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Abstract

Dempster-Shafer evidence theory is widely used in many fields due to its ad-

vantages in dealing with uncertain information. However, measuring the uncer-

tainty of information in evidence theory remains an open question. In recent

years, Deng entropy has gained attention as a representative measure of un-

certainty. However, Deng entropy cannot express the uncertainty of conflict

well. Inspired by Jousselme’s mathematical expressions for non-conflict, this

paper proposes an improved belief entropy that generalizes Deng entropy and

can better express the uncertainty of conflict. Additionally, this paper high-

lights the difference between generalized condition and traditional condition in

which DS evidence theory is used. Based on this difference, the paper also

discusses the basic principles proposed by Klir and Wierman. These research

findings are significant for further advancing the application and development

of DS evidence theory.
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1. Introduction

DS evidence theory[1][2] is a generalization of Bayesian theory[3]. Different

from Bayesian theory, DS evidence theory does not need to know prior probabil-

ity and can express uncertainty well. Because of its powerful ability to express

uncertain information, DS evidence theory is widely used in: information fusion,5

expert system, intelligence analysis, legal case analysis, multi-attribute decision

analysis, etc. However, how to accurately describe the uncertainty in a basic

probability distribution (BPA) is still an urgent problem to be solved, which

has important significance for the quantitative description of the information

included in a BPA.10

Shannon entropy is a recognized method for quantitatively describing un-

certainty in probability distributions, and has been widely used. Shannon’s

effectiveness has been repeatedly verified in practical applications Therefore,

when the concept is expanded from probability distribution to DS evidence

structure, a number of uncertainty measures based on Shannon entropy are15

formed to describe the uncertainty of BPA quantitatively. They are collectively

called entropy-like uncertainty measures. Such as Dubois & Prade’s weighted

Hartley entropy[4]� Hohle’s confusion measure[5], Yager’s dissonance measure[6],

Klir & Ramer’s discord[7], Klir & Parviz’s strife[8], Deng entropy[9] and its

variants[10][11][12].20

Klir and Wierman pointed out that the uncertainty measure of DS evidence

theory must be able to accurately describe conflict and non-specificity[13]. At

the same time, it should have the following five basic properties: Probabilistic consistency,

Set consistency, Range, Subadditivity, Additivity. In the traditional applica-

tion of evidence theory, the answer to the problem can only be a single ele-25

ment of the frame of discernment. However� a different scenario was given by

Deng[9]:assume that in a test there are 32 participants. And we want to know

who is(are) the top 1 participant(s) who get(s) the highest score(s). There

is a possibility that there are participants tie for first. Higher non-specificity

uncertainty will be obtained by introducing the condition of a tie for first.30
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Therefore, the non-specificity uncertainty of the new system is inevitable

higher than that of previous condition. When Klir and Wierman proposed the

five basic properties, Deng’s academic views are not yet formed, so this paper

believes that the two properties of Set consistency and Range may need to be

amended accordingly. The condition described by Deng is more consistent with35

the situations encountered in real-life engineering, which represents a significant

expansion in application of DS evidence theory.

Deng introduced a new scenario[9] that several participants can tie for first,

and proposed corresponding non-specific expression. However, Deng’s expres-

sion of conflict measure is flawed. Therefore, many scholars proposed some vari-40

ants based on Deng entropy, partially making up for the deficiency in Deng’s

conflict measure of BPA. However, those belief entropies have their own prob-

lems. For example, Cui et al’s belief entropy introduced a modification based

on Deng entropy, but the modification is too tiny, therefore, its performance

is only marginally different from that of Deng entropy. Wang et al ’s belief45

entropy may result in negative entropy in some cases, which does not conform

to the actual meaning of entropy. Zhou et al’s belief entropy performs well? in

most cases and conform basic properties of uncertainty measures. However, its

mathematical formula is not concise, and may lead to counter-intuitive result

under some cases.50

In order to solve the above problems and provide a more consistent and

comprehensive uncertainty measure for BPA, this paper proposes an improved

belief entropy to quantitatively express BPA uncertainty in DS evidence theory.

The main contributions of this paper can be summarized as follows:

(1) This paper presents an uncertainty measure which takes into account the55

effect of the intersection between focal elements and uses inverse − con f lict

(D(A, B)) to describe this relationship quantitatively. The proposed entropy

satisfies several properties after amendment, and has better performance than

other methods under several cases.

(2) The difference between the conditions that only one single element can be the60

answer to the problem and that one or several elements can be the answer to the
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problem is analyzed. Moreover, the basic properties of uncertainty measures are

discussed and amended accordingly, which extend the properties and be more

applicable to the new conditions. The condition transforms from ’the final

answer can only identify a single element of the framework’ to ’the final answer65

can identify one or more elements of the framework at the same time’ and in

response to that question, The Set − Consistency and Range are also amended

accordingly, which is also in line with subjective feelings and the actual situation.

The rest of this article is organized as follows: In Section 2, some basic prin-

ciples of DS evidence theory and the entropy formula proposed by scholars are70

introduced. In Section 3, a new belief entropy is proposed to solve the problems

of the existing belief entropy. The five basic principles proposed by Klir and

wierman are discussed and validated in Section 4. In Section 5, some repre-

sentative examples are given to prove the rationality of the proposed entropy

compared with the entropy proposed by other scholars.75

2. Preliminaries

2.1. Basic Concepts in Evidence Theory[1][2]

Let X = {H1, H2, ..., HN} be an exhaustive set of all possible values of a

variable, and the elements in X are mutually exclusive, then X is the frame

of discernment. Let X have N elements, then the power set of X is P(X), the80

power set has 2N elements, and each element corresponds to the proposition of

a case of a variable.

P(X) = {∅, {H1} , {H2} , ..., {HN} , {H1 ∪ H2} , {H1 ∪ H3} ...X} (1)

For any subset A belonging to X, let it correspond to a number in the interval

[0,1], and satisfy:

∑
A∈P(X)

m(A) = 1 (2)
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m(∅) = 0 (3)

The function m is called the basic probability distribution function (BPA)85

on P(X), and m(A) is the basic probability of A. When A ∈ X and m(A) ̸= 0,

A is called a focal element of m.

The belief function belief is defined as:

Bel(A) = ∑
B⊆A

m(B) (4)

The plausibility function Pl is defined as:

Pl(A) = ∑
B∩A ̸=∅

m(B) (5)

2.2. Some Typical Entropies of BPA90

In this paper, entropy before Deng and Entropy after Deng will be studied

separately�because in Deng’s condition that one or several elements can be the

answer to the problem, the influence of non-specificity is undoubtedly greater

than it in previous research conditions, so this paper believes that it is necessary

to distinguish it from the previously proposed research conditions. In this pa-95

per, the research premise of this kind of scenario is summarized as generalized

condition, and the previous research condition is called traditional condition

accordingly.

2.2.1. Entropises in Traditional Condition

Dubois & Prade’s weighted Hartley entropy[4]:100

IDP(m) = ∑
A⊆X

m(A) log2 |A| (6)

Hohle’s confusion measure[5]:

CH(m) = − ∑
A⊆X

m(A) log2 Bel(A) (7)
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Yager’s dissonance measure[6]:

EY(m) = − ∑
A⊆X

m(A) log2 Pl(A) (8)

Klir & Ramer’s discord[7]:

DKR(m) = − ∑
A⊆X

m(A) log2 ∑
B⊆X

m(B)
|A ∩ B|
|B| (9)

Klir & Parviz’s strile[8]:

SKP(m) = − ∑
A⊆X

m(A) log2 ∑
B⊆X

m(B)
|A ∩ B|
|A| (10)

2.2.2. Entropies in Generalized Condition105

Deng entropy[9]:

Ed(m) = − ∑
A⊆X

m(A)log2
m(A)

2|A| − 1
(11)

Cui et al’s belief entropy[10]:

E (m) = − ∑
A⊆X

m (A) log2

(
m (A)

2|A| − 1
e

∑
B⊆X,B ̸=A

|A∩B|
2|X|−1

)
(12)

Wang et al’s belief entropy[11]:

EId (m) = − ∑
A⊆X

m (A) log2

(
m (A)

2|A| − 1
e

∑
B⊆X,B ̸=A

|A∩B|
|X|
)

(13)

Zhou et al’s belief entropy[12]:

Ẽ(m) =


1

2(|B|−1) ∑
Ai⊆X

∑
Aj⊆X

SCAi ,Aj ·
[
−m(Ai)log2

m(Ai)

2|Ai |−1
− m(Aj)log2

m(Aj)

2
|Aj |−1

]
, |B| ≥ 2

−m(A)log2
m(A)

2|A|−1
, |B| = 1

(14)
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3. Proposed New Belief Entropy110

This paper studies the generalized condition. For a problem whose frame of

discernment is X, the power set of all subsets in X may be the final answer to

the problem, and there is no possibility beyond it. The information boundary

for this problem is log2

(
2|X| − 1

)
. The maximum value of the Deng entropy,

however, will exceed this information boundary.115

This paper suggests that the possible reason is that the relationships between

sets in BOE is not well-considered in Deng entropy.Assume that the frame of

discernment is X = {1, 2, 3, 4, 5, 6} and we have tow BPAs, m1:m({1, 2, 3}) =

0.6, m({4, 5, 6}) = 0.4 and m2: m({1, 2, 3}) = 0.6, m({3, 4, 5}) = 0.4. m1 and

m2 have the same non-specificity, but m2 excludes the distribution of the final120

result at ′6′, so the entropy of m2 must be less than that of m1. In other words,

there is a correlation between {1, 2, 3} and {3, 4, 5} at the element ′3′, so they

cannot be regarded as two completely unrelated cases, and thus there would be

less uncertainty in m2 than that in m1. But contrary to expectations, if the

Deng entropy is applied in m2, the same value with m1 will be obtained. It125

will inevitably lead to the wrong increase of the calculated m2 entropy if the

correlation between {1, 2, 3} and {3, 4, 5} is not considered.

We can then see that Deng’s variant entropy is designed for this problem.For

example, Cui et al’s belief entropy and Wang et al ’s belief entropy are both

multiplied by a correction term related to the intersection in the logarithm term,130

thereby reducing the value of the Deng entropy; after simplifying Zhou et al’s

belief entropy, it can be found that Zhou et al’s belief entropy subtracted a

correction term related to intersection from Deng entropy, thereby reducing the

value of Deng entropy. The entropy proposed in this paper also achieves the

purpose of revising the entropy value by introducing the concept of inverse-135

conflict.
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The proposed entropy is as follows:

EJ (m) = − ∑
A⊆X

m(A)log2

∑
B⊆X

m(B) · D(A, B)

2|A| − 1
(15)

Among them, D(A, B) first comes from the concept of Inverse − con f lict pro-

posed by Jousselme[14], which is used to quantitatively express the degree of

correlation between set A and B. Its mathematical expression is as follows140

D(A, B) =
|A ∩ B|
|A ∪ B| (16)

This theorem has three properties:

(a)D(A, B) ≤ 1 and D(A, B) = 1 if and only if A = B.

(b)The ”closer” to each other A and B are, the nearer D(A, B) must be to unity.

(c)The ”farther” from each other A and B are, the nearer D(A, B) must be to145

zero.

4. Properties Of The Proposed Entropy

Klir and Wierman pointed out[13]: the function donated by aggregate un-

certainty is supposed to capture,in an aggregate fashion, both non − speci f icity

and con f lict-the two types of uncertainty that coexist in evidence theory.150

In addition�to qualify as a meaningful measure of aggregate uncertainty in

evidence theory, function AU(aggregate uncertainty) must satisfy certain re-

quirements that are generally considered essential on intuitive grounds.

4.1. Probabilistic Consistency

Definition: When all focus elements in a BOE are singletons, AU must be155

equal to Shannon entropy.

AU(m) = − ∑
A⊆X

m(A)log2m(A) (17)
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Proof of the proposed entropy: When all focus elements in a BOE are single-

tons, ∑
B⊆X

m(B) · D(A, B) = m(A) and 2|A| − 1 = 1. Thus, the proposed belief

entropy can be reduced to

EJ (m) = − ∑
A⊆X

m(A)log2m(A) (18)

4.2. Set Consistency160

Definition: Whenever belief focuses on a single set m(A) = 1 for some

A ⊆ X, AU assumes the form of the Hartley measure[4].

AU(m) = log 2 |A| (19)

In the original text of Klir and Wierman, the proof of this property is as follows:

m(A) = 1 means that every probability distribution that sums to one for

elements x in A and is zero for all x not in A is consistent with belief. And165

Klir argues that in this case AU should be equal to the maximization of the

uncertainty in the set A, i.e. the uniform distribution of all possible outcomes

in A. The traditional condition holds that the possible result must be the

identification of a particular individual element in the frame, so Klir comes to

this conclusion.170

AU(m) = − ∑
x∈A

1
|A| log2

1
|A| = log2 |A| (20)

In the generalized condition envisioned by Deng, the maximization of the un-

certainty of m(A) = 1 should be distributed in 2|A| − 1 subsets of A. In the

previous example of 32 students who can take the first place, for an answer

m(A) = 1, the possible result is that one person in A takes the first place, and

two people in A tie for the first place... All |A| individuals in A are tied for first175

place, so there are 2|A| − 1 cases. If it is evenly distributed over A to maximize
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AU, there is

AU(m) = − ∑
B⊆A

1
2|A| − 1

log2
1

2|A| − 1
= log2

(
2|A| − 1

)
(21)

Since the proof procedure of Klir and Wierman is not violated, the set con-

sistency of a generalized condition is defined here as follows: Whenever belief

focuses on a single set m(A) = 1 for some A ⊆ X, AU assumes the form as180

below:

AU(m) = log2

(
2|A| − 1

)
(22)

Proof of the proposed entropy:

When belief focuses on a single set m(A) = 1for some A ⊆ X, there is ∑
B⊆X

m(B) · D(A, B) =

1,

EJ (m) = log2

(
2|A| − 1

)
(23)

4.3. Range185

Definition: The range of AU is [0, log2 |X|] when belief is defined on P(X)

and AU is measured in bits.

This article’s definition to Range in generalized condition is as follows: The

range of AU is [0, log2 |X|] when belief is defined on P(X) and AU is measured

in bits.190

The range represents the number of bits of information boundary. In tradi-

tional conditions, the information boundary is |X|, which means there are |X|

possible results in total. Therefore, the range is [0, log2 |X|]. In generalized

conditions, there are 2|A| − 1 possible results. Thus, the information boundary

is log2

(
2|A| − 1

)
, and the range should be modified to [0, log2 |X|]. Proof of195

the proposed entropy:

Whenever belief focuses on sets As for any A ⊆ X, Because 0 ≤ D(A, B) ≤ 1

Hence

∑
B⊆X

m(B) · D(A, B) ≤ ∑
B⊆X

m(B) (24)
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∑
B⊆X

m(B) · D(A, B) ≤ 1 (25)

Therefore200

EJ ≥ 0 (26)

4.4. Subadditivity and Additivity

Some scholars proposed in their own papers the additive and sub-additive

studies on existing belief entropy. For example, in analyzing properties of Deng

entropy in the theory of evidence, Joaquin Abellan proposed that Deng entropy

does not satisfy subadditivity and additivity.205

This may be because most of the mathematical functions proposed by the

existing belief entropy are for one-dimensional frame of discernment. Additivity

and subadditivity are the theories proposed for the spatial structure of multidi-

mensional frame of discernment, which require additional defined mathematical

functions to express such problems. Therefore, this paper does not carry out210

research here.

4.5. Discussion

In this chapter, the basic properties of each belief entropy are summarized.

As shown in Table 1, where TC represents a traditional condition and GC rep-

resents a generalized condition.215

We can see from Table 1 that Dubois & Prade’s entropy does not conform to

Probabilistic Consistency and Non − negativity, Hohle’s and Yager’s entropies

do not conform Set Consistency and Non − negative. Klir & Ramer’s and Klir

& Parviz’s entropies do not conform Set Consistency, Deng entropy and Cui

et al’s belief entropy do not conform Maximum, Wang et al ’s belief entropy220

do not conform Non − negativity and Maximum, Zhou et al’s entropy and the

entropy proposed in this paper conform all the principles discussed above.
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Table 1: Belief entropy analysis of five basic principles

Probabilistic
consistency

Set
consistency

Range
(Non-negativity)

Range
(Maximum)

Dubois & Prade’s no yes no yes(TC)
Hohle’s yes no no yes(TC)
Yager’s yes no no yes(TC)
Klir & Ramer’s yes no yes yes(TC)
Klir & Parviz’s yes no yes yes(TC)
Deng entropy yes yes(GC) yes no
Cui et al’s yes yes(GC) yes no
Wang et al’s yes yes(GC) no no
Zhou et al’s yes yes(GC) yes yes(GC)
Proposed yes yes(GC) yes yes(GC)
• TC represents a traditional condition and GC represents a generalized condition.

5. Comparative Analysis

In this subsection, the advantages of our improved entropy in measuring

uncertainty with intersections in focal elements can be revealed by comparing225

it with other existing entropy functions based on several numerical examples.

5.1. Example 1

Let the frame of discernment be X = {1, 2, · · · , 15}, and a BPA is given as

m({3, 4, 5}) = 0.05, m({6}) = 0.05, m(A) = 0.8, m(X) = 0.1, where proposi-

tion A is a variable that varies from A = {1} to A = {1, 2, · · · , 14}.230

This example is used to test the non-specificity of belief entropies� common

sense tells us that as the cardinality of A increases, the uncertainty of m in-

creases; i.e., the entropy increases. Now, we examine whether the uncertainty

measures of various entropy functions for m conform to this expectation. Since

the study has been divided into traditional condition and generalized condi-235

tion previously, the ranges of the two conditions are marked with dotted lines

respectively in Figure 1.

It is shown in Figure 1 that all images of entropies are within a range of their

own conditions. However, some function images have a downward trend with

the increase of size of A� like Hohle’s, Yager’s, Klir & Ramer’s, Klir & Parviz’s,240
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Figure 1: Comparison between proposed entropy and other uncertainty measures

Dubois, which is obviously unreasonable. The function image of Dubois &

Prade’s entropy have a increase trend, eventually approaching the traditional

condition’s range. Here we argue that Dubois& Prade’s weighted Hartley en-

tropy is an effective way to express non-specificy in traditional conditions. In

addition, Deng entropy and all his variants showed a good increase trend, be-245

cause they all use the form of 2|A| − 1 to express non-specificity.

5.2. Example 2

Let the frame of discernment be X = {1, 2, 3, 4, 5, 6}, and a BPA is given as

m1:m({1, 2, 3}) = 0.4, m({4, 5, 6}) = 0.6; m2:m({1, 2, 3}) = 0.4, m({3, 4, 5}) =

0.6; m3:m({1, 2, 3}) = 0.4, m({2, 3, 4}) = 0.6. Common sense tells us that m2250

has more information on 3 and 6 compared to m1, therefore, the uncertainty of

m2 should be lower than m1. Similarly, the uncertainty of m3 should be lower

than that of m2. Now, we examine whether the uncertainty measures of various

entropy functions for m conform to this expectation.

As can be seen from Table 2, The reduction of uncertainty from m1 to m2255

to m3 can not be represented by some entropies� like Dubois & Prade’s, Hohle’s

and Deng’s entropies. Yager’s entropy value even reduce to 0 when BPA is
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Table 2: Belief entropy values in the case study

m1 m2 m3
Dubois & Prade’s 1.5850 1.5850 1.5850
Hohle’s 0.9710 0.9710 0.9710
Yager’s 0.9710 0 0
Klir & Ramer’s 0.9710 0.5633 0.2526
Klir & Parviz’s 0.9710 0.5633 0.2526
Deng entropy 3.7783 3.7783 3.7783
Cui et al’s 3.7783 3.7554 3.7325
Wang et al’s 3.7783 3.5379 3.2974
Zhou et al’s 3.7783 3.0226 1.8892
Proposed 3.7783 3.5186 3.2063

given as m2 and m3. The entropy value is equal to 0 only when there is no

uncertainty, that is, the result is certain� but m2 and m3 do not fit this case.

5.3. Example 3260

We assume in the frame of discernment for X = {1, 2, 3, 4, 5}, the entropy of

m({1, 2, 3, 4}) = 1 is obviously less than the entropy of m(X) = 1. If belief is

assigned to the two sets like m({1, 2, 3, 4}) = 0.5 and m(X) = 0.5, we can assume

that its entropy would be less than m(X) = 1 which means blank information,

and greater than m({1, 2, 3, 4}) = 1, because the latter has less uncertainty in265

non-specificity and conflict. To put it another way, when the belief assigned to

the X reduces from 1 to 0, we will become increasingly convinced that ′5′ is not

the answer, which means we have more information to eliminate uncertainty.

Let m(X) = a and m({1, 2, 3, 4}) = 1 − a, and calculated when a increasing

from 0 to 1, the change trend of entropies, as shown in Figure 2270

The four dotted lines in Figure 2 correspond to the values log2(4), log2(5),

log2(15), and log2(31), respectively. The values of the four dotted lines are Set−

Consistency for the values specified in the traditional condition and generalized

condition when m(1) or m(2) equals 1, respectively. The function images of Cui

et al’s belief entropy and Deng entropy completely overlap. Looking at Dubois,275

it can be found that the values at both ends of the function image are exactly

equal to log2(4) and log2(5), respectively, and when 0 < a < 1, the function
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Figure 2: Entropies as functions of m(X) = a

image monotonically increases, which also supports the rationality of Dubois’s

non-specific expression of entropy. Hohle’s, Yager’s, Klir & Ramer’s and Klir &

Parviz’s are completely outside [log2(4), log2(5)], which is not consistent with280

the above analysis. The values of Deng entropy and its variants when a = 0 and

a = 1 are all equal to log2(15) and log2(31)respectively, which is consistent with

the prediction in this paper. Zhou et al’s entropy drops suddenly when 0 < a <

1. When a is in a certain interval, Deng entropy� Cui et al’s belief entropy and

Wang et al ’s belief entropy can exceed log2(31), which is also a manifestation285

that these belief entropy formulas do not conform to the Maximum of Range. In

this example, the value of the proposed belief entropy increases monotonically

as a increases and never goes beyond the range of [log2(15), log2(31)].

6. Conclusion

This paper presents an improved Deng entropy for measuring the uncer-290

tainty of mass function in evidence theory. Based on the Deng’s non-specificity

measure of entropy and Jousselme’s method of expressing set similarity. Then,

the rationality of the proposed method is demonstrated by discuss the five basic
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principles proposed by Klir and Wieman and analyzing three examples. The

entropy proposed in this paper, retains the excellent characteristics of Deng en-295

tropy and can better describe the influence of intersections in focal element on

uncertainty.

A major innovation of this paper is that it emphasizes the difference between

the scenario hypothesis proposed by Deng and the condition studied by previ-

ous scholars. In this paper, they are called generalized condition and traditional300

condition respectively. This paper explains the reasons for the differences be-

tween the two conditions, and argues that the two conditions should be studied

separately and not mixed together.

The entropy proposed in this paper needs further verification and research

in theory, and also needs further exploration in practice.305
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