖𝑥3 𝑖𝑥1 + 𝑥2
𝑖𝑥1 − 𝑥2 −𝑥0 + 𝑖𝑥3

) = −𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 𝑖
𝑖 0

) + 𝑥2 (
0 1
−1 0

) − 𝑥3 (
−𝑖 0
0 −𝑖

) ; 

where 

𝜎0
(−++−)

= (
−1 0
0 1

) ; 𝜎1
(−++−)

= (
0 𝑖
𝑖 0

) ; 𝜎2
(−++−)

= (
0 1
−1 0

) ; 𝜎3
(−++−)

= (
−𝑖 0
0 −𝑖

). 

 

ds(+ + + +)2 =    dx02 + dx12 + dx22 + dx32  

ds(– – – +)2 = – dx02 – dx12 – dx22 + dx32  

ds(+ – – +)2 =  dx02 – dx12 – dx22 + dx32   

ds(– – + –)2 = – dx02 – dx12 + dx22 – dx32  

ds(– + – –)2 = – dx02 + dx12 – dx22 – dx32  

ds(+ – + –)2 =  dx02 – dx12 + dx22 – dx32  

ds(+ + – –)2 =   dx02 + dx12 – dx22 – dx32 

ds(+– – –)2 =     dx02 – dx12 – dx22 – dx32 

ds(– – – – )2 = – dx02 – dx12 – dx22 – dx32          (61) 

ds(+ + + –)2 =    dx02 + dx12 + dx22 – dx32  

ds (– + + –)2 = – dx02 + dx12 + dx22 – dx32  

ds(+ + – +)2 =    dx02 + dx12 – dx22 + dx32  

ds(+ – + +)2 =   dx02 – dx12+ dx22 + dx32  

ds(– + – +)2 = – dx02 + dx12 –  dx22 + dx32  

ds(– – + +)2 =  – dx02 – dx12 + dx22 + dx32  

ds(– + + +)2  =  – dx02 +d x12 + dx22 + dx32    
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4 

 

(
𝑥0 + 𝑖𝑥3 𝑥1 + 𝑥2
−𝑥1 + 𝑥2 𝑥0 − 𝑖𝑥3

)
𝑑𝑒𝑡

= 𝑥0
2 + 𝑥1

2 − 𝑥2
2 + 𝑥3

2 = 0,     signature (+ + − +). 

 

(
𝑥0 + 𝑖𝑥3 𝑥1 + 𝑥2
−𝑥1 + 𝑥2 𝑥0 − 𝑖𝑥3

) = 𝑥0 (
1 0
0 1

) + 𝑥1 (
0 1
−1 0

) − 𝑥2 (
0 −1
−1 0

) + 𝑥3 (
𝑖 0
0 −𝑖

) ; 

where 

𝜎0
(++−+)

= (
1 0
0 1

) ;  𝜎1
(++−+)

= (
0 1
−1 0

) ;  𝜎2
(++−+)

= (
0 −1
−1 0

) ; 𝜎3
(++−+)

= (
𝑖 0
0 −𝑖

).

 

 

5 

 

(
𝑥0 + 𝑥3 𝑖𝑥1 + 𝑥2
−𝑖𝑥1 + 𝑥2 −𝑥0 + 𝑥3

)
𝑑𝑒𝑡

= −𝑥0
2 − 𝑥1

2 − 𝑥2
2 + 𝑥3

2 = 0,     signature (− − − + ). 

 

(
𝑥0 + 𝑥3 𝑖𝑥1 + 𝑥2
−𝑖𝑥1 + 𝑥2 −𝑥0 + 𝑥3

) = −𝑥0 (
−1 0
0 1

) − 𝑥1 (
0 −𝑖
𝑖 0

) − 𝑥2 (
0 −1
−1 0

) + 𝑥3 (
1 0
0 1

) ; 

where 

𝜎0
(−−−+)

= (
1 0
0 1

) ,  𝜎1
(−−−+)

= (
0 1
−1 0

) ,  𝜎2
(−−−+)

= (
0 −1
−1 0

) ,  𝜎3
(−−−+)

= (
𝑖 0
0 −𝑖

). 

 

 

 

 

 

 

 

 

6 

 

(
𝑥0 + 𝑥3 𝑖𝑥1 + 𝑥2
𝑖𝑥1 − 𝑥2 −𝑥0 + 𝑥3

)
𝑑𝑒𝑡

= −𝑥0
2 + 𝑥1

2 + 𝑥2
2 + 𝑥3

2 = 0, signature (− + + +). 

 

(
𝑥0 + 𝑥3 𝑖𝑥1 + 𝑥2
𝑖𝑥1 − 𝑥2 −𝑥0 + 𝑥3

) = −𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 𝑖
𝑖 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
1 0
0 1

) ; 

where 

𝜎0
(−+++)

= (
−1 0
0 1

) ,  𝜎1
(−+++)

= (
0 𝑖
𝑖 0

) ,   𝜎2
(−+++)

= (
0 1
−1 0

) ,   𝜎3
(−+++)

= (
1 0
0 1

)

 

are the Cayley matrices. 

 

7 

(
𝑥0 + 𝑥3 𝑥1 + 𝑥2
𝑥1 − 𝑥2 −𝑥0 + 𝑥3

)
𝑑𝑒𝑡
= −𝑥0

2 − 𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 0,            signature (− − + +). 

 

(
𝑥0 + 𝑥3 𝑥1 + 𝑥2
𝑥1 − 𝑥2 −𝑥0 + 𝑥3

) = −𝑥0 (
−1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
1 0
0 1

) ; 

where 

𝜎0
(−−++)

= (
−1 0
0 1

) ;  𝜎1
(−−++)

= (
0 −1
−1 0

) ; 𝜎2
(−−++)

= (
0 1
−1 0

) ; 𝜎3
(−−++)

= (
1 0
0 1

).

 8 

 

(
𝑥0 + 𝑥3 −𝑥1 + 𝑥2
𝑥1 + 𝑥2 −𝑥0 + 𝑥3

)
𝑑𝑒𝑡
= −𝑥0

2 + 𝑥1
2 − 𝑥2

2 + 𝑥3
2 = 0,          signature (− + − +). 

 

(
𝑥0 + 𝑥3 −𝑥1 + 𝑥2
𝑥1 + 𝑥2 −𝑥0 + 𝑥3

) = −𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 −1
1 0

) − 𝑥2 (
0 −1
−1 0

) + 𝑥3 (
1 0
0 1

) ; 

where 

𝜎0
(−+−+)

= (
−1 0
0 1

) ,   𝜎1
(−+−+)

= (
0 −1
1 0

) ,   𝜎2
(−+−+)

= (
0 −1
−1 0

) ,   𝜎3
(−+−+)

= (
1 0
0 1

). 

 

9 

 

(
𝑥0 − 𝑖𝑥3 𝑥1 − 𝑖𝑥2
𝑥1 + 𝑖𝑥2 𝑥0 + 𝑖𝑥3

)
𝑑𝑒𝑡

= 𝑥0
2 − 𝑥1

2 − 𝑥2
2 + 𝑥3

2 = 0,             signature (+ − − +). 

 

(
𝑥0 − 𝑖𝑥3 𝑥1 − 𝑖𝑥2
𝑥1 + 𝑖𝑥2 𝑥0 + 𝑖𝑥3

) = 𝑥0 (
1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) − 𝑥2 (
0 𝑖
−𝑖 0

) + 𝑥3 (
−𝑖 0
0 𝑖

) ; 

where 

𝜎0
(+−−+)

= (
1 0
0 1

) , 𝜎1
(+−−+)

= (
0 −1
−1 0

) , 𝜎2
(+−−+)

= (
0 𝑖
−𝑖 0

) ; 𝜎3
(+−−+)

= (
−𝑖 0
0 𝑖

). 

 

 

 
 



 17 

 

 

 

 

10 

(
𝑥0 − 𝑥3 𝑥1 + 𝑥2
−𝑥1 + 𝑥2 𝑥0 + 𝑥3

)
𝑑𝑒𝑡
= 𝑥0

2 + 𝑥1
2 − 𝑥2

2−𝑥3
2 = 0,               signature (+ + − − ). 

 

(
𝑥0 − 𝑥3 𝑥1 + 𝑥2
−𝑥1 + 𝑥2 𝑥0 + 𝑥3

) = 𝑥0 (
1 0
0 1

) + 𝑥1 (
0 1
−1 0

) − 𝑥2 (
0 −1
−1 0

) − 𝑥3 (
1 0
0 −1

) ; 

where 

𝜎0
(++−−)

= (
1 0
0 1

) , 𝜎1
(++−−)

= (
0 1
−1 0

) , 𝜎2
(++−−)

= (
0 −1
−1 0

) , 𝜎3
(++−−)

= (
1 0
0 −1

).

 
11 

 

(
𝑥0 + 𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3

)
𝑑𝑒𝑡

= 𝑥0
2− 𝑥1

2 − 𝑥2
2−𝑥3

2 = 0, signature (+ − − − ). 

 

(
𝑥0 + 𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3

) = 𝑥0 (
1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) − 𝑥2 (
0 −𝑖
𝑖 0

) − 𝑥3 (
−1 0
0 1

) ; 

where 

𝜎0
(+−−−)

= (
1 0
0 1

) ,  𝜎1
(+−−−)

= (
0 −1
−1 0

) ,  𝜎2
(+−−−)

= (
0 −𝑖
𝑖 0

) , 𝜎3
(+−−−)

= (
−1 0
0 1

).

 

 

12 

(
𝑥0 + 𝑖𝑥3 𝑥1 + 𝑥2
𝑥1 − 𝑥2 𝑥0 − 𝑖𝑥3

)
𝑑𝑒𝑡

= 𝑥0
2 − 𝑥1

2 + 𝑥2
2 + 𝑥3

2 = 0,              signature (± + +). 

 

(
𝑥0 + 𝑖𝑥3 𝑥1 + 𝑥2
𝑥1 − 𝑥2 𝑥0 − 𝑖𝑥3

) = 𝑥0 (
1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
𝑖 0
0 −𝑖

) ; 

where 

𝜎0
(+−++)

= (
1 0
0 1

) ,  𝜎1
(+−++)

= (
0 −1
−1 0

) , 𝜎2
(+−++)

= (
0 1
−1 0

) , 𝜎3
(+−++)

= (
𝑖 0
0 −𝑖

). 

 

13 

(
−𝑥0 + 𝑖𝑥3 𝑥1 + 𝑥2
𝑥1 − 𝑥2 𝑥0 + 𝑖𝑥3

)
𝑑𝑒𝑡

= −𝑥0
2 − 𝑥1

2 + 𝑥2
2 − 𝑥3

2 = 0,            signature (− − + −). 

 

(
−𝑥0 + 𝑖𝑥3 𝑥1 + 𝑥2
𝑥1 − 𝑥2 𝑥0 + 𝑖𝑥3

) = −𝑥0 (
1 0
0 −1

) − 𝑥1 (
0 −1
−1 0

) + 𝑥2 (
0 1
−1 0

) − 𝑥3 (
−𝑖 0
0 −𝑖

) ; 

where 

𝜎0
(−−+−)

= (
1 0
0 −1

) , 𝜎1
(−−+−)

= (
0 −1
−1 0

) ,  𝜎2
(−−+−)

= (
0 1
−1 0

) , 𝜎3
(−−+−)

= (
−𝑖 0
0 −𝑖

). 

 

14 

(
𝑥0 − 𝑥3 𝑥1 + 𝑥2
𝑥1 − 𝑥2 𝑥0 + 𝑥3

)
𝑑𝑒𝑡
= 𝑥0

2 − 𝑥1
2 + 𝑥2

2 − 𝑥3
2 = 0,   signature (+ − + −). 

 

(
𝑥0 − 𝑥3 𝑥1 + 𝑥2
𝑥1 − 𝑥2 𝑥0 + 𝑥3

) = 𝑥0 (
1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) + 𝑥2 (
0 1
−1 0

) − 𝑥3 (
1 0
0 −1

) ; 

where 

𝜎0
(+−+−)

= (
1 0
0 1

) , 𝜎1
(+−+−)

= (
0 −1
−1 0

) ,  𝜎2
(+−+−)

= (
0 1
−1 0

) ,  𝜎3
(+−+−)

= (
1 0
0 −1

). 

 

15 

(
−𝑥0 + 𝑖𝑥3 𝑥1 + 𝑥2
−𝑥1 + 𝑥2 𝑥0 + 𝑖𝑥3

)
𝑑𝑒𝑡

= −𝑥0
2+ 𝑥1

2 − 𝑥2
2 − 𝑥3

2 = 0,            signature (− + − −). 

 

(
−𝑥0 + 𝑖𝑥3 𝑥1 + 𝑥2
−𝑥1 + 𝑥2 𝑥0 + 𝑖𝑥3

) = −𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 1
−1 0

) − 𝑥2 (
0 −1
−1 0

) − 𝑥3 (
−𝑖 0
0 −𝑖

) ; 

where 

𝜎0
(−+−−)

= (
1 0
0 −1

) , 𝜎1
(−+−−)

= (
0 1
−1 0

) , 𝜎2
(−+−−)

= (
0 −1
−1 0

) , 𝜎3
(−+−−)

= (
−𝑖 0
0 −𝑖

). 

 

16 

(
−𝑥0 + 𝑖𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 + 𝑖𝑥3

)
𝑑𝑒𝑡

= −𝑥0
2− 𝑥1

2 − 𝑥2
2 − 𝑥3

2 = 0,              signature (− − − −). 

 

(
−𝑥0 + 𝑖𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 + 𝑖𝑥3

) = −𝑥0 (
1 0
0 −1

) − 𝑥1 (
0 −1
−1 0

) − 𝑥2 (
0 −𝑖
𝑖 0

) − 𝑥3 (
−𝑖 0
0 −𝑖

) ; 

where 

𝜎0
(−−−−)

= (
1 0
0 −1

) , 𝜎1
(−−−−)

= (
0 −1
−1 0

) , 𝜎2
(−−−−)

= (
0 −𝑖
𝑖 0

) , 𝜎3
(−−−−)

= (
−𝑖 0
0 −𝑖

).
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Each А4-matrix from the Table 1 is associated with a “colored” quaternion with the 

corresponding stignature (see Table 2), where following objects are used as imaginary units   

𝑒1 → 𝜎1 = (
1 0
0 1

)                𝑒2 → 𝜎2 = (
0 1
1 0

)               𝑒3 → 𝜎3 = (
𝑖 0
0 𝑖

)              𝑒4 → 𝜎4 = (
0 𝑖
𝑖 0

)            (62) 

 𝑒⃗⃗⃗5 → 𝜎5 = (
−1 0
0 1

)            𝑒6 → 𝜎6 = (
0 −1
1 0

)            𝑒7 → 𝜎7 = (
−𝑖 0
0 𝑖

)            𝑒8 → 𝜎8 = (
0 −𝑖
𝑖 0

) 

𝑒9 → 𝜎9 = (
1 0
0 −1

)             𝑒10 → 𝜎10 = (
0 1
−1 0

)        𝑒11 → 𝜎11 = (
𝑖 0
0 −𝑖

)         𝑒12 → 𝜎12 = (
0 𝑖
−𝑖 0

) 

𝑒13 → 𝜎13 = (
−1 0
0 −1

)      𝑒14 → 𝜎14 = (
0 −1
−1 0

)     𝑒15 → 𝜎15 = (
−𝑖 0
0 −𝑖

)      𝑒16 → 𝜎16 = (
0 −𝑖
−𝑖 0

), 

where σij are the Pauli-Cayley spin-matrices, which are generators of the Clifford algebra and satisfy 

the conditions

 

                               𝜎𝑖𝜎𝑗 + 𝜎𝑗𝜎𝑖 = {
(
0 0
0 0

)при  𝑖 ≠ 𝑗,

2 (
1 0
0 1

)при  𝑖 = 𝑗.
                                (63) 

In Table 1 shows only particular cases of spin-tensor representations of quadratic forms. For 

example, the quadratic form 𝑠(+ − − −)2 = 𝑥0
2 − 𝑥1

2 − 𝑥2
2 − 𝑥3

2 is the determinant of all the following 

22-matrices (Hermitian spin-tensors): 

  (64) 
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Table 2. Quadratic forms, А4-matrices and "colored" quaternions. 

Quadratic form А4-matrix "Colored" quaternion Stignatur 

ds12=x02+x12+x22+x32 𝑥0 (
1 0
0 1

) + 𝑥1 (
0 𝑖
𝑖 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
𝑖 0
0 −𝑖

) z1 = x0 + ix1 + jx2 + kx3   {+ + + +} 

ds22=x02–x12–x22 + x32 𝑥0 (
1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) − 𝑥2 (
0 𝑖
−𝑖 0

) + 𝑥3 (
−𝑖 0
0 𝑖

) z2 =  x0 – ix1 – jx2 + kx3   {+ – – +} 

ds32=x02+x12+x22 –x32 𝑥0 (
1 0
0 1

) + 𝑥1 (
0 𝑖
𝑖 0

) + 𝑥2 (
0 1
−1 0

) − 𝑥3 (
−1 0
0 1

) z3 =  x0 + ix1 + jx2 – kx3   {+ + + –} 

ds42=x02+x12–x22– x32 𝑥0 (
1 0
0 1

) + 𝑥1 (
0 1
−1 0

) − 𝑥2 (
0 −1
−1 0

) − 𝑥3 (
1 0
0 −1

) z4 =  x0 + ix1 – jx2 – kx3   {+ + – –} 

ds52=–x02+x12+x22–x32 −𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 𝑖
𝑖 0

) + 𝑥2 (
0 1
−1 0

) − 𝑥3 (
−𝑖 0
0 −𝑖

) z5 = – x0 + ix1 + jx2 – kx3   {– + + –} 

ds62=x02–x12–x22–x32 𝑥0 (
1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) − 𝑥2 (
0 −𝑖
𝑖 0

) − 𝑥3 (
1 0
0 −1

) z6 =  x0 – ix1 – jx2 – kx3   {+ – – –} 

ds72=x02+x12–x22 + x32 𝑥0 (
1 0
0 1

) + 𝑥1 (
0 1
−1 0

) − 𝑥2 (
0 −1
−1 0

) + 𝑥3 (
𝑖 0
0 −𝑖

) z7 =  x0 + ix1 – jx2 + kx3   {+ + – +} 

ds82=x02–x12 +x22 +x32 𝑥0 (
1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
𝑖 0
0 −𝑖

) z8 = x0 –ix1 + jx2 + kx3   {+ – + +} 

ds92=–x02–x12–x22+x32 −𝑥0 (
−1 0
0 1

) − 𝑥1 (
0 −𝑖
𝑖 0

) − 𝑥2 (
0 −1
−1 0

) + 𝑥3 (
1 0
0 1

) z9 = – x0 – ix1 – jx2 + kx3   {– – – +} 

ds102=–x02–x12+x22 –x32 −𝑥0 (
1 0
0 −1

) − 𝑥1 (
0 −1
−1 0

) + 𝑥2 (
0 1
−1 0

) − 𝑥3 (
−𝑖 0
0 −𝑖

) z10 = – x0 – ix1 + jx2 – kx3   {– – + –} 

ds112=–x02+x12+x22+x32 −𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 𝑖
𝑖 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
1 0
0 1

) z11 = – x0 + ix1 + jx2 + kx3   {– + + +} 

ds122=x02–x12+x22–x32 𝑥0 (
1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) + 𝑥2 (
0 1
−1 0

) − 𝑥3 (
1 0
0 −1

) z12 =  x0 – ix1 + jx2 – kx3   {+ – + –} 

ds132=–x02 –x12+x22 + x32 −𝑥0 (
−1 0
0 1

) − 𝑥1 (
0 −1
−1 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
1 0
0 1

) z13 = – x0 – ix1 + jx2 + kx3   {– – + +} 

ds142=x02 –x12+ x22 +x32 −𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 1
−1 0

) − 𝑥2 (
0 −1
−1 0

) − 𝑥3 (
−𝑖 0
0 −𝑖

) z14 = – x0 + ix1 + jx2 + kx3   {– + – +} 

ds152=–x02+x12–x22+x32 −𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 −1
1 0

) − 𝑥2 (
0 −1
−1 0

) –𝑥3 (
1 0
0 1

) z15 = – x0 + ix1 – jx2 – kx3   {– + – –} 

ds162=–x02 –x12–x22–x32 −𝑥0 (
1 0
0 −1

) − 𝑥1 (
0 −1
−1 0

) − 𝑥2 (
0 −𝑖
𝑖 0

) − 𝑥3 (
−𝑖 0
0 −𝑖

) z16 = – x0 – ix1 – jx2 –kx3   {– – – –} 

The spin-tensor representations of all 16 quadratic forms given in Table 1 also branch out 

(degenerate). In a number of cases, the discrete degeneracy (i.e., hidden ambiguity) of the initial ideal 

state of the m,n-vacuum, when deviating from ideality, can lead to splitting (quantization) into a 

discrete set of unequal states of its transverse layers. 

Sixteen types of А4-matrices are equivalent to 16 "colored" quaternions (section 5.9 in [1]). For 

clarity, all types of А4-matrices and all varieties of “colored” quaternions are summarized in Table 2. 

The Algebra of Signature relates a zero-balanced superposition of linear forms with all 16 

possible stignatures: 

                        ds =  (– dx0 – dx1 – dx2 – dx3)  +  (  dx0 + dx1+ dx2 + dx3) +                  (65) 

                             + (  dx0 + dx1+ dx2 – dx3)  +  (– dx0 – dx1 – dx2 + dx3) +  

                             + (– dx0 + dx1+ dx2 – dx3)   +  (  dx0 – dx1 – dx2 + dx3) +  

                             + (  dx0 + dx1 – dx2 + dx3)  +  (– dx0 – dx1 + dx2 – dx3) +    

                             + (– dx0 – dx1+ dx2 + dx3)   +  (  dx0 + dx1 – dx2 – dx3) +        

                             + (  dx0 – dx1 + dx2 + dx3)  +  (– dx0 + dx1 – dx2 – dx3) +  

                             + ( – dx0+ dx1 – dx2+ dx3)   +  (  dx0 – dx1 + dx2 – dx3) + 

                             + (  dx0 – dx1 – dx2 – dx3)  +  (– dx0 + dx1 + dx2 + dx3) = 0,   

      

with one of the variants of the superposition of sixteen А4-matrices, which also satisfies the vacuum 

balance condition: 

                                𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 −𝑖
𝑖 0

) + 𝑥2 (
0 −1
1 0

) + 𝑥3 (
𝑖 0
0 −𝑖

)                     (66) 

                              + 𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 −1
1 0

) + 𝑥2 (
0 −𝑖
𝑖 0

) + 𝑥3 (
−𝑖 0
0 𝑖

) + 

                              + 𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 𝑖
−𝑖 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
1 0
0 −1

) + 
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                           + 𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 1
−1 0

) + 𝑥2 (
0 −1
1 0

) + 𝑥3 (
−1 0
0 1

) +   

                           + 𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 −𝑖
𝑖 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
𝑖 0
0 𝑖

) + 

                           + 𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 −1
1 0

) + 𝑥2 (
0 𝑖
−𝑖 0

) + 𝑥3 (
−1 0
0 1

) +    

                           + 𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 1
−1 0

) + 𝑥2 (
0 −1
1 0

) + 𝑥3 (
−𝑖 0
0 −𝑖

)+ 

                           + 𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 −1
1 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
𝑖 0
0 −𝑖

) + 

                           + 𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 𝑖
−𝑖 0

) + 𝑥2 (
0 −1
1 0

) + 𝑥3 (
1 0
0 −1

) + 

                           + 𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 1
−1 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
−𝑖 0
0 𝑖

)+ 

                            + 𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 −𝑖
𝑖 0

) + 𝑥2 (
0 −1
1 0

) + 𝑥3 (
1 0
0 1

)+ 

                            + 𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 −1
1 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
−1 0
0 −1

)+ 

                            + 𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 𝑖
−𝑖 0

) + 𝑥2 (
0 −𝑖
−𝑖 0

) + 𝑥3 (
−1 0
0 1

)+  

                            + 𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 1
−1 0

) + 𝑥2 (
0 −1
1 0

) + 𝑥3 (
−𝑖 0
0 −𝑖

)+ 

                            + 𝑥0 (
1 0
0 −1

) + 𝑥1 (
0 −1
1 0

) + 𝑥2 (
0 1
−1 0

) + 𝑥3 (
1 0
0 −1

)+  

                            + 𝑥0 (
−1 0
0 1

) + 𝑥1 (
0 1
−1 0

) + 𝑥2 (
0 𝑖
𝑖 0

)  + 𝑥3 (
𝑖 0
0 𝑖

)  = (
0 0
0 0

).   

The stignature-spin-tensor mathematical apparatus presented here is convenient for solving a 

number of problems related to multilayer inside vacuum rotational processes, which will be 

considered in the following articles of this proposed project. 

2.11 Using spin-tensors with different signatures 

Let’s consider two examples using spin-tensors. 

Example 1: Let a column matrix and its Hermitian conjugate row matrix be given 

  ( )
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2

1
,, ss

s

s
,                                                                              (67) 

which describe the state of the spinor. 

The spin projections on the coordinate axis for the case when the metric 4-space has the signature 

(+ – – –) can be determined using spin-tensor (67) and А4-matrices (59) 

(𝑠1
∗, 𝑠2

∗) (
𝑥0 + 𝑥3 𝑥1 + 𝑖𝑥2
𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3

) (
𝑠1
𝑠2
) = 

         = 𝑥0(𝑠1
∗, 𝑠2

∗) (
1 0
0 1

) (
𝑠1
𝑠2
) − 𝑥1(𝑠1

∗, 𝑠2
∗) (

0 −1
−1 0

) (
𝑠1
𝑠2
) − 𝑥2(𝑠1

∗, 𝑠2
∗) (
0 −𝑖
𝑖 0

) (
𝑠1
𝑠2
) − 𝑥3(𝑠1

∗, 𝑠2
∗) (
−1 0
0 1

) (
𝑠1
𝑠2
)  =       (68) 

         = (𝑠1
∗𝑠1 + 𝑠2

∗𝑠2)𝑥0 − (−𝑠2
∗𝑠1 − 𝑠2

∗𝑠1)𝑥1 − (𝑖𝑠2
∗𝑠1 − 𝑖𝑠1

∗𝑠2)𝑥2 − (−𝑠1
∗𝑠1 + 𝑠2

∗𝑠2)𝑥3. 
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Example 2: Let the forward and reverse waves be described by expressions 

  �⃗⃗̃�1
(+)
= �̄�+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟),                                                                       (69) 

  �⃗⃗̃�2
(−)
= �̄�−𝑒

𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟),                                                                        (70) 

where a+ and a– are the amplitudes of the forward and reverse waves. In general, these are complex 

numbers: 

 �̄�+ = 𝑎+𝑒
𝑖𝜙+ , �̄�− = 𝑎−𝑒

−𝑖𝜙− ,     �̄�+
∗ = 𝑎+𝑒

−𝑖𝜙+ , �̄�−
∗ = 𝑎−𝑒

𝑖𝜙− ,                                 (71) 

which contain information about the phases of the waves φ+ and φ– . 

Mutually opposite waves (69) and (70) can be represented as a two-component spinor: 

(
𝑠1
𝑠2
) = |𝜓⟩ = (

�̄�+𝑒
−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

�̄�−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

)                                                                 (72) 

and its Hermitian conjugate spinor 

(𝑠1
∗, 𝑠2

∗) = |𝜓⟩+ = ⟨𝜓| = (�̄�+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟), �̄�−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)).                                          (73) 

The normalization condition in this case is expressed by the equality 

(𝑠1
∗, 𝑠2

∗) (
𝑠1
𝑠2
) = ⟨𝜓|𝜓⟩ = (�̄�+

∗ 𝑒𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟) �̄�−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)) (

�̄�+𝑒
−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

�̄�−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

) = |�̄�+|
2 + |�̄�−|

2.            (74) 

To find the projections of the spin (circular polarization) of a light beam on the coordinate axes, 

we use the spin-tensor 

А3 = (
𝑥3 𝑥1 + 𝑖𝑥2

𝑥1 − 𝑖𝑥2 −𝑥3
) = 𝑥1 (

0 1
1 0

) + 𝑥2 (
0 𝑖
−𝑖 0

) + 𝑥3 (
1 0
0 −1

),                             (75) 

which is related to the 3-dimensional metric 

𝑑𝑒𝑡( А3) = (
𝑥3 𝑥1 − 𝑖𝑥2

𝑥1 − 𝑖𝑥2 −𝑥3
)
𝑑𝑒𝑡

= |
𝑥3 𝑥1 − 𝑖𝑥2

𝑥1 + 𝑖𝑥2 −𝑥3
|  =  −(𝑥1

2 + 𝑥1
2 + 𝑥1

2),                  (76)   

with signature (– – –). 

Assuming in Ex. (75) x1 = x2 = x3 = 1, we consider the spin projections on the coordinate axes 

(𝑠1
∗, 𝑠2

∗) (
0 1
1 0

) (
𝑠1
𝑠2
) + (𝑠1

∗, 𝑠2
∗) (

0 𝑖
−𝑖 0

) (
𝑠1
𝑠2
) + (𝑠1

∗, 𝑠2
∗) (
1 0
0 −1

) (
𝑠1
𝑠2
) = 

= (𝑠2
∗𝑠1 + 𝑠2

∗𝑠1) + (−𝑖𝑠2
∗𝑠1 + 𝑖𝑠1

∗𝑠2) + (𝑠1
∗𝑠1 − 𝑠2

∗𝑠2).                                             (77) 

 

Substituting spinors (72) and (73) into this expression, we obtain the following three spin 

projections on the corresponding coordinate axes x1 = x,  x2 = y,  x3 = z:  

  ⟨𝑠𝑥⟩ = ⟨𝜓|−𝜎1|𝜓⟩ = (𝑠1
∗, 𝑠2

∗) (
0 1
1 0

) (
𝑠1
𝑠2
) = 

 = (�̄�+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟), �̄�−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)) (

0 1
1 0

)(
�̄�+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

�̄�−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

) = �̄�−
∗ �̄�+𝑒

−𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) + �̄�+

∗ �̄�−𝑒
𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟);               (78) 

 ⟨𝑠𝑦⟩ = ⟨𝜓|−𝜎2|𝜓⟩ = (𝑠1
∗, 𝑠2

∗) (
0 𝑖
−𝑖 0

) (
𝑠1
𝑠2
) = 

        = (�̄�+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟), �̄�−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)) (

0 𝑖
−𝑖 0

)(
�̄�+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

�̄�−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

) = 

        = �̄�−
∗ �̄�+𝑒

−𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) + �̄�+

∗ �̄�−𝑒
𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) = 𝑖 [�̄�+

∗ �̄�−𝑒
𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟) − �̄�−

∗ �̄�+𝑒
−𝑖
4𝜋

𝜆
(𝑐𝑡−𝑟)] ;                                  (79) 
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  ⟨𝑠𝑧⟩ = ⟨𝜓|−𝜎3|𝜓⟩ = (𝑠1
∗, 𝑠2

∗) (
1 0
0 −1

)(
𝑠1
𝑠2
) = 

          = (�̄�+
∗ 𝑒𝑖

2𝜋

𝜆
(𝑐𝑡−𝑟), �̄�−

∗ 𝑒−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)) (

1 0
0 −1

)(
�̄�+𝑒

−𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

�̄�−𝑒
𝑖
2𝜋

𝜆
(𝑐𝑡−𝑟)

) = |�̄�+|
2 − |�̄�−|

2.                      (80)  

In the case of φ+= φ–= 0, Formulas (78) – (80) take the following simplified form: 

  ⟨𝑠𝑥⟩ = 2𝑎+𝑎− 𝑐𝑜𝑠 [
4𝜋

𝜆
(𝑐𝑡 − 𝑟)] = 2𝑎+𝑎− 𝑐𝑜𝑠[2(𝜔𝑡 − 𝑘𝑟)],                                       (81) 

  ⟨𝑠𝑦⟩ = 2𝑎+𝑎− 𝑠𝑖𝑛 [
4𝜋

𝜆
(𝑐𝑡 − 𝑟)] = 2𝑎+𝑎− 𝑠𝑖𝑛[2(𝜔𝑡 − 𝑘𝑟)],           

  ⟨𝑠𝑧⟩ = |𝑎+|
2 − |𝑎−|

2.    

In the case of equality of the amplitudes of the direct and backward waves a+ = a–, instead of   

Eqs. (81), we obtain the following average spin projections 

   ⟨𝑠𝑥⟩ = 2𝑎+
2 𝑐𝑜𝑠[2(𝜔𝑡 − 𝑘𝑟)],                                                                   (82) 

   ⟨𝑠𝑦⟩ = 2𝑎+
2 𝑠𝑖𝑛[2(𝜔𝑡 − 𝑘𝑟)],      

   ⟨𝑠𝑧⟩ = 0.   

The projection of the spin (the rotating vector of the electric field strength) on the direction of 

propagation of the light beam Z is unchanged and equal to zero. At the same time, its projection onto 

the XY plane, perpendicular to the direction of propagation of this beam, rotates around the Z axis 

with an angular velocity  = 4с/. Thus, the spinor representation of the propagation of a conjugated 

pair of waves leads to a description of circular polarization without resorting to additional 

hypotheses. 

Similarly, can be performed an analysis of wave propagation in a 3-dimensional metric extent 

with signatures:  

(– – –), (+ – –), (– + –), (– – +), (+ + +), (– + +), (+ – +), (+ + –). 

2.12 The Dirac bundle of quadratic form 

Let’s consider the Dirac “bundle” of a quadratic form using the example of the metric 

 

 𝑑𝑠2 = 𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2= dx02 + dx12 + dx22 + dx32 with signature (+ + + +).                (83) 

 

We imagine this metric as a product of two affine (linear) forms 

 

𝑑𝑠2 = 𝑑𝑠′𝑑𝑠″ = (𝛾0𝑑𝑥0' + 𝛾1𝑑𝑥1′ + 𝛾2𝑑𝑥2′ + 𝛾3𝑑𝑥3′) ⋅ (𝛾0𝑑𝑥0'' + 𝛾1𝑑𝑥1'' + 𝛾2𝑑𝑥2'' + 𝛾3𝑑𝑥3'').    (84) 

 

By opening the brackets in this expression, we get 

 

𝑑𝑠′𝑑𝑠″ = ∑ ∑ 𝛾𝜇𝛾𝜂𝑑𝑥
𝜇𝑑𝑥𝜂3

𝜂=0
3
𝜇=0 =

1

2
∑ ∑ (𝛾𝜇𝛾𝜂 + 𝛾𝜂𝛾𝜇)𝑑𝑥

𝜇𝑑𝑥𝜂3
𝜂=0

3
𝜇=0 .                       (85) 

 

There are at least two options for determining the values  that satisfy the condition of equality 

of Exs. (83) – (85): 1) the method of Clifford aggregates (for example, quaternions); 2) the Dirac 

method. 

In the case of applying the Clifford aggregates method, the linear forms included in expression 

(84) are represented as a pair of affine aggregates: 

 

  𝑑𝑠′ = 𝛾0𝑐𝑑𝑡
′  + 𝛾1𝑑𝑥

′ + 𝛾2𝑑𝑦
′ + 𝛾3𝑑𝑧

′,                                                  (86) 

  𝑑𝑠″ = 𝛾0𝑐𝑑𝑡
″ + 𝛾1𝑑𝑥

″ + 𝛾2𝑑𝑦
″ + 𝛾3𝑑𝑧

″,
   

                                   
          

 (87) 
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with stignature {+ + + +}, where   are objects that satisfy the commutative condition of the Clifford 

algebra 

    η   +   η  = 2 η ,                                                                   (88) 

 

where  𝛿𝜇𝜂 = {
1 for 𝜇 = 𝜂,
0 for 𝜇 ≠ 𝜂

  are the Kronecker symbols.                                       (89)  

 

In the second case, the Dirac method suggests using the identity matrix instead of the Kronecker 

symbols (89) 

𝛿𝜇𝜂 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) ,                                                                  (90) 

 

then condition (88) is satisfied, for example, by the following set of 44 Dirac matrices: 

 

𝛾0 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

),    𝛾1 = (

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

) ,     𝛾2 = (

0 0 0 −𝑖
0 0 𝑖 0
0 −𝑖 0 0
𝑖 0 0 0

),   𝛾3 = (

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

) .

         

(91) 

 

Эти матрицы можно рассматривать в качестве образующих соответствующей алгебры 

Клиффорда. В этом случае выражение (85) приобретает матричный вид         

 

 

(𝑑𝑠𝑖𝑖
2) = ∑ ∑ 𝛾𝜇𝛾𝜂𝑑𝑥

𝜇𝑑𝑥𝜂3
𝜂=0

3
𝜇=0 =

1

2
∑ ∑ (𝛾𝜇𝛾𝜂 + 𝛾𝜂𝛾𝜇)𝑑𝑥

𝜇𝑑𝑥𝜂3
𝜂=0

3
𝜇=0 ,                      (92) 

 

where   (𝑑𝑠𝑖𝑖
2) =

(

 
 

𝑑𝑠00
2 0 0 0

0 𝑑𝑠11
2 0 0

0 0 𝑑𝑠22
2 0

0 0 0 𝑑𝑠33
2
)

 
 
.                                                (93) 

 

Ex. (92), taking into account (90), can be represented as 

 

 

(𝑑𝑠𝑖𝑖
2) = ∑ ∑ 𝛾𝜇𝛾𝜂𝑑𝑥

𝜇𝑑𝑥𝜂3
𝜂=0

3
𝜇=0 = 𝑐2𝑑𝑡2(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) + 𝑑𝑥2(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) + 

 

                                                                             +𝑑𝑦2 (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) + 𝑑𝑧2 (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

).          (94) 

 

Let’s return to the quadratic form (83) and its Dirac bundle (92) 

 

(𝑑𝑠𝑖𝑖
2) = ∑ ∑ 𝛾𝜇𝛾𝜂𝑑𝑥

𝜇𝑑𝑥𝜂3
𝜂=0

3
𝜇=0 = ∑ ∑ 𝑏𝜇𝜂𝑑𝑥

𝜇𝑑𝑥𝜂3
𝜂=0

3
𝜇=0 ,                                  (95) 

 

where  𝛾𝜇𝛾𝜂 = 𝑏𝜇𝜂 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

).                                                         (96)  

 

We consider all possible ways of writing Ex. (95). To do this, we use the following basis of 16 

possible Dirac γ(ρ)-matrices: 
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            𝛾0
(0) = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)   𝛾1
(0) = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)    𝛾2
(0) = (

𝑖 0 0 0
0 𝑖 0 0
0 0 𝑖 0
0 0 0 𝑖

)      𝛾3
(0) = (

0 𝑖 0 0
𝑖 0 0 0
0 0 0 𝑖
0 0 𝑖 0

)         (97) 

 

𝛾0
(1) = (

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)   𝛾1
(1) = (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)     𝛾2
(1) = (

0 0 0 𝑖
0 0 𝑖 0
0 𝑖 0 0
𝑖 0 0 0

)     𝛾3
(1) = (

0 0 𝑖 0
0 0 0 𝑖
𝑖 0 0 0
0 𝑖 0 0

) 

 

𝛾0
(2) = (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)   𝛾1
(2) = (

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

)      𝛾2
(2) = (

𝑖 0 0 0
0 𝑖 0 0
0 0 0 𝑖
0 0 𝑖 0

)    𝛾3
(2) = (

0 0 0 𝑖
0 0 𝑖 0
𝑖 0 0 0
0 𝑖 0 0

) 

𝛾0
(3) = (

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)      𝛾1
(3) = (

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

)      𝛾2
(3) = (

0 𝑖 0 0
𝑖 0 0 0
0 0 𝑖 0
0 0 0 𝑖

)     𝛾3
(3) = (

0 0 𝑖 0
0 0 0 𝑖
0 𝑖 0 0
𝑖 0 0 0

). 

Dirac's method, in contrast to the method of affine aggregates, allows one to simultaneously 

"stratify" four metric spaces with four metrics that are components of the matrix (93). 

In the Algebra of Signatures, sixteen quadratic forms (31) with corresponding signatures (32) are 

considered, each of them can also be "stratify" by the Dirac method 

 

                               (𝑑𝑠𝑖𝑖
(а,𝑏)2

) = ∑ ∑ 𝛾𝜇
(а)
𝛾𝜂
(𝑏)
𝑑𝑥𝜇𝑑𝑥𝜂3

𝜂=0
3
𝜇=0 ,                            (98) 

here  (a) (b) = b (ab,                                                                         (99) 

 

But in this case, each b(ab)-matrix has a corresponding stignature:                            (100) 

𝑏𝜇𝜂
00 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)             𝑏𝜇𝜂
10 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)         𝑏𝜇𝜂
20 = (

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)           𝑏𝜇𝜂
30 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

)   

𝑏𝜇𝜂
01 = (

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)   𝑏𝜇𝜂
11 = (

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)      𝑏𝜇𝜂
21 = (

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

)             𝑏𝜇𝜂
31 = (

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

)  

𝑏𝜇𝜂
02 = (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)     𝑏𝜇𝜂
12 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)    𝑏𝜇𝜂
22 = (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 − 1

)      𝑏𝜇𝜂
32 = (

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

) 

𝑏𝜇𝜂
03 = (

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)   𝑏𝜇𝜂
13 = (

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)   𝑏𝜇𝜂
23 = (

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)   𝑏𝜇𝜂
33 = (

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

).       

T 

he signs before the units in the diagonal b(ab)-matrices correspond to the sets of signs in the 

components of the signature matrix (32). In this paragraph, for brevity, we will temporarily omit the 

upper indices and instead of "b(ab)-matrix" we will write "b-matrix". 

Let's return to the Dirac "bundle" of the quadratic form (92) 

                            (𝑑𝑠𝑖𝑖
2) = ∑ ∑ 𝛾𝜇𝛾𝜂𝑑𝑥

𝜇𝑑𝑥𝜂3
𝜂=0

3
𝜇=0 = ∑ ∑ 𝑏𝜇𝜂𝑑𝑥

𝜇𝑑𝑥𝜂3
𝜂=0

3
𝜇=0 ,                  (101) 

 

where                            𝛾𝜇𝛾𝜂 = 𝑏𝜇𝜂 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

).                              (102) 

Let's return to the Dirac "bundle" of the quadratic form (92) и рассмотрим всевозможные 

варианты ее раскрытия.  



 25 

 

Each of the sixteen γ(ρ)-matrices (97) can be selected a second γ()-matrix from the same set, such 

that their product is equal to the b-matrix (102). For example: 

 

                          (

0 𝑖 0 0
𝑖 0 0 0
0 0 𝑖 0
0 0 0 𝑖

)(

0 −𝑖 0 0
−𝑖 0 0 0
0 0 −𝑖 0
0 0 0 −𝑖

) = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

).

       

             (103) 

 

Each γ(ρ)-matrix (97) can have one of 16 possible stignatures. For example: 

         

𝛾11
00 = (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)          𝛾11
10 = (

0 0 1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)        𝛾11
20 = (

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

)      𝛾11
30 = (

0 0 −1 0
0 0 0 1
1 0 0 0
0 1 0 0

)       (104) 

          𝛾11
01 = (

0 0 −1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)  𝛾11
11 = (

0 0 1 0
0 0 0 1
−1 0 0 0
0 1 0 0

)       𝛾11
21 = (

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)      𝛾11
31 = (

0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

) 

           𝛾11
02 = (

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

)       𝛾11
12 = (

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)     𝛾11
22 = (

0 0 −1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

)   𝛾11
32 = (

0 0 1 0
0 0 0 1
1 0 0 0
0 −1 0 0

) 

           𝛾11
03 = (

0 0 1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

)      𝛾11
13 = (

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

)   𝛾11
23 = (

0 0 −1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

)   𝛾11
33 = (

0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

). 

 

For each of these γρij-matrices, it is also possible to select a second γnj-matrix, the product of 

which leads to the b-matrix (102). 

Thus, taking into account 16 stignatures from 16 γρ-matrices (97), 1616 = 256 γρij-matrices are 

obtained. Each γρij-matrix (104) can be transformed into one of 16 mixed matrices. Let us explain this 

statement by the example of the γ1113-matrix: 
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   (105) 

With a similar stirring of all 256 γρij-matrices (105), a basis of 163 = 256  16 = 4096 nkγρij-matrices 

is obtained. Therefore, in this case is the b-matrix (102) can be given by one of 4096 products of pairs 

of nkγρij--matrices. 
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In turn, all sixteen b-matrices (100) can be given by 164 = 65536 different variants of paired 

products of vcnk γ lmij-matrices. Similarly, it is possible to continue building up the basis of generalized 

Dirac γ-matrices almost indefinitely. 

The Dirac "bundle" of only one quadratic form (83) was considered above. Similarly, all other 

metrics (31) are "stratified".  

The whole set of vcnk γ lmij-matrices will be called generalized Dirac matrices, and the metric 

stratified by means of these matrices will be called a Dirac bundle of quadratic form with the 

corresponding signature. 

3 Conclusions 

In this second part of "Geometrized Vacuum Physics" there are no physical models. This article 

is devoted to the development of the mathematical apparatus of the Algebra of Signatures, which 

follows from the Algebra of Stignatures [1]. 

The Algebra of Stignatures and the Algebra of Signatures are a kind of mental glasses that it is 

suggested to put on the researcher's mind in order to recognize the Meanings realized in the reality 

around us. 

For some researchers, it will be important to know that the Algebra of Stignatures and the 

Algebra of Signatures (under the common name Algebra of Signatures, or abbreviated "Alsigna") is 

an extension of the ancient Pythagorean tradition (i.e., scientific knowledge) based on the Algorithms 

for revealing the Great Name of the ALMIGHTY י-ה-ו-ה (Yud-Key-Vav-Key) [6], underlying Judaism, 

and supplemented by the logical constructions of Taoism, Hinduism, Zoroastrianism and Ometeotl. 

Algebra of Signatures is open for its replenishment and expansion based on the logical concepts 

of various religions, cultures and philosophical schools. The mathematical apparatus of the Algebra 

of Signatures can be developed by representatives of all ancient philosophical traditions, with the 

urgent observance of the condition of "vacuum (i.e. zero) balance". In this sense, Algebra of Signatures 

can serve as a universal scientific platform for general cognitive "Agreement". 

In this article, pairwise scalar multiplication of vectors from all 16 affine spaces with 4-bases 

shown in Figure 3, led to the formation of 16  16 = 256 metric 4-spaces with 4-metrics of the form 

(10), which intersect at the point O under study (see Figure 1). 

Among 256 metric spaces, there were 16 types of spaces with corresponding signatures, forming 

a matrix of signatures (32) 

 

            𝑠𝑡𝑖𝑔𝑛(𝑑𝑠(а,𝑏)2 ) = (

(+ + ++) (+ + +−) (− + + −) (+ + − +)

(− − −+) (− + ++) (− − + +) (− + − +)

(+ − −+) (+ + −−) (+ − − −) (+ − + +)

(− − +−) (+ − +−) (− + − −) (− − − −)

).      

     

The properties of this matrix of signatures largely repeat the properties of the matrix of 

stignatures obtained in the article [1]. 

Further, it was shown that the signature of a metric space is related to its topology, and the 

additive imposition of 256 metric spaces with 16 types of topologies (or signatures) satisfies the 

vacuum balance condition. 

At the same time, it turned out that the mathematical apparatus of the Algebra of Signatures 

allows the additive imposition of an infinite number of metric spaces with 16 types of topologies 

under the condition of a vacuum (i.e., zero) balance, which leads to the formation of a Ricci flat space 

similar to a Calabi-Yau manifold. 

At the end of the article, a spin-tensor representation of metrics with different signatures is 

considered and a Dirac bundle of quadratic forms is presented to describe complex rotational intra-

vacuum processes. 

Alsigna's mathematical apparatus developed here and in the previous article [1] will be used in 

subsequent articles of this project to describe and mathematically model many vacuum effects and 

other physical phenomena. 
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