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Abstract. In Geometric Algebra, the degenerate-metric algebra G3,0,1

is known as the Projective Geometric Algebra (PGA) for 3D space
(3DPGA). In PGA, there is a point-based geometric algebra (point-
based PGA) and a plane-based geometric algebra (plane-based PGA).
Both algebras have homogeneous geometric entities for points, lines,
and planes. The two algebras of PGA are dual to each other through
a new geometric entity dualization operation Je, which is introduced in
this paper as its main subject and contribution. The new dualization
Je is an anti-involution with inverse −Je = De. Using Je, the dual of
a point-based PGA entity is its corresponding plane-based PGA entity
representing the same geometry (point, line, or plane) with the same
orientation. Using De = −Je, the inverse dual (undual) of a plane-
based PGA entity is its corresponding point-based PGA entity with the
same orientation. The new dualization operation Je maintains the cor-
rect orientation of an entity. Je is defined by a table of duals that are
found empirically by observation to maintain correct entity orientation
through the dualization. We define a Hodge star dualization operation
to be purely an involution, or else purely an anti-involution, between
all basis blades and their dual basis blades. As an anti-involution, Je is
also implemented by algebraic methods using Hodge star dualizations
in non-degenerate algebras that correspond to PGA. In the prior liter-
ature, there are other definitions for the duals in PGA that may not
maintain the correct entity orientation and are different than Je.
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1. Introduction

In Geometric Algebra [8][3][11](§4.1.1), the degenerate-metric algebra G3,0,1

is known as the Projective Geometric Algebra (PGA) for 3D space (3DPGA)
[6][7][5][2]. In PGA, there is a point-based geometric algebra (point-based
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PGA) and a plane-based geometric algebra (plane-based PGA). Both alge-
bras have homogeneous geometric entities for points, lines, and planes. The
two algebras of PGA are dual to each other through a new geometric entity
dualization operation Je(A) = A⋆ (§4), which is introduced in this paper as
its main subject and contribution in Section 4.

In G3,0,1, the basis vectors are {e0, e1, e2, e3} with metric [gij ] = [ei ·
ej ] = diag(0, 1, 1, 1). We use the hat notation Â = A/

√
|A2| for the unit of

any k-vector A. The unit pseudoscalar of the subalgebra G3 is I3 = e1e2e3.
The unit pseudoscalar of G3,0,1 is I4 = e0I3. The metric is called degenerate

since e20 = 0 and I24 = 0, and I−1
4 does not exist. For multivector A ∈ G3,

the dual of A in the subalgebra G3 is A∗ = A/I3 = A · I−1
3 . In G3,0,1, the

unit pseudoscalar I4, being degenerate, cannot be used for dualization in the
general case, except for the special case where A ∈ G3 and A⋆ = I4A =
−e0A

∗. For A ∈ G3,0,1 in the point-based PGA, the dual of A is A⋆ = Je(A)
(§4) in the plane-based PGA. For A⋆ ∈ G3,0,1 in the plane-based PGA, the
undual of A⋆ is (A⋆)−⋆ = A−⋆⋆ − Je(A

⋆) = De(A
⋆) = A (§4) in the point-

based PGA. Before we can discuss Je in detail, we must review PGA in
the point-based (§2) and plane-based algebras (§3), and review concepts of
dualization (§4). In the remainder of this section, we begin with an overview
of the point-based and plane-based algebras of PGA, and then describe the
structure and contents of the rest of the paper.

In the point-based algebra of PGA, a homogeneous point (w = 1, x, y, z)
is embedded as the 1-blade (vector) Pt = e0 + t, where t = xe1 + ye2 + ze3.
We consider Pt to be the symbolic “test” point entity. Other points, such
as P = Pp, embedding point p = pxe1 + pye2 + pze3, are considered to
be numerical or non-symbolic points. In the point-based algebra, the wedge
product ∧ acts as the join product of 1-blade points. The join product of
points represents the span, or linear combination, of the points. The join
product of two points {P1, P2} forms the 2-blade line L = P2∧P1. The linear
combination, or pencil, of two points {P1,P2} is all pointsP = (1−t)P2+tP1

with real parameter t along the line L between {P1, P2}. The span of {P1,
P2} includes any point P = (1−t)P2+tP1 on the line L such that P∧L = 0.
We call the line L an outer product null space (OPNS) geometric entity [11].
Point Pt is on line L if and only if Pt ∧L = 0. Line L represents the set (or
pencil) of points {P : P ∧ L = 0} called the OPNS of L. The join product
of three points {P1, P2, P3} forms the 3-blade plane Π = P3 ∧ P2 ∧ P1.
The plane Π is also an OPNS geometric entity. The plane Π represents the
span, or bundle, of points P = (1− s)((1− t)P2 + tP1) + sP3 on the plane.
Point Pt is on plane Π if and only if Pt ∧ Π = 0. The plane Π represents
the OPNS set (or bundle) of points {P : P ∧Π = 0}. The point Pt is also
an OPNS geometric entity. Point Pt represents the same point as point P
if and only if Pt ∧ P = 0. In the point-based algebra of PGA, the 1-blade
point P, 2-blade line L, and 3-blade plane Π geometric entities are OPNS
geometric entities. We also call the point-based geometric algebra of PGA
the OPNS PGA. In Section 2, we carefully derive these entities and discuss
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them further, paying close attention to their orientation, which is important
for defining the operation Je (§4).

In the plane-based algebra of PGA, a homogeneous plane with normal
vector n = nxe1 + nye2 + nze3 through point p = pxe1 + pye2 + pze3 is

embedded as the 1-blade (vector) π = n + (p · n)e0. If n = n̂ = n/
√
n2 (a

unit vector), then π = π̂ is a unit plane, where π2 = 1 and d = p · n̂ is the
distance of the plane from the origin along the direction n̂. In the plane-based
algebra, the wedge product ∧ acts as the meet product of 1-blade planes. The
meet product of planes represents their intersection. The meet product of two
planes {π1, π2} forms the 2-blade line l = π2 ∧π1. The linear combination,
or pencil, of planes {π1, π2} are planes π = (1− t)π2+ tπ1 also intersecting
line l such that π ∧ l = 0. The line l represents the pencil of planes as an
OPNS geometric entity. The meet product of three planes {π1, π2, π3} forms
the 3-blade point p = π1 ∧ π2 ∧ π3. The point p represents the bundle of
planes π = (1 − s)((1 − t)π2 + tπ1) + sπ3 passing through point p such
that π ∧ p = 0. For {πx = e1 + xe0, πy = e2 + ye0, πz = e3 + ze0},
pt = πx ∧ πy ∧ πz embeds the point t = xe1 + ye2 + ze3. Point pt is on
plane π if and only if pt∧π = pt×π = 0. The product × is the commutator
product, defined for any two multivectors {A, B} as A×B = (AB−BA)/2.
Point pt is on line l if and only if pt × l = 0. Point pt represents the same
point as p if and only if pt × p = 0. In the plane-based geometric algebra
of PGA, the 1-blade plane π, 2-blade line l, and 3-blade point p geometric
entities are commutator product null space (CPNS) geometric entities. We
also call the plane-based geometric algebra of PGA the CPNS PGA. Plane
π represents the CPNS set of points {pt : pt ×π = 0}. Line l represents the
CPNS set of points {pt : pt × l = 0}. In Section 3, we carefully derive these
entities and discuss them further, playing close attention to their orientation,
which is important for defining the operation Je (§4).

The orientation of the geometric entities is important for applications.
An orientation is just a plus or minus sign. For example, the plane π and −π
have opposite facing sides. The most important contribution of this paper is
that all of the entities, the dualization operation Je, and all of the other oper-
ations are defined or derived such that the geometric entities maintain their
correct orientations through all operations. The new dualization operation Je
is different than the dualization operations J [5] and ⋆ [2] in prior literature
by having different signs such that Je maintains the correct orientation of
entities and their duals.

The point-based and plane-based entities are related to each other as
duals. The dual of a point-based grade k entity A ∈ Gk

3,0,1 is its dual plane-

based grade 4 − k entity Je(A) = A⋆ = a ∈ G4−k
3,0,1. The dual of the point-

based 1-blade point P is the plane-based 3-blade point p = Je(P) = P⋆.
The dual of the point-based 2-blade line L is the plane-based 2-blade line
l = L⋆. The dual of the point-based 3-blade plane Π is the plane-based
1-blade plane π = Π⋆. The new operation Je is an anti-involution, where
Je(Je(A)) = −A. The inverse J−1

e = −Je dualizes a plane-based grade 4− k
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entity A⋆ = a ∈ G4−k
3,0,1 to its dual point-based grade k entity −Je(A

⋆) =

A−⋆⋆ = a−⋆ = A ∈ Gk
3,0,1. We also define the alias De = J−1

e = −Je so that

De(a) = a−⋆ = A is the dualization operation on an entity a in the plane-
based algebra to its corresponding dual entity a−⋆ = A in the point-based
algebra. The corresponding dual entities represent the same geometry with
the same orientation when Je and De = −Je are used correctly, using Je
to dualize from point-based to plane-based, and De = −Je to dualize from
plane-based to point-based.

The point pt = P⋆
t is the dual of point Pt and represents the same

point with the same orientation. Dual entities represent the same geometry
with the same orientation. The OPNS of line L is {Pt : Pt ∧ L = 0}, where
Pt ∧ L is grade 3. The CPNS of line l = L⋆ is {pt : pt × l = 0}, where
pt × l is also grade 3 and should match Pt ∧ L with the same orientation.
The OPNS of plane Π is {Pt : Pt ∧ Π = 0}, where Pt ∧ Π is grade 4.
The CPNS of plane π = Π⋆ is {pt : pt × π = 0}, where pt × π = pt ∧ π
is also grade 4 and should match Pt ∧ Π with the same orientation. The
OPNS of point P is {Pt : Pt ∧P = 0}, where Pt ∧P is grade 2. The CPNS
of point p = P⋆ is {pt : pt × p = 0}, where pt × p is also grade 2 and
should match Pt ∧P with the same orientation. These matching grades and
orientations are the requirements that must be satisfied by the new geometric
entity dualization operation Je. In Section 4, these requirements are carefully
observed to derive and define Je empirically as a table duals for all 24 = 16
basis blades in G3,0,1. We then find that Je is an anti-involution that can
be implemented as a Hodge dual in three different non-degenerate algebras
Gp,q,0 ∈ {G4,0,0,G1,3,0,G1,3,0} having basis blades that correspond to the basis
blades of G3,0,1.

In PGA, there is a rotation operator R = exp(θn̂∗/2) that applies to
all entities in both the point-based and plane-based algebras. R rotates any
entity A, as A′ = RAR−1, counterclockwise by angle θ around the axis n̂
centered on the origin. In the plane-based algebra, there is also a translation
operator T = exp(e0d/2), for translation by vector displacement d, that
applies as a′ = TaT−1 only for a ∈ {π, l,p} in the plane-based algebra. In
the plane-based algebra, there are also operations for reflections, projections
and rejections.

The plane-based algebra of PGA is similar to CGA G4,1 [3][11] and its
inner product null space (IPNS) entities. In CGA, the unit pseudoscalar is
I5 = e1e2e3e4e5. and dualization of any CGA entity A is A∗ = A/I5, and
the undual is A = A∗I5. In the OPNS CGA, the OPNS point is Pt, the
OPNS line is L, and the OPNS of L is {Pt : Pt ∧ L = 0}. In CGA, we can
dualize Pt ∧ L as (Pt ∧ L)/I5 = Pt · (L/I5) = Pt · L∗, where L∗ is the dual
IPNS line and the conformal point Pt = t+ t2e∞/2 + eo is not dualized. In
PGA, we cannot dualize using the unit pseudoscalar I4 since it is degenerate
and has no inverse, and instead we use the new operation Je. In PGA, we
must also dualize the homogeneous OPNS point Pt = e0 + t as the CPNS
point pt = P⋆

t . In CGA, the dual of an OPNS entity is its dual IPNS entity.
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In PGA, the dual of an OPNS entity is its dual CPNS entity, similar to the
IPNS CGA entity. The CGA element e∞, representing the point at infinity,
has no corresponding element in PGA, but its algebraic role is often fulfilled
by the PGA element e0 in the plane-based algebra. In [10] and [9], the PGA
point-based and plane-based algebras are seen as two subalgebras of CGA
and a dualization operation between these CGA-based subalgebras is given.
The approach in this paper for Je is different than in [10] and [9] and other
prior literature on PGA. The new operation Je is not defined in terms of
CGA or within CGA. The new PGA dualization operation Je is defined by
empirical observation of orientation between dual entities, and we obtain Je
as an anti-involution different from all prior literature but more like the CGA
dualization operation, which is also an anti-involution since I25 = −1.

The paper is organized as follows. In Section 2, we review the point-
based geometric algebra of PGA and carefully derive the point-based point
P, line L, and plane Π geometric entities. In Section 3, we review the plane-
based geometric algebra of PGA and carefully derive the plane-based plane
π, line l, and point p geometric entities. In Section 4, we review dualization
and introduce the new geometric entity dualization operation Je. In Section
5, we conclude the paper.

2. The Point-based Geometric Algebra of PGA

In this section, we define or derive each entity in the point-based algebra of
PGA, also called the OPNS PGA. The orientation of each entity is important
for defining the new geometric entity dualization operation Je in Section 4.

We use many geometric algebra identities, including I4 = −I3e0, b
∗ =

b/I3 = −bI3 (for the 2-blade dual b
∗ of 1-blade b in G3), aB = a·B+a∧B =

1
2 (aB − (−1)kBa) + 1

2 (aB + (−1)kBa) (for the product aB of 1-vector a

and k-vector B), (a · b)I3 = 1
2 (ab + ba)I3 = − 1

2 (ab
∗ + b∗a) = −a ∧ b∗,

(a · b)I4 = a ∧ b∗ ∧ e0, and (a · b∗)I4 = − 1
2 (ab

∗ − b∗a)I3e0 = a ∧ e0 ∧ b.

2.1. OPNS PGA Geometric Entities

The point-based geometric entities are the OPNS 1-blade point P, the OPNS
2-blade line L, and the OPNS 3-blade plane Π.

2.1.1. OPNS PGA 1-blade Point Geometric Entity. The OPNS PGA 1-blade
point entity Pt, embedding vector point t = xe1 + ye2 + ze3, is defined in
standard form and orientation as

Pt = e0 + t = De(pt) = p−⋆
t . (1)

The point Pt represents the homogeneous coordinates (w = 1, x, y, z). The
dual is Je(Pt) = P⋆

t = p−⋆⋆
t = pt, which is the plane-based point pt repre-

senting the same point with the same orientation. A directed point at infinity
is defined as

P∞t̂ = lim
∥t∥→∞

Pt

∥t∥
= t̂. (2)
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More generally, P∞t = t, since points are homogeneous and can be scaled by
any non-zero scalar ∥t∥ ≠ 0. For finite point Pt, vector t can be projected as

t = I3(Pt ∧ e0)
⋆/(I3 ∧Pt)

⋆. (3)

2.1.2. OPNS PGA 2-blade Line Geometric Entity. The OPNS PGA 2-blade
line L spanning pointsP1 andP2, or through pointP = P1 = e0+p1 = e0+p
with direction d = P2 −P1 = p2 − p1, is

L = Lp,d = d ∧P = P2 ∧P1 = De(lp,d) = l−⋆
p,d. (4)

Lp,d and Je(Lp,d) = L⋆
p,d = lp,d represent the same line with the same

orientation. If d = d̂, then Je(Lp,d̂) = l̂p,d = l̂ is a plane-based unit line,

where l̂
2
= −1.

The line L is derived as follows: Given two 3D points on the line, p1

and p2, the direction and orientation of the line is defined by d = p2 − p1,
toward p2. Given any third point p3 = t on the line, t−p1 should be parallel

to d and the projection ((t−p1) ·d∗)d∗−1 = −((t−p1) ·d∗)d̂∗∥d∥−1 should

be 0. We abridge d̂∗∥d∥−1 and take (p1 − t) · d∗ = 0 as the vector-valued
condition for t to be on the line. We did not abridge the minus sign since that
is the orientation of the projection. This condition is essentially the Plücker
coordinates (d,m = p1 × d) condition t× d = m for a line. We dualize the
vector-valued condition into the 3-blade condition Pt ∧L = ((p1 − t) ·d∗)I4.
Using the identity (a·b∗)I4 = a∧e0∧b, then (e0+t)∧L = (p1−t)∧(e0∧d) =
−e0∧p1∧d−t∧e0∧d. Let L = −p1∧d−e0∧d = −(e0+p1)∧d = d∧P1.
If t is on the line, then −t ∧ p1 ∧ d = 0, so this term can be ignored. With
this derivation of L, we have established a certain orientation, L = d ∧P =
P∞d∧P. This orientation is such that the line acts as an axis of rotation when
we dualize it to the CPNS PGA 2-blade line l = Je(L), where Rl = exp(θl̂/2)

is a rotor for counterclockwise rotation around l by angle θ with d̂ as the axis
of rotation through l in the sense of the right-hand rule.

2.1.3. OPNS PGA 3-blade Plane Geometric Entity. The OPNS PGA 3-blade
plane entity Π through point P = e0 + p with normal n is

Π = Πp,n = P ∧ n∗ = De(πp,n) = π−⋆
p,n. (5)

Πp,n and Je(Πp,n) = Π⋆
p,n = πp,n represent the same plane with same

orientation. If n = n̂, then Je(Πp,n̂) = π̂p,n = π̂ is a plane-based unit plane,

where π̂2 = 1.
The plane spanning three points {P1,P2,P3} arranged clockwise on the

plane is

Π⟳ = P1 ∧P2 ∧P3. (6)

If the points are arranged counterclockwise on the plane, then the plane is

Π⟲ = P3 ∧P2 ∧P1. (7)

The plane with normal n̂ through p, or distance d = p · n̂ from origin, is

Πd,n̂ = e0 ∧ n̂∗ + p ∧ n̂∗ = e0 ∧ n̂∗ − (p · n̂)I3 = De(π̂d,n) = π̂−⋆
d,n. (8)
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The plane Π is derived as follows: Given any point p on the plane and its
normal vector n, then any other point t on the plane must satisfy the scalar-
valued condition (t − p) · n = 0. We dualize as the pseudoscalar condition
Pt ∧ Π = ((t − p) · n)I4 = 0. Using the identity (a · b)I4 = a ∧ b∗ ∧ e0,
then (e0 + t) ∧ Π = (t − p) ∧ n∗ ∧ e0 = t ∧ e0 ∧ n∗ + e0 ∧ p ∧ n∗. Let
Π = e0 ∧ n∗ + p ∧ n∗ = Pp ∧ n∗ = n∗ ∧ P. With P = P1 and n∗ =
(P3 −P1) ∧ (P2 −P1), then Π = P3 ∧P2 ∧P1, where the three points are
arranged counterclockwise on the face side of the plane, which is into the
direction n.

2.2. Point-based PGA Operations

2.2.1. Rotation Operation. In the point-based algebra, the 2-versor rotor (ro-
tation operator) R = exp(θn̂∗/2) = cos(θ/2) + sin(θ/2)n̂∗ can be applied to
any multivector or entity A as A′ = RAR−1 to rotate A around axis n̂
counterclockwise by angle θ (by right-hand rule) centered on the origin.

The rotor R can be derived as successive reflections in two planes

through the origin, represented by their normal vectors â and b̂, with an-
gle θ/2 between them. Then, A is reflected successively in each plane as

A′ = −b̂(−âAâ−1)b̂−1, or R = b̂â = b̂ · â + b̂ ∧ â = cos(θ/2) + sin(θ/2)n̂∗

and A′ = RAR−1. Each reflection is called a 1-versor operation, where vec-

tors â and b̂ are called 1-versors. The rotor R is called a 2-versor, which is
the product of two 1-versors (vectors).

2.2.2. Join Operation. As discussed in Section 1, in the point-based geo-
metric algebra of PGA, the wedge product ∧ of points is the join product ,
producing an entity that represents the span of the joined points. The join of
two points is their line L = P2 ∧P1 (4) and the join of three points is their
plane Π = P3 ∧ P2 ∧ P1 (5). The join product of points is why it is called
the point-based geometric algebra.

3. The Plane-based Geometric Algebra of PGA

In this section, we define or derive each entity in the plane-based algebra of
PGA, also called the CPNS PGA. The orientation of each entity is important
for defining the new geometric entity dualization operation Je in Section 4.

3.1. CPNS PGA Geometric Entities

The plane-based geometric entities are the CPNS 1-blade plane π, the CPNS
2-blade line l, and the CPNS 3-blade point p.

3.1.1. CPNS 1-blade Plane Geometric Entity. The CPNS PGA 1-blade plane
entity π = πp,n with normal n through p is

π = πp,n = n+ (p · n)e0 = Je(Πp,n) = Π⋆
p,n. (9)

If n = n̂, then d = p · n is the distance from the origin and π = π̂ = π̂d,n is

a unit plane, where π̂2 = 1 and De(π̂) = De(π̂d,n) = π̂−⋆
d,n = Πd,n̂. The join

of three points is π = (p−⋆
3 ∧ p−⋆

2 ∧ p−⋆
1 )⋆ = p3 ∨ p2 ∨ p1.
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The plane π is derived as follows: The plane is defined by any point
p on the plane and its normal vector n. Any point t on the plane must
satisfy the scalar-valued condition (t−p) ·n = 0, the same as for Π (5). We
dualize as the pseudoscalar condition pt × π = pt ∧ π = ((t− p) · n)I4 = 0
and solve for the 1-blade plane π and 3-blade point pt. Using the identity
(a·b)I4 = b∧a∗∧e0, then (t·n−p·n)I4 = −t∗∧e0∧n+I3(p·n)e0 = pt∧π.
Let pt = −t∗ ∧ e0 + I3 = (1 + t∗I4)I3 and π = n + (p · n)e0, so we have
derived the point pt and plane π together. We see that Pt ∧Π = pt ∧ π, so
that they represent the same condition with the same orientation, which is
important for observing the duals and determining Je in Section 4.

3.1.2. CPNS 2-blade Line Geometric Entity. The CPNS PGA 2-blade line
entity l is the meet of two planes as

l = π2 ∧ π1. (10)

The line through p in direction d is

l = lp,d = d∗ − (p · d∗)e0 = Je(Lp,d) = L⋆
p,d. (11)

If d = d̂, then l = l̂ is a unit line, where l̂
2
= −1 and De(̂l) = l̂

−⋆
= Lp,d̂.

The join of two points is l = (p−⋆
2 ∧ p−⋆

1 )⋆ = p2 ∨ p1.
The line l is derived as follows: The line is defined by any point p on the

line and the direction d through p. Any point t on the line must satisfy the
vector-valued condition (p−t) ·d∗ = 0, the same as for L (4). We dualize the
vector-valued condition into the 3-blade condition pt × l = ((p− t) ·d∗)I4 =
⟨(I3 − t∗e0)l⟩3, with 3-blade point pt = I3 − t∗e0 and 2-blade line l, solving
for l. We expand geometric products as ((p − t)d∗)I4 = pd∗I4 − td∗I4 =
I3e0pd

∗−e0t
∗d∗. Factoring out pt, we let l = ⟨e0pd∗⟩2+d∗ = e0(p·d∗)+d∗.

We now find that pt× l = (I3−e0t
∗)× (d∗+e0(p ·d∗)) = I3× (e0(p ·d∗))−

(e0t
∗) × d∗ is the grade 3 part. We see that pt × l = Pt ∧ L, so that they

represent the same condition with the same orientation, which is important
for observing the duals and determining Je in Section 4.

3.1.3. CPNS 3-blade Point Geometric Entity. The CPNS PGA 3-blade point
entity pt, embedding t = xe1 + ye2 + ze3, is

pt = (1 + e0t)I3 = I3 + I4t = I3 − e0t
∗ = Je(Pt) = P⋆

t . (12)

In dual quaternions, 1 + e0t = 1 + t∗I4 = pt is a homogeneous point. The
product of two points ptpp = −ptpp = −pt−p = −(1+ e0(t−p)) represents
their difference, and the grade 2 bivector-valued part is given by pt × pp.
Points of form p∞t = I4t = Je(t) = Je(P∞t) represent directed infinite
points at infinity. The meet of three planes is the point

p = π3 ∧ π2 ∧ π1 = π ∧ l. (13)

For {πx = e1 + xe0, πy = e2 + ye0, πz = e3 + ze0}, pt = πx ∧ πy ∧ πz

embeds the point t = xe1 + ye2 + ze3. For finite point pt, vector t can be
projected as

t = I3(p
−⋆
t ∧ e0)

⋆/(I3 ∧ p−⋆
t )⋆. (14)
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3.2. Plane-based PGA Operations

3.2.1. Meet Operation. As discussed in Section 1, in the plane-based geo-
metric algebra of PGA, the wedge product ∧ of planes is their meet product ,
producing an entity that represents their intersection. The meet of two planes
is their intersection line l = π2∧π1 (11) and the meet of three planes is their
intersection point p = π3 ∧π2 ∧π1 (12). The meet product of planes is why
it is called the plane-based geometric algebra.

3.2.2. Translation Operation. In the plane-based algebra, the point pt =
(1 + t∗I4)I3 = ptI3 is based on the homogeneous dual quaternion point pt.
The product of two dual quaternion points pt and pd is commutative and
ptpd = pt+d, which is a translation operation on pt into pt+d. We can use

T = Td = pd/2 = 1 + d∗I4/2 = 1 + e0d/2 = exp(e0d/2) (15)

as a translator (translation operator). Acting on pt, we have pt′ = TptT
−1 =

TptT I3 = pt+dI3 = pt+d, where T acts as a 2-versor translation operator
on any point p. Since p = π3 ∧ π2 ∧ π1, then by outermorphism, T also
acts on each plane πi, translating it correctly, and therefore translating the
point correctly. Since T also correctly translates any plane π, it also correctly
translates any line l = π2 ∧ π1 by outermorphism.

The translator T can only be used in the plane-based algebra on the
plane-based entities; it cannot be used in the point-based algebra. To translate
entities in the point-based algebra, they have to be dualized to plane-based
entities, translated, and then dualized back to point-based entities.

3.2.3. Reflection Operation. We can reflect any general plane π1 = n1 +
d1e0 in another plane π2 = n2 through the origin with normal n2 as π′

1 =
−π2π1π

−1
2 = −π̂2π1π̂2 = −n̂2(n1 + d1e0)n̂2 = −n̂2n1n̂2 + d1e0, where

π̂2 = n̂2 = π2/
√

π2
2. If π2 = n2 + d2e0 is also a general plane, then we

can use the translator T = Td2n2
to translate it to the origin, reflect in it,

then translate back as π′
1 = TT−1(−π2π1π

−1
2 )TT−1 = −π2π1π

−1
2 . The

translations cancel, showing that we can reflect general planes in general
planes.

In the plane-based algebra, the point p = π3 ∧ π2 ∧ π1 and line l =
π2 ∧ π1 are the meet of planes, and by outermorphism they can also be
reflected in any general plane π as p′ = ±πpπ−1 and l′ = (−ππ2π

−1) ∧
(−ππ1π

−1) = πlπ−1. For p′ we can choose the sign. We choose p′ = πpπ−1

to reflect the point as non-oriented so that p′ = e0 + p′ remains in standard
form and orientation with term +e0. We choose p′ = −πpπ−1 to reflect the
point as oriented so that p′ = −(e0 + p′) has non-standard orientation. The
choice of sign depends on the application and how the reflected point is to
be used. When reflecting the three points of a plane Π1 = P3 ∧ P2 ∧ P1 in
another plane π2, we choose oriented reflection P′

i = (−π2P
⋆
iπ

−1
2 )−⋆ and

Π′
1 = P′

3 ∧ P′
2 ∧ P′

1. The orientation of the reflected line l′ is the negative
of l, so that if l is an axis of counterclockwise rotation, then l′ is an axis of
clockwise rotation in the reflected mirror image.
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Successive reflections in two parallel unit planes, π1 = n̂ + d1e0 and
π2 = n̂ + d2e0, separated by d/2 = (d2 − d1)n̂ is the translation operator
T = π2π1 = exp(e0d/2).

3.2.4. Rotation Operation. Successive reflections in two non-parallel unit
planes, π1 = n̂1 + d1e0 and π2 = n̂2 + d2e0, meeting in line l = π2 ∧ π1

with angle θ/2 between them is the rotor Rl = π2π1 = π2 · π1 + π2 ∧ π1 =

cos(θ/2) + sin(θ/2)̂l = exp(θl̂/2) that rotates around the line l by angle θ
counterclockwise around the direction d = (n̂2 ∧ n̂1)I3 of the line by right-
hand rule. The rotor Rl generalizes the rotor R and can also be formed as

Rl = TpRT−1
p , where R = exp(θd̂∗/2) and p is the new center of rotation

or is any point on the unit line l̂ = d̂∗ − (p · d̂∗)e0. While R can rotate any
PGA entity, the rotor Rl can only be used in the plane-based algebra since
it uses the plane-based translator T .

3.2.5. Projection Operation. In the plane-based algebra, we can project a
lower dimensional geometric object onto a higher dimensional geometric ob-
ject. A point is 0-dim, a line is 1-dim, and a plane is 2-dim. A point p can be
projected onto a plane π as p′ = (p ·π)π−1 or onto a line l as p′ = (p · l)l−1,
and a line l can be projected onto a plane π as l′ = (l · π)π−1.

3.2.6. Rejection Operation. In the plane-based algebra, we can reject a plane
π from a line l as π′ = (π ∧ l)l−1 or reject a line l from plane π as l′ =
(l∧π)π−1. The rejected line l′ is orthogonal to π with the same meet l′∧π =
l∧π. The rejected plane π′ is orthogonal to l with the same meet π′∧l = π∧l.

4. Geometric Entity Dualization Operation

This section introduces the new geometric entity dualization operation Je(A)
= A⋆ = a and its inverse (undual) De(a) = −Je(a) = a−⋆ = A−⋆⋆ = A for
PGA G3,0,1. For notation, an element A ∈ {P,L,Π} is in the point-based
algebra, and an element a ∈ {p, l,π} is in the plane-based algebra.

In Section 2, we reviewed the point-based algebra of PGA, also called
the OPNS PGA with outer product null space (OPNS) geometric entities for
point P, line L, and plane Π. We defined the OPNS 1-blade point P = p−⋆

(1) having a standard form and orientation. We derived the OPNS 2-blade line
L = l−⋆ (4) and OPNS 3-blade plane Π = π−⋆ (5) such that they each have a
well-defined orientation. The point-based OPNS entities A ∈ {P,L,Π} will
be found to be “undual” to the plane-based CPNS entities a ∈ {p, l,π} such
that dual entities represent the same geometry with the same orientation.

In Section 3, we reviewed the plane-based algebra of PGA, also called the
CPNS PGA with commutator product null space (CPNS) geometric entities
for point p, line l, and plane π. We derived the CPNS 1-blade plane π = Π⋆

(9), CPNS 2-blade line l = L⋆ (11), and CPNS 3-blade point p = P⋆ (12) such
that they each have a well-defined orientation. The plane-based CPNS entities



Geometric Entity Dualization in the Geometric Algebra PGA G(3,0,1) 11

a ∈ {p, l,π} are dual to the point-based OPNS entities A ∈ {P,L,Π} such
that dual entities represent the same geometry with the same orientation.

The geometric entity dualization operation Je is to be defined such
that the dual entities represent the same geometry with the same orientation
through the dualization operation, without any incorrect sign (orientation)
changes. Using the entities as defined, we shall compare various pairs of dual
entities to observe empirically how each basis blade in G3,0,1 should dualize
to maintain the requirement that corresponding dual entities in the point-
based and plane-based algebras represent the same geometry with the same
orientation. We shall define Je by empirical observation, making no attempt
to generalize the dualization. We are only concerned with dualization in G3,0,1.
We make no initial assumptions about the duals or the dualization operation
Je, but we shall find empirically that Je turns out to be an anti-involution
with inverse J−1

e = −Je.

This section is organized as follows. In Section 4.1, we review concepts
of dualization in geometric algebra. In Section 4.2, we empirically observe
dual entities representing the same geometry with the same orientation to
determine and define the new geometric entity dualization operation Je(A) =
A⋆ as the observed duals of basis blades that are collected in Table 1. In
Section 4.3, we implement Je by the algebraic methods of Table 2 using
algebras {G4,0,0,G3,1,0,G1,3,0} with a non-degenerate metric that correspond
to PGA G3,0,1 with a degenerate metric.

4.1. Review of Dualization in Geometric Algebra

This section, which may be skipped on a first reading and read later, provides
supporting theory for the methodology used in Sections 4.2 and 4.3 to define
and implement the new geometric entity dualization operation Je for PGA.

In Section 4.1.1, we begin with a brief review of the basic concepts of
geometric algebra that we need to discuss dualization. In Section 4.1.2, we
review the basic concepts of dualization in geometric algebra. In Section 4.1.3,
we generalize to more advanced concepts of dualization, including forms of
Hodge star ⋆ dualizations for degenerate metric algebras.

In Section 4.2, we use the basic concepts of dualization to empirically
observe and determine the duals of basis blades in PGA G3,0,1 as Je in Table 1.
In Section 4.3, we use the more advanced concepts of dualization to formulate
the implementations of Je by the algebraic methods of Table 2.

4.1.1. Review of Basic Concepts of Geometric Algebra. The geometric al-
gebra Gn has a set of n basis vectors {ei : 0 ≤ i < n}. The n × n matrix
of inner products gij = [ei · ej ] defines the metric (or metric tensor) of Gn.
The notation Gp,q,r, n = p + q + r, usually defines a form of diagonal met-
ric, where ei · ej = 0 for i ̸= j and we specify only the diagonal entries
gii = diag(e0 · e0 = e20, e

2
1, . . . , e

2
n−1) with any p, q, and r of e2i equal to +1,

−1, and 0, respectively. The numbers (p, q, r) indicate the metric signature
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of Gp,q,r. If r ̸= 0, then the metric is called degenerate, and otherwise non-
degenerate for r = 0. PGA G3,0,1 has the set of basis vectors {ei : 0 ≤ i < 4}
and the degenerate metric gij = [ei · ej ] = diag(0, 1, 1, 1).

A linear combination v =
∑

aiei = aiei of basis vectors ei is a vector

v. An outer product A =
∧k

vi = v1 ∧ v2 ∧ · · · ∧ vk of k different vectors vi

is called a k-blade, or simple k-vector, and is said to have grade k. The basis
vectors ei are also called basis 1-blades. The product of any two vectors v1

and v2 is the geometric product v1v2 = v1 · v2 + v1 ∧ v2. For i ̸= j, then
eiej = ei ∧ ej , and we say that products of basis vectors are blades.

In Gp,q,r, n = p+ q+ r, there is a set of 2n basis blades of the form B ={
eb00 eb11 . . . e

bn−1

n−1 : bi = 0|1
}

with e0i = 1 and e1i = ei, where b0, b1, . . . , bn−1

is one of the 2n patterns of n-bit binary strings for the exponents. There are
basis blades with grades 0 to n, with the grade being the number of bits

bi = 1. If bi = 0 for all i, then eb00 eb11 . . . e
bn−1

n−1 = 1, which is called the basis
0-blade. If bi = 1 for all i, then e0e1 . . . en−1 = In is the basis n-blade, which
is also called the unit pseudoscalar. In Gp,q,r, there are

n!
k!(n−k)! different basis

k-blades, or different basis (n − k)-blades, as combinations of basis vectors
multiplied in ascending index order. A scalar multiple a of a basis k-blade
E ∈ B is called a simple k-blade aE.

A linear combination Ak =
∑

aiEi = aiEi of basis k-blades Ei is called
a k-vector Ak, which is also said to be homogeneous of grade k and may
or may not be a simple k-vector or simple k-blade. A linear combination
A =

∑
aiAi of basis blades Ai of various grades is called a multivector A.

The grade k part Ak = ⟨A⟩k of A is taken using the grade part operator
⟨⟩k. For r-vector Ar and s-vector Bs, r ≤ s, we have the identity Ar ·Bs =
(−1)r(s−1)Bs ·Ar. For r-vector Ar and s-vector Bs, r + s ≤ n, we have the
identity Ar ∧Bs = (−1)rsBs ∧Ar.

The geometric product V = v1v2 . . .vk of k vectors vi with inverses
v−1
i is called a k-versor and is an operator for k successive reflections in the

hyperplanes orthogonal to the vectors vi as A′ = (−1)kV AV −1, called a
versor “sandwich” product or outermorphism of A. For k = 2, the 2-versor
V = R = v1v2 is called a rotation operator or rotor.

4.1.2. Basic Concepts of Dualization. For the basis k-blade eb00 eb11 . . . e
bn−1

n−1 ,
having bi = 1 k times and bi = 0 n − k times, its dual is the (n − k)-blade

±e¬b0
0 e¬b1

1 . . . e
¬bn−1

n−1 , having ¬bi = 0 k times and ¬bi = 1 n− k times, where
¬ is the bitwise NOT (complement) operation on the n exponents bi of the
basis k-blade. The sign ± depends on how the dualization operation is formed
or defined. For notation, the dual of basis k-blade A is the simple (n − k)-
blade denoted A∗. The dualization operation ∗ is considered to be a linear
operation on any sum of terms and the dual of any multivector A is denoted
A∗ =

∑
aiA∗

i , dualizing each basis blade Ai in A to its dual A∗
i in A∗. For all

k-vectors, we always have Ak ·A∗
k = 0, and we say that Ak and its dual A∗

k

are orthogonal. The operation ∗ could be defined as a table of duals for each
basis blade A to its dual A∗ and implemented as a table-based algorithm
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in software, or it could be implemented as a linear operator by an algebraic
method. The signs ± on duals are often required or found to be either purely
an involution (A∗)∗ = A∗∗ = A or purely an anti-involution A∗∗ = −A for
all basis blades, which may allow the linear operation ∗ to be implemented
by a basic algebraic method.

The basic algebraic method of implementation for the dual in a non-
degenerate algebra Gp,q,0 is A∗ = A/In = AI−1

n = A · I−1
n , which is a linear

operation on any multivector A. Multiplication with the pseudoscalar In is
always an inner product. If I2n = 1, then the dualization is an involution,
where (A∗)∗ = A∗∗ = AI2n = A. If I2n = −1, then the dualization is an
anti-involution, where A∗∗ = AI2n = −A and we define an inverse dual
“undual” operation (A∗)−∗ = A−∗∗ = (AI−1

n )In = A. More generally, to
take the dual of k-blade A, we can choose either the right-hand side (RHS)
dualization A∗ = A(±In) or the left-hand side (LHS) dualization A∗ =
(±In)A = (−1)k(n−1)A(±In). For n even and k odd, then the RHS and LHS
dualizations differ by sign. With the choice of RHS or LHS and the choice of
the orientation sign ± of the pseudoscalar, there are four possible forms of
the basic algebraic method for the dualization operation that may give four
distinct sets of duals of the basis blades.

As examples, recall the dualizations in G3 and CGA G4,1. For G3, n = 3
is odd and the RHS and LHS forms are not distinct dualization operations.
The same is true for CGA G4,1 with n = 5 odd. For G3 and G4,1, there are
still the choices of the orientation signs ± of their unit pseudoscalars, and
both require an undual operation since their unit pseudoscalars square to
−1, making their dualizations anti-involutions. In CGA, we also have OPNS
entities for point Pt, line L, and plane Π. For example, we test point Pt on
line L as Pt∧L = 0. We can dualize as (Pt∧L)I5 = Pt ·(L·I5) = Pt ·L∗ = 0.
The point Pt is not dualized, and just L is dualized as the CGA IPNS line
L∗ = l. CGA OPNS entities dualize to CGA IPNS entities and vice versa.
The CGA point entity Pt = t + t2e∞/2 + eo is usually the same in OPNS
and IPNS, though it can be dualized to an IPNS grade 4 point.

For PGA G3,0,1, n = 4 is even and the RHS and LHS forms are distinct
dualization operations that give different signs for the duals of basis blades
with odd grade k. However, G3,0,1 is an algebra with a degenerate metric,

where I24 = 0 and I−1
4 does not exist. Therefore, the basic algebraic method

for the implementation of the dual, as A∗ = AI−1
4 or similar forms (± LHS or

RHS), cannot be used directly in PGA G3,0,1. For the dualization operation
for PGA, we have to consider some more advanced concepts of dualization.

4.1.3. Advanced Concepts of Dualization. For the RHS form of the basic
algebraic dualization operation, A∗R = A(±In) on A ∈ Gp,q,0, the defining
relation is A ∧ B∗R = B ∧ A∗R = (A · B)∗R for k-vectors A and B (both
grade k). For the LHS form of the basic algebraic dualization operation,
A∗L = (±In)A on A ∈ Gp,q,0, the defining relation is A∗L ∧B = B∗L ∧A =
(A ·B)∗L for k-vectors A and B. These relations are also called the Hodge
star ∗ defining relations in a non-degenerate algebra Gp,q,0, n = p+ q.
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While the RHS dual A∗R = A(±In) and LHS dual A∗L = (±In)A are
distinct for n even, the RHS and LHS defining relations are actually equiva-
lent (or hold the same) for all n since, for example,A∧B∗R = A∧(B(±In)) =
(−1)k(n−1)(−1)k(n−k)((±In)B) ∧ A = B∗L ∧ A and (A ∧ B∗R)(±In) =
(±In)(B

∗L ∧ A) = (A · B)I2n. However, A ∧ B∗R ̸= B∗R ∧ A, so we must
still use one defining relation or the other. For RHS, we must use A ∧B∗ =
B ∧A∗ = (A ·B)∗. For LHS, we must use A∗ ∧B = B∗ ∧A = (A ·B)∗.

Using the RHS form, the inner product A ·B is defined by the metric as
A ·B = (A∧B∗)−∗ = A ·B−∗∗. For example, with B∗ = BIn and I2n = −1,
then (A∧B∗)−∗ = −(A∧(BIn))In = −A ·((BIn) ·In) = −A ·(BI2n) = A ·B.
Using the LHS form with A∗ = InA and I2n = −1, then (A∗ ∧ B)−∗ =
−In((InA) ∧B) = −(In · (InA)) ·B = −(I2nA) ·B = A ·B. For I2n = 1, the
undual operation −∗ is the same as ∗, which is an involution. For I2n = −1,
the undual operation −∗ is (A∗)−∗ = A−∗∗ = A, using ∓In with opposite
sign such that (±In)(∓In) = 1 on a RHS or LHS form.

Using the RHS form, the inner product A ·B can be defined by dual-
ization (instead of by the metric) as A · B = (A ∧ B∗)−∗ = (B ∧ A∗)−∗.
Using the LHS form, the inner product A ·B can be defined by dualization
as A ·B = (A∗ ∧B)−∗ = (B∗ ∧A)−∗. The definition of A ·B by dualization
using the outer product is independent of the metric, but is instead depen-
dent on the definition of the duals and unduals, which may be given by a
table or implemented by an algebraic method. Then, the metric is said to be
defined by the duals. In a degenerate metric algebra Gp,q,r ̸=0, we define the
inner product by dualization, using the outer product and the definition of
the duals.

The defining relations for the basic Hodge star ∗ dualization in Gp,q,0

continue to hold when modified by an outermorphism operation using any
basis blade E ∈ B. For example, the RHS relations become EA∗(±E) =
EA(±In)(±E)= A∗′ and E(A ∧ B∗)(±E) = E(B ∧ A∗)(±E) = E(A ·
B)∗(±E). The outermorphism is similar for the LHS relations. The orien-
tation sign ± on ±E is another choice. The outermorphism operation using
basis blade E, also called a sandwich product, may modify the signs ± on du-
als A∗′ = ±A∗. An outermorphism using a general k-versor V = v1v2 . . .vk

does not produce dual elements, so V must be limited to any basis k-blade
E ∈ B. While A∗ may be an involution (or anti-involution), A∗′ may change
to be the opposite as an anti-involution (or involution). The outermorphism
generalizes the basic Hodge star ∗ dualization A∗ as A∗′ = A⋆. Beginning
with the generalization of the basic Hodge star ∗ by outermorphism using
any basis blade, we introduce the notation A⋆ for the dual, which we may
call the advanced Hodge star ⋆ dualization A⋆. We allow A to be any mul-
tivector, since dualization operations are linear operations. For A ∈ G3, we
define A∗ = A/I3.

The advanced Hodge star ⋆ dualization A⋆ also further generalizes du-
alization to degenerate metric algebras Gp,q,r ̸=0. For a degenerate metric al-
gebra Gp,q,r ̸=0, n = p + q + r, with basis vectors {ei : 0 ≤ i < n}, we



Geometric Entity Dualization in the Geometric Algebra PGA G(3,0,1) 15

choose a corresponding non-degenerate metric algebra Gp′,q′,0, n = p′ + q′

with basis vectors {ei : 0 ≤ i < n} in which the basic dual A∗ ∈ Gp′,q′,0,

or modified “advanced” dual A∗′ = A⋆ ∈ Gp′,q′,0, corresponds to the dual
A⋆ ∈ Gp,q,r ̸=0. The correspondence is denoted A⋆=̂A⋆. We use upright bold
letters for A ∈ Gp,q,r ̸=0 in the degenerate algebra, and italic bold letters for
A ∈ Gp′,q′,0 in the corresponding non-degenerate algebra. There are 2n cor-

responding basis blades (Ei = eb00 eb11 . . . e
bn−1

n−1 )=̂(eb00 eb11 . . . e
bn−1

n−1 = Ei). To

compute the dual A⋆, A = aiEi is transferred to a corresponding element
A = aiEi by copying its scalar components ai onto the corresponding basis
blades Ei=̂Ei. In the non-degenerate algebra, A⋆ = aiE⋆

i is computed using
a basic Hodge star ∗ operation, which may be followed by an outermorphism
using any basis blade E. Then, A⋆ is transferred back to the corresponding
element A⋆ = aiE⋆

i as the dual of A.

The choices for the corresponding non-degenerate algebra Gp′,q′,0, form
of basic Hodge star ∗ operation, and outermorphism (or choice of form of
advanced Hodge star ⋆ operation) can be such that the duals, produced for
the degenerate algebra Gp,q,r ̸=0 using the corresponding algebra Gp′,q′,0, may
match a table of duals that have been predetermined by empirical method
(observation of duals) or by some other requirements placed on the signs of
the duals. However, the advanced Hodge star ⋆ is limited to being an invo-
lution or anti-involution on the signs of duals, and the dualization mapping
is always a one-to-one and onto (bijective) mapping of basis blades to basis
blades with signs ±.

It may require some experimentation to form an advanced Hodge star
⋆ operation that matches a given table of duals that are an involution or
anti-involution. For PGA G3,0,1, it was not difficult to find the correct forms
in G4,0,0, G3,1,0, and G1,3,0 as the algebraic methods of Table 2 for the new
geometric entity dualization operation Je of Table 1.

In a degenerate algebra Gp,q,r ̸=0, there is a non-degenerate subalgebra
Gp,q,0. For any element A ∈ Gp,q,0, it is possible to take the dual of A as
the RHS dual A⋆ = A(±In) or LHS dual A⋆ = (±In)A without using
another corresponding non-degenerate algebra Gp′,q′,0. In PGA G3,0,1 with
I4 = e0e1e2e3, the dual of A ∈ G3,0,0 can be computed directly in PGA as
A⋆ = I4A = e0AI3 = −e0(A/I3) = −e0A

∗. For A⋆ ∈ G3,0,0, the undual
is directly computed in PGA as A−⋆⋆ = A = −I4A

⋆ = −e0A
⋆I3. The

undual A−⋆⋆ = A ∈ G3,0,0 cannot be computed directly in PGA, so the
directly computed dual of A ∈ G3,0,0 (or undual of A⋆ ∈ G3,0,0) in PGA is
one-way. For A ∈ Gk

3,0,0, where A is grade k, then A⋆ = I4A = (−1)kAI4.
For the line entity L, its vector-valued (grade k = 1) Plücker line condition
A = (p − t) · d∗ = 0 is dualized directly in PGA as ((p − t) · d∗)I4 =
I4((t− p) · d∗) = Pt ∧L, maintaining the directional orientation of the line.

In PGA G3,0,1, we have OPNS entities for point Pt, line L, and plane
Π. Similar to CGA, we also test point Pt on line L as Pt ∧ L = 0. How-
ever, we cannot dualize in PGA the same way as in CGA since the PGA
metric is degenerate. Instead, we dualize in PGA as (Pt ∧ L=̂((P⋆

t · L)I4 =
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⟨P⋆
tLI4⟩3)) = ⟨P⋆

tL
⋆⟩3 = P⋆

t × L⋆ = pt × l. We also have (Pt ∧ Π=̂((P⋆
t ·

Π)I4 = ⟨P⋆
tΠI4⟩4)) = ⟨P⋆

tΠ
⋆⟩4 = pt ∧ π = pt × π, and (Pt ∧ P=̂((P⋆

t ·
P)I4 = ⟨P⋆

tPI4⟩2)) = ⟨P⋆
tP

⋆⟩2 = pt × p. These are the defining relations
for our new entity dualization operation Je for PGA G3,0,1, which we shall
observe in Section 4.2 to define Je as Table 1. The inner products cannot
be computed directly in the degenerate metric of G3,0,1 and are defined by
dualization and the dual outer products. For example, the inner product
(P⋆

t · L)I4 = ⟨P⋆
tLI4⟩3 corresponds to (and is defined by) the dual outer

product Pt ∧ L = ⟨P⋆
tL

⋆⟩3 = P⋆
t × L⋆ = pt × l. Only a correspondence (=̂)

exists from the inner products to the dual outer products. The degenerate
inner product P⋆

t · L also depends on the dualization, and the dualization
L⋆ = LI4 = L · I4 cannot be computed directly in PGA since the inner
product is degenerate. The correct non-degenerate corresponding geomet-
ric expressions for the inner products are P⋆

t · L=̂(p − t) · d∗ (vector-valued
Plücker line condition), P⋆

t ·Π=̂(t−p)·n (scalar-valued plane condition), and
(P⋆

t ·P)I4=̂(Pt∧P = −e0(t−p)) (bivector-valued point difference condition
in dual form, where P⋆

t ·P=̂p∗ − t∗), which were derived in Sections 2 and 3
as we reviewed and derived the PGA geometric entities L (4), Π (5), and pt

(12).
In Section 4.2, we use the basic concepts of dualization and the defining

relations for the PGA duals to empirically observe the duals of basis blades
and define Je for PGA as Table 1. In Section 4.3, we use the advanced con-
cepts of dualization to implement Je for PGA three different ways by the
algebraic methods of Table 2.

The basic and advanced concepts of dualization can also be used for
other degenerate algebras. For the degenerate algebra G1,3,1, which we have
called Space Time PGA (STPGA) [4], a geometric entity dualization opera-
tion Je has also been empirically defined as a table of duals. Two algebraic
methods, in G5,0,0 and G1,4,0, as two different advanced Hodge star ⋆ dual-
izations, have been found to implement Je for STPGA G1,3,1. The advanced
concepts of dualization, such as the advanced Hodge star ⋆, may be useful to
find algebraic methods for geometric entity dualization operations for other
degenerate metric algebras that may be studied in the future. The advanced
concepts of dualization for degenerate algebras could be researched further
to simplify or generalize the concepts, including the correspondence relation-
ships.

4.2. Determination of Duals by Empirical Method

In this section, we empirically observe dual entities representing the same
geometry with the same orientation to determine and define the new geo-
metric entity dualization operation Je. In Sections 4.2.1, 4.2.2, and 4.2.3, we
compare dual entities and observe the duals of the four basis 1-blades, six
basis 2-blades, and four basis 3-blades, respectively. For each grade k of basis
blades, we compare grade k entities in OPNS PGA to their corresponding
dual grade 4−k entities in CPNS PGA and directly observe the corresponding
dual basis blades. In Section 4.2.4, we observe the duals of the basis 0-blade
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1 and the basis 4-blade pseudoscalar I4. In Section 4.2.5, we collect all of
the basis blade duals into Table 1, which defines the new geometric entity
dualization operation Je for PGA G3,0,1.

4.2.1. Duals of the Four Basis 1-blades. We compare the OPNS PGA 1-
blade point Pt = e0+ t with the CPNS PGA 3-blade point pt = I3−e0t

∗ =
I3 + e0tI3. The points are considered to be in standard unit point form and
orientation. We compare the three points x = e1, y = e2, and z = e3. The
basis 1-blades should dualize to basis 3-blades as follows:

For x, we have Px = e0 + e1 and px = I3 − e0e
∗
1 = I3 − e0e3e2. We

observe the duals Je(e0) = I3 and Je(e1) = −e0e3e2 = e0e2e3.

For y, we have Py = e0 + e2 and py = I3 − e0e
∗
2 = I3 − e0e1e3. We

observe the duals Je(e0) = I3 and Je(e2) = −e0e1e3.

For z, we have Pz = e0 + e3 and pz = I3 − e0e
∗
3 = I3 − e0e2e1. We

observe the duals Je(e0) = I3 and Je(e3) = −e0e2e1 = e0e1e2.

4.2.2. Duals of the Six Basis 2-blades. For observing the correct basis 2-blade
duals, we will look at entities for three lines along different directions, and for

each line we compare the OPNS PGA 2-blade line entity Lp,d̂ = d̂∧Pp with

its corresponding dual CPNS PGA 2-blade line entity lp,d̂ = d̂∗ − (p · d̂∗)e0.

First, we always check that the two dual entities have the same geometric
null space entity and orientation. Also, for the OPNS PGA line entity, we can
ignore the third pseudoscalar term of the null space entity that represents

t ∧ p ∧ d̂, which is 0 for any point t on the line through p in direction d̂.

For p = e1, d̂ = e2, we have the 3-blade null space entities with same
orientation:

Pt ∧ Lp,d̂ = (x− 1)e0e1e2 − ze0e2e3 − ze1e2e3 (16)

pt × lp,d̂ = (x− 1)e0e1e2 − ze0e2e3 (17)

Lp,d̂ = −e0e2 − e1e2 (18)

lp,d̂ = e0e3 + e1e3. (19)

We observe the basis 2-blade duals: Je(e0e2) = −e1e3 and Je(e1e2) = −e0e3.

For p = e2, d̂ = e3, we have the 3-blade null space entities with same
orientation:

Pt ∧ Lp,d̂ = xe0e1e3 + (y − 1)e0e2e3 − xe1e2e3 (20)

pt × lp,d̂ = xe0e1e3 + (y − 1)e0e2e3 (21)

Lp,d̂ = −e0e3 − e2e3 (22)

lp,d̂ = e0e1 − e1e2. (23)

We observe the basis 2-blade duals: Je(e0e3) = e1e2 and Je(e2e3) = −e0e1.
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For p = e3, d̂ = e1, we have the 3-blade null space entities with same
orientation:

Pt ∧ Lp,d̂ = −ye0e1e2 + (1− z)e0e1e3 − ye1e2e3 (24)

pt × lp,d̂ = −ye0e1e2 + (1− z)e0e1e3 (25)

Lp,d̂ = −e0e1 + e1e3 (26)

lp,d̂ = e0e2 − e2e3. (27)

We observe the basis 2-blade duals: Je(e0e1) = e2e3 and Je(e1e3) = e0e2.

We can further observe that these six basis 2-blade empirical duals ap-
pear to support an anti-involution, Je(Je(A)) = −A. We assume that Je is
a linear operator so that Je(aA+ bB) = aJe(A) + bJe(B).

4.2.3. Duals of the Four Basis 3-blades. We compare the OPNS PGA 3-
blade plane Πp,n̂ = Pp ∧ n̂∗ with its dual CPNS PGA 1-blade plane πp,n̂ =
n̂ + (p · n̂)e0. We compare the three planes, x = 1, y = 1, and z = 1. First,
we compare the 4-blade geometric null space entities to make sure they have
the same scale and orientation, then we observe the duals.

For x = 1 (p = e1, n̂ = e1), we have the 4-blade null space entities with
same orientation:

Pt ∧Πp,n̂ = (x− 1)I4 (28)

pt × πp,n̂ = (x− 1)I4 (29)

Πp,n̂ = −e0e2e3 − e1e2e3 (30)

πp,n̂ = e0 + e1. (31)

We observe the duals of the basis 3-blades: Je(e0e2e3) = −e1 and Je(e1e2e3)
= −e0.

For y = 1 (p = e2, n̂ = e2), we have the 4-blade null space entities with
same orientation:

Pt ∧Πp,n̂ = (y − 1)I4 (32)

pt × πp,n̂ = (y − 1)I4 (33)

Πp,n̂ = e0e1e3 − e1e2e3 (34)

πp,n̂ = e0 + e2. (35)

We observe the duals of the basis 3-blades: Je(e0e1e3) = e2 and Je(e1e2e3)
= −e0.

For z = 1 (p = e3, n̂ = e3), we have the 4-blade null space entities with
same orientation:

Pt ∧Πp,n̂ = (z − 1)I4 (36)

pt × πp,n̂ = (z − 1)I4 (37)

Πp,n̂ = −e0e1e2 − e1e2e3 (38)

πp,n̂ = e0 + e3. (39)
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We observe the duals of the basis 3-blades: Je(e0e1e2) = −e3 and Je(e1e2e3)
= −e0. We further observe that, between the duals of 3-blades and 1-blades,
we also have an anti-involution for Je.

4.2.4. Duals of the Basis 0-blade and Basis 4-blade. Pt ∧Πp,n = ((t − p) ·
n)I4 = 0 represents the scalar-valued condition (t − p) · n = 0 for point
Pt on plane Πp,n in a well-defined orientation, which is dualized into the
pseudoscalar-valued condition ((t− p) · n)I4 = 0. Therefore, we observe the
dual of the basis 0-blade 1 as Je(1) = I4. Since Je is found to be an anti-
involution with inverse J−1

e = −Je, then −Je(I4) = 1 and the dual of the
basis 4-blade I4 is Je(I4) = −1.

4.2.5. Definition of Geometric Entity Dualization Operation. In the prior
sections (4.2.1, 4.2.2, 4.2.3, and 4.2.4), we found the dual for each of the 16
basis blades in G3,0,1 by direct empirical observation of point-based and plane-
based dual entities representing the same geometry with the same orientation.
The observed duals define the new geometric entity dualization operation Je
for PGA G3,0,1.

A e0 e1 e2 e3 e0e1e2 e0e1e3 e0e2e3 I3 = e1e2e3
Je(A) I3 = e1e2e3 e0e2e3 −e0e1e3 e0e1e2 −e3 e2 −e1 −e0

A 1 e0e1 e0e2 e0e3 e1e2 e1e3 e2e3 I4 = e0e1e2e3
Je(A) I4 = e0e1e2e3 e2e3 −e1e3 e1e2 −e0e3 e0e2 −e0e1 −1

Table 1. Geometric Entity Dualization Operation Je(A) =
A⋆ on OPNS PGA grade k basis blade A (in the point-based
algebra) to its dual CPNS PGA grade 4 − k basis blade
Je(A) = A⋆ (in the plane-based algebra).

Table 1 defines the new geometric entity dualization operation Je for
PGA G3,0,1. Table 1 shows the dual Je(A) = A⋆ for each basis blade A in
G3,0,1, dualizing from the point-based OPNS PGA to the plane-based CPNS
PGA, summarizing our observations of what the dual Je(A) should be for
each basis blade A so that entities dualize to corresponding entities repre-
senting the same geometric null space with the same orientation.

To dualize from the plane-based CPNS PGA to the point-based OPNS
PGA, the inverse dual J−1

e = −Je (“undual”) should be used instead to
maintain the correct entity orientation. If the dualization direction or orien-
tation of −Je is preferred, then an alias could be used, such as De = −Je, for
the geometric entity dualization operation De from the plane-based CPNS
PGA to the point-based OPNS PGA with D−1

e = −De.

4.3. Implementation by Algebraic Methods

We can implement the new geometric entity dualization operation Je(A) =
A⋆, defined by Table 1 for PGA G3,0,1, by corresponding algebraic methods
Je(A) = A⋆ in non-degenerate geometric algebras Gp,q,0 ∈ {G4,0,0, G3,1,0,
G1,3,0} that correspond to G3,0,1.
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Gp,q,0 G4,0,0 G3,1,0 G1,3,0

Je(A) I3I4AI3 = e0AI3 I4A AI4

Table 2. Entity dualization Je(A) in non-degenerate geo-
metric algebras Gp,q,0.

Table 2 gives the dualization operations Je(A) = A⋆ ∈ Gp,q,0 that have
been found to implement Je(A) = A⋆ ∈ G3,0,1 in non-degenerate algebras
Gp,q,0 that correspond to G3,0,1. The coefficients on the basis blades in the
dual A⋆ ∈ Gp,q,0 are transferred onto corresponding basis blades in A⋆ ∈
G3,0,1. The complete geometric entity dualization operation is Je(A) = A⋆ =
G3,0,1(Je(Gp,q,0(A))), where Gp,q,0(A) = A ∈ Gp,q,0 and G3,0,1(A

⋆) = A⋆ ∈
G3,0,1 denote the operations that transfer coordinates between corresponding
algebras with different metrics.

The algebras G4,0,0 and G3,1,0 have the same metric as G3,0,1 for the
subalgebra G3. For A ∈ G3, its dual can be directly computed in G3,0,1 as
A⋆ = e0AI3 = I4A = −e0A

∗.
The following three Python functions using GAlgebra [1] for SymPy each

implement Je(A) of Table 1 in one of the non-degenerate algebras Gp,q,0 ∈
{G4,0,0,G3,1,0,G1,3,0} of Table 2. Only one function is needed, and all three
produce Table 1 as required.

# Create the algebras.

g301 = Ga(’e*0|1|2|3’,g=[ 0, 1, 1, 1])

g400 = Ga(’e*0|1|2|3’,g=[ 1, 1, 1, 1])

g310 = Ga(’e*0|1|2|3’,g=[-1, 1, 1, 1])

g130 = Ga(’e*0|1|2|3’,g=[ 1,-1,-1,-1])

# Get the basis for PGA G(3,0,1).

(e0 ,e1,e2,e3) = g301.mv()

# Create the unit pseudoscalars .

I3 = e1^e2^e3; I4 = e0^I3

# Entity Dualization Operation Je in G(4,0,0)

def Je_g400(A):

EA = g400.mv(A); EI3 = g400.mv(I3); EI4 = g400.mv(I4)

return g301.mv(EI3*EI4*EA*EI3)

# Entity Dualization Operation Je in G(3,1,0)

def Je_g310(A):

EA = g310.mv(A); EI4 = g310.mv(I4)

return g301.mv(EI4*EA)

# Entity Dualization Operation Je in G(1,3,0)

def Je_g130(A):

EA = g130.mv(A); EI4 = g130.mv(I4)

return g301.mv(EA*EI4)
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5. Conclusion

In Section 1, we gave an overview of PGA G3,0,1 and the new geometric
entity dualization operation Je. In Section 2, we reviewed the point-based
geometric algebra of PGA and carefully derived the point-based point P,
line L, and plane Π geometric entities. In Section 3, we reviewed the plane-
based geometric algebra of PGA and carefully derived the plane-based plane
π, line l, and point p geometric entities. In Section 4, we reviewed dualization
and introduced the new geometric entity dualization operation Je, which is
defined by Table 1 and implemented by the algebraic methods of Table 2
using non-degenerate algebras.

As we conclude, we can now compare the new geometric entity dualiza-
tion operation Je to some other definitions for the duals in PGA as given in
prior literature, all of which seem to be different than Je of Table 1.

In [10] and [9], the point-based and plane-based algebras of PGA G3,0,1

are each represented as a different subalgebra of CGA G4,1, and a pair of
dualization operations are defined that dualize between the two subalgebras.
By representing PGA within CGA, [10] and [9] are basically using CGA
for only points, lines, and planes. This may defeat part of the advantage of
PGA, that it requires only 24 = 16 basis blades, while CGA needs 25 = 32
basis blades. One of the possible advantages of PGA, its smaller algebra size,
may be lost by using CGA. The table of duals given in [9] shows that the
dualization operation in [9] is not an involution or anti-involution, being an
involution for some basis blades and an anti-involution for other basis blades.
We found that our new dualization operation Je is an anti-involution, so it
seems unlikely that the dualization in [9] would give correct orientations.
The dualization in [10] is claimed to be an involution, but it is actually a
pair of two different dualization operations, each to dualize from one algebra
to the other in the two different directions. An any case, the dualization in
[10] must also be different than our new dualization operation Je, which is
an anti-involution and is not implemented within CGA.

In [5], a dualization operation for PGA, denoted J(e), is defined by
a table of duals, showing that J(e) is not an involution or anti-involution.
This again differs from our new dualization operation Je, which is an anti-
involution defined specifically to maintain orientation through the dualization
operation.

In [2], a dualization operation for PGA, denoted using Hodge star ⋆
notation as ⋆A, is given by a table of duals similar to in [5]. The dual ⋆A is not
an involution or anti-involution, so it is different than our new operation Je,
which is defined specifically to maintain orientation through the dualization
operation.

Unlike the prior literature, we use our basic and advanced concepts
of dualization to derive the PGA entities and their duals representing the
same geometry in the same orientation, empirically observe duals to define
Je as Table 1, and then implement Je by the algebraic methods of Table
2 using non-degenerate algebras. In most of the prior literature, the dual



22 Robert Benjamin Easter and Daranee Pimchangthong

is not an involution or anti-involution and cannot be implemented by any
algebraic method in the form of a basic Hodge star ∗ or advanced Hodge
star ⋆ as we have defined them in Section 4. According to our theory of
the advanced Hodge star ⋆ dualization for degenerate algebras Gp,q,r ̸=0, any
form of the dualization for PGA G3,0,1 should be either an involution or an
anti-involution, and we find it to be the anti-involution Je that maintains
the correct entity orientation through the dualization A⋆ = Je(A) = a, from
point-based entity A to its dual plane-based entity a, or its inverse “undual”
operation a−⋆ = −Je(a) = De(a) = A, from plane-based entity a to its
undual point-based entity A.
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