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 Abstract. Light is the only physical phenomenon of our experience that transits all three scales of the world 
we inhabit: infrafinite, finite, as well as transfinite. The concept of instanton accomodates the transition of these 
scales in space and time. This fact indicates that the quantization might be in fact, the only true law of nature. In 
this respect the world we inhabit is unique: the Planck’s quantization procedure asks for a special fundamental 
structure of the universe as an optical medium, which must be a Maxwell fish-eye. In order to apply the Planck’s 
procedure of quantization to matter, one needs to extend the electromagnetic properties of the light fields to matter 
fields. At this juncture, the special relativity aroused a thesis which acts implicitly in all initiatives of theoretical 
physics: the length – which is a differentia of the concept of matter – is identical to the distance, which is a 
property of the vacuum concept, and can be revealed only by light. A proper usage of this thesis leads to the idea 
of Yang-Mills fields: the equivalents in matter of the electromagnetic fields from vacuum. The planetary atomic 
model, as the fundamental structure of the physical world is considered from this point of view. Consequences 
are suggested and/or described; some of them are pursued up to their conclusions, some remain at the level of 
logical speculations. 
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A Profession of Faith 

One can hear or, in the spirit of modern-time communications within the mankind, rather read from time to time, 
quite an alarming complaint, like the one once posted in cyberspace by theoretical physicist and philosopher 
Egbertus P. J. de Haas, in an old personal web page. As many others alike, this web page seems to have meanwhile 
vanished. However, by the courtesy of its author, we had the good chance of extracting the following words of 
warning and, fortunately, we were clever enough not to waste it. Quoting, therefore: 

 The physicists who defend themselves by saying that quarks aren’t real but positivistic 
constructs of the mind, with the sole intention to connect the observable, are forgetting the 
functioning of the human mind, especially in the social context of education. Pupils and students 
start their lives in an Aristotelian-like realist philosophy because that is the most common sense 
way to look at things and to interpret the stories of parents and schoolmasters. Adolescents learn 
to believe their teachers and to accept the reality of what is written in their schoolbooks. When we 
teach them in our science classes that stuff is made of molecules that molecules are made of atoms, 
atoms in their turn consist of electrons and nuclei, nuclei of protons and neutrons, protons and 
neutrons of quarks, then we imprint a view of what really is, in their absorptive minds. If education 
will continue to do so for decades, half the world will believe that quarks really exist. Education 
can turn the biggest nonsense into common sense reality, by sheer force of authority and repetitive 
indoctrination. So education can make quarks as real for the one as it makes God real for the 
other. Once we start talking of quarks in our science classes, we make them part of reality, even if 
the positivist scientists who invented and used them claim a different view. (E. P. J. de Haas, 
Philosophy, our Italics; warmhearted thanks are due to Mr. Paul de Haas for kindly providing us 
once the old version of his web page containing this excerpt) 

We subscribe unreservedly to these conclusions. And with good reasons at that: while the scientific creation of a 
concept is the result, even the expression we should say, of that noble fundamental Cartesian doubt, once it 
reaches the public – if it ever does, in the first place – that concept appears as a dreadful irrefutable truth, mostly 
because it is endorsed by the “sheer force of authority”, to use Paul de Haas’ own words. The primary reason for 
this situation is that the public at large has no access to science, least of all to physics, so that, simply put, they 
are incapable of doubting. That is, the layman takes physics for granted, just the way it is served, with all the 
necessary cutlery at that, by some ‘authority’. Paul de Haas seems to imply that the culprit is, by and large, to be 
found in the fact that society lives in that Aristotelian environment whose spirit is implanted in man’s mind by 
education. Again, this is true, indeed! And unfortunate, we should add, especially for the theoretical physics. 
However, no one seems to realize it, for not too many people see it that way… 
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 In fact, one may utter, in the ‘layman’s style’, as it were: so what? what is so alarming about this?! The answer 
is easy for all to see and understand, from the above excerpt: the Aristotelian environment, just like religion for 
that matter, severs any consideration of ethics, to which an individual has access only by a higher education. This 
kind of education is, in the realm of science, the only social environment which gives the man a slight chance to 
become capable of doubting in a Cartesian acceptance. The higher education, therefore, is socially speaking that 
‘environment’, if we may be allowed to say so in order to be in line with Paul de Haas’ expression, which would 
allow one to openly and conscientiously accept that old… dubito ergo cogito… ergo sum. Having no higher 
education is not alarming by itself, indeed, but has harsh consequences on the very human condition, since the 
man emits judgments and, worse even, claims their indisputability, just because he has the chance to speak, as it 
were, especially in the present social environment. 
 Even though the higher education is not a sufficient condition by itself – as we have already mentioned, the 
chance it gives to a man is quite thin, since, according to Gustave Le Bon, the layman, regardless of his/her degree 
of education, closely reproduces the psychology of the crowds (Le Bon, 1906) – it is at least necessary in the 
formation of a free individual: as long as the individual remains in the Aristotelian environment, whereby, in the 
modern times especially, the education is regularly identified with a training for social purposes, he is obviously 
not free. There is no better expression than the one once articulated by Steven Weinberg, may he rest in peace!, 
with reference to religion. Quoting: 

… with or without religion, good people would tend to behave well and bad people would do evil 
things, but the peculiar contribution of religion throughout history has been to allow good people 
do evil things. One of the great achievements of science has been, not to make it impossible for 
intelligent people to be religious … but at least to make it possible for them not to be religious. 
We should not retreat from this accomplishment. [(Weinberg, 2001); our emphasis, n/a] 

With due diligence on defining what, in our case here, ‘good’ and ‘bad’ may mean, a point upon which the religion 
has no issues at all, one can say, with Paul de Haas, about science in an Aristotelian context exactly what Steven 
Weinberg said in this excerpt about religion. And, when it comes to the very human roots of this situation, the 
problem with religion is exactly the same as that with science. For, the evil things always reside in man’s mistaking 
the products of own imagination for reality, and this kind of reality is the only one that crowds can handle, to a 
certain extent, of course. This fact is independent of the social condition of the man, good and bad whatsoever, 
highly educated or not at all: it is our innate, original sin, as it were, and symptomatically, it is the only lever to 
move the crowds. 
 In science, though, unlike the case of religion, this condition appears to have become critical lately and, as the 
excerpt above of Paul de Haas shows, the situation is generated mainly by confounding the mind creations with 
reality. However, in the case of true science – that science that serves the man on his way to freedom, not the 
social individual who, in fact, assumes a fundamental chain of training in order to be enslaved into serving the 
society – there is a better chance of a ‘right management’, if we may say so, by mathematics. Among many quite 
popular quotes of good humor of the great mathematician Gregory Moisil – may he rest in peace! – there is one 
quite… serious, to be reckoned with: 
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 All that exists as correct thinking in this world is either mathematics or liable to assume a 
mathematical form (our emphasis, n/a) 

Perhaps the original saying does not sound, verbatim, quite like that: on one hand it is quoted from the memory 
of an old – and only occasional, we have to admit it frankly – student of the great teacher. However, also adding 
to distortion may be the English rendition intended to put forward the gist of the saying: it may have contributed 
too, for a little departure from the original wording. In any case, the truth of this utterance is beyond any doubt: 
this is what the history of natural philosophy, and especially the modern physics – as the message of Paul de Haas 
shows – plainly confirm. To wit: no one questions, for instance, the reality of a material point, even though such 
a thing does not exist anywhere in our daily experience. However, everybody would agree that such a concept is 
only a fiction helping us in understanding the world we inhabit, and that this thinking is correct from a 
mathematical point of view… 
 … Which, unfortunately, is not the case of quarks, for instance. The reason for this is that none of the 
properties of the quarks belong to our daily experience or can be extrapolated starting thereof: they appear to have 
the same right to claim a real existence as, e.g. the scenario of a dream of Chimpden Earwicker, before he woke 
up to inspire James Joyce, or any one of the fantasies of E. T. A. Hoffman, for that matter. Yet, the great physicist 
Murray Gell-Mann, may he rest in peace!, the one who coined the term «quarks», had no problem whatsoever in 
declaring openly that “… the number three fitted perfectly the way quarks occur in nature” (The Quark and the 
Jaguar, W. H. Freeman & Company, New York, p. 181). 
 These last observations suggest a key towards understanding the problem and, in our opinion, even to offer a 
solution, by and large socially accessible, which, therefore can be taken as part of an Aristotelian environment: 
all mind creations of the modern physics are controlled by mathematics. After all, the quarks themselves are an 
excellent example such a mind creation. However, this very mathematics needs to be itself controlled by a sound 
natural philosophy derived from our experience, which is almost totally… absent today, to say the least. An 
excuse may be invoked here, in order to assume that such a control is impossible, and thus to repudiate the idea 
as belonging to utopia: the quarks’ reality is beyond the reach of our senses, the only criterion that provides the 
layman with a slim chance of rightly judging a reality. Nonetheless, there is also a good chance that this criterion 
is misplaced. 
 Indeed, in keeping with the example of the material point above, one can figure out that everybody can 
imagine, even in an Aristotelian ‘environment’, that a material point can, indeed, adequately portray an isolated 
body. Perhaps many of us can go, without any mathematics whatsoever, even as far as connecting this concept to 
a sound reality: the more distant is a body, the more realistic is the image of material point we make out of it. The 
hard part would be to realize that the quarks are… material points. As we said, not too many among us seem to 
have realized this, since the modern mathematics does not appear to have any channel of communication with 
experience at all levels. Like, for instance, the old natural philosophy, which was closer to an Aristotelian 
environment, due to its closeness to our common experience ... The ‘occurrence of quarks in nature’, for example, 
as a sure phenomenon, is just a mathematical fact, and not too many among us have the chance to see in it the 
presence of a classical material point… 
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 … and thus, it occured to us, that in presenting the modern physics to the public, no one has ever undertaken 
the burden of doing this from an appropriate natural philosophical point of view. To wit: from the very same point 
of view of that classical Aristotelian environment, whereby the image of the world is implanted into our minds 
by the ‘sheer force of authority and repetitive indoctrination’, indeed, but which, unlike quarks, we can ‘absorb’ 
in our minds due to the daily experience. More to the point, the physics is basically presented nowadays as part 
of technology. Along our studying experience in physics, we grew gradually aware that a concern of presenting 
physics within an Aristotelian atmosphere is, indeed, dearly missing, especially in the theoretical physics. And 
not just for pure educational purposes, but even for a proper understanding of the physics at large… So, we took 
advantage of the occasion presented by the concept of instanton, in order to show – and not just ‘laterally’, as it 
were, but by historically significant examples of the kind that made the modern physics – that there may be a way 
to scientifically fill in after all, even for such a crucial demand of our times! 
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Chapter 1 Under Louis de Broglie’s Guidance 

The key points of the idea of interpretation in wave mechanics is that, in addressing the concept of material 
particle – the necessary concept serving for interpretation according to wave-mechanical precepts – we have to 
use the square of a wave function. The routine opinion, made over time in practicing the classical physics, strongly 
indicates that this square represents a density. However, when carrying out an interpretation procedure, as its 
concept stands today, this density is referring to many, quite different things. We have, for instance, the ensembles 
of particles, as in the case of a Madelung-type interpretation of the wave function, in which case the square of the 
wave function is the number density of particles. At the other end of the possibilities of interpretation we have 
the ensembles of some representatives of particles, as in the case of Born-type interpretation, whereby the square 
of the wave function is referring to the density of probability of presence of the particle in a location at a time. 
And we have a host of cases in between, whereby the wave function can be even multidimensional, and therefore 
the density is actually a quadratic form involving some representative fields. In any of these cases the density 
serving the concept of interpretation of the wave mechanics by a physical procedure, has hardly anything to do 
with the classical Newtonian concept of density: that is, with that characteristic describing the manner in which 
the matter fills the space at its disposal. 
 This problem – that is, the discrepancy between the Newtonian density and the interpretative densities of 
modern physics – is not acknowledged in physics as such, and the fact that it was even addressed at a time by 
Louis de Broglie is a wonder by itself. Regardless of its academic value, when the issue has been documented, 
one could see at once that it contains a lot of references to one of the most important problems of the last century: 
that of the scale transitions. Louis de Broglie was the only one we are aware of, who ever tried to prove the 
assertion regarding the square of a genuine wave function of the physical optics in classical terms (de Broglie, 
1926b,c). Along his path to proof, de Broglie followed the idea of a theory of ray optics in a remarkable analogy 
involving a special case of fluids. To wit: a light ray to him is the analogous of a capillary tube, whereby the 
wave surface is the analogous of a portion of the physical surface of the fluid confined within the tube [see for 
details (Mazilu, 2020); especially the Chapter 2 of that work]. 
 In the framework of a modern interpretation concept, the fluid in a capillary tube is, physically speaking the 
only one moving ‘by itself’, as it were, under the surface tension. Of course, the analogy between a ray of light 
and the capillary fluid works as long as we are able to find a mandatory wave surface, playing the part of the fluid 
surface that moves inside the capillary tube. In short, Louis de Broglie has shown that the physical optics turns 
out to be an easy case of analogy here, inasmuch as the mathematics allows us to say that the wave surface of 
light can play the part of the surface of a fluid of particles ‘flowing’ along the ray. The hard part of the problem 
of this analogy is finding the reason of capillarity of the wave, which in the classical mechanical case is provided 



 9 

by the properties of matter: the surface tension of the fluid, which acts along the wall of the tube. Anyway, one 
can grasp, from this quite succint presentation, the idea of density used by de Broglie in his presentation: it is a 
number density of particles. 
 Along an extensive study of ours, whose recent products are a work dedicated to quantization of matter in the 
de Broglie’s take (Mazilu, 2020), and to the first application of quantization, in Planck’s original acceptance, to 
matter (Mazilu, 2022), we came to the surprising conclusion that the whole physics is, in fact, a matter of a grand 
analogy, as we would like to call it, to which the concept of scale transition (Mazilu, Agop, & Mercheș, 2019, 
2021) is the driving engine, so to speak. The present work is all about elaborating on the idea of such analogy, 
following the Louis de Broglie’s line as a guide, however, with the Max Planck’s steps towards quantization 
applied to the case of matter. To de Broglie, the steps to quantization of matter have, apparently, nothing in 
common with the original Planck’s quantization except the Planck’s constant, which is declared universal by 
default, as it were: it allows us to construct the quantum strictly based on the concept of frequency, as connected 
to energy. After all, de Broglie has set the grounds for what later became the second quantization procedure and, 
with this, Planck’s procedure remained in the back, so to speak, as the old quantization procedure. 
 Any procedure of quantization after the times of Planck, just repeats the leitmotif of the second quantization: 
the Planck’s constant is universal. Whence a host of works, theoretical as well as experimental, trying to justify 
and even give interpretation to this constant. Even after the year 1967, when Harold Ralph Lewis has discovered 
an invariant action (Lewis, 1967), destined to be a ‘generalization of the Planck’s constant’, as one often hears 
ever since, this constant has not lost its initially assumed position of universality, in any quantization regarding 
the matter. In this respect, an observation can be made (Mazilu, 2020), for guidance and encouragement of our 
appraisal of the concept of quantization: the class of invariants discovered by Harold Lewis, serving for 
‘generalization’, includes the classical Newtonian forces, which, therefore, may appear as consequence of 
‘quantization law’. This further suggests that the quantization is a fundamental law of nature, of importance going 
beyond any axiomatics. A genuine ‘quantum’ different from Planck’s can also be found among these invariants: 
it is what we have called the Procopiu quantum (Mazilu, 2022). The Stefan Procopiu’s quantization procedure 
(Procopiu, 1913) is the only procedure following faithfully, for the case of matter, the Planck’s procedure of 
quantization from the case of light. And the Procopiu’s quantum is an exact Lewis invariant, just like any 
Newtonian force. This occurrence, we think, obligates us to a review of the idea of quantum of action, and an 
extension of it by the concept of invariant. 
 Since the physical optics was the realm of the first quantization and, as such, this kind of optics was the 
preferred field of reference of Louis de Broglie himself, it is only natural that we should start with it in a time 
history of incentives leading to the wave mechanics. However, we have to admit that the grand analogy we were 
talking about before, was implicitly present in physics from its very beginning. One can say, for instance, that 
from this point of view, the fact that de Broglie found a way of quantization in matter only guided by the special 
relativity is not quite fortuitous. To wit: as we shall show here, the whole relativity, as a standing physical theory 
is, indeed, a matter of analogy involving the idea of surface as it was conceived by Louis de Broglie in his 
construction of the concept of physical ray. This idea of surface, taken under the suggestive name of instanton, 
for reasons of scale transition to become clearer as we go on with this work [see (Mazilu, 2022) for our definition 
of the concept], is a key point of the modern theoretical physics. And we are set here to show the mathematical 
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construction of a few geometrical models necessary in understanding the concept of instanton, and settle their 
place within the modern theoretical physics. This first chapter of the present work is dedicated to a brief update 
concerning the incentives we just mentioned above, that would once lead to the modern wave mechanics. 

 1.1 The Light Along the Line of Max Planck 

 In order to build the first quantum theory of light, Max Planck was compelled to invention, among a few 
others, of a concept of resonator [(Planck, 1900); see also (Planck, 1914), especially Part III, Chapter III, and 
Parts IV & V of the book]. It is important to insist right here on the Planck’s reasoning, inasmuch as this reasoning 
is addressed to those properties of matter that, during the process of quantization of light, needed to be taken in 
consideration, explicitly we should say. And when we say ‘explicitly’ here, this qualification should not be taken 
as a pleonasm: after all, can one say, something cannot be done otherwise but explicitly. It should be taken under 
the meaning: a physical structure, producing and absorbing light. Fact is, and we insist on it here, that such a 
consideration was cut short ‘halfway to completion’, as it were, by the laws of Kirchhoff referring to light as a 
thermodynamic phenomenon, those very laws that laid grounds for the light quantization process. And, as the 
course of modern physics plainly shows, we need to reevaluate that old concept. 
 To start with, the resonator was conceived by Planck as an oscillator in ether. We need to lay stress on this: 
the quantization of light had always in the background an idea of quantization of matter. It was just natural, 
inasmuch as the light confined to a Wien-Lummer enclosure – the usual experimental device serving to study the 
thermodynamics of light – behaves indeed very much in the way described by the Kirchhoff’s law of thermal 
equilibrium between radiation and matter. And along his study of the radiation problem, Planck felt compelled to 
make the statement of this law even more precise. Quoting: 

… This law states that a vacuum completely enclosed by reflecting walls, in which any emitting 
and absorbing bodies are scattered in any arrangement whatever, assumes in the course of time the 
stationary state of black radiation, which is completely determined by one parameter only, 
namely, the temperature, and in particular does not depend on the number, the nature, and the 
arrangement of the material bodies present. Hence, for the investigation of the properties of the 
state of black radiation the nature of the bodies which are assumed to be in the vacuum is perfectly 
immaterial. In fact, it does not even matter whether such bodies really exist somewhere in nature, 
provided their existence and their properties are consistent with the laws of thermodynamics and 
electrodynamics. If, for any special arbitrary assumption regarding the nature and arrangement of 
emitting and absorbing systems, we can find a state of radiation in the surrounding vacuum which 
is distinguished by absolute stability, this state can be no other than that of black radiation. 
[(Planck, 1914), pp. 135 – 136; emphasis added, n/a] 

Notice the definition of vacuum: here it is identified with the one supporting light, more precisely, the 
thermodynamic light. The phrase: ‘bodies which are assumed to be in the vacuum’, leaves no doubt about that, 
but suggests more. We shall revisit this definition later, in matters regarding the quantization of the light itself, 
but in a larger theoretical environment, outside thermodynamics. Then the terms ‘vacuum’, ‘light’ and ‘matter’ 
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will be delineated more precisely. The statement: ‘temperature as the only parameter’ did not raise then, and, 
actually, still does not raise nowadays any doubts of correctness within scientific community. And this, in spite 
of the fact that the Wien’s displacement law – the physical law that ‘ratifies’ every theoretical spectral density of 
energy of radiation – explicitly shows that there are at least two more parameters to be considered in a radiation 
law: the spectral density of radiation and the frequency of that radiation. However, these parameters could not 
reach in physics the condition of absolute temperature: none of them was ever conceived as statistic, except 
perhaps in their quantitative evaluation, which in physics does not count as a valid definition of a concept. Let us 
go over to some preliminary details on this issue. 
 According to Wien’s displacement law, any radiation law – under this last name one usually understands a 
functional expression representing the spectral density of radiation – is expressed as a function of only two 
variables: frequency itself, and the ratio between frequency and temperature. In its most general expression, the 
displacement law proclaims that such a function must have the general algebraic form: 

 
 

(1.1.1) 

where g(…) is a universal function of its argument, En is the spectral energy density of thermal radiation, 
corresponding to frequency n, and T is the absolute temperature, as defined for a classical ideal gas, i.e., as a 
sufficient statistics. Therefore the frequency can by no means be neglected as a parameter: it is at least for this 
reason that we cannot say ‘temperature is the only parameter’. After all, it is its presence that compelled Planck 
to invent the resonators, and this is an undisputable fact! 
 However, the point at issue here is that one cannot see how the frequency can be a statistic, like the 
temperature from the case of classical ideal gas: by this the radiation fundamentally contrasts the classical ideal 
gas that serves for the definition of the absolute temperature. The temperature is associated with radiation based 
on the reason that in a Wien-Lummer enclosure ‘the radiation reaches in time a stationary state’, to put it in 
Planck’s own words. The incidental gas’ physical description involves dynamics, while the radiation only has a 
purely energetic description. There are notable consequences of this situation, two of which are worth mentioning 
right away, before we continue to explore Planck’s own ideas on quantization. 
 Samuel Bruce McLaren, the one who, using the words of Harry Bateman, “heroically gave up his life (in the 
WWI, a/n) that others might live” (Bulletin AMS, Vol. 32, No. 2, 1926, p. 175), suggested a radical attitude. 
Namely, along the idea that in the Fresnel’s physical theory of light a dynamical principle is only incidental, so 
that we need to give up a significant classical-mechanical approach. Quoting: 

 To save the “æther” it is necessary to give up the classical mechanics. This paper shows that 
the theory of radiation can proceed without the principle of minimum action. A formula for the 
complete radiation naturally suggested is 

 
 

(1.1.2) 

k1 and k are arbitrary constants. This gives a result similar to Rayleigh’s for large values of lq, a 
result similar to Wien’s for small values. [(McLaren, 1913); emphasis added, a/n] 
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Here R is the ideal gas constant, q is the temperature, and l is the wavelength of light, equivalent to frequency, 
by the usual formula n = c/l. This formula satisfies all the classical criteria that made the case for Planck’s 
formula. Incidentally, McLaren mentions especially the case of Rayleigh law of radiation, because this is the only 
case that can be theoretically validated based on the temperature of radiation as a statistic. In order that these 
statements may become more clear, we transcribe it in frequency, in order to be able to compare the result with 
the expression of Wien’s displacement law (1.1.1). In such notations the above formula (1.1.2) reads: 

 
 

(1.1.3) 

For simplicity, the constant k here is supposed to have absorbed the light speed c in its value. Then, obviously, 
this expression for spectral energy satisfies the basic requirement of the Wien’s displacement law, because it is 
of the functional form given in equation (1.1.1), only with a special form of the function g(…) entering the 
algebraic expression in that equation. Again, obviously, the spectral density (1.1.3) satisfies the conditions of the 
two limiting cases taken by Planck as reference in obtaining his celebrated formula: Rayleigh-Jeans’ for n/T ® 0  

 
 

(1.1.4) 

and Wien’s radiation law 

  (1.1.5) 

for n/T ® ¥ [see also (Mazilu, 2022), especially §2.1 of that work]. 
 Symptomatically, in connection with this approach of the theory of equilibrium radiation, on the occasion of 
building his quantization procedure of light, Planck also had to invent a new type of statistics, which, in our 
opinion, was destined to overcome the sufficiency of the absolute temperature as a statistic [(Mazilu, Agop, & 
Mercheș, 2021), Chapter 2; see also, in this respect, (Mazilu, 2022), Chapter 2, especially §2.3]. Now, in obtaining 
his formula Samuel McLaren uses exclusively statistical reasons that can be summarized by saying that the energy 
distribution of thermal radiation is an exponential distribution, with no equipartition of energy connected to it, 
though. However, neither is there a quantization in this case! This very fact may be taken as symptomatic too: 
apparently, the quantization is tied up with a statistic, and we found that the important thing in this connection 
may be just the type of statistics, which goes beyond the exponential characteristic. Specifically, we also found 
out that the statistics in quantization is based on the particular class of distribution functions having quadratic 
variances when these variances are expressed as functions of ensemble means. Moreover, while in the case of 
light the discrete distributions of this type are relevant, in the case of matter we can make the case for continuum 
distributions (Mazilu, 2010, 2022). It is worth noticing that, according to this idea, the classical Newtonian forces 
– that is, the central forces with magnitude varying inversely with the square of distance – must be, in fact, the 
expression of a quantization. In other words, the classical dynamics may be taken as a quantization method, avant 
la lettre as it were, but in the case of matter. In fact, this may count, as a reason for the natural-philosophical 
change in emphasis: it is not the dynamics that is needed in the case of light, but the quantization. Likewise, it is 
not the dynamics which is fundamental either, to the description of matter, but the quantization as well. Thus, 
bringing dynamics into question may actually be redundant: the quantization should be the only law of nature! 
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 Anyway, although Samuel McLaren remains at the qualitative theoretical stage – we have not verified how 
‘similar’ (1.1.3) is to Planck’s analogue, with the two limiting cases of Rayleigh-Jeans and Wien’s laws of 
radiation – his results are something to reckon with, especially when recalling the fact that the physical theory of 
Fresnel might have no mechanical interpretation. As we said, in the first place the relation (1.1.3) is correct 
according to the classical criterion represented in equation (1.1.1); secondly, the Planck’s theory cannot be called 
into question as a physical theory. At least not now, when so many years have passed since its creation, and it 
provides so many correct theoretical explanations. After all, it is based on a sound statistics that turned out to be 
a universal instrument of theoretical physics (Carruthers, 1991). 
 Moreover, this statistics can be applied in its detailed steps to the case of matter, for an arbitrary physical 
meaning of the quantization constant, not just action (Mazilu, 2022). This fact is essential for the modern theory 
of chaos (Gutzwiller, 1984, 1990), a theory that, in contemporary physics, fills in for the missing milestones along 
the path from the quantization in light towards the quantization in matter. In our opinion, the idea of chaos was 
present in physics even from its modern founding. As Martin Gutzwiller himself, may he rest in peace!, puts it: 

 Astronomers became increasingly aware of this problem during the last 60 years, but physicists 
began to recognize it only some 20 years ago. The phenomenon, which now goes under the name 
chaos (original emphasis, a/n), has since become a very fashionable topic of investigation. 
Innocent onlookers might suspect one more passing fad. I do not think it will turn out that way, 
though. Chaos is not only here to stay, but will challenge many of our assumptions about the 
typical behavior of dynamical systems. Since mechanics underlies our view of nature, we will 
probably have to modify some of our ideas concerning the harmony and beauty of the universe 
[(Gutzwiller, 1990), p. 2; our emphasis, except as mentioned, a/n]. 

First we must straighten the great physicist on one point: if ‘astronomers became increasingly aware’ is because 
the chaos is a natural phenomenon. However, if ‘physicists began to recognize it only some 20 years ago’, is 
because the chaos theory was, in germ only, is true, at the very foundations of the dynamics by Newton: it is 
contained in the very definition of the Newtonian static forces [(Newton, 1974), Book I, Section II, Proposition 
VII, especially the Corollary III of that proposition]. After all, this is the very reason why it ‘will challenge many 
of assumptions about the behavior of dynamical systems’. The present work shows also, among others, what are 
those assumptions to be challenged, and how. In the end, this was the case of quintessential Bohr’s quantization 
for matter, that can be taken for guidance: it also asks for the quantization of the kinetic momentum, and a deeper 
consideration of classical dynamics from a modern point of view shows, as we said, that the invention of the 
classical forces can also be considered as an expression of the concept of quantization [(Mazilu, 2020), §§6.4 and 
6.5; see also (Mazilu, 2022)]. 
 Coming back to our main stream of arguments here, the only truly criticizable fact regarding the Planck’s 
theory remains the one that his statistical method is based on equations involving the correlation of two ‘sub-
processes’, if we may say so, components of the light as a stochastic process, and this characterization asks that 
the law of radiation should also be a probability law. The two ‘sub-processes’ are only inferred, so to speak, from 
the existence of Rayleigh-Jeans’ and, respectively, Wien’s experimental cases of thermal light, which do not 
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involve the very universal function g(…), required by the Wien displacement law, but only special approximations 
of such a function. This fact, though, can only call into question the precepts of classical thermodynamics, not the 
physics itself. To wit, the Planck’s correlation between the two cases is based on their variances: Planck’s result 
is not referring to a density of probability per se, inasmuch as it involves just the variance of a statistical population 
characterized by that density of probability. However, it is only the density of probability corresponding to this 
variance that turns out to be universal (Carruthers, 1991). So, the question arises if the Planck’s formula itself can 
be taken as referring to a probability, and the answer to this question appears to be positive, at least as we see an 
answer from the historical perspective. 
 Indeed, there is also, apparently, no quantization in a significant case which, in our opinion, deserves special 
attention, the one made a century ago by Irwin G. Priest. This case is not purely theoretical, like McLaren’s, but 
simply regards the experimental data, like in the Planck’s case (Priest, 1919); if it turns out to be theoretical, this 
fact can be assessed, in our opinion, only from the statistical perspective of the problem of thermal radiation. 
Priest’s basic equation for spectral density of light is written in the old manner, also used by McLaren, i.e. using 
the wavelength instead of frequency: 

  (1.1.6.) 

or, dividing by the maximum spectral density at a given temperature – which is more convenient for fitting 
purposes – we have 

 
 

(1.1.7) 

Here Elm is the maximum of spectral density, depending on the absolute temperature T; further on, A and D1,2 are 
constants. We have verified this formula on many cases among classical sets of data that led to Planck’s 
conclusions. However, in order to bring a present-day example of the quality of this function in fitting, we have 
used the equation (1.1.7) in order to fit the COBE-FIRAS official data with it (Fixsen, Cheng, Gales, Mather, 
Shafer, & Wright, 1996). The data was first matched with a Gaussian, after a ‘regularizing transformation’, 
destined, according to statistical practices, to bring it to symmetry (Box & Cox, 1964): 

 
 

(1.1.8) 

and then plotted against frequency, together with Planck’s spectrum. The result is presented in the figure attached 
below, taken from (Mazilu, 2010). The two curves – Planck’s and Priest’s – are, at least visibly, not too far away 
from each other and from the experimental points. What we intend to sustain, is that a case can be made to the 
effect that the thermal light can be described, even in the Planck’s manner, by a probability density, and that the 
primeval Einstein’s interpretation of light (Einstein, 1905b) is just a particular case of this interpretation. To wit: 
Einstein used only the Wien’s limit of the Planck’s law of radiation, which is compatible with Maxwell’s 
molecular statistics, and thus a priori uses a valid definition of temperature as a statistic. This incident may be 
taken as showing by itself a classical behavior of light, in case we are tempted to take it as an interpretation. 
Anyway, the case should raise a warning sign for any corpuscular theory of light, and so much the more for the 
quantization in the case of matter in general. 
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 We take this juncture as an opportunity to stress an important idea arisen on the occasion of the researches for 
the laws of thermal radiation. Of course, both of the two limits of a radiation law – Rayleigh-Jeans’ and Wien’s 
radiation laws – use the temperature in constructing a thermodynamics of the thermal radiation, but there is a 
slight difference in the manner they are doing that. The Rayleigh-Jeans limit, of high temperature, is limited to 
the oscillator model for the waves of light, and uses the idea of the equipartition of energy for the ensemble of 
oscillators representing the light in a Wien-Lummer enclosure. Speculatively speaking it was objectionable – and 
Planck himself clearly saw this – on the grounds that it has not secured the temperature from the point of view of 
thermodynamical equilibrium required by Kirchhoff’s laws: it simply took the temperature as given by that of an 
ensemble of oscillators. The Wien’s limit of the radiation law, on the other hand, fills in for this omission, by 
considering the matter inside enclosure as an ideal gas. This is known to be the prototype thermodynamical 
system, allowing for a definition of the temperature as a statistic, associated, however, with the translational 

degrees of freedom. Wily Wien figured out that the light, in its thermodynamical equilibrium with the gas, is just 
a physical expression of the possibility of transformation of the statistic on translational degrees of freedom of 
molecules into a statistic on vibrational degrees of freedom characterizing the light. Then the statistics just needs 
to be transferred directly from the classical one of Maxwell’s referring to molecules, to the light waves referring 
to vibration, considering the thermodynamical equilibrium a fundamental physical process of realizing this 
transfer. 
 Obviously, the general traits of this transfer had to be taken in consideration, and they were summarized by 
Wien through two assumptions helping to solve the case. These assumptions, apparently inspired by the existing 
theories of the emission of electromagnetic field, were nevertheless directed to fill in for two necessary statistical 
properties, wanting at the time we are talking about. Quoting: 

 1° In a gas that radiates, each molecule emits only radiations of a single wavelength. The 
frequency is a function only of the velocity of the molecule; 
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 2° The intensity of radiation limited by two very close wavelengths, is proportional to the 
number of molecules emitting the oscillations of that period. [(Wien, 1900); our translation, 
emphasis added, a/n] 

An explanation is in order here: as long as the Rayleigh-Jeans case was taken as reference, it only proved that the 
classical equipartition energy simply does not work for an incidental statistical mechanics of radiation. The 
physics, in this instance, just missed a structural model of the molecule. However, it was almost sure that such a 
structure must involve electrical properties, for otherwise it would not be able to emit radiation of the 
electromagnetic nature. Thus, the first of the above assumptions is referring to the overall property allowing us to 
connect the two possible statistics involved in the Wien’s displacement law: the speed of a molecule, known to 
be connected to the temperature as a statistic, and the frequency of radiation, which could not be seen in epoch as 
a statistic. The second of the above assumptions just fills in for the completely missing concept of frequency as a 
statistic analogous to temperature. Notice the idea of ‘wavelength proportional to temperature’, that proves, in 
our opinion, to be an essential theoretical concept in the problems of quantization. 
 Incidentally, let us also take notice of the significant circumstance that in the de Broglie’s later theory of 
wave-particle duality, the fundamental hypothesis is based on relativistic assumptions forced upon 
monochromatic waves, whereby the frequency does not need to be a statistic: one wave corresponds to one 
frequency. Nevertheless, de Broglie encountered right away a contradiction between the definition of frequency 
and its relativistic use in connection with the Einstein’s energy. Thus he was compelled to introduce the concept 
of group of waves in order to fill in for the missing statistic: the group of waves is limited to the waves in ‘a very 
small interval of wavelengths’, if it is to express the idea in the manner of Wien in the excerpt above. But, there 
is another face of this replacement, namely, that of the presence of such a statistic in the very classical idea of 
material point: the second assumption of Wien excerpted above admits that the intensity ‘is proportional to the 
number of molecules emiting the light of the same period’. This assumption bluntly contradicts the Kirchhoff’s 
laws, which, according to Planck show that the state of stationary radiation “does not depend on the number, the 
nature, and the arrangement of the material bodies present”. It says that, on the contrary, we need to consider the 
structure of the bodies in the cavity and, when considering such bodies the state of radiation has a statistic 
associated with the ensemble of such bodies: the period of light. 
 As expected, there were objections raised on the occasion of the published work of Wien on the functional 
form of the law of radiation [for a detailed documentation see (Lummer, 1900) and the works cited there]. These 
objections would regard, indeed, the contradiction with Kirchhoff’s law, but they can serve to make the point of 
departure from this law more precise. The moot point at the time was that, after all, the experimental data were 
not fully covered by Wien’s radiation formula: it covered just ‘the other end’ of the spectrum radiation, as it were, 
complementary to the part covered by Rayleigh-Jeans radiation formula. However, Wien’s answer to the critique 
by Lummer and Pringsheim contains a valid statistical-theoretical point, that needs to be considered as such and, 
moreover, needs to be transformed into a missing physical theory. Quoting: 

 The hypotheses making the basis of this demonstration (see the excerpt right above, a/n) are, 
for the moment being, not confirmed by some other facts. But the objection raised by MM. 
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Lummer and Pringsheim against my proof does not seem well-founded to me. MM. Lummer and 
Pringsheim state that the self-establishing radiation in a closed space must be independent of the 
number of particles emitting radiations, since a single particle would suffice (according to 
Kirchhoff’s laws, a/n) in establishing the regime of radiations. This opinion is erroneous, for 
setting up the equilibrium of radiations is a consequence of the second principle of 
Thermodynamics, and this principle is not valid but for a large number of molecules. It cannot be 
applied to a single molecule of gas. [(Wien, 1900); our translation, emphasis added, a/n] 

In other words, the problem of radiation is a clear place to exhibit the fact that the temperature is not a sufficient 
statistic even for the kinetic energy of molecules of the gas. The Maxwell demon, to mention just one renowned 
theoretical device based on sufficiency, is not a valid physically concept! According to its definition (Fisher, 
1922, 1925), such a statistic – i.e. a sufficient statistic – is independent of the size of a sample used in measuring 
it. Assimilating the emission of light with a statistical measurement does not make sense for the temperature on a 
sample of size one. Whence the importance of the Planck’s entropic approach in the problem of thermal radiation! 
 Coming back to Planck, his statement to the effect that ‘it does not matter whether such bodies really exist 
somewhere in nature’, it is plainly contradicted today by the very progress of the modern theoretical physics. In 
order to ilustrate the issue we just remark here – of course, we shall revisit the subject later – that Planck invented 
the concept of resonator only in order to play the part of a ‘material body present’ in a Wien-Lummer cavity, 
capable to interact with the light. He felt himself under obligation to realize a kind of equilibrium equivalent with 
the thermodynamic equilibrium required by the Kirchhoff’s law: without such an equilibrium, the absolute 
temperature would make no sense for light. In hindsight, this invention appears as a replica of another remarkable 
invention in the history of the natural philosophy: Newton’s invention of the concept of forces, whereby the 
equilibrium in question was an equilibrium of forces. And, even though the Kirchhoff’s law stipulates that, from 
a thermodynamical point of view the matter’s structure is inconsequential, Planck understands this as a freedom 
to choose any structure one wants. The reason is that, in order to define the temperature of radiation, one needs 
to have an equilibrium of some kind between matter and radiation inside the Wien-Lummer enclosure. Only then 
we may have a temperature of radiation, which can simply be taken as the temperature of thermodynamical 
equilibrium between matter and radiation: it is the temperature of the matter in equilibrium with it. However, 
from among the physical systems capable of interacting with the radiation, and also liable to have a definite 
temperature, only the oscillators are convenient. If the law of equipartition of energy is in force, they lead to the 
Rayleigh-Jeans radiation law. That is why the definition of Planck for these oscillators takes full advantage of the 
freedom offered by Kirchhoff’s law, indeed, but also involves a vacuum structure that became conceptually 
obvious only in later times [see (Marciano, 1978)]. Quoting: 

 Since, according to this law, (Kirchhoff’s, a/n) we are free to choose any system whatever, we 
now select from all possible emitting and absorbing systems the simplest conceivable one, namely, 
one consisting of a large number N of similar stationary oscillators, each consisting of two poles, 
charged with equal quantities of electricity of opposite sign, which may move relatively to each 
other on a fixed straight line, the axis of the oscillator. [(Planck, 1914), p. 136; emphasis added, 
n/a] 
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Historically, the lines of theoretical development have been concerned only with the phrase ‘according to this law 
we are free to choose’. However, the very Planck’s choice shows, in fact, that we are not quite so free to choose: 
the choice must be made according to the laws of dynamics and electrodynamics. And, on one hand, with the 
choice of an oscillator, the temperature is not the only parameter: the frequency gets into play too, only the natural 
philosophy had, at that time, no means of dealing with its concept statistically, but only mathematically. On the 
other hand, the physical structure of that oscillator turned out to be an essential point of concern of the theoretical 
physics emerging from quantization. To wit: the idea of an oscillator along a ‘fixed straight line’ of Planck’s, is 
in contradiction with the laws of dynamics. Going ahead of us: the Kepler motion asks for the Ampère current 
element model, as it is just natural. Quoting, again: 

 It is true that it would be more general and in closer accord with the conditions in nature to 
assume the vibrations to be those of an oscillator consisting of two poles, each of which has three 
degrees of freedom of motion instead of one, i.e., to assume the vibrations as taking place in space 
instead of a straight line only. Nevertheless we may, according to the fundamental principle stated 
above, restrict ourselves from the beginning to the treatment of one single component, without fear 
of any essential loss of generality of the conclusions we have in view. [(Planck, 1914), p. 136; 
emphasis added, n/a] 

The history of physics proved, quite contrary, that the generality was lost, and even in a fundamental way at that, 
but it may be preserved, from dynamical point of view, by a special formulation of dynamics. This formulation 
contains the equilibrium in a specific way according to the idea of force characterizing a statics (Wigner, 1954). 
However, in order to take heed of this idea, we need to learn some more lessons from the physics of light: 
specifically, we believe it worth coming back to the essentials of the theory of the most notable counterpart of 
Wien-Lummer cavity, involving the forces directly. On doing this we can discover quite a few points of theoretical 
interest (Mazilu, 2023a). First, and the foremost of them, is that, from the physical optics point of view represented 
by the Planck’s choice of the structure of a resonator, the Planck’s ‘completely enclosed vacuum’ must be actually 
a Maxwell fish-eye optical medium (Stavroudis, 1972) [see also (Buchdahl, 1978) and (Chen, 1978) on some 
essential theoretical-physical connections of the Maxwell fish-eye structure]. It is only this medium that allows 
for a meaningful dipolar fundamental structure accommodating the Planck’s resonator. Secondly, the Katz’s 
natural philosophy of charge, allows for a Planck-type quantization in the matter, as once realized by Stefan 
Procopiu [see (Mazilu, 2022) for a full documentation]. The Procopiu resonator is simply a magnetic dipole, but 
the geometrical structure of matter is just the same as that of the Planck’s completely enclosed vacuum. For once 
this conclusion gives theoretical justification to Einstein’s idea of application of the quantum statistics to the 
vibrations of solids (Einstein, 1907, 1912). But there is a more important natural-philosophical consequence that 
we extract from these facts, serving our present purposes. 
 Fact is that we need to make the ideea of vacuum more precise. The theoretical physics came to recognize the 
vacuum as a category in the sense of being a predicate: the vacuum is specific to any problem involving matter. 
It represents the absence of that matter. Of course, the vacuum is then a kind of Kantian category, once it 
represents the absence of matter. However, so is that matter, if present: a category. Furthers, as we said, Planck’s 
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vacuum is understood in the capacity of light, only accidentally containing some matter. Whence, the light must 
also be considered here as a category. The vacuum in general must be understood as containing matter and light 
as two opposed categories: the first one defined negatively – vacuum is not matter – the second one defined 
positively – the light is vacuum. The physics of last century proved that these two categories – light and matter – 
go into one another when disappearing, not into vacuum. Therefore the vacuum contains both of them, ranking 
equally, but can be characterized only by comparison with the matter: it is that category of matter missing the 
qualities of particles, therefore with no possibility of interpretation whatsoever. The category of light only offers 
the possibility of creating dipoles from vacuum, serving for fundamental structures. This should be, in our opinion, 
the moral of modern vacuum tunneling concept (Jackiw & Rebbi, 1976) connected with the idea of multiplicity 
of vacua. 

 1.2 The Optical Ray and the Planck’s Resonator 

 The first problem to be solved in the de Broglie’s order of things physical, is the construction of a ray in 
general [(de Broglie, 1926b,c); see also (Mazilu, 2020), passim]. Of course, such a problem involves some 
theoretical requirements for the physical description of a light ray. Optically speaking – the optics being the part 
of physics to be consulted in this instance – such a description means the knowledge of the equation of progression 
of the phenomenon of light along the ray. At this juncture the optical properties of the medium supporting light 
are essential, and among the natural-philosophical prerequisites on such a medium, the refraction phenomenon is 
essential: propagation of light can be mathematically described by the Euler equation corresponding to the 
extremum of optical path. This path is defined as an integral [see (Stavroudis, 1972, 2006), which are the works 
we follow closely for guidance]: 

 
 

(1.2.1) 

where (ds)2 º ádx|dxñ is the square of arclength of the corresponding geometrical path, i.e. of the path in the empty 
space hosting the optical medium of refraction index n(x). This background space is assumed here to be 
Euclidean. The variational problem associated with the integral from equation (1.2.1) – the Fermat’s principle – 
provides the differential ‘equation of motion along the ray’, where the geometrical path length is playing the part 
of a ‘time of motion’. Therefore, from this perspective, the motion represents a propagation, whose time is dictated 
by the geometrical path length from a position to another, as in the classical optics, where the light is assumed to 
propagate through free space. The differential equation in question is: 

 
 

(1.2.2) 
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the geometrical quantities of physical interest are the torsions and not the curvatures (Cartan, 1931). We shall 
return on this topic, if needed. For now, coming back to our discussion path here regarding the classical optics, 
when algebraically expanded, the equation (1.2.2) gives 

  (1.2.3) 
where the diacritical mark means derivative on s, and a dot between vectors means dot product. 
 Everything depends here on the functional form of refraction index of the medium supporting the light. 
According to Planck’s quantization procedure this optical medium needs to accommodate a fundamental material 
structure: the electric dipole. That is, we need to assume that in a Wien-Lummer enclosure, the thermodynamical 
equilibrium creates a medium whose fundamental constitutive unit is a dipole. This condition comes down to 
assuming a special functional form of the refraction index of the medium. To wit, this special functional form is: 

 
 

(1.2.4) 

where áx|xñ is the sum of squares of the coordinates along the path of light, taken as scaled with a gauge length, 
as it were, in order to be considered pure numbers. Understandably, in view of the previously presented idea of 
the quantization of light (see §1.1), the essential theme of the present work is justifying this choice for the 
refraction index of the optical medium. A ‘choice’ of the refraction index may seem as just a particular case of a 
medium, where the theoretical physics needs, in fact, the most general concept. However, let us not forget that 
the choice is only a mathematical fact, and the demand of generality is actually a matter of physics. 
 Start, for once, with the equation (1.2.3), which by using (1.2.4) can be rewritten as: 

  (1.2.5) 

Using the definition of the elementary arclength of the geometrical path, we have: 

  (1.2.6) 

so that, in a Euclidean background, we can get the relations 

  (1.2.7) 

and use them in order to conclude on the equation (1.2.5). First, by differentiating (1.2.5) itself, we get: 
  (1.2.8) 

whence dot-multiplying this by |x²ñ and using the first relation from (1.2.7), we get: 

  (1.2.9) 

Geometrically speaking, this last condition is referring to a curvature of the ray path through space: for this kind 
of continuum, the curvature of the path must be a constant. Returning then to equation (1.2.5) once again, 
however, this time only for dot-multiplying it by |x²ñ directly, and then using the first of equalities (1.2.7) and the 
result from the last of equations (1.2.9), gives the remarkable final equations to be used in adjusting the differential 
equation (1.2.8): 
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Here R is a non-dimensional constant, suggesting, again, the necessity of a gauge length to be introduced, this 
time, in a specific way imposed by the optics of media, via the curvature of the geometrical path. Inserting this 
result into equation (1.2.8) produces the final equation of the propagation along the ray: 

  (1.2.11) 
This is the first occurrence, in the context of optics of material media, of such a third order linear differential 
equation which, as we will try to establish in the present work, is of a primary importance in theoretical physics, 
as long as this one is viewed from the perspective of a natural philosophy involving the scale transitions. 
 While this task will be gradually completed as we go along with our work, for now we have an observation 
that needs to be made in order to properly guide the work itself. Namely, the optical medium described by the 
refraction index from equation (1.2.4) should be considered a Riemannian manifold which turns out to be of finite 
volume and positive curvature. Thus this optical medium satisfies the basic geometrical requirements for playing 
the part of a Wien-Lummer cavity. Indeed, the elementary optical path of the medium is conformal Euclidean, 
assuming that ádx|dxñ is Euclidean. In view of the idea of physical generality, it is perhaps the moment to insist 
for a little while on the equation (1.2.1) from this geometrical point of view. Take the elementary path 

 
 

(1.2.12) 

as the Riemannian metric of this optical realm. This metric is, in the views adopted here, a conformal Euclidean 
metric, with the conformality factor being spherically symmetric. Using the spherical symmetry, we have 

 
 

(1.2.13) 

where q and j are the spherical angles of colatitude and longitude, respectively, and r2 º áx|xñ. This form of the 
metric does not tell us very much about the Riemannian geometry of the optical realm, but it can tell us a lot if 
we go over to a meaningful variable. So, let us assume that r takes values between two limits, as in the case of 
the radial coordinate in the classical Kepler problem. In this case it can be represented faithfully by formula: 

  (1.2.14) 
so that the metric (1.2.13) can be written as 

 
 

(1.2.15) 

This metric describes a realm spatially delimited by the magnitude tanf of the eccentricity vector, in the case of 
the classical Kepler motion, and with W representing the arclength, j say, of the geodesic on the unit sphere. By 
a change of variable: 

 
 

(1.2.16) 

where j counts here as an arbitrary angle of longitude, the metric (1.2.15) can be reduced to the Beltrami-Poincaré 
form, characteristic to the hyperbolic plane: 
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We read this line of reasoning as telling us just what kind of Riemannian geometry governs the realm containing 
the center of force in the classical Kepler force. One thing is sure: this realm, containing, as the case may occur, 
the Earth, the Sun or the atomic nucleus, is clearly a Maxwell fish-eye! In this sense, the metric (1.2.12) is 
universal, indeed: it applies to any planetary system in the universe, at any space scale! 
 Let us, therefore, show what is its property that makes it so attractive, at least from our point of view, if 
nothing else. The geometry will be described here by introducing two geometrical parameters – which, therefore, 
are assumed to represent lengths – denoted a, b, and used in order to describe the Euclidean shape of the geodesics 
of the metric: 

 
 

(1.2.18) 

Here we have used the equation (1.2.12) for the elementary optical path. This is the metric of the realm called the 
Maxwell fish-eye, indeed, as it was described a long time ago by Constantin Carathéodory in his exquisite 
mathematical researches regarding the geometrical optics (Carathéodory, 1937). With this description we have 
our first and foremost of the incentives in choosing of the functional form (1.2.4) for the refraction index. Indeed, 
the Maxwell fish-eye is a perfect optical device whereby all light rays have the properties of the lines of force of 
an electric dipole: circles passing through two fixed points representing the locations of the two component 
charges (Stavroudis, 1972, 2006). In a Maxwell fish-eye, the light rays through any point in the space occupied 
by this medium, also pass through a point which is its inverse with respect to a given sphere. Should the necessity 
occur to operate an interpretation here, it obviously needs to be achieved by point particles having charges, and 
characterized by the Lorentz property: in order to acquire a charge of opposite sign, a position from such a medium 
needs to be replicated by inversion with respect to a certain, locally spherical surface. 
 Let us present some details of this statement, just because we need to be fairly familiar with the procedure in 
view of its application in the theory of embeddings, if for nothing else [we follow here (Carathéodory, 1937), 
§73]. These details involve the mathematical concepts connected to the three-dimensional space embedding into 
a four-dimensional Euclidean manifold: the first is the space form of an instanton, while the second involves the 
algebraic properties of the measured physical properties. For a good guidance on the topic, we recommend the 
exquisite work of Ruben Aldrovandi and José Geraldo Pereira on Geometrical Physics, especially the Chapter 23 
(Aldrovandi & Pereira, 2017); so much the better as this guidance is offered in connection with classical non-
Euclidean geometries. As, further on, the embedding procedure involves the stereographic projection, one may 
need a previous familiarization with this projection. A geometrically comprehensive presentation of the 
stereographic projection method is made in the booklet (Rosenfeld & Sergeeva, 1977), that we also recommend 
to the reader. 
 According to Constantin Carathéodory, the parameters a and b have the following geometrical meaning, for 
which they were specifically introduced in fact: the metric (1.2.18) is the metric in the three-dimensional boundary 
of a four-dimensional Euclidean sphere of radius a, projected stereographically on a three-dimensional Euclidean 
space at the distance b from the center of the projection. This can be shown as follows: by analogy with the three-
dimensional case, one takes the equation of a sphere in the four-dimensional case – a three-sphere, as it were, in 

(ds)2 = 4a2b2
dx dx

(b2 + x x )2
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view of the fact that a sphere in space is usually considered as a two-sphere – in Cartesian coordinates x, h, z, t 
in the form of quadratic equation: 

  (1.2.19) 
The three-dimensional stereographic projection on an Euclidean tangent hyperplane, from a point located at the 
distance b from it, is achieved by the formulas: 

 
 

(1.2.20) 

where n is a parameter, playing the part of refraction index of the medium described by the metric (1.2.18). 
Introducing these coordinates in the equation (1.2.19), we get an equation that can be solved right away, giving 
two values of n: 

 
 

(1.2.21) 

Here r2 º áx|xñ is the Euclidean norm of the position vector of the projected point from the tangent hyperplane. 
The first one of these values corresponds the the ‘south pole’ of the hypersphere (1.2.19), t = -a – the ‘north 
pole’, t = a, being the point where the hyperplane (x, y, z) touches the hypersphere – where the correspondence 
realized by (1.2.20) is singular. On the other hand, the second one of these values corresponds to the projection 
of current point of coordinates (x, h, z, t), helping in representing it as a point in the tangent Euclidean space in 
coordinates (x, y, z). According to equation (1.2.20), this representation is provided by the formulas: 

 
 

(1.2.22) 

which can be readily solved for (x, y, z), in order to provide the Cartesian coordinates as: 

 
 

(1.2.23) 

Now, using these last two equations, we can construct the four-dimensional Euclidean elementary distance: 
  (1.2.24) 

which turns out to be the metric (1.2.18). 
 Going a little bit ahead of us here, we see these results the following way: the Maxwell fish-eye is an optical 
medium describing the matter in a three-dimensional Euclidean space. The matter in this space is itself a 
Riemannian manifold, having the Euclidean metric (1.2.24), which is conformal with the Euclidean metric as in 
equation (1.2.18). The problem is not what the three-space represents – we know this from the daily experience 
of our life – but what the coordinates (x, h, z, t) are, and an answer presents itself right away: they are charges. 
This is a story first told to us by the geodesics of the conformal metric (1.2.18), which are lines characterizing the 
field of natural dipoles of the medium described by (1.2.18): either electric or magnetic. 
 On the other hand, any two of the four coordinates (x, h, z, t) can be associated in order to give either the 
square of an electric charge, or the square of a magnetic charge according to Katz’s natural philosophy [see 
(Mazilu, 2020), §3.1]. The association is a stochastic process and, as we shall show here has everything in 
common with the stochastic type of processes once imagined by Carlton Frederick for the metric tensor of the 
spacetime (Frederick, 1976). According to this kind of view, the equation (1.2.19) would represent an 
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electromagnetic continuum ‘split into charges’ by the procedure of embedding a three-dimensional Euclidean 
manifold. This, we know since Max Planck, is physically realized by a Wien-Lummer cavity enclosing light and 
matter in the form of some electric dipoles. Based on this, and using the analogy based on what we already know 
about quantization, and on the fact that matter and light are two inseparable categories, we can only guess that a 
similar procedure in the case of a matter continuu would be physically realized by a kind of Wien-Limmer cavity 
enclosing ‘matter’ and ‘light’, this one in the form of some magnetic dipoles. No matter what the case may turn 
out to be, from the physical optics point of view, which is the only a priori point of view to be used in this kind 
of problems, the quantization procedure based solely on a Wien-Lummer cavity must necessarily be that of Max 
Planck. We cannot speak of a direct second quantization, and the main reason for that is, in an expression of the 
divine Henri Poincaré, that we do not know in general, and expression for the energy of matter (Poincaré, 1897). 

 1.3 Portions of Surfaces and Electric Properties of Matter 

 Arthur Eddington has an important observation that, in our opinion, should guide the research of every 
physicist, especially if he/she wants to follow Louis de Broglie’s path on building the theoretical physics. Indeed, 
it is significant that de Broglie followed an old natural-philosophical path, quite appropriate to the new steps in 
science at his time, that abides by the words of Eddington, written on the occasion of a proposal by Uhlenbeck 
and Goudsmit made just about the same historical time. That proposal regards the spin of the electron, when taken 
as part of the complex structures (Uhlenbeck & Goudsmit, 1926). One of the critiques raised against the proposal 
in question was that, in keeping with the classical meaning of the word ‘spinning’, the electron must be a spatially 
extended particle that may involve rotations with superluminal speeds. As we shall see here, such a logical 
inference may not be out of place for the instanton structure of an electron, but at the epoch we are talking about, 
this was hard to believe without an argument. And the complex factor Ö(-1) came into argument, just like it did 
in the case of wave function of Schrödinger just about the same time [see (Mazilu, 2020), §1.1]. However, in the 
case of spin the occurrence of imaginary unit was intended to be taken as a prototype acceptance worth following 
mathematically. And the conclusion of this argument is just about the same in both cases, only Eddington 
expresses it more… academically, so to speak. Quoting: 

 The mathematical definition of velocity (dx/dt) contains no special reference to motion in a 
dynamical sense; x is merely the co-ordinate of a selected succession of world-points, and there is 
in the definition no guarantee that dx is traversed by anything except the thought of the 
mathematician. In describing the electron as spinning, what happens is that, faced with a hitherto 
unimagined structure, we make our thought skip faster than light round its boundary, and by so 
doing succeed in seeing a correlation with a more familiar structure, namely, that of an electron at 
rest. The correlating velocity has no more physical existence than has the factor Ö–1 used to 
correlate the structure of the four-dimensional world to the more familiar structure of a four-
dimensional Euclidean space. In a deeper analysis we should not speak of a moving charge-element 
but of a charge-and-current vector, motion being attributable only to boundaries or analogous 
features of charge distribution – not to charge (original emphasis here, n/a) but to a charge 
(original emphasis here, n/a). When in the cruder description the charge moves faster than light, 
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the charge-and-current vector Jµ becomes space-like (original emphasis here, n/a). [(Eddington, 
1926); our Italics, except as indicated, n/a] 

De Broglie clearly used the mathematics of relativity, whereby the idea of ‘faster-than-light’ particles originates, 
but on the occasion of a work on interpretation proper (de Broglie, 1926b,c) his reasoning took another turn, even 
though along the same general philosophical line. Going a little ahead of us, we can say that this line has strong 
historical roots in physics, as we shall see later along our story, but all of them respect the idea resuscitated by 
the words of Eddington excerpted above. In essence, we shall have to make our thought ‘traverse a de Broglie 
tube’ ‘carried with a wave’, as it were, and therefore we need to figure out how to describe appropriately a portion 
of surface delimited by a tube. The mathematical method styled briefly in this section is intended to support such 
a description. 
 We shall limit our considerations here to only the three-dimensional space, which we assume to be also the 
realm of daily events of our life. The vectors will be conceived either as entities defined by components in an 
Euclidean reference frame, or in the Dirac’s matrix form. Thus, the position vector for instance, can be written in 
one of the following two forms: 

 

 

(1.3.1) 

The first of these forms is the usual geometric script for the vectors, whereby the position vector is a linear 
combination of the unit vectors êk of the reference frame. The coefficients xk of this linear combination are the 
contravariant components of the position vector. The second writing – the matrix notation or, as we would like to 
call it in order to account for its origin, the Dirac notation – disregards the existence of the reference frame. It is 
appropriate in using for calculations in cases where the reference frame does not count: for instance, either in the 
cases of positions in the same reference frame, or in the cases where the reference frame is the same everywhere 
in space, as in the Cartan’s approach of the Riemannian geometry (Cartan, 1931). However, there is a third case 
that seems to encompass these two: the case when the base vectors of the reference frame are constructed from 
coordinates, by the very same functional rule in any point in space. This is, for instance, the case of a Beltrami 
reference frame revealed by us in the case of Maxwellian approach to electricity [see (Mazilu, 2020), §6.1], and 
asks for a physically valid process of establishing the coordinates independently of the geometry. 
 In general, the reference frame is purely local: it can vary from point to point due to some physical reasons. 
Moreover, still due to some physical reasons, the reference frame may not be always orthogonal. In such cases, 
using the same general matrix notation as in equation (1.3.1), we write 
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Here g is the metric tensor, a matrix that, due to the fact that the reference frame is made out of vectors that are 
only normalized, not being orthogonal, has 1 as diagonal entries. If the metric tensor is the identity matrix, we 
have the usual Euclidean space, with the position expressed in Cartesian coordinates. 
 The basis of the differential geometry of space in the approach we use here, i.e. in the Élie Cartan’s approach, 
is the observation that, physically speaking, an infinitesimal (or elementary) displacement involves both a 
variation in the position of a point per se, and a variation of the reference frame itself, according to a rule that 
may vary from one point to another: 

  (1.3.3) 
Here the reference frame is understood as composed of a triad of unit vectors, having also a common origin. Thus, 
by the general geometrical rules, the elementary variations of the unit vectors of the reference frame can be 
expressed as linear combinations of these very vectors, with some differential coefficients that can be arranged 
as entries of a 3´3 matrix. Therefore, the evolution of the reference frame can be described by the so-called 
Frenet-Serret equations, written in the ‘indicial form’: 

  (1.3.4) 

Here, in order to use the summation rule over dummy indices, we introduced the dual reference frame, given by 
the unit vectors êk. These are unit vectors that by their dot products give the contravariant metric tensor, which is 
the inverse matrix of the metric tensor defined by the usual reference frame. In general, the matrix W has only 
zeros on the main diagonal if the reference frame is orthonormal. Indeed, by the virtue of definition of the metric 
tensor, we have 

  (1.3.5) 

Thus, as just mentioned, we can make the properties of the matrix Ω even more precise: it is always a skew-
symmetric matrix, in the case of an orthonormal reference frame. 
 Now, with Frenet-Serret relations from equation (1.3.4), the equation (1.3.3) can be written as 

  (1.3.6) 

Obviously, both the components of dx as well as those of dêk must be exact differentials. In the framework of 
exterior calculus, this fact can be expressed by vanishing of the exterior differentials: 

  (1.3.7) 

The whole geometrical construction of Élie Cartan is a mathematical consequence of these two equations, 
representing simple facts of differentiability. For once, by following the rules of working with exterior differential 
forms we can find, starting from (1.3.7), the following relations which connect the components of vector dx to 
the matrix Ω:  

  (1.3.8) 

Here the Einstein’s rule of sumation over dummy indices is observed, with the only difference that the monomials 
are defined by exterior multiplication, not by the usual numerical product, and the sign ‘Ù’ after differentiation 
symbol shows that it has to be an exterior differentiation. By obvious reasons, the first of equations (1.3.8) is 
usually called compatibility equation: it gives, indeed, the compatibility condition between the variation of the 
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reference frame and the elementary displacements in space, as described within this reference frame. The second 
of the equations in (1.3.8) can be termed as the Maurer-Cartan equation, borrowing a name which describes the 
moving coframe of the Lie algebras. 
 Following the same rules of exterior multiplication and exterior differentiation, one can prove that the first 
equation (1.3.8) is a consequence of the second one, when combined with the definition of the differentials sk 
from equation (1.3.6). However, as they stand, the two equations (1.3.8) are the most general ones: they are valid 
regardless of the definition of sk provided by equation (1.3.6). Therefore the two equations (1.3.8) may very well 
not be obviously equivalent. This means that there are situations, essentially dictated by physical reasons, where 
we need to define the coordinate variations directly in terms of the variations of the reference frame, in which 
case sk do not have the simple structure given in (1.3.6), i.e. they cannot be neatly written as a sum of two 
differential components. In the like cases, one cannot say precisely how much from the infinitesimal variation of 
the position is pure displacement and how much of it is due to the contribution of the variation of reference frame. 
All one can say, in general, is that the components of the displacement vector are differential forms, and that they 
have to satisfy the general conditions from equation (1.3.8). 
 The mathematical method itself, for carrying out the task of introducing the physics into the natural 
philosophy, is based on some almost trivial statements regarding the foundations of the mathematics necessary in 
building a differential geometry. These statements emerged apparently largely unnoticed or, even if noticed, they 
have not been properly used to their full capacity, so to speak, at least not for physical purposes, anyway. In order 
to make this statement more obvious, we shall reproduce here two of the Élie Cartan’s ‘algebraical’ theorems 
which are recognized to form the ground of his remarkable mathematical approach to differential geometry 
involving the so-called moving frames [for a clear presentation of the concept from the point of view we adopt 
here, see (Spivak, 1999), Volume II, Chapter 7]. Then, these theorems will be updated with a result of Yoshio 
Agaoka, used in a short description of the transport phenomena using Cartan’s method for the classical case of 
the differential geometry of surfaces. 
 The Cartan’s theorems in question are drawn here directly from one of Cartan’s courses, published via the 
Russian geometrical school of S. P. Finikov [(Cartan, 2001); pp. 16 – 17, Theorems 7 & 9]. We appropriate them, 
for our purposes, under the name of Cartan Lemmas 1 and 2, only in order to be suitably used in making our point 
as explicit as possible. Here they are: 

 Lemma 1. Suppose that s1, s2,…, sp is a set of linearly independent 1-forms. Then there exists 
a convenient symmetric matrix, a say, such that: 

 
 

(1.3.9) 

where f1, f2,…, fp is any other set of linearly independent 1-forms, and a summation over repeated 
indices is understood. 

 Lemma 2. Suppose the basic differential elements du1, du2, …, dun are connected by a system 
of p equations 
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where ωa, a = 1, 2, …, p are linearly independent 1-forms. Then the 2-form f constructed with the 
differentials du1, du2, …, dun vanishes as a consequence of this system of equations if, and only if, 
f can be written as the sum of exterior products 

  (1.3.11) 
where, again, summation over a is understood, and fa are p conveniently chosen 1-forms. 

The first one of these theorems is, by and large, known as Cartan’s Lemma proper in the specialty literature, and 
previously we designated it exactly that way [see e.g. (Mazilu, 2020); see §3.4]. As to the second one of the 
theorems, it carries no special name in the literature, being, in fact, used only occasionally. We intend to use it 
not just occasionally, but just as fundamentally as one uses the Lemma 1. Perhaps not in this very work, but this 
appears as a proper place to locate it anyway. 
 What seems to be essential in these lemmas, and is almost always stressed especially in some old treatises of 
geometry, but apparently forgotten lately – perhaps due only to the exclusive mathematical applications – is the 
fact that the symmetric matrix a from Lemma 1, as well as the 1-forms fa from Lemma 2, are things external to 
the geometrical problem at hand and, moreover, can be conveniently chosen. We take these qualifications as 
meaning that they can be things geometrical, as originally intended, but for our purposes, we extend this meaning 
beyond the mathematical border: they can be things physical as well, i.e. things through which the physics can be 
naturally introduced into geometrical theory or vice versa. For instance, we need to introduce the physics in the 
theory of surfaces, in order to make it physical, thereby apt to serve the de Broglie’s idea in constructing the light 
ray, or a ray in general for that matter. In concentrating on the local geometry in a position of a surface, without 
being interested of the global aspects of that surface, as it is almost always the case in physics, especially in the 
de Broglie’s physical optics, this observation becomes essential. Consequently, we can use these two lemmas, 
primarily in order to choose some physical properties compatible with the geometrical ones. However, mention 
should be made, that there are a great many problems that the differential geometry allows us to solve using them. 
 With this task in mind, let us recall once again the convention referring to our use of numerical indices: insofar 
as either the space or the matter, contemplated as environments in the embedding problem necessary to physical 
interpretation, are apparently always three-dimensional, we reserve the Latin indices exclusively for this case. 
The Greek indices are used for any other dimension, as in the case above, but especially for dimension two, in 
the case of surfaces, dimension four in the case of the manifold of events, viz. the spacetime, or dimension five in 
the case of a Kaluza-Klein type theory. 
 While in a way we are compelled into recognizing that the differential geometry is preeminently well served 
by the Élie Cartan’s method of construction of a geometry, at least from the physics’ point of view, we have to 
recognize that the mathematical philosophical foundations of Cartan’s method are also common facts of a purely 
linear algebraic nature. Two further ideas spring from this observation, namely, on one hand, that the Cartan’s 
method can be extended as a general natural philosophical method into physics, as the previous section plainly 
shows. On the other hand, it occurred to us that this method can be used as the foundation of a theory of scale 
transition. These ideas, as well as the fact that we feel the urge of making the present text somewhat self-
consistent, are the reason why in the present section we insist a little longer on the algebraical basis of the Cartan’s 
method of construction of geometry. However, as this insistence is somehow out of the usual line, we first adduce 

f =ωα ∧φα
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an illustrating example from the physics of electricity, indicating the feasibility of the method in this branch of 
natural philosophy. 
 Take, for instance, the idea of a resonator: for once, it can be defined purely geometrically, as in the previous 
section. However, at some moment of using this definition for physical purposes, one has to take notice that it 
amounts to the idea that the motion of a reference frame in a charge sea creates pairs of charges, positive and 
negative, exactly as envisaged by Lorentz himself (Lorentz, 1892). From our perspective, the Lorentz contention 
means this: the matter is incidentally neutral from an electrical point of view – i.e. it is vacuum – inasmuch as this 
kind of neutrality is effective only on surfaces. Outside these surfaces, and in their immediate neighborhood, the 
charges are in a de Broglie region, ‘moving at constant time’, as de Broglie said, across the surface (de Broglie, 
1926b). In order to illustrate our point of view, it is better to refer such a reasoning to the Lorentz’s own works, 
and to the connection of his ideas with the classical works on electricity. In order to get a better grip on the subject, 
let us follow these ideas along with the classical problems of electricity. 
 The experience shows that the matter can carry charges, just the way it carries mass. However in such a case 
the image of ether, as interpreted by Samuel Earnshaw [see (Mazilu, Agop, & Mercheș, 2021), Chapter 1] seems 
impossible: in the ether we manifestly have waves not particles. Electromagnetic waves, it is true but, still, waves. 
It is on this occasion, that one can conclude, borrowing the later words of C. G. Darwin, that the ether is a 
continuum which needs to be interpreted. The hard part of this interpretation is that the ether appears as electrically 
neutral, and no one could see how the wave concept could be reconciled with the experimental idea of charge. It 
is at this point that Lorentz enters the stage with an idea of incidental electric neutrality. Quoting: 

 If, after arbitrary movements, the matter is reduced to its primary configuration, and if, during 
these movements, every element of a surface which is steadfastly attached to the matter was 
crossed by equal quantities of electricity in opposite directions, all of the points of system will be 
found in their primary positions [(Lorentz, 1892), §57; our translation and emphasis] 

Notice, first, that this hypothesis already assumes that an interpretation is in place, for otherwise one cannot 
describe a surface ‘attached to matter’: they need to have common points. On the other hand, if one takes the 
‘element of surface steadfastly attached to matter’ as referring to an infinitesimal portion of a ‘wave surface’, the 
situation suggested by Lorentz in this excerpt is, indeed, the one envisioned by Louis de Broglie in his condition 
mentioned above, that we found ‘strange’ before [see (Mazilu, 2020), §2.1]. In view of this, we venture to assume 
that ‘configuration’ means here an ensemble of classical material points, so that when Lorentz says that an 
‘element of surface is attached to matter’, we have o understand that this element of surface is determined by the 
positions of at least one material point, playing the part of chosen positions on describing a surface. 
 First, Lorentz finds that his assumption is not always satisfied – we should add: within the framework of 
Earnshaw interpretation – and by now we can even tell why, according to his own findings: it is a problem of 
transport theory. Indeed, there is a discrepancy between the time derivative, and substantial derivative involved 
in the transport of energy [see (Lorentz, 1892), pp. 423 – 424, §66]. However, Lorentz does not see in this a 
reason not to go any further with the model of matter, and this shows us just to what extent was he going with the 
fluid as a model in the interpretation problem: whatever cannot be conceived as valid for an ordinary fluid, cannot 
be applied to the ether, either. Quoting, indeed: 
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 If this hypothesis cannot be admitted in the case of an ordinary fluid, it could not be applied 
to the electric fluid either. However, this fact does not prevent our equations of motion from being 
accurate. Indeed, the mass of this last fluid was supposed to be negligible, and in calculating the 
variation dT (kinetic energy, n/a) only that kinetic energy was considered which is specific to the 
electromagnetic movements; it will suffice therefore that the material points liable of these 
motions, and which are not to be confused with the electricity itself, enjoy the property of returning 
to the same positions if for each surface element the algebraic sum of the quantities of electricity 
by which it has been crossed, is 0. 
 Now, one is entirely free to try on the mechanism that produces the electromagnetic 
phenomena any convenient assumption, and while recognizing the difficulty of imagining a 
mechanism that possesses the desired property, it seems to me that we do not have the right to 
deny its possibility. [(Lorentz, 1892), §67; our translation and Italics] 

Notice, incidentally, an observation intended to make us cautious, namely that the material points – the classical 
‘bodies’ of dynamics – ‘liable of motion’ are ‘not to be confused with electricity itself’, a distinction which, we 
may say, brings forward the observation once made by Poincaré, about the impossibility of action upon ether 
(Poincaré, 1900). Also notice that the Lorentz matter thus interpreted, is the counterpart of the physical universe 
at large. Indeed, here we have to assume that ‘the mass of electric fluid is supposed to be negligible’, since the 
Coulomb forces dominate, while in a regular cosmology based on the general relativistic ideas, it is the charge 
that is ‘supposed to be negligible’, for the gravitation forces dominate. 
 The concept of Lorentz matter, therefore, speaks of a universe where the charge is force-wise dominant, for 
the mass, obviously, cannot be negligible in the sense that it is missing: the dynamics knows nothing of the 
concept of zero inertial mass. Fact is that we cannot ‘dismiss the mass’ in the construction of a physical theory of 
the universe, at least not the way we do it nowadays with the charge in the case of physical universe at large. As 
for the rest of the excerpt above, the most important thing, namely ‘that mechanism… possessing the desired 
property’ from the last sentence, was not to be ‘assumed’ anymore for, just about the period of time we are talking 
here, it was physically accomplished in the form of the field generated via a periodic charge motion by Heinrich 
Hertz [see, for instance, the English translations collected in (Hertz, 1893), for the fundamental works which 
instituted the modern theory of electromagnetic field]. 
 Lorentz insisted at length in making the point clear that the interpretation of the electric matter is not a trivial 
thing. In order to clarify his essential idea, we think it is worth citing again the Lorentz’s words: in characterizing 
the matter structure by an interpretation based upon the existence of electricity, these words constitute the 
crowning point of a long ascending path followed by electricity theory starting from the times of Ampère. 
Quoting, therefore: 

 Here is now a system of hypotheses that give the value 0 for this variation (of the kinetic energy, 
entering the extremum principle of mechanics, n/a): 
 a. There are two systems of particles participating in electromagnetic motions, systems that 
will be indicated by the letters N and N¢. 
 b. Any time a certain particle pertaining to one of these systems, is to be found in the immediate 
vicinity of a particle of equal mass pertaining to the other system. 
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 c. The two systems always have equal movements inversely oriented or, stating it more exactly: 
 If two movements of the same duration start with the same initial positions and do not differ 
but by the sign of the components of the electric current, and if P and P¢ are points pertaining to 
systems N and N¢ that coincide in the initial configuration, the point P¢ will reach, in the second 
mouvement, the same final position the point P reaches in the first movement. 
 This obviously implies that at the time of coincidence the points P and P¢ have equal and 
opposite velocities. Indeed, changing the signs (of the components of current, a/n) will reverse the 
velocity of the point P; but, according to the last hypothesis, this velocity must then become equal 
to that which the point P¢ had previously. 
 Notice again that, in the course of a certain movement, a new particle P¢ will coincide with a 
given particle P. Two juxtaposed wheels, having equal and opposed rotations of the same axis, 
may serve as an example. [(Lorentz, 1892), §69; our translation and emphasis, a/n] 

We think that with these excerpts from Lorentz, the purpose is served in illustrating the role of the concept of 
surface in a comprehensive case of interpretation: the continuous Lorentz matter has all of the classically known 
physical qualities liable to generate forces, according to classical natural philosophy. These, as well known, are 
the gravitational mass and the charges, electric and magnetic. One can say that with the above considerations 
regarding the way of adding charges to the concept of interpretation, Lorentz has in store for us one of those 
physical instances that may have to be imagined by us, in order to make the Louis de Broglie’s case: following a 
ray in approaching a particle at constant time. 
 It serves further our purpose here, recalling some steps of the historical path of electricity theory. This line of 
reasoning is destined to explain the electric neutrality of interacting material conductors of electricity. It started 
with Riemann, who realized Gauss’ idea of interaction of currents (Gauss, 1833, 1845), by introducing what later 
came to be known as the Klein-Gordon equation (Riemann, 1858). Since Riemann used the concept of retarded 
mass, that perhaps appeared as highly speculative at the time, Enrico Betti stepped into argument, with an idea of 
cycles of electricity along a conductor traversed by a current (Betti, 1868). Betti’s idea, apparently based on the 
concept of Fourier series, was criticized by Rudolf Clausius, on mathematical grounds (Clausius, 1868), and the 
Riemann’s line of thought in electrodynamics remained at this level until Lorentz’s work has emerged. Lorentz’s 
ideas were undertaken by Einstein, however not along the Riemann-Betti line of reasoning, but along the 
Maxwell’s line, thus leading to special relativity [see (Mazilu, 2020), Chapter 5, §§5.3 and 5.4]. Einstein’s 
approach will be presented by us in detail in the next two chapters here. Within the present section we are 
interested in a mathematical issue connected with the Riemann’s and Betti’s ideas. 
 A conceptual problem occurs, regarding the definition of a surface without ‘pegging it by points’, as it were, 
but just involving considerations of continua. It is this issue that makes the difference between an Ampère element 
of current and the de Broglie’s capillary tube model of the ray. To wit: in the case of de Broglie’s ray, the wave 
surface is ‘pegged’ by an existing corpuscle that marks a position on the surface, and the corpuscle itself is 
followed, along the ray and ‘at constant time’ between two imagined, that is non-marked surfaces. Operationally, 
i.e., kinematically, this kind of ‘following’ means moving with a speed higher than the speed of the particle itself. 
If we may use an analogy within the same spirit of de Broglie, we have here particles moving with the speeds of 
phases of the waves that get into compounding a group of waves: the speed of the particle itself is the group 
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velocity, while the speeds of phase are the inverses of this group velocity with respect to the sphere represented 
by the propagation of light. On the other hand, in the case of an Ampère current element we have reverse situation: 
two marked surfaces, ‘pegged’ by static particles marking positions on them, with a non-marked surface between 
them, that can only be imagined, and along this surface the electricity should be inexistent, in order to assure 
neutrality, as in the case of Lorentz’s definition of electricity. As it turns out, such a construction is not entirely 
independent though, of the ‘pegged’ surfaces. Let us describe a mathematical possibility of such a construction. 
 First, let us make reference to an important concept of modern theoretical physics, in order to understand from 
the start what is the gist of the theory of surfaces we are seeking for here. Consider the surface as a horizon of the 
kind serving in the case for ‘membrane paradigm’ in the matters of black holes (Price & Thorne, 1988): we need 
to describe an infinitesimal deformation of surface, in order to accomplish through it the introduction of physics 
into the mathematical theory. Then, what one geometrically needs here, is the construction of a function z(u,v), 
describing the deformation of surface as a function of the coordinates (u, v) on it, according to the vectorial 
equation (Guggenheimer, 1977) 

  (1.3.12 
For the construction of z, we use the metric form of the surface. In this case, the deformation is infinitesimal if: 

 
 

(1.3.13) 

where e is a parameter and ds2(x,dx) is the metric form, that is the first fundamental form of the surface, at position 
x, calculated on the displacement dx. According to (1.3.12, we can write the deformed metric as 

   
and then the deformation is infinitesimal in the sense of (1.3.13) if 

   
Assuming an ‘Euclidean mentality’, there is always an arbitrary vector q of the ambient space, serving in writing 
dz in the form 

  (1.3.14) 
The geometric arbitrariness of q can be significantly reduced, if we take notice that if dz is an exact differential 
vector, then we must have 

 
 

(1.3.15) 

Here ‘´Ù’ means that in the vector product, the usual multiplication needs to be replaced by an exterior 
multiplication of the differentials. Using the notation 

 
 

(1.3.16) 

the condition (1.3.15) can be transcribed in the form 
   

which, in turn, comes down to the system of equations: 
 

 
(1.3.17) 

The first two of these equations show that j3 = 0 on the surface, because s1 and s2 are independent in the geometry 
of a surface described by them. This means that the vector dq is situated in the tangent plane of the surface, i.e. it 

r(ε ) = x + εz

ds2 (r,dr)− ds2 (x,dx)
ε ε→0⎯ →⎯ 0

ds2 (r,dr) = ds2 (x,dx)+ 2ε (dx ⋅dz)+ ε 2 (dz ⋅dz)

dx ⋅dz = 0

dz = q × dx

d ∧ dz = 0 → dq ×∧ dx = 0

dq =
def

jk êk

(− j3 ∧ s2 )ê1 + ( j
3 ∧ s1)ê2 + ( j

1 ∧ s2 − j2 ∧ s1)ê3 = 0

j3 ∧ s1 = j3 ∧ s2 = 0, j1 ∧ s2 − j2 ∧ s1 = 0
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can be taken as an intrinsic vector. On the other hand, the last equation from (1.3.17) says something more. First, 
by the Cartan’s Lemma 1, it can be transliterated into equation: 

  (1.3.18) 

According to its ‘intrinsic’ property, the vector dq looks like a sort of ‘complement’ of the infinitesimal 
displacements dx on the surface. The similarity goes even deeper: in view of definition (1.3.16), the conditions 
for its integrability dÙdq = 0 are 

  (1.3.19) 
and, obviously, replicate the similar conditions for the components of dx given in equation (1.3.8) above. Indeed, 
representing the idea of ‘pegged’ surface by the condition s3 = 0, the first set of equations from (1.3.8) can be 
written as 

   

Now, we start using the Cartan’s Lemmas again, specifically with Cartan’s Lemma 1. The entries Ω 3
1 and Ω 3

2 of 
the matrix Ω, should be the components of a ket vector |Ω 3ñ representing the variation of the unit normal to surface 
at the given position, as in equation (1.3.4). Then, according to equation (1.3.9), the last of the relations above 
shows that the variation, by infinitesimal deformation, of the unit normal to surface, is an intrinsic vector that can 
be expressed linearly in terms of s1 and s2, by a homogeneous relation, involving a conveniently chosen symmetric 
matrix: 

   

Written symbolically, this means 

 
 

(1.3.20) 

where the upper index ‘t’ stands for ‘transposed’. Since, intuitively speaking, the variation of normal means a 
curvature of surface, the very matrix b should be related to the curvature, - we call it the curvature matrix - as 
in the classical theory of surfaces (Flanders, 1989). 
 Assuming that the curvature of surface is essential in its physics, especially in the physics of electricity, as the 
Lorentz theory implies, even if the surface is not marked by points we choose to read the third of the equations 
(1.3.19) as determining the ancillary vector |jñ in terms of the curvature, according to the relation 

 |jñ = A×|W 3ñ (1.3.21) 
Here A is, again, a convenient symmetric matrix, introduced in order to satisfy Cartan’s Lemma 1, representing 
the intuitive idea that the current generating the deformation is somehow related to the variation of curvature, as 
the experience instructs our intellect. Now, when we use (1.3.21), in conjunction with the geometrical definition 
of |W 3ñ from equation (1.3.20) and equation (1.3.18), both written formally as: 

 
 

 

we get from (1.3.21) the following local relation defining the matrix A: 
  (1.3.22) 

d ∧ s1 +Ω2
1 ∧ s2 = 0, d ∧ s2 +Ω1

2 ∧ s1 = 0, Ω1
3 ∧ s1 +Ω2

3 ∧ s2 = 0

Ωα
3 = bαβs

β , bαβ = bβα

Ω 3 = b ⋅ s , b = b t

Ω 3 = b ⋅ s , i ⋅ j = a ⋅ s

a = i ⋅ A ⋅b ∴ A = −i ⋅a ⋅b−1
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Here i is the 2´2 fundamental skew-symmetric matrix from the second equality of equation (1.3.18): the notation 
is intended to suggest the obvious fact that i is the matrix replica of the imaginary unit from the case of complex 
numbers: its square is negative identity matrix. 
 Now, we have the possibility of characterizing a portion of surface by its normal: in a de Broglie tube, that 
normal should be the general direction of motion of the current of particles along the tube. Indeed, the relation 
(1.3.22) is not universally independent of the portion of surface around a certain position. However, it is locally 
useful, if we are able to identify the possible mechanisms of changing the surface profile, like the electromagnetic 
field in the genuine membrane paradigm from the theoretical case of the black holes. A first idea would be 
therefore characterization by a given normal: a portion of surface per se is the ensemble of positions having the 
same normal. This means that |W 3ñ must be a constant vector, a condition that can be expressed in a differential 
form, taking advantage of equation (1.3.20). Let us insist upon this method, by using the previous results. 

 1.4 Surface Gauging by Curvature Change 

 Assume, first, that the height of the reference ‘pegged’ surface is defined, according to the rules of the classical 
differential geometry [see, for instance, (Struik, 1988), Chapter 2, §§2–5, 2–6 and 2–7] by a quadratic form in a 
point of this surface. The commonest idea is that this quadratic form represents the second fundamental form of 
the surface. However, in general, it can be taken as the support function of the surface, which is what we shall 
systematically do in our present argument. So, we take that the height of a surface over the reference surface is a 
quadratic form: 

  (1.4.1) 
Here the symbol h for the tensor of this quadratic form, as well as the symbol h for the very value of the quadratic 
form itself, suggest the idea of height, and |xñ is a position on the reference surface, around the point where we 
calculate the quadratic form. Assume, further, that the variation of this quadratic form can be calculated as in the 
classical theory of differentials, that is, by the rules of ordinary differentiation. Start, therefore, with the basic 
equation representing the differential of height according to the classical rules of differentiation, whereby the 
algebraic expression of the differential involves three distinct terms: 

  (1.4.2) 
Assuming, further, that |dxñ is defined by a gauging in the form 

  (1.4.3) 
where a is a matrix with differential entries, the equation (1.4.2) becomes 

  (1.4.4) 
Notice the specific definition (1.4.3) of this idea of gauging: it realizes a connection between the finite and 
infrafinite measures of positions on the surface. First of all, by such a definition the emphasis is placed on the 
scale transitions: from finite to infinitesimal measures. Secondly, the emphasis is shifted upon the differentiability 
of the matrices that characterizes this transition. So the matrices should have physical meaning too in this 
geometry, just like the coordinates. 

h ≡ x h x

dh = x dh x + dx h x + x h dx

dx = a ⋅ x

dh = x (dh+ a th+ ha) x
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 With this observations in mind, we go for a few mathematical details regarding the result contained in equation 
(1.4.4). Notice, in the first place, that for a skew-symmetric matrix product h×a this variation (1.4.4) of the 
quadratic form of height is strictly defined by the variation of the height tensor. Indeed, if h·a is a skew-symmetric 
matrix, we have (h×a)t  º at×h = - h×a, and the sum of the two matrix products in equation (1.4.4) is zero, and thus 
the equation for the variation of height reduces to: 

  (1.4.5) 
If we know the symmetric matrix of height h, this condition helps in constructing the very matrix serving for 
gauging a. In other words, the variation of the height in a neighborhood of a certain point is controlled by the 
gauging equation (1.4.3), with the matrix a given by an equation of the form: 

 
 

(1.4.6) 

Here da is a differential factor, and the skew-symmetric matrix i has the property: 
  (1.4.7) 

where 1 is the identity matrix. Solving (1.4.6) for a produces the matrix: 

 
 

(1.4.8) 

where a, b, g are the entries of the symmetric matrix h: 

 
 

(1.4.9) 

and D º det(h). The matrix a thus defined is, of course, only dependent on the height of the portion of surface 
considered, and replicates for this portion the property (1.4.7) of the matrix i from the case of complex plane. 
Specifically we have, by a simple calculation or, even simpler, using the Hamilton-Cayley equation: 

  (1.4.10) 
The theory can be constructed based on the same principles as those of construction of the second fundamental 
form, as long as the height of the surface – i.e., the support function of the surface – is a quadratic form, which 
for physics’s purposes, is a quite a general case. 
 Now, a few more words on the gauging condition of the surface, contained in its definition by equation (1.4.3). 
That equation associates the differentials of the coordinates around a point on surface, with the differential 
properties contained in the structure of the matrix a. Fittingly, there are in this particular construction – that is, 
particular because it is based on differentials as in the classical geometry – still other forms of the matrix a, that 
allow for a definition of the variation of the height of surface by the variation of its associated tensor alone. Indeed, 
the equation (1.4.4) shows that we can define the very variation of the height tensor h according to one of the two 
possibilities: 

  (1.4.11) 

Actually, these conditions turn out to be completely equivalent, in view of the symmetry of the height tensor and 
the properties of the classical differential operation used here, whereby the matrix dh respects, in fact, the 

dh = x dh x
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algebraical symmetry of the original matrix h. Therefore, the whole argument can be taken as showing that we 
must have symmmetry of the product of matrices involved in the two expressions from the above equation (1.4.8), 
which means: 

  (1.4.12) 
Should a variation of the height tensor occur, whereby the symmetry of the height tensor is lost, this last condition 
is broken, and the matrix a can be defined in two different ways at will. As it stands now, however, the matrix a 
is uniquely defined by the first of the relations (1.4.11) as: 

  (1.4.13) 

where the following notations have been used: 

 

 

(1.4.14) 

and the matrix E has the differential forms of the sl(2,R) coframe as entries: 

 
 

(1.4.15) 

which is to be met in the physical theory of the de Broglie waves [(Mazilu, 2020); see Chapter 3 there, especially 
equation (3.3.15); the whole §3.3 contains the essential algebraical properties of the sl(2,R) manifold, based on 
these differentials]. The coframe (1.4.15) satisfies the Maurer-Cartan equations: 

  (1.4.16) 

where the structure constants are taken as 

  (1.4.17) 

the rest of them being zero. This algebraic structural arrangement for the sl(2,R) algebra will be taken as standard 
in the present work, in matters of discussion of the essential properties of the Riemann manifolds of negative 
curvature in low dimensions. We have in mind typical example that will occur herein the dimensions 2, 3, and 4. 
 Now, just for a future theoretical benefit, we need to bring in an important observation: instead of equation 
(1.4.5), for this case we can have – by using for instance the first of the conditions (1.4.8) in equation (1.4.4), and 
then the second of (1.4.8) in the result thus obtained – the following condition: 

  (1.4.18) 

In other words, in this case, the variation of the height is the same as that from equation (1.4.5) but opposite in 
sign: the ‘pegged’ surface is deforming symmetrically, which is a property that may be taken as characterizing 
the de Broglie region we once deemed as strange, inasmuch as the great physicist designated it as being a place 
of ‘motion at constant time’ i.e. instantaneous motion [see (Mazilu, 2020), §2.1]. Such a motion requires infinite 
velocity according to our experience, hence the term ‘strange’. 
 Carrying now these observations back to the classical case of second fundamental form, as in the previous 
section, we can express the matrix a in terms of the matrix of curvatures b and its variation, as in equation (1.4.13). 
Then the matrix A itself, from equation (1.3.22) does not depend, indeed, but only on the curvature and its 
variation: 
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(1.4.19) 

so that the equation (1.3.21) becomes 

 

 

(1.4.20) 

In other words, by infinitesimal deformation as defined here, the curvature matrix gathers a skew-symmetric part 
in need to be interpreted, for the curvature matrix loses its symmetry. In a classical view (Lowe, 1980), suggested 
by the mechanical deformation of the thin plates, this property should be connected with the torsion of surfaces. 
This further suggests the practicality of using the affine theory of surfaces. 
 Limiting the mathematics to what we have now, in this gauging, the infinitesimal deformation adds to the 
second fundamental form of reference ‘pegged’ surface characterized by matrix b, a quadratic form having the 
matrix db given in equation (1.4.20). The result is a surface having the support function h as a quadratic form 
which is the sum of two quadratic forms which are mutually harmonic, that is they have the roots in a harmonic 
range, with their characteristic cross-ratio having the value –1, or a value compatible to this one: 

  (1.4.21) 

since the coefficients are satisfying the algebraic condition: 
  (1.4.22) 

The point of this construction is that the surface characterized by the support function (1.4.21) should not be 
necessarily ‘pegged’: it is just an imagined surface in a continuum, that may or may not contain particles, i.e. a 
surface of the kind of those we imagine as being created by the electromagnetic field in ether. Since the condition 
(1.4.22) is also satisfied for the differentials da, db and dg, the ‘pegged’ surface described by the matrix b + db, 
has it too as a deformed surface. One can say that the two pegged surfaces delimit an Ampère element, represented 
by the de Broglie capillary tube. 
 Obviously, the case may also be made for an Ampère element whose delimiting surfaces are not ‘pegged’. In 
this case, a generalization of Cartan’s Lemma 1 is essential, which completes our list of theorems necessary for 
introducing the physics into geometry. This generalization must be able to allow us distinguish the presence of 
fields in matter and their correlation with the fields in space, for instance. It has already been around for a 
relatively long time now, in the mathematical literature, under the name of Yoshio Agaoka, through the following 
theorem: 

 Assume that pa are r exterior differential 1-forms representing a coframe with respect to an r-
dimensional manifold in space. If r differential p-forms ωa satisfy to equation 

  (1.4.23) 
then the (p – 1)-forms g ab exist such that 

 
 

(1.4.24) 

for a,b = 1, 2,..., r (Agaoka, 1989). 
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The Cartan’s Lemma 1 can be derived from this theorem of Agaoka as a particular value p = 1, in which case gab 
must be 0-forms, i.e. simply functions. The case p = 2 is ‘maximal’, as it were, in three dimensions, for in that 
case there are no exterior differential forms of degree higher than three. 
 However, there are exterior differential forms of degree three. In order to be able to use this theorem we shall 
try to read it in the spirit of the Cartan’s Lemma 2, according to equation (1.3.11): there are two exterior differential 
3-forms ta which are null whenever the two Lorentz 1-forms pa, a = 1, 2 representing the contrariwise charge 
displacements are null. In this case, the 3-forms should be, necessarily, a sum of exterior products: 

  (1.4.25) 

where wab are four 2-forms that can be arranged into a matrix not necessarily symmetrical: the 2-forms from this 
equation carry two indices, not just one. By this, we try to legiferate the idea that ta are zero whenever pa are 
zero, but not vice versa: according to Cartan’s Lemma 2, any one of the two differential 3-forms ta, separately, 
is null whenever the 1-forms pa are null. Then the equations ta = 0 are to be treated according to the manner the 
equation (1.4.23) is treated, i.e.: 

 
 

(1.4.26) 

In words: the realm defined by the equations ta = 0 but where pa ¹ 0, is geometrically described by six exterior 
differential 1-forms denoted here by (G 1ab,G 2ab), and symmetric in the last two indices. This realm should be the 
de Broglie’s region of a Lorentz surface serving to define the concept of electricity: the 1-forms pa are the two 
differentials vanishing on it, so that, from an electric point of view it should be a neutral surface, as the Lorentz’s 
hypothesis requests. In other words, the realm described by the exterior 3-forms from equation (1.4.25) is a de 
Broglie zone where, according to previous observations, the phenomenon of holography dominates. 
 Thus, each one of the two exterior 3-forms ta from equation (1.4.25) represents an infinitesimal matter 
manifold within a sea of charge, where, according to classical ideas connected to the concept of Ampère elements 
periodic processes imagined by Riemann, Betti, and Lorentz can take place. And since a particle can present to 
the world two kinds of charges at once, we need for such an interpretation two exterior 3-forms. Agaoka’s 
theorem, thus conceived, is a clear signal for adopting the thought that the Cartan’s Lemma 2 is not sufficiently 
used in physics. For once, it may be taken as generalizing the idea of Dirac’s constraints, that often lead to 
contradictions [see (Pons, 2005); also (Pitts, 2014)]. But the most important part it plays is in elucidating the 
content of the concept of density, to which we shall come again a few times during this very work. 

 1.5 A Classical (Re)Assessment of the Lorentz Theory of Matter 

 With André-Marie Ampère, the concept of Newtonian forces – and with it, naturally, the concept of action at 
a distance, of course – came to a crossroad. In order to offer a better understanding of the issue at hand, we find 
it necessary to present this moment of knowledge not so much by quotations from Ampère himself, according to 
our custom so far, but mainly by a discussion of the concept of central forces. The properties of such forces are 
key points in the arguments that, during the 19th century, led to the ideas that lie today at the foundations of the 
field theory. And, in our opinion, we must agree with Poincaré who once expressed how much the central forces 
meant for the development of physics, as compared to the energetical doctrine. Quoting: 

τ β =ω βα ∧πα

γ βα ∧πα = 0 ∴ γ βα = Γ βαν ∧πν , Γ βαν = Γ βνα
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 The hypothesis of central forces contained all the principles; it entailed them as necessary 
consequences; it demanded both the conservation of energy and that of masses, and the equality 
of action and reaction, and the law of least action, which appeared, it is true, not as experimental 
truths, but as theorems; and whose enunciation had, at the same time, that I don’t know what of a 
more precise and less general than their present form. [(Poincaré, 1905), p. 196; our rendition and 
emphasis, a/n] 

The moment Ampère of human knowledge is the occasion when the very central forces came under scrutiny, and 
we chose to detail it for the good reason that some essential ones among ‘all the principles’, took then a turn 
which, eliminating “that I don’t know what” of the central forces, as Poincaré would say, brought them in “their 
present form”, which is not the most appropriate in building, say, a physics of the brain, for instance. In short, 
this kind of physics needs now, as it always did in fact, quite an alternative turn, to be found only in that very 
moment of our knowledge, because, subsequently, it was obliterated by the development of main-stream physics. 
 Now, the first in the order of things to be done here, is to clarify what are those key points which enticed the 
discussions that helped create the electrodynamics along the lines initiated by Ampère, i.e. with no consideration 
of the Faraday’s induction phenomenon whatsoever. The Newtonian forces of physics were then – and we have 
to recognize that they still are now, to a great extent – central forces. No wonder then, that Ampère would try to 
find a way to use this kind of forces, along the way initiated by his illustrious predecessor, this time, though, in 
electrodynamics, where the essential premise of their existence is quite problematic, to say the least. That way 
can be perceived from the fact that Ampère was fully aware that there is a clear difference between the genuine 
Newtonian forces describing the action of gravitation or that of static electricity, and the forces acting between 
two currents (Ampère, 1823). [Incidentally, all the essential reports of Ampère can be found in the collection 
cited by us here as (Ampère, 1990)]. In order to see the difference in question, let us present the issue from a 
definite perspective on the central forces. 
 Quite important, from the standpoint of the electrodynamics rising in the first half of 19th century, is the 
property that allowed Ampère’s equation of forces between elementary currents: if the forces are conservative 
and central, as in the case of Newtonian forces, their magnitude does not necessarily depend exclusively on the 
distance between the two places of the action at distance. This can be seen right away, assuming a typical central 
conservative force with the magnitude depending on coordinates separately, i.e. a force that can be written as a 
vector in an arbitrary Cartesian reference frame, where we write it as: f(r) º f(x, y, z)×r, in view of the centrality 
property. This field has to satisfy the Helmholtz conditions: a scalar one amounting to Ñ×f(r) = 0 and a vectorial 
one, in the form Ñ´f(r) = 0; these are automatically satisfied by the original Newtonian forces. From the second 
of these conditions we have, in detail: 

  (1.5.1) 

if the force is not to be a constant in the chosen reference frame. The first Helmholtz condition then becomes: 
  (1.5.2) 

and shows that the magnitude of force must be a homogeneous function of degree –3 in the coordinates. It is only 
in the particular cases where this function is r–3, that we get the Newtonian forces going inversely with the distance 
squared. Otherwise, the magnitude f(x,y,z) can very well be the reciprocal of a third degree homogeneous 

∇f (x, y,z)× r = 0 ∴ ∇f (x, y,z)∝ r

r ⋅∇ f (x, y, z)+ 3 f (x, y, z) = 0
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polynomial in the three coordinates, or a –3/2 power of a homogeneous quadratic form, as in fact happened in the 
original Newton’s case. Actually, it can be any other form leading to a homogeneous function having the degree 
–3. Combining (1.5.1) and (1.5.2) we find that the most general force satisfying both Helmholtz conditions: 

 
 

(1.5.3) 

where h–5 must be a homogeneous function of degree –5, as indicated by its lower index. This expression of the 
vector force can be rearranged to appear as proportional to a Newtonian force: 

 
 

(1.5.4) 

with the coefficient h0 – a function homogeneous of degree zero in coordinates. 
 In other words, the most general force field satisfying the two Helmholtz conditions concurrently – taken as 
essential properties of Newtonian field of forces, and extended as fundamental properties of any conceivable 
central force – must be proportional to a genuine Newtonian force field, with the proportionality described, in a 
system of Cartesian coordinates, by a factor which can be either a function of the ratios of coordinates, or a 
constant, as in the genuine Newton’s case. In order to be homogeneous of degree zero, the factor of proportionality 
can depend on coordinates both through the Euclidean distance r, and through some trigonometrical functions, 
which may be arbitrary in principle. One can therefore say that equation (1.5.4) generalizes the classical 
Newtonian case, which is what André-Marie Ampère apparently upheld, both conceptually, by his explicitly 
stated task, and factually, by building his expression of the electrodynamic force. 
 This generalization, however, is not quite complete, for it is referring only to a space geometry, with no 
involvement of physics whatsoever. In the classical case of genuinely Newtonian forces, one would have the 
masses, or the charges, or even both in fact, located at the two positions involved in the interaction at distance: 
the forces are bilinear in those physical quantities. In keeping with the idea of continuity and space extension of 
the matter, we may think of some mass elements, or charge elements – Hertzian ‘higher order infinitesimals’ – 
located at the two positions involved in the action at distance, and entering the equation of force through bilinear 
expressions, i.e. by their product. This was the original Newton’s case, and so the equation of force may appear 
in the case of currents. The problem remains, though, concerning the measure of the current elements: while in 
the case of genuinely Newtonian forces one can think of the differentials of mass or charge, in the case of currents 
issues of relative directions occur. The common view arising just about the Ampère’s epoch was that a current 
element should be represented by the time rate of variation of the charge, dq in the notation of the previous section 
– known as the intensity of the current – multiplied by the element of ‘wire’, thought to be a line in space: Idl. 
 And thus, the force between two elements of wire, dl and dl¢ carrying currents of intensities I and I¢, as 
provided by André-Marie Ampère in his pioneering work on electrodynamics (Ampère, 1990), can be written, in 
a form using modern notations, as [see (Assis, 1994), Chapter 4, Equations (4.14 – 15); see also (Darrigol, 2002), 
Appendix A, equation (A.3)]: 
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Here 𝒓" is the unit vector of r, joining the midpoints of the two elements of current. This expression of the force is 
a bilinear symmetric form in the two current elements involved in the action at distance, so that the equation 
(1.5.5) can, indeed, be considered as a natural generalization of the classical central force, for the specific case of 
the current elements. It is in this circumstance that the vector 𝒓" becomes a field to be geometrically considered by 
itself, but this raises the problem of reading the formula of forces thus provided. Notice, however, a point to be 
necessarily considered: if we take the Helmholtz conditions as fundamental in defining the general Newtonian 
forces – and, again, we should mention the obvious implicit clause, that the forces are in vacuum – then the 
equation (1.5.5) needs to be compared with the first of the equations (1.5.4). Therefore, according to this 
conclusion, the Ampère coefficient from equation (1.5.5), if expressed in Cartesian coordinates, must be a 
homogeneous function of degree zero: 

 
 

(1.5.6) 

The unfolding of physics since Ampère’s epoch has imperatively asked for deciding on the physical structure of 
the elementary ‘lengths’ dl and dl' and, in our opinion, the equation (1.5.6) is the only one guiding our possible 
decisions. To justify the need for such a structure, it suffices to cite the ‘excuse’ made by Planck in the quote we 
excerpted by us in §1.1 for the choice of a special kind of dipole: the concept of a dipole needed charges with 
three degrees of freedom in motion at each one of its ends. However, the Kirchhoff’s principles allowed him to 
choose only the simplest case of one degree of freedom along the direction of dipole, for they assured him that 
there should be no “fear of any essential loss of generality of the conclusions”. With this observation in mind, let 
us continue our journey for an assessment of the Lorentz definition of the matter. 
 For once, we shall take the equation (1.5.5) just as it has been taken starting with Ampère himself, and as is 
suggested by Darrigol’s notation: the key of reading is the general vector relation r2 º (l – l¢)2, showing what 
should be meant by the relative position of the two elements of current. Namely, l and l¢ are the position vectors 
of the two locations in the chosen reference frame, of the two current elements Idl and I¢dl¢ involved in the action 
at distance. Then, according to Edmund Whittaker, the expression from equation (1.5.5) can be taken as the right 
expression incorporating the observation that the action of a closed circuit on an elementary current is 
perpendicular to this current [(Whittaker, 1910), pp. 89 ff]. Be this reading as it may, a hint of the depth of 
Ampère’s inovation in using the central forces is apparent and, from our point of view, needs to be stated explicitly 
right away. It concerns the answer to the natural question: why would anyone need the force between two current 
elements, while the specific experience in constructing this physics is always referring to finite currents or finite 
parts of currents? 
 The answer is, in our opinion, obvious: there is nothing, in this specific area of our experience, analogous to 
the Kepler motion, to sustain the idea of a central force for the case of finite currents, as that motion once did for 
Newton. So, if one would want to continue Newton’s tradition on forces, as Ampère did – according to his own 
statement from the very beginning of his extensive work – one would need to extract from experience those 
situations equivalent to the one faced by Newton himself. This operation cannot be accomplished but only 
conceptually, for it obviously involves matter formations without space extension – ideally differentials, if it is to 
give them a measure at any rate, that is the ‘highest order infinitesimals’ of Heinrich Hertz – in which case one 
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can indeed operate with central forces, in the way suggested above. But there is a subtle catch here: if we are to 
exact a conceptual logic, then it does not make any sense to talk of the ‘midpoints’ of the current elements, since 
one cannot talk of the midpoint of a differential element. 
 However, the formula given in equation (1.5.5) is abstracted by Ampère from a whole set of experiments 
with finite currents, divided into four classes, destined to cover all typical situations of the relative positions of 
the two finite conductors involved in the action at distance [(Maxwell, 1892), Volume II, Part IV, Chapter II; see 
also (Whittaker, 1910), and (Assis & Chaib, 2015)]. Based on these facts of experience we conclude that, after 
such a careful classification and conclusions concerning the finite currents, Ampère just made a conceptual 
transition of scale from finite to infrafinite currents – the highest order of infinitesimals in a Hertzian natural 
philosophy – in order to be able to use the theory of Newtonian forces exactly as it was designed by its illustrious 
creator. Only, then, Ampère was induced into calculating the forces at a finite scale by a procedure of integration, 
so as to be allowed to use the experience in constructing the physics of currents. Indeed, any specific experiment 
with a current, necessary involves a closed circuit: the expression of force needs to satisfy this requirement. This 
explains the differential notation of the force – we first met it to Assis and then to Darrigol (loc. cit.), for no one 
of authors, at least not those in our study, seems to be concerned with its use – from the left hand side of equation 
(1.5.5): the whole force needs a double integration along the finite paths followed by each wire in turn. Not only 
this, but, noticing such detail, some other ones start showing up: an element of real current, for instance, may 
have a direction entirely independent of the path followed by its designated position. For, in reality, the wires are 
not lines, but three-dimensional structures, having space extension, and in such a space – a proper coordinate 
space, we should say – the currents can go in many different directions, not just one. Therefore, as the illustrious 
Gauss would say, this is precisely the place to observe the difference between the ‘geometria situs’ and the 
‘geometria magnitudinis’, and to adapt the mathematics as a consequence of this observation (Gauss, 1833). 
 Regarding this adaptation, the great mathematician Joseph Liouville was the first one among scientists to draw 
attention to a specific issue connected with the force expression (1.5.5) even from the times of Ampère (Liouville, 
1831): the possible noncentrality of the forces in electrodynamics. At that time he was just 20 years old, a student 
of Ampère, helping in editing the course notes and some of his Master’s scientific communications. It is on this 
occasion that he learned about the newly raising science of electrodynamics, and even tried to publish his first 
article ever, that was originally addressed – critically we should say, however within a true scientific attitude – to 
electrodynamics. Unfortunately, he was pushing his production through the Academy, and ‘les immortels’ 
(Ampère, Arago, Maurice) had a limited possibility of understanding the new mathematical principles of the 
natural philosophy he used in electrodynamics. So that the Academy magnanimously rejected the publication of 
the work, giving the “young mathematician” an avuncular encouragement though, to insist on his path, for he 
showed “sagacity”. We would have never been able to find what that work of youth of Liouville was about, had 
he not find some other ways of making himself known. Incidentally, we were able to appreciate just how ‘new’ 
are the ‘mathematical principles’ involved in the natural philosophy of electrodynamics of Ampère, from the nice 
work that laid the foundation of the modern theory of fractional calculus (Liouville, 1832). For once, though, 
after that ‘kind’ rejection, we should be thankful that Liouville agreed to publish what the immortals found worth 
publishing from that first production of him. First, in the Bulletin de Férussac a note appeared (Liouville, 1829), 
probably with the assistance of his friend Charles Sturm; this was the first publication ever of Liouville. Then, a 
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short summary of his natural philosophy, where he made obvious what is essential in the electrodynamics based 
upon Ampère’s experiments, has also appeared (Liouville, 1831), probably with Arago’s assistance. The whole 
story of this turmoil of the young Liouville is vividly presented in (Lützen, 1990), Chapter VII. We are interested 
here only in that natural philosophy of electrodynamics, extracted by Liouville from the phenomenology built by 
Ampère himself, and used in foundation of electrodynamics. 
 Exactly to what the Liouville’s note just cited is referring, is quite an interesting fact by itself, from a purely 
natural-philosophical point of view. Quoting: 

 One obvious observation is immediate, concerning the nature of the source of current. If, in 
practice, two currents are set in the presence of one another, the mobile current may be arbitrary, 
but the acting current is always closed, or liable to be considered closed. This is a strict condition; 
for, the electricity must move without interruption from one pole to the other, of an arbitrary 
number of current sources. 
 Since the acting current is closed, it follows that if there are forces from one element to another, 
the integral of which disappears when one of the currents is continuous, our experiments will never 
be able to show these forces. As for the practical results, they will be the same as in the case when 
these forces are zero. 
 The existence of such forces is a priori not meaningless. It is known that the action of two 
magnetized molecules offers a very simple example. Indeed, a closed magnet has no action 
whatsoever on an arbitrary body, no matter of the degree of magnetization: for us it appears as 
non-magnetic; and yet, when broken, its various portions can produce considerable effects. 
 Therefore, rigorously, one could assume that two voltaic elements act upon each other by a 
compound action as follows: 1° a force directed along the straight line passing through their 
middles and represented by Mr. Ampère’s formula; 2° four other forces similar to those coming 
from two magnetic molecules, forces whose resultant is not generally along the line joining the 
two bodies [(Liouville, 1831); our translation and emphasis, a/n]. 

This excerpt, even if not conceptually complete or, more to the point, even if not exact, gives one a taste of the 
difference between the action at distance and the force: the action at distance may be realized not only by a single 
force, as in the case of central forces, but by a set of forces, so that such an action may appear as noncentral. This 
is the general idea of the new philosophy of forces initiated by Ampère in order to complete the classical 
Newtonian theory of forces. In a classical expression, it may even be admitted that the action at a distance may 
be realized even by noncentral forces, as in the later case of J. J. Thomson. While, for more details we recommend 
the Jesper Lützen’s monograph on the life and works of Joseph Liouville (Lützen, 1990), for now we are in debt 
with an essential explanation on the kind of forces considered by Liouville in the above excerpt. 
 These forces are described only in the fragment published in the Bulletin de Férussac from the year 1829, 
especially the Figures 11 and 12 from page 449 of that tome (Liouville, 1829). Reading this first published work 
of the ‘young mathematician’, we are under impression that, with Liouville, we have a moment of the theory of 
electricity analog to that of Thomas Hobbes in the case of light: the Liouville’s elements of current are the 
analogues of the lines of light from the Hobbes’ model of light, that later became orbicular pulses for the first 
physical model of the light ray, constructed by Robert Hooke [see (Mazilu, 2020), §2.1, and the works cited there, 
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for a detailed story of the coming to being of the concept of light ray]. Right now, we are just following a 
suggestion contained in the analysis of Liouville: the noncentrality of electrodynamic forces is an effect of the 
process of association of charges into the natural neutrality characterized by the zero overall charge from the case 
of a dipole. And this process must be a stochastic process. As far as we can see, this was the very path taken by 
the physics itself, in the problem of the dynamics of currents. 
 Indeed, the program followed along the path taken by the mainstream physics is best illustrated through the 
words of Gauss from an 1845 letter to Wilhelm Weber. Quoting, again: 

 Perhaps I will be able to delve a little bit more into these things, from which I had strayed away 
until you have pleased me with a visit at the end of April or the beginning of May, for you gave 
me hope. No doubt, I would have made my investigations public long ago, had it not been for the 
fact that, at the time I interrupted my preoccupation on them I was missing what I considered to 
be the actual keystone, namely the derivation of the additional forces (which are to be added to 
the mutual effect of stationary parts of electricity in case they are in relative motion) due to the 
non-instantaneous, but time-propagating (in a similar way to light) effect… 

Nil actum reputans si quid superesset agendum 
I did want to succeed in this at that time; but, so much as I remember, I left the study, not without 
the hope that I might succeed later, although – if I recall it correctly – with the personal conviction 
that it was first necessary to have some practical idea on how the propagation occurs [(Gauss, 
1845); our rendering and Italics, a/n]. 

The Latin adage – in a suggestive translation: Nothing has been done, if something remains yet to be done – 
explaines that remarkable feature of the Gauss’ scientific ethics, from the species of which we can hardly see 
something today: in any public productions one should be as thorough as it gets, and if it is not possible a right 
conclusion then better not make anything public. For, inherently, such productions are never absolutely thorough. 
 Notice the phrase that can be taken as an important conclusion regarding the object of physics involved in the 
electrodynamics of Ampère’s times: ‘stationary parts of electricity’. The whole physics of the parts of electricity 
was actually described in those times by the principles involved in the statics of forces between what is referred 
to by Gauss as ‘stationary parts of electricity’. The ‘additional forces’ are then referring to such parts but in 
motion, and this is the way taken then by the future physics. This physics was, indeed, built towards the end of 
the 19th century and the beginning of the 20th century, on the particular foundations of electrodynamics, that 
suggestively took the form of ‘electrodynamics of moving bodies’, which culminated with the special relativity. 
 Another point here is the realization – which, according to Gauss’ words in the above excerpt, may have been 
inspired by Wilhelm Weber – that the forces must have those additions due to the relative motion of the current 
elements. In other words, the kinematic forces are entirely different from their statical counterparts. The term 
‘relative motion’, was understood by Gauss, and is still understood today – in spite of the discovery of 
electromagnetic waves – as a clear consequence of the identification of current elements with the currents of 
particles in motion, describing these currents inside the wires as a kind of fluxes of charge. Again, this very 
identification or, more to the point, the lack of its proper recognition by the natural philosophy, marks the whole 
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physics, even as we have it today. We, however, recognize it: let us see where it leads, and what the consequences 
may be for what we think is a proper physics. 
 Our reason to consider Bernhard Riemann as a protagonist in constructing the electrodynamics is quite simple: 
while his teacher and friend, the great Carl Friedrich Gauss, only mentioned that he stopped short of finding a 
‘practical idea of how the propagation occurs’, Riemann realized one of the most remarkable mathematical 
descriptions of such a practical idea. It is so remarkable that even today it is considered as one fundamental idea 
in the physical theory of fields. Namely, we have to notice that the propagation of light, as well as the propagation 
of heat in solids are only mentioned by Gauss. With the work of Riemann, however, we have a first instance of 
what later came to be known as the Klein-Gordon equation in the theory of fields. More importantly for us, this 
equation was used by Louis de Broglie in order to characterize his concept of physical ray [see (Mazilu, 2020), 
§2.1, equation (2.1.4)]. Riemann’s own words in introducing it are: 

 I took the liberty to communicate to the Royal Society a remark which brings the theory of 
electricity and magnetism into a close connection with the theories of light and radiating heat. I 
have found that the electrodynamic effects of galvanic current can be explained if one assumes 
that the effect of an electric mass on other masses does not occur instantaneously, but propagates 
to these with a constant speed (equal, within observational errors, to the speed of light). The 
differential equation for the propagation of electric force becomes, by this assumption, the same 
as the equation of propagation of light and radiating heat [(Riemann, 1858a); our rendering and 
Italics here, a/n; see also (Riemann, 1858b) for translations of the whole article; also the 
monograph (Laugwitz, 2008), has a translation of this very excerpt, on pp. 261 – 262]. 

Riemann’s approach has been criticized from different points of view, on which we have no room of insisting 
right now; the interested reader is referred to the trustworthy literature already cited above, for due details in case 
they are needed indeed. However, from our point of view expressed all along our present endeavor, Riemann’s 
work from which we excerpted the fragment right above was – in spite of some forced mathematical technicalities, 
and perhaps some misplaced natural philosophical conclusions – right in the place where it should have been, 
since from a physics’ of charges point of view, no other place seems more adequate for applying its content. 
Quoting again: 

 According to the existing view about electrostatic action, the potential function U of arbitrarily 
distributed electrical masses, when r is their density at points (x, y, z), is defined by the condition 

 
 

(1.5.7) 

and by the condition that U is continuous and constant at infinite distance from the acting masses. 
A particular integral of the equation 
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(1.5.9) 

and this is the potential function generated by the point (x¢,y¢,z¢), if there is the mass –f(t) at the 
time t located in that point. 
 Instead of this, I now assume that the potential function U is determined by the condition 

 
 

(1.5.10) 

so that the potential function generated by the point (x¢,y¢,z¢), if the mass –f(t) is located in it at the 
time t, becomes 

 
 

(1.5.11) 

[(Riemann, 1858); our rendering and Italics; see also the English translations (Riemann, 1858b, 
1985)]. 

The formula (1.5.11) is usually seen as the precursor of the idea of retarded potentials, of which a first specimen 
(Lorenz, 1867) occurred just about the time when Riemann’s work reached the scientific literature, i.e. about a 
decade after it was first presented to the Academy. However, we did not bring here the above excerpt in order to 
discuss issues that may seem of priority, but in order to notice the procedure, which fits harmoniously in a general 
natural philosophy. Notice that the Riemann’s idea was to use the classical theory of static forces between two 
charges in order to describe the instantaneous interaction: the particles at different times interact just as the 
particles at the same time, only with different active masses, which can, however, be described quantitatively by 
the equation of potentials as proposed by Riemann. 
 Indeed, it is quite clear that what Riemann had in mind, was not so much the mathematical procedure of 
solution, that came to be known later as ‘retardation’, as much as he wanted to characterize the ‘acting mass’ in 
connection with its location with respect to the point where the action is exerted. We have noticed before that the 
Ampère’s era natural philosophy regarding the forces, stands précised in the words of Joseph Liouville, that can 
be simply summarized by the observation that the Newtonian forces must be, in general, non-central forces. One 
can say that the problem of Newtonian forces was condemned from the very beginning to an uncertainty, a fact 
best expressed toward the end of the 19th century by Henri Poincaré on the occasion of the analysis of Hertz’s 
mechanics. To wit: after the analysis of the possibilities of defining the forces in connection with masses, which, 
as well known, was Newton’s main point in defining his gravitation force between bodies, the great natural 
philosopher is obligated to conclude that… 

 We are left therefore with nothing, and our efforts were unfruitful; we are compelled to adopt 
the following definition, which is nothing else but a confession of incapability: the masses are 
coefficients, convenient to introduce in calculations. 
 We will be able to redo the whole Mechanics, by attributing to all the masses different values. 
This new Mechanics will not be in contradiction with experience nor will it be contradicting the 
general principles of Dynamics (the principle of inertia, the proportionality of the forces with 
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masses and with accelerations, equality of action and reaction, rectilinear and uniform motion of 
the center of gravity, the principle of areas). 
 Only, the equations of this new Mechanics will be less simple. Let’s understand this well: only 
the first terms will be simpler, i.e. the ones we already know from experience; it would be possible 
that, by altering the masses by small quantities, the complete equation neither gain nor drop 
anything from their simplicity. 
 I insisted on this discussion longer than Hertz himself; I meant to show, though, that Hertz 
didn’t simply look for quarrel with Galilei and Newton; we must agree to the conclusion that in 
the framework of the classical system it is impossible to give a satisfactory idea for force and 
mass. [(Poincaré, 1897); our translation, original emphasis, a/n] 

Riemann was apparently well aware of these problems, prompted to criticality during the Ampère moment of 
human knowledge, by the necessity of characterization of the concept of acting masses in the case of dynamic 
electricity. No better proof for this awareness can be offered, than the precautions taken by him in posing the 
problem to be solved by the calculation of those ‘additions’ to static forces, as mentioned by Gauss, his illustrious 
predecessor. One can say that on this issue, Riemann went back to Newton, and took the solution of the problem 
from the very point it was left by Newton himself. Quoting, again: 

 Let S and S¢ be two conductors traversed by a constant voltaic currents but not moving towards 
each other; let 𝜖 be an electric mass element in the conductor S that at the time t is located in the 
point (x,y,z); let 𝜖¢ be an electric mass element of S¢ that at the time t¢ is in the point (x¢,y¢,z¢). As 
regards the motions of the electric mass elements, which in each conductor element are opposite 
for the negative and the positive electricity, I assume that at every time moment they are so 
distributed that the sums 

  (1.5.12) 

extended over all the electric mass elements in the conductor can be neglected as compared with 
the same sums extended only over the positively electrical, or only over the negatively electrical 
mass elements, as long as the function f and its differential quotients are continuous. [(Riemann, 
1858); our English rendering and emphasis, a/n; compare the other existing translations] 

To us it is quite clear that Riemann realized how important is to distinguish between ‘electric mass elements’ 
(Massentheilchen) and ‘conductor elements’ (Leitertheilchen). It is easy to see that in this excerpt he defines in 
any moment a static state of the elements involved in the expression of Ampère force, based on the freedom of 
flow of charges within the conductor through which the flow proceeds. Such a state is conditional on the neutrality 
of the conductor at every time moment, whose mark involves an indeterminate function in the mathematical 
expression of the force – therefore of the potential – which has to satisfy general requirement of continuity and 
differentiability. In the equation proposed by Riemann such a function is quite arbitrary but depends on time 
nevertheless, suggesting that the mass itself should depend on time. The position dependence is then eliminated, 
and remains an uncertainty in the theory. However, it can be brought to bear again by Riemann’s prescription 
given in equation (1.5.11). This is why we take Riemann’s prescription as a necessity of defining simultaneous 

∑ ε f (x, y, z), ∑ ′ε f ( ′x , ′y , ′z )
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mass elements, of the species that started being only lately noticed in theoretical physics, in connection with the 
relativity prescriptions of non-local character [see (Amelino-Camelia, Freidel, Kowalski-Glikman, & Smolin, 
2011), especially their suggestive Figure 2]. 
 One can see that, in order to realize Gauss’ idea, Riemann was induced into recognizing, apparently for the 
first time in the natural philosophy, the independence of the electric fluid from the material conductor of 
electricity. One can even say that this moment of our knowledge marked the recognition of a necessity of 
conceptual dissociation in modeling, between the conductor and the electricity running through it, thus making 
out of them a system equivalent to the classical ray, of the kind referred to by Louis de Broglie. The Liouville 
moment of describing the forces would appear, in this analogy, as only a description of the possible forces between 
the lines of current – that we like to call Liouville elements – inside the material conductor, which can be seen as 
the capillary tube containing them. Liouville’s geometry associates, according to the Ampère theory, the midpoint 
of these elements with the application points of the forces. Thus, one can see that the association of elements in 
order to realize the Riemann’s condition of neutrality of the conductor, becomes now a random process, that 
cannot be regulated but by a Lorentz’s kind of assumption: there should be a neutral surface on which the charge 
is zero along the conductor, and only this surface is the home of an Ampère force between conductors. In hindsight 
this is the whole moral of a physical theory of infinitesimal deformation, as presented by us above in §1.3. If we 
may be allowed a speculation, a theorist of Riemann’s astuteness, might have sensed here a contradiction lurking, 
between such a concept of action and the Newtonian definition of force. After all, it may be this awareness that 
determined him to withdraw the article from the Academy, not just some mathematically quantitative mistakes. 
But, let us see what these mistakes stand for by themselves, since they too are today part and parcel of our process 
of knowledge. 
 By the unavoidable course of his life, Riemann came very close to an Italian school of mathematics, mainly 
represented, on the subject we are interested here, by two notable Italian mathematicians from the University of 
Pisa: Enrico Betti and Eugenio Beltrami. Their names appear alongside the name of James Clerk Maxwell, 
sometimes even in issues of priority based on a Riemann kind of modern electrodynamics, against Maxwell’s, 
issues to which we have strong reasons not to subscribe. Fact is that Enrico Betti contributed to reinforcing the 
Riemann’s electrodynamics based on the principle presented above, while Eugenio Beltrami addressed a few 
direct critiques to Maxwell’s ideas which, in our opinion, are far from posing questions of priority. Quite the 
contrary, on a deeper analysis Beltrami’s critiques simply show that Maxwell ideas are, in fact, destined to sustain 
Riemann’s electrodynamics, or vice versa. But we postpone a specific discussion for a later occasion, while for 
now we focus only on one of Betti’s contribution to electrodynamics, connected with Gauss’ ideas as 
communicated in the letter to Weber from which we excerpted above. On this occasion, though, we intend to 
show, on one hand, how Riemann’s concept of electrodynamics was usually perceived at the time it got through 
into the open, and, on the other hand, that its necessary assessment was by no means exhausted by critique. Quite 
contrary, it appears to us that a proper assessment remained, by and large, unfulfilled. Also, Betti brought in a 
tangible idea of phase in one of its modern connotations, namely the one that led to the concept of frequency of 
the physical optics in the times of Fresnel. Quoting, therefore: 
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 In 1858 Riemann presented a paper at the Academy of Science from Gottingen, published, 
after his death, in the number six of the Poggendorff’s Annalen for 1867, where he deduced the 
potential of two constant closed currents acting upon each other, admitting that the action of 
electricity propagates in space with a constant velocity equal to that of light, and assuming that 
the current consists of the motion of two electricities, positive and negative, travelling 
simultaneously through the wire in opposite directions and, moreover, that the sums of the 
products of positive and negative electricities by a function of the coordinates of the points of wire, 
are negligible when compared with the sums of the positive electricity alone, or of the negative 
electricity alone, multiplied by the same function. This concept of electric current, completely 
ideal, is hardly in agreement with what is known about it, and it seems that Riemann himself was 
not satisfied, thus withdrawing the article from the Secretariat of Academy, and renouncing to 
publish it later on. In this context, it seems to me that it is not without importance to show how the 
electrodynamic actions can be explained by means of their propagation in time, considering that 
the action of dynamic electricity takes indeed place according to Newton’s law for static 
electricity, without being based on that concept though, but assuming instead that the current 
consists of a periodic polarization of the elements of the wire, which is more in agreement with all 
known facts [(Betti, 1868), our rendition and Italics, a/n; see also a previous English translation 
in (Betti, 1985)]. 

By comparison with Riemann’s initial view, referring to an instanstaneous statics, necessary to build a state of 
the current element, Betti shows that the idea of current as a flow is usually perceived as ‘the motion of two 
electricities traveling simultaneously in opposite directions’, in the manner conceived later by Lorentz (see §1.3 
above). It is not quite obvious that he succeeded in distinguishing between the ‘mass element’ and ‘conductor 
element’ as clearly as Riemann did, but apparently he targets this last one, understood by him as ‘element of 
wire’, gaining periodic polarity during the transport of charge, “more in harmony with all known facts”. From the 
development of the original work, however, it seems that Betti shared the contemporary idea of a Liouville current 
element, whereby the path of charge and the wire are identified with each other. But let us follow closely the 
Betti’s own work (Betti, 1868). 
 He starts with the observation that the interaction potential of two closed conducting material loops carrying 
currents, has the known mathematical form used, indeed, by Riemann himself, which we reproduce here within 
our previous notations as 

 
 

(1.5.13) 

where ds is the element of length of the path l(t), while ds¢ is the elementary length of the path l¢(t). Now Betti 
notices (loc. cit. ante, §II), that in view of the definition r2 º (l - l¢)2 the expression (1.5.13) can be rewritten as 

 
 

(1.5.14) 

and by a few manipulations based on partial integration, using the property of cyclicity of the two currrent loops, 
can be brought to the Riemann’s own form 
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This much we can get using an obvious mathematics and the experiment. The problem was to explain this formula 
by the interaction of the current elements, and to this end Betti introduces the idea of what he calls – and we 
cannot but agree with the name today – a phase: 

 The elements of the two curves s and s' are periodically polarized, that is they act on each other 
as if they were magnetic elements with the axes in the direction of the tangents to the curves, and 
they had the respective moments m and m' variable with the time, that is 

  (1.5.16) 

where f(t) and F(t) are functions that take the same values on very small intervals of time equal to 
p. 
 Assuming that the action propagates in space with the speed c, the potential of a line upon the 
other, over a whole period, will be 

 
 

(1.5.17) 

 The moments of the currents have not only the same period, but also vary with the same law, 
and can differ only in the phase. Then we have 

  (1.5.18) 

where s < p. [(Betti, 1868); our translation, emphasis added, a/n] 

Working in the manner of Riemann himself, but based upon these last two formulas, Betti recovers the equation 
(1.5.15). And just like Riemann, he based his result on an apparently unsecured series of mathematical evaluations 
(Clausius, 1868) that cast enough doubts on the method itself. Clausius even suggests that this might be the reason 
determining Riemann to withdraw his original contribution from the Academy in 1858. However, what in our 
opinion is valuable in Betti’s approach to Riemann’s idea, is that it contains this sound concept of phase: in order 
to interact, the current elements must be ‘in phase’ from a certain point of view. Later on, Lorentz considered (see 
§1.3 above) this point of view as connected to the existence of a surface, which is, of course a more realistic 
approach, asking subsequently for the concept of wave. The wave alone would then be able to explain the concept 
of phase as introduced by Enrico Betti, by the phenomenon of holography. And this phenomenon was added to 
the classical phenomenology of light via de Broglie’s quantization idea, which thus appears in a logical order for 
the natural completion of that phenomenology (Mazilu, 2020). 
 Whatever the possible reason – of a ‘teleological’ appearance, as it were – for the state of the facts may be, 
for that moment in time the Betti’s conclusion was simpler: 

 Therefore, the electrodynamic actions can be explained, assuming that they propagate in space 
with a speed equal to that of light, that they are exercised according to Newton’s law like the 
electrostatic actions, that the currents consist of a kind of polarization of their elements, 
periodically variable, that the law of variation is the same in all currents, and that the duration of 
the period is small even compared to the time it takes the action to propagate to the distance unit. 
[(Betti, 1868); our translation and emphasis, a/n] 
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The phenomena thus expressed are simple, but we need to notice their ultimate reason: in reality, ds and ds¢ are 
metric elements in a three-dimensional space, and, according to Riemann’s idea they need to be associated in 
time with each other, from the point of view of an interaction. The regularization theory of the Kepler motion 
encourages us to think that the two metrics are not even Euclidean, but… Riemannian, ultimately. This is an 
interesting idea, so let us just point out the way it comes to being. 
 To start with, there are no closed orbits in the classical Kepler problem, except under restrictive conditions in 
the initial data of the motion. In actual quantities these conditions come down to delimiting the region occupied 
by the center of orbit around the center of force: this means that the geometry of that region is a Lobachevsky 
geometry. Now, assume the planetary model: the region of the center of force here is the region of nucleus proper 
of the model, that may be assumed uniformly charged according to our experience. Nothing, apparently, prevents 
us from thinking about the electron as being alike the nucleus: a region of homogeneous charge, whose geometry 
is a Lobachevsky geometry of the hyperbolic plane. We can assume that the points of action of the forces are 
randomly distributed in the two regions, with equal probability. The conditions are such that we can even define 
what equal probability means here, since, geometrically speaking, the hyperbolic plane is a Riemannian 
measurable manifold. So, the association of two points of action of the force is a stochastic process, of the type 
envisaged by Riemann. The geometrical image of the association would then be a congruence of lines, forming 
an Ampère element delimited by two surfaces of negative curvature as in the previous §1.3. However, the gist of 
this construction cannot be fully revealed but by understanding its connection with relativity, so we shall have to 
revisit this issue later in the present work. 
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Chapter 2 Special Relativity: the Unrecognized Theory of Scale Transition 

Our undertake of the task of assessing the Louis de Broglie’s idea from a modern theoretical physics’ point of 
view (Mazilu, 2020) was, initially at least, an upshot of the fact that, during the study of physics we grew gradually 
confident that the physics of relativity is essentially incomplete without the concept of wave. The pursuit of 
necessary studies connected to the task, within this state of awareness, unveiled the fact that the human spirit has, 
indeed, followed the path of completing the relativity almost exclusively along this way, that is, by always 
searching for the place of wave within the theory. The search was, as a rule, discernible only ‘objectively’, we 
have to admit, manifested in a way specific to a context, since most of the times it is not explicitly addressed to 
the concept of wave. The theory of special relativity, from which the de Broglie’s idea sprung, is a striking 
example of implicitly addressing the concept of wave. 
 We can say that the present work is all about the fact that the very idea of relativity – as well as a great many 
other fundamental ones, actually – are a consequence of the circumstance that our knowledge at large stays under 
the spell of a general law: the scale transition invariance. The scale invariance in physics is the point of view that 
reveals the hidden position of wave as a natural concept. It should then be just as natural that the knowledge 
follows an objective path leading to its completion: like all things conceptual, and therefore created by man, our 
knowledge is submitted to evolution, as are, in fact, all things ever made. And regarding the theoretical physics, 
there are two stages to be considered in this respect, in order to draw what we contemplate as the right conclusions 
needed in constructing a physics within the Louis de Broglie’s spirit. These stages are marked, if we may say so, 
in time by what we should like to call the de Broglie moment of theoretical physics: one of them predates the de 
Broglie moment of physics, the other is an after-effect of it, as it were. 
 Now, while we can safely say that the theoretical physics after Louis de Broglie moment of humanity is, either 
directly or implicitly, under the spell of the wave-particle duality, and therefore there is plenty of material 
containing the right ideas to be reckoned with, when it comes to the physics before de Broglie, we cannot relate 
but to the Einsteinian relativity. In a way, this may be an advantage: having scarce material to choose from, the 
chances of subjective interference are minimal, and a right analysis of relativity might lead to sound criteria of 
selection from among those right ideas. In order to ease our understanding into these matters, the present chapter 
of our work, and the next one in fact, describes the fundamental issues of the relativity – as an Einsteinian doctrine, 
of course – the way we understand them. The emphasis is placed here upon those among issues of physics that 
led Einstein into constructing the relativity, in both of its instalments – the special and the general relativity – the 
way he did. It is thus shown that Einstein was ‘compelled’, if we may say so, into proceeding as he did by the 
necessities of a scale transition in physics. And what he achieved in this direction, carries the mark of a scale 
transition invariance which, occasionally, flared up in his very own work. This observation places, almost 
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explicitly we should say, the concept of wave at the foundation of relativity in its both instalments, which is a 
lesson we need to learn properly and, of course, apply. 
 Leaving aside the notion of wave in the Darwin’s definition of interpretation (Darwin, 1927), this last concept 
can actually be considered the central concept of physics all along its history: it is the concept around which the 
physics has been erected in its different directions as we have them today [see e.g. (Mazilu, 2020), passim]. In 
order to realize this fact, we just have to recall that the central theme of physics in each and every one of its 
productions is, and always was as a matter of fact, the description of motion. When elaborating on motion, we 
unavoidably have to touch the classical concept of material point, which is actually a matter of interpretation by 
itself. Further on, along the way of developing physics, one had to introduce ensembles of material points. This 
is the place where a contradiction creeps in the concept of motion, and the idea of wave begins to disclose its 
objective necessity. 
 Indeed, in the definition of the concept of motion, considered as a physical attribute of the classical material 
point, the natural philosophy came to recognize two major differentiae gradually entering the concerns of physics. 
And these differentiae, to wit: the equation of motion, and the trajectory of motion, are closely associated with 
the concept of interpretation. They are apparently lost when the space extension of the material point gets into 
physical scenario, or even in case of no spatial extension at all, when more than one physical attributes of the 
classical material point are to be taken in consideration: mass, charge, color etc. However, speaking, just for the 
moment being, only of the motion of classical material points, with no reference whatsoever to any idea of space 
extension – that is, no other than the kind of space extension to be described by the concept of distance between 
material points - we are going to detach now the basic operational definitions of the two differentiae of motion, 
as they appear in the different instances of the contemporary physics, or of the natural philosophy at large. 
 The equation of motion provides an order of the positions along the trajectory of motion. It is here the place 
where confusion finds its entrance into reasoning, and starts showing up through it: in an attempt to undertake 
this differentia of the motion – viz. the equation of motion – in order to apply it into describing the motion of 
Hertz material particles that may serve for interpretation, we need to take notice of the fact that, by itself, the 
trajectory of motion – the other differentia of the motion concept – is only a geometrical concept. The essential 
connotation of this last statement is, simply, operational. Namely, from the point of view of interpretation per se, 
the trajectory has to be considered as just a locus, in the geometrical connotation of the word: a possibly disorderly 
ensemble of positions, only arranged into a space form, with respect to the ‘outside world’, as it were. The 
equation of motion, on the other hand, is the ‘device’ serving in bringing a certain order within this very ensemble, 
and this order involves the outside world through the concept of time. The problems of physics started at this very 
point, i.e. when the time order along the trajectory began to involve the outside world. For, in that case, other 
material points are involved, with different trajectories, and especially with different equations of motion ordering 
these trajectories. And so the physics came to realize that the description of this connection with the outside world 
offers only very limited possibilities of being properly understood. Finally, along this path of engagement of our 
knowledge, the scientific community realized that, in fact, the possibility of comprehension would need the 
concept of interpretation in its acceptance according to wave mechanics, which involves the concept of surface. 
 Now, even from the times before Einstein actually, the relativity started being connected with physics through 
motion, as we said, but only in those cases where both of the above differentiae of the concept of motion – the 
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equation of motion and the trajectory of motion – were known and, moreover, were of a special kind. To wit: the 
motion should have been uniform and rectilinear on one hand, as it was to Galilei and Newton and, on the other 
hand, the motion should have been geodesic in general, a novelty brought about by Einstein himself. It was 
noticed, even from the times of Newton, that the classical differentiae of the motion themselves – that is, 
uniformity and rectilinearity – are references in the description of the general concept, but the case is a little more 
complicate, involving some other branches of the physical thinking, even the natural philosophy in general, for 
that matter. In fact, the relativity, in its two instalments emanating from Einstein, viz. special relativity and general 
relativity, is a clear example of physics built exclusively around the concept of motion. In what concerns us here, 
we take it even beyond this important methodological feature: the relativity is dependent, and in a fundamental 
way we should say, on the idea of scale transition in both space and time. 
 In short, Einstein’s presentation of relativity started from an interpretation of the Lorentz transformation 
which, however, had apparently nothing to do with the concept of wave, as required for the necessities of the 
wave mechanics (Einstein, 1905a). From this perspective we can safely say that the merit of recognizing that the 
interpretation leading to relativity requires the concept of wave, belongs exclusively to Louis de Broglie. An 
explanation of this observation is perhaps the best occasion to give one more reason for the present work. Along 
the due efforts of understanding the physics of scale transition, we grew increasingly certain that such an 
understanding is not properly possible without the de Broglie’s idea of associating a frequency to a material point 
(Mazilu, 2023a). For, there is an objective reason for this idea, and that reason emerges from relativity, as Laurent 
Nottale asserted for the first time ever (Nottale, 1992). It is only the fact that the relativity itself has never been 
considered from such an angle, that hinders a proper understanding of the very scale transition basis of theoretical 
physics, and the de Broglie’s idea offers the best angle, as it were, for such consideration. To wit: it gives us the 
possibility to complete the natural philosophy specifically, in order to be afterwards able to finalize a physics of 
the scale transition. 
 Thus, limiting for the moment our discussion only to the pioneering merits of Einstein, we can say that he 
considered the spacetime transformations in connection with the uniform rectilinear motion, and only then he 
proved that the field equations describing the light – in its electromagnetic stance, of course – are covariant with 
respect to these transformations. In other words, for Einstein the intensities of field are not to be considered as 
fundamental in the description of matter: they are simply just vectors or tensors, like any other physical quantities 
defined in space and time. It is only later, as we shall see, and forced by a cosmological point of view, that Einstein 
came to recognize the overwhelming importance of the electromagnetic fields in the construction of the world we 
inhabit (Einstein, 1919). But then, it seems to have become gradually clear to him, that the Maxwellian description 
of those fields is not sufficient for the task. 
 Be it as it may, it is starting from just the point of view of transformations, which fits perfectly the Maxwellian 
view of electromagnetism, that Einstein came to recognize the importance of events as points in a metric 
spacetime, thus making out of them the fundamental elements of the ensembles serving for an interpretation in 
physics. Accordingly, along this path, he was able to further realize the necessity of describing the fields in a new, 
four-dimensional arena, where the events – taken as elements located geometrically by positions and time 
moments alongside and equivalently, in a four-dimensional manifold – form ensembles serving for interpretation. 
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 Once at this point, Einstein proceeded to a generalization of the spacetime metric, in order to include the 
gravitation in the picture, based on what he called the Mach’s principle. However, this principle carries in itself 
a hint of cosmology in any of its formulations, starting with the one which can be drawn from Ernst Mach himself 
[(Mach, 1919), see, for instance, Appendix XX, pp. 542 – 543 of the work]. It so happened that on the occasion 
of application of the general relativity to the cosmological problem of the day – which, by the way, we think is 
the only reason of existence of a general relativity, if only in view of the Mach’s principle, allegedly staying at 
the foundation of the first one of them all – some shortcomings were revealed, even for the Einsteinian natural 
philosophy at large, as a manner of proceeding in physics. It is at this juncture that Einstein was forced to rethink 
the concept of spacetime in terms of the concepts of space and time separately, almost in Newtonian terms we 
might say, and thus he explicitly introduced an idea of scale transition invariance in a specific metric form, which, 
in our opinion, needs to be further promoted for the benefit of the theoretical physics at large. This is the form 
involving the Cayley-Klein geometry, as presented by us in §1.3 above, which, as we have seen, has quite strong 
ties with the optics of light. 
 Always guiding our study after the divine Voltaire’s often-cited adage: «judge a man by the questions he asks, 
rather than by the answers he offers», we were intrigued by the reasons which Einstein offers in order to justify 
the privileged position of light in the general economy of relativity and, as a matter of fact, in the economy of the 
physics at large. The first fact that strikes, in the content of these reasons, is that the electrodynamics seems to be 
involved only ‘second-hand’, as it were, by the idea of propagation. Quoting: 

 The theory of relativity is often criticized for giving, without justification, a central theoretical 
rôle to the propagation of light, in that it founds the concept of time upon the law of propagation 
of light. The situation, however, is somewhat as follows. In order to give physical significance to 
the concept of time, processes of some kind are required which enable relations to be established 
between different places. It is immaterial what kind of processes one chooses for such a definition 
of time. It is advantageous, however, for the theory, to choose only those processes concerning 
which we know something certain. This holds for the propagation of light in vacuo in a higher 
degree than for any other process which could be considered, thanks to the investigations of 
Maxwell and H. A. Lorentz. [(Einstein, 2004), p. 28; our emphasis, a/n] 

Like Planck beforehand, in making the case of resonator (see §1.1 above), Einstein introduces here an element of 
subjectivity, by that freedom in the choice of the definition of simultaneity: «it is immaterial what kind of 
processes one chooses…». And just like in the Planck’s case, the physics ever since proved that the choice of 
light has, in fact, a deeper reason than the mere chance: it is not just by chance that «we know something 
certain…» concerning the propagation of light. So, we have started a detailed study of the problem, adopting the 
point of view that there is an objective reason for relativity, and this concerns the physical connection between 
light and matter. This is the reason why the present work serve still another purpose: it is also intended as a 
systematization of that study. 
 This very chapter starts with a short story of the special relativity moment of physics, aiming to make obvious 
the fact that special relativity possesses the faculty of a scale transition theory. It is shown that, in fact, the special 
relativity started from an idea of scale transition regarding the intimate structure of the bodies in motion. Only 
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then, since this intimate structure was always thought in terms of electric properties of matter, inherent at the 
finite scale of our experience, was it natural for the special relativity to come to being as associated with 
electrodynamics as it did (Einstein, 1905a). The relativistic point of view thus appears to be that the very same 
laws of physics apply to our world no matter of space scale one considers this world. As to the time scales, they 
need entirely special considerations of physics. 
 The scales of space and time we are using in stating our outcomes on the ideas of scale transition here, are 
three, according to the classification of Nicholas Georgescu-Roegen: first comes the inherent finite scale, which 
is arbitrarily assigned to reality as such by our experience in its most common of instances, namely the human 
life on Earth. Then come its associated infrafinite and transfinite scales (Georgescu-Roegen, 1971), where our 
imagination and, inevitably, the physical thinking, has an important part to play. The mathematical representation 
of these scales in physics is achieved, at least for the necessities of the present work, by measures of things spatial 
and temporal. In the finite ranges, we have the coordinates and time moments, as measured by lengths and 
durations, established via reference frames and clocks; in the infrafinite ranges we have, ever since the Newton’s 
times, the differentials of these coordinates and time moments, while in the transfinite ranges we have the 
geometrical concept of absolute. Since the mathematics of physics is here essentially Newtonian in spirit, due to 
the use of differentials for quantities at the infrafinite scale, one can safely say that the physics itself, which they 
entice, is essentially Newtonian in character, though without necessarily being classical. The work with these 
measures will be obvious as we go on with the development of the physical theory, leading also to a corresponding 
completion of the natural philosophy. The special relativity is one essential example of mathematical handling of 
these notions, and this is, again, one of the reasons we consider it first in the present work. 

 2.1 The Scale Faculty of Special Relativity 

 In the beginning was, as we said, the Lorentz transformation. It is starting from it, and based upon what would 
seem some obvious truths of our experience – like the invariance of the speed of light, for instance, which, since 
the times of Maxwell became a physical constant independent of space and time, and the existence of the central 
Newtonian forces at the finite scale of our experience – that Einstein constructed a theory whereby the equations 
describing the electromagnetism are invariant. One can even say that this construction was a further point needed 
by the Maxwell’s electromagnetic theory, in order to be a complete electromagnetic theory. It meant that the light 
as a phenomenon, not only the physical magnitude of its speed, has to be described in a manner explicitly 
involving the invariance with respect to moments of time and locations, since the light is the one phenomenon 
conspicuously transiting the scales of space. And if the matter is electrical by its nature – at the finite scale of our 
existence, the charge prevails statically, by its Newtonian force, over the Newtonian force of gravitation [(Mazilu, 
2020); Chapter 3, §3.1] – then the idea was taken a priori that the matter exists in a background dominated by 
electromagnetic field: the electromagnetic ether. 
 To start with, in expounding the ideas connected with the concept of Lorentz transformation we take just the 
one-dimensional case. We, obviously, must have a reason for limiting our considerations to this apparently 
particular case, but that reason will surface as we go along with this work, towards its end: for the moment we 
just work a priori under this take. Using notations that lately became a standard in most of the specialty works, 



 57 

the Lorentz transformation brought into play by Einstein in elaborating the basics of special relativity is, in a 
matrix form (Einstein, 1905a): 

 
 

(2.1.1) 

where by t and t¢ we understand the time of an event multiplied by the speed of light, c say. This means that an 
event located as (x, t) in a certain reference frame, will be located as (x¢, t¢) in a reference frame moving uniformly 
with a velocity v with respect to it. Here we have used the definitions that became almost secular for the case: 

  (2.1.2) 

Once again, equation (2.1.1) assumes that the symbols t and t¢ actually mean the lengths of the light paths (along 
the common coordinate line, of course) in the corresponding reference frames. For a later convenience, notice 
that the 2´2 matrix from equation (2.1.1) can be written in the form: 

 
 

(2.1.3) 

i.e. as a linear combination involving the identity matrix and a special null-trace matrix. This last matrix 
represents, geometrically speaking, an involution: applying it twice in any of its actions – linear, in two 
dimensions, or homographic, in one dimension – amounts to the action of the identity matrix. 
 Now, the family of Lorentz matrices from equation (2.1.1) can be presented as a continuous Lie group with 
one parameter, namely the relative velocity of reference frames with respect to one another (Mandelshtam, 1933). 
Any two matrices of this family commute, as it can be easily verified. By an admissible change of parameter, 
such a family of matrices can be presented as a group of hyperbolic rotations. The ‘admissibility’ in question is 
referring to both the general mathematical aspect of the physical behavior of parameter, and the connectivity of 
the Lorentz group: the Lorentz transformation (2.1.1) is continuously connected with the identity transformation, 
and this connection is described in terms of parameter b. On the other hand, though, it would seem that the 
parameter b, as it is used in the equations (2.1.1) and (2.1.2), cannot assume but real values between –1 and 1, in 
view of the physical fact that in our experience there are not known motions of material particles with velocities 
surpassing the value of the constant c, assigned by James Clerk Maxwell to the light. In this case, since b is a 
continuum parameter, it should always be represented by a continuous function that assumes values only within 
that limited interval. And indeed, we can write the Lorentz matrix from (2.1.1) in the exponential form: 

 
 

(2.1.4.) 

generalizing (2.1.3), in the sense that this last one becomes a variant of the ‘complete’ exponential  transformation 
(2.1.4.) of the connected Lorentz group. In the approximate cases where the first order in the parameter s is valid 
and can be considered, i.e. for values of this parameter allowing the approximations: coshs @ 1, sinhs @ s and 
tanhs @ s, the matrix from equation (2.1.4.) goes into that from (2.1.1). Here s is a new real parameter, and 
whatever this parameter may be, the values of its hyperbolic tangent cover naturally the interval of real numbers 
from –1 to 1. 
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 The above approximations are obviously valid for small values of the relative velocity v, vhen referred to the 
light speed, an observation that instated the idea that the finite scale of the world we inhabit is actually the world 
of ‘small velocities’ with respect to that of light, as represented by the constant c. It is this conclusion that has 
been carried over into the construction of a physics that can be characterized as exclusively based upon the concept 
of motion. Thus, the fact becomes manifest, that the Lorentz transformation can be transcribed as a hyperbolic 
rotation, as we already mentioned above: 

 
 

(2.1.5) 

Such a rotation, obviously, leaves the indefinite quadratic form: 
  (2.1.6) 

unchanged, just as its approximate counterpart (2.1.3) does. This last invariance condition was taken initially, and 
is taken sometimes even today, as the basis of theory of special relativity, inasmuch as (2.1.6) is ‘invariant’ with 
respect to the values of the parameter s. Mention should be made, that the matrix realizing this ‘complete’ Lorentz 
transformation, belongs to the same class as the ‘approximate’ variant of the transformation given in (2.1.3), i.e. 
it is a linear combination of the same two basic 2´2 matrices used in equation (2.1.3): 

 
 

(2.1.7) 

This is another form of the expression of connectivity via the exponential formula for such a particular group of 
transformations. 
 The group is, customarily, also applied as such, apparently without any a priori reason, in the infrafinite range 
of spacetime, i.e. for the differentials of space and time, in order to write the metric form of this continuum, 
interpreted by ensembles of events. As a consequence, this metric was a priori taken in a form that, in time, 
brought so much trouble within the Einsteinian natural philosophy, leading to apparently unnecessary paradoxes. 
This is the well-known quadratic differential form called Lorentz metric or, sometimes, Minkowski metric. The 
difference between these metrics is only of nuance, so to speak: while the first name is referring mostly to physics, 
being based on the idea of the group transformations, the second name assumes exclusively the formal geometrical 
properties of the continuum of events. According to this geometry, the difference between the square of the light 
path length and the square of any other path length, in a certain direction in space, represents a metric of the 
spacetime continuum, entirely analogous to the Euclidean metric of the space of our experience. Anyway, fact is 
that, in the spirit of such geometrical philosophy, as it were, the infrafinite variant of (2.1.6) is taken as formally 
the same: 

  (2.1.8) 
and this, therefore, speaks of a formal scale transition invariance between finite and infrafinite. Such a 
mathematical philosophy is practiced by Einstein – and, implicitly, by anybody else working in theoretical physics 
along his natural-philosophical doctrine, of course – all along his works on relativity and, in fact, not only there. 
As we shall see here in due time, the quadratic form (2.1.8) is not necessarily ‘natural’ in a physical context, but 
can be derived in connection with a special interpretation of the Lorentz transformation, associated with an 
alowable change of parameter in its mathematical expression. 
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 It is our opinion that there should be – at least mathematically, therefore from a conceptual point of view – a 
reason for the transition between the metrics (2.1.6) and (2.1.8), that defines the special relativity as a scale 
transition theory. In pursuing physics here, we need to notice that the classical incentive stays in the interpretation 
of light, whose remarkable expression is the association of the physical constant representing the ratio between 
electrostatic and electrodynamic units, with a velocity: the light speed. It is this association that brought into play 
the idea of involvement of wave in the process of interpretation, for once just by the Maxwell electrodynamics. 
In this process, the matter is somewhat overshadowed, thus making necessary, in a way, the Louis de Broglie’s 
approach to the concept of wave. 

 2.2 The Newtonian Motivations of Special Relativity 

 As we already acknowledged above, the form (2.1.1) of the Lorentz transformation can be considered only as 
approximately valid, by comparison with the connected exponential group of transformations given by equation 
(2.1.5). Namely, we have in the equation (2.1.1) the case of small relative velocities corresponding to the 
transformation from equation (2.1.5). In fact, it is along this path of thinking that the name ‘relativity’ came to 
being. More to the point, the natural philosophy holds that at small velocities we should have to deal with the 
classical Galilean relativity, valid in the finite world we inhabit, and specifically connected to our only possibility 
of existence: the Earth surface and the field it reveals. As this kind of relativity involves just the motion, we would 
have to add the electromagnetic field to it, in order to compare it to the Einsteinian relativity. It is along this path 
of knowledge that we have learned, in time, of course, that the Einsteinian point of view here – manifested by the 
involvement of the electromagnetic field in the Galilean physics – asks for special transformations of those fields, 
which are the corresponding special cases of the relativistic transformations above [see (Le Bellac & Lévy-
Leblond, 1973) for details] 
 The point is that, just by being ‘relativity’, the previous Einsteinian geometrical theory is, in fact, an 
interpretation (not quite in the precise sense of Charles Galton Darwin, involving the concept of wave, but an 
interpretation anyway!) given by Einstein to the Lorentz transformation. It is classical in character, inasmuch as 
its fundamental feature is that it takes after the example of classical Galilean kinematics, which describes the 
motion. However, it is well known that, on the contrary, the original Lorentz transformation is referring, in fact, 
to an invariance of the field equations involved in the Maxwellian electrodynamics (Lorentz, 1899, 1904). Thus, 
the motion – and the matter that necessarily comes with it, of course – would fall, in this approach, on a second 
level of importance, if we may say so, as indeed it did historically. 
 Less well known, though – in fact almost never acknowledged anyway, in any of the modern treatises on the 
subject – is the original purpose of this transformation. It is behind this declared purpose, that one can perceive, 
lurking in the background, an idea of scale transition, of which we are so fond. So it is worth insisting for a little 
while, on this beautiful piece of the history of modern physics. Actually, since we must expound here only a 
concise – but comprehensive, nevertheless, if we may! – story of some quite well-known historical facts, for the 
clarity of this presentation it is best to follow the exquisite summarizing once done by the distinguished natural 
philosopher who was, and still is in fact, Henri Poincaré, in the introduction to his celebrated Dynamics of the 
Electron from Rendiconti di Palermo (Poincaré, 1906). It is important we think, at this juncture, to mention that 
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we particularly value the views of Poincaré on physics, due to the fact that, being mathematician by formation, 
he always approached physics with the Newtonian spirit of a natural philosopher. Not too many mathematicians 
can do this, mostly within today’s conditions in mathematics, to say nothing about physics! 
 According to his account from the work just cited, by the end of the 19th century, notably after the times of 
Michelson-Morley experiment, it became clear that the motion of Earth through ether cannot be documented as 
such, no matter of the experimental point of view. It is, indeed, this last impossibility that has been proved, in a 
decisive manner, by the results of Michelson-Morley experiment. Again, this historical point was entirely 
analogous to the corresponding one of the Galilean relativity. To wit, there is, no doubt, a close analogy: the Earth 
drifting through ether is alike a ship sailing at constant speed on a quiet sea. There is no possibility to account for 
this motion by experiments done exclusively on the Earth, just as there is no possibility to account for the uniform 
motion of a ship by experiments done exclusively on it. This medium, that is the ether, was always conceived in 
connection with the light, and because the light came to be recognized as a phenomenon of electromagnetic nature 
– especially after the works of Maxwell on electrodynamics – one had to deal in physics with an electromagnetic 
ether, as mentioned above. Thus, the electric and magnetic properties of the matter came to be considered 
essential, and the negative result of the celebrated Michelson-Morley experiment had to be assessed accordingly. 
An assessment of our knowledge, necessary from at least two points of view: an ontological one, for it serves into 
making us understand the mechanism of the universe, and a gnoseological one, for it gives us the possibility to 
update the existing natural philosophy. 
 The widely recognized protagonist of this process of assessment was the illustrious Hendrik Antoon Lorentz, 
who saw in the negative result of that experiment an opportunity to characterize the internal forces of matter. This 
is, indeed, the initial reason, put forward by Lorentz himself, in constructing his renowned transformation, and 
we find the best concise expression of it to Poincaré. Quoting, therefore, from Poincaré, on this subject: 

 The LORENTZ’s idea can be summarized as follows: if one can impress to any system a 
common translation with no modification of any of the perceived phenomena, it is because the 
equations of an electromagnetic medium are not altered by certain transformations, which we call 
the LORENTZ transformations; two systems, one immovable the other in translation, thus become 
the exact image of one another [(Poincaré, 1906); our translation and emphasis, n/a] 

We need some elucidations in connection with this excerpt. Obviously, in view of historical scientific 
environment, by system here one must understand the classical ‘system of material points’. The Poincaré’s 
specification of a ‘common translation’ leaves no doubt about this fact: it is obviously referring to an ensemble 
of such points, moving collectively. As usual in the classical physics, an interpretation is already in place here 
but, let us say it again, without the concept of wave. Then, if these fundamental components of the interpretation 
process – which, once again, are not yet ‘wave phenomena’, if it is to use an expression of Louis de Broglie – are 
carrying charges, they should repel each other, and they cannot constitute a physical structure. This is why 
Poincaré always searched for, and even found some stresses to keep them together: the Poincaré stresses. It is 
just natural, we have to admit: according to Earnshaw’s classical theorem (Stratton, 1941) any configuration of 
such identical material particles is physically unstable, so that it cannot make up a physical structure. It is perhaps 



 61 

worth mentioning and keeping in mind as particularly significant, that such a possibility of construction exists, 
for instance in the form of the modern Bardeen-Cooper-Schrieffer theory of solids, but it requires special 
environments in the form of coordinate spaces associated with particular collective motions. 
 The most important observation in connection with the above excerpt from Poincaré, though, is referring to 
the target of the Lorentz’s original transformation and, obviously, this target appears to be twofold. Typically, it 
is taken and, of course, it always has been taken indeed, as the transformation that ‘does not alter the equations 
of an electromagnetic medium’. However, let us render due consideration to the second part of the above 
formulation of Poincaré, which says that by such a transformation ‘two systems, one immovable, the other in 
translation’, must become ‘the exact image of each other’. According to this statement, the Lorentz’s 
transformation also targets ‘the systems’, which are specifically altered by it in such a way that the behavior of 
ether remains formally unchanged, and thus unnoticeable (see §1.3 for details of Lorentz’s original idea; notice 
that Lorentz alluded, for the first time ever, to the necessity of the concept of surface in the identification of a 
‘system’). And, as the ‘alteration’ involves the ‘impressed translation’, suggesting a classical intervention of force 
for ‘alteration’, one might think of the motion according to the classical standards, involving the intervention of 
man. This should be the reason why the motion of the Earth cannot be specified with respect to ether: with a 
consecrated expression, one cannot physically account for the absolute motion of the Earth. 
 However, according to Poincaré, the Lorentz’s approach may be deemed, at some point or another, as a 
convenient hypothesis used to serve in putting things in order only momentarily. From this point of view it is, 
conceivably, carrying nothing fundamental within it, since it may appear as just a panacea, if we may be allowed 
this expression. This is the reason why Lorentz himself, being obviously convinced that the idea should be 
carrying a much heavier connotation for our knowledge, in general, than this appears at the first sight, undertook 
the task of clarifying and, possibly, simplifying the theory quite a few times in his own works. One of these 
attempts of Lorentz at refining the theory of the electric matter in order to satisfy the facts contained in the results 
of Michelson-Morley experiment, remained historically notable as an essential work at the foundations of physics. 
It is now the opportune time to quote from this fundamental work of theoretical physics: 

 The experiments of which I have spoken (the Trouton-Noble kind of experiments, n/a) are not 
the only reason for which a new examination of the problems connected with the motion of the 
Earth is desirable. POINCARÉ has objected to the existing theory of electric and optical 
phenomena in moving bodies that, in order to explain MICHELSON’s negative result, the 
introduction of a new hypothesis has been required, and that the same necessity may occur each 
time new facts will be brought to light (Poincaré, 1900). Surely, this course of inventing special 
hypotheses for each new experimental result is somewhat artificial. It would be more satisfactory, 
if it were possible to show, by means of certain fundamental assumption, and without neglecting 
terms of one order of magnitude or another, that many electromagnetic actions are entirely 
independent of the motion of the system. Some years ago, I have already sought to frame a theory 
of this kind (Lorentz, 1899). I believe now to be able to treat the subject with a better result. The 
only restriction as regards the velocity will be that it be smaller than that of light. [(Lorentz, 1904); 
our emphasis; citations inserted] 
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The general idea of approach can be assumed here as well known, and its description can be safely deferred to 
the original works. What we are interested in, for the moment, is that expression of Poincaré, regarding the fact 
that ‘two systems, one immovable, the other in translation, become the exact image of one another’. Again, it can 
have a twofold meaning. First of all, the whole point of any physical theory, when compared to experiment, is 
that it involves a necessary hypothesis which is not commonly recognized as such by the natural philosophy. To 
wit: while it is always about a system in motion, the physical theory needs obviously the definition of its 
counterpart, the ‘immovable system’. Indeed, considering the target of physics at the times of Lorentz and 
Poincaré – in fact, the physics’ target of all times before and ever since – we need to recognize that, in all fairness, 
we cannot have in our knowledge any idea of what an ‘immovable system’ might be, simply because we do not 
have an ‘immovable body’ in our experience. 
 Everything is in motion around us: what we perceive as immovable is actually moving with the Earth, which 
is moving around the Sun, which is moving around the Milky Way, which is moving with the local group of 
galaxies, which… and the list of physically possible relative component motions of an apparently ‘immovable 
system’ can continue ad infinitum, as it were. All we certainly have at our disposal from experience – and therefore 
we can use in deciding the physical shape of the finite world we inhabit – is, on one hand, an invented medium, 
viz. the electromagnetic ether, within which the above quite amalgamated motion allegedly takes place. On the 
other hand, we also have a state of bodies of relative immobility with respect to us, the observers, from which we 
can infer the properties of some forces connected with the distinguished properties of the matter: the electricity, 
in the specific case of Lorentz and Poincaré. 
 Now, if this is all we have in our experience, then what we need to consider first is whether the forces involved 
in matter – which, by the way, were an invention too: Newton’s invention, of course – can have an objective 
existence or rather not. Incidentally, in order to document the term ‘invention’ used by us here, we advise the 
reader to consult Principia in its original Latin edition, prepared by Roger Cotes, where the word inventione is 
used in connection to forces and even to orbits (see Book I, Section II). Some later renditions of Principia are 
preserving the Newton’s Latin expression, some are not, converting it into determination. This, obviously, alters 
the original meaning, giving to forces that artificial physical objectivity we generally assume today. However, 
apparently it does not reflect the Newton’s original intention; see also (Faraday, 1857). These forces are scale-
transitive mind creations, i.e. they can be supposed to act the same way no matter of the space scale but, we have 
to say it, in a special definition of the forces, involving the idea of gauging, which we would like to call the Berry-
Klein gauging procedure [(Berry & Klein, 1984); see also (Mazilu, 2020), Chapter 4, especially §4.2]. Only in 
this case can one say that the Newtonian forces are scale-transitive indeed, and this is just the way Newton himself 
endeavored to secure his invention from a natural-philosophical point of view. This statement needs itself a special 
assessment on different acounts, of which, we think, theoretical physics ‘took already care’, if we may say so, 
through an objective process of thinking, to be unveiled as we go along with this work. 
 The basis of our current understanding of this issue can be rationally realized, if we proceed along the 
following lines: describe the electric matter in terms of a classical interpretation – i.e. an interpretation not using 
any wave idea in connection with the concept of particle – by ensembles of Hertz material particles. These 
particles possess, besides gravitational mass, both electric and magnetic static charges. Then, taking after the 
classical routine, we are free to assume the existence of an ensemble of such Hertz material particles in 
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equilibrium, under electric, magnetic and gravitational static forces. Indeed, any linear combination of such forces 
between identical particles, is liable to sustain a mechanical equilibrium, because the gravitational force is 
attractive, while the other two forces are repulsive for identical particles. However, such an ensemble of identical 
particles is fictitious, insofar as in actuality the different Newtonian forces thus assigned to a particle prevail upon 
each other at different scales of space and time. In fact, we can even say that it is this property the one that asks 
for a scale description of the physical world we inhabit. To wit, the gravitation prevails at the grand scale of the 
universe; on the other hand, the electric and magnetic forces prevail at the finite scale revealed to us by our daily 
experience and, apparently, they also prevail at the microscopic scale of the world. This means that, in actuality, 
we cannot have a static ensemble of particles at our disposal within the daily experience: physics only allows us 
to think of it, in reality it does not even exist! 
 It is the daily experience which further shows that the electric and magnetic static forces act in a ‘tandem’, so 
to speak, as a force whose expression is linear in the electric and magnetic fields, involving, still linearly, the two 
kinds of charges, electric and magnetic (Harrison, Krall, Eldridge, Fehsenfeld, Wade, & Teutsch, 1963): 

  (2.2.1) 
Here the vectors e and b play the part of the intensities of the field of forces at the location where it acts. These 
forces characterize a mechanical equilibrium whereby the particles possesing charges are in a stationary state. 
Then, assume, further, that a state of motion is described by a Lorentz-transformed force, involving the static 
force from equation (2.2.1) and a rotated counterpart, with the rotation acting upon intensities of the field, and 
defined by the static charges: 

 
 

(2.2.2) 

Now, if the equations describing the evolution of the intensities of fields are ‘symmetric’ i.e., according to the 
prescriptions of Maxwell’s electrodynamics, we have: 

 

 

(2.2.3) 

where r is the numerical density of particles, while j is their current, interesting things start to show up. For once, 
these equations have the virtue of reducing themselves to the usual Maxwell equations for either qm = 0 or qe = 0. 
Notice, however, that with no such quantitative consideration on charges – which is quite particular and, therefore, 
from natural-philosophical point of view they should be, in a way, irrelevant – we can define two new field 
variables via the genuine rotation generated by the two charges: 

  (2.2.4) 

after which the force (2.2.2) becomes the Lorentz force as we usually know it in our experience: 

 
 

(2.2.5) 

while the Maxwell’s equations (2.2.3) become naturally non-symmetrical, the way we know them from any of 
the textbooks summarizing that experience: 
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(2.2.6) 

However, while in the first symmetric version, the rotation is determined by the ratio of charges, which in turn 
needs a special natural philosophy involving these charges [(Katz, 1965); see also (Mazilu, 2020), §3.1], in the 
Lorentz’s version the theory is pending on a genuine space rotation that needs central forces acting sideways. 
This notion may seem contradictory, but we use it, nevertheless, in order to pinpoint a fact of which we need to 
account theoretically. 
 Namely, insofar as a force is created by a physical characteristic of a particle – gravitational mass, magnetic 
charge, electric charge, etc – it is, no doubt, central: the particle creating it is the obvious center of force. On the 
other hand, when it comes to the action of such a force, it can be twofold: the force can act along the direction to 
the particle that created it, or transversally to that direction, i.e. sideways, with an expression of J. J. Thomson. 
Besides the fact that, at the first sight, this concept of transversal action is strange by itself, from the point of view 
of motion it requires a special arena where the forces have to be logarithmic, although not central [(Mazilu, 2020); 
Chapter 6, §6.2]. This arena cannot be but the Louis de Broglie’s region that we have found ‘strange’ (loc. cit. 
ante, Chapter 2, §2.1), which, as we have hinted previously, in the case of light is an expression of the holographic 
property of the universe. In the end, this requirement leads to the necessity of a wave image, as de Broglie’s theory 
stipulates, but it turns out to be valid along with the Maxwellian electrodynamics, just as Lorentz intended to 
show in the first place. 
 Now, for a better understanding of the issue, it is perhaps worth presenting it from a Newtonian perspective, 
however involving plainly the name of Maxwell himself. The equation (2.2.2) presents the dynamical force as 
different from the statical one, including a sideways force, if it is to use again the term of J. J. Thomson. This 
extra term is constructed so as to make the formula of rotation of the force field a plain rotation as in equation 
(2.2.4). Along the idea of a grand analogy, this case reminds us of a similar one that occurred to Newton on the 
occasion of a cosmogonic explanation of the world, which he was asked to recommend for religious purposes. 
Quoting from a letter of Newton to Bishop Richard Bentley: 

 To the last part of your letter, I answer, first, that if the earth (without the moon) were placed 
any where with its centre in the orbis magnus, and stood still there without any gravitation or 
projection, and there at once were infused into it both a gravitating energy towards the sun, and a 
transverse impulse of a just quantity moving it directly in a tangent to the orbis magnus; the 
compounds of this attraction and projection would, according to my notion, cause a circular 
revolution of the earth about the sun. But the transverse impulse must be a just quantity; for if it 
is too big or too little, it will cause the earth to move in some other line. Secondly, I do not know 
any power in nature which would cause this transverse motion without the divine arm. Blondel 
tells us somewhere in his book of Bombs, that Plato affirms, that the motion of the planets is such, 
as if they had all of them been created by God in some region very remote from our system, and 
left fall thence towards the sun, and so soon as they arrived at their several orbs, their motion of 
falling turned aside into a transverse one. And this is true, supposing the gravitating power of the 
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sun was double at the moment of time in which they all arrive at their several orbs; but then the 
divine power is here required in a double respect, namely, to turn the descending motions of the 
falling planets into a side motion, and, at the same time, to double the attractive power of the sun. 
So, then, gravity may put the planets into motion, but, without the divine power, it could never put 
them into such a circulating motion as they have about the sun; and therefore for this, as well as 
other reasons, I am compelled to ascribe the frame of this system to an intelligent Agent [(Bentley, 
1838), pp. 209 – 210, our Italics] 

There is, therefore, in the mind of Newton, an event imprinted in the history of motion by the ‘transverse’ circular 
motion, that can be described in the following fashion: the initial motion of the planets is radial towards a center 
represented by the Sun, according to the action of static Newtonian forces; this radial motion is suddenly turned 
into transverse motion at the moment when ‘they arrived at their respective orbs’. In hindsight, it is this transverse 
motion that makes the object of the classical dynamics when describing the Kepler motion as a dynamical 
problem. The ‘transverse impulse of a just quantity’ is then represented by some initial velocities of the Kepler 
motion, that Newton assigns to an ‘intelligent Agent’. In keeping with the dreadful atheistic modern view of the 
world, we can tell nowadays that the ‘intelligent Agent’ acted in the spirit of J. J. Thomson or, better yet, in the 
spirit of a Maxwell’s demon – an invention playing the part of such an Agent [(Maxwell, 1904), pp. 338–339] – 
acting by rotating the force as in equation (2.2.4), at the ‘just moment’ of time, and that was the moment when 
the planet, in its purely radial motion, ‘reached its orb’. And, still continuing along this dreadful atheistic way, 
we dare to associate the rotation of force at the position of its action, with the action of a field of a statistic nature, 
posited by Maxwell himself as a matter of fact, as follows. 
 The classical Poisson equation was, from the very beginning (Poisson, 1812) taken to mean the preponderance 
of matter over the field: the density of matter determines the field of forces in matter. Both concepts – matter and 
field – were naturally brought to human awareness, with this apparently natural ‘dominance’, if we may say so, 
by the Newtonian theory of forces. There is, however, a renowned case whereby the Poisson’s equation is ‘rustled 
up’, as it were, within the above-mentioned classical habit of defining the field when the density of matter is given, 
and used into defining the density when the field is given. This became one main point in the Louis de Broglie’s 
theoretical doctrine [(de Broglie, 1935); see also (Mazilu, 2020), §2.4]. Contemplating this doctrine, we are 
compelled to find such an idea significant even from another point of view, namely because it is a construction 
that served to build an image of the electric ether based on considerations of statics, not dynamics. 
 Indeed, the essence of the problem of ether, is well represented by the so-called Maxwell stress system, 
described by Clerk Maxwell in the Chapters 4 and especially 5 of the first volume of his classical treatise 
(Maxwell, 1892). Even though this system is mostly cited as an example of the failure to describe the ether as 
what is classically conceived as an isotropic incompressible medium [see especially (Love, 1944), where the 
system of Maxwell stresses is presented from different mechanical perspectives in various places of the book], 
we think that it is still in position to straighten up some of our modern physical concepts, especially that of static 
ensemble of equilibrium, so necessary to any theory of interpretation. As we said, Maxwell himself did not seem 
to have used his system of static stresses very much. In hindsight, this appears to have happened mostly because 
he seems to have been carried away by the electromagnetic image of the light, whereby the dynamics appears to 
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be the essential working ingredient. By the same token, however, the subsequent neglect of the Maxwell stress 
system in physics may have been due to a deeper, objective reason, that can be assigned to the necessity of 
interpretation in physics. We will turn back to this important issue later on. 
 Maxwell’s problem was to find the stresses induced by the action of forces in ether, in order to explain the 
omnipresent gravitational and electric forces. The attraction was represented in those times, just as it is today, by 
the Newton’s forces, which proved also to be valid for electricity, as Charles Coulomb would have long shown. 
Maxwell did not take into consideration this property directly, but first translated it into a problem involving the 
continua: finding the stresses statically equivalent with a system of forces in general. Notice that these stresses 
had also to face, later on, the fact that the matter does not seem to be dragged by ether, which was proved 
experimentally toward the end of the 19th century by the Michelson experiment. This circumstance too, may have 
participated to ignoring the case as inessential, inasmuch as neither the gravitation, for instance, nor the electric 
action could be consequently explained as drag forces. This conclusion was even reinforced by Henri Poincaré, 
as displayed in the excerpt above, who, moreover, specifically showed that the electric matter of Lorentz is in 
default with respect to classical dynamics, inasmuch as it does not obey the classical principle of action and 
reaction (Poincaré, 1900). He even pushed this property into describing the forces of gravitation, and the forces 
of cohesion of matter in general, thus inventing the so-called Poincaré stresses (Poincaré, 1906). 
 The mathematics of a force generated by matter was described in those times the way it is still described  
today, and this way is expressed by its essential mathematical concept, the Poisson equation, as we said. This will 
be rewritten here in the form: 

  (2.2.7) 
In this equation U(x, y, z) is the potential of the forces in a medium of density ρ(x, y, z). The way this equation is 
constructed in modern times – that is, by the Gauss integral theorem – confers to the density a Newtonian quality, 
of a characteristic of matter describing the way it fills the space at its disposal. If this medium is electrically active, 
then ρ is taken as the density of electricity and U is an electric potential. Maxwell apparently took equation (2.2.7) 
as defining the density of the medium, rather than defining the potential, for the following good reason: he proved 
that the equation of equilibrium of a system of stresses is satisfied with the volumetric forces corresponding to a 
matter with density given by (2.2.7). Indeed, the equation of equilibrium of a continuous stress system in general, 
in its simplest form, asserts that the divergence of the second order stress tensor, t say, is given by the density of 
volume forces f (Love, 1944): 

  (2.2.8) 
When specifically applied to the stress tensor t defined by the matrix 

 
 

(2.2.9) 

the equation (2.2.8) is identically satisfied for a force density f given by 

 
 

(2.2.10) 

In other words, according to equation (2.2.8), the stress system (2.2.9) is statically equivalent with the system of 
volume forces (2.2.10) of the matter having a density given by Poisson’s equation. Thus the gravitation, for 
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instance, can be conceived as a tension due to these stresses through ether, and likewise the electric force. The 
Poincaré conclusion about Lorentz material system can be taken as showing that such a system of stresses is 
insufficient to do the job they are called for, no matter of the system of forces taken into consideration. 
 Now, if we replace the gradient components from the matrix (2.2.9) by the components of a logarithmic force, 
i.e. of the central force deriving from a logarithmic potential: 

   
where k is a constitutive constant, the Maxwell stress (2.2.10) generated by this field is statically equivalent with 
the system of volume forces 

 
 

(2.2.11) 

and correspond to a Maxwell tensor 

 
 

(2.2.12) 

These last two equations suggest unearthing an interesting story connected with the name of Eugenio Beltrami, 
in need to be unraveled at one point along our work (Beltrami, 1886). For now, though, we just concentrate upon 
the static force (2.2.11). 
 That force has the appearance of a central force, and has been, indeed, used as such by Joseph John Thomson 
who, in our opinion is its main promoter in matters physical (Thomson, 1910, 1913). However, at a point along 
the physical theory, J. J. Thomson was compelled to asume a ‘jump’, so to speak, in order to account for the fact 
of quantization. The mechanism assumes that the force (2.2.11) acts only outside the tubes of force, for a quantum 
of matter cannot be but inversely proportional with the square of the radial distance. The force acting ‘sideways’ 
can only be derived in connection with a logarithmic potential, as above (Mazilu, 2020). According to J. J. 
Thomson, the force (2.2.11) is the force exercised by a dipole along its own direction, but as one can see, it 
appears as a kind of statistic. It should be then logically inferred that the statistic in question is made possible by 
the existence of such dipoles, thus giving one more reason for the existence and necessity of Planck’s quantization 
procedure (see §1.1). 
 Going a little ahead of us, we think that the time is ripe in order to take due notice of the fact that the previous 
Maxwellian theory can be taken as a sound basis for another important concept, currently used, by and large, in 
the modern theory of critical phenomena [one can consult the work of Cyril Domb dedicated to subject (Domb, 
1996), which makes the idea of critical point remarkably clear from all the pertinent differentiae of the concept]: 
that is the concept of molecular field, introduced to common awareness by Pierre Weiss, on the occasion of one 
of the first theoretical undertakes of the description of critical phenomena in the case of magnetism (Weiss, 1907). 
The first move would be a framing of the idea molecular field in the order of ‘things Fresnelian’, so to speak, for 
this is, indeed, the natural case. In order to do this, we quote the very Pierre Weiss’ words: 

 I propose to myself to show here that a theory of ferromagnetism can be founded on an 
extremely simple hypothesis concerning these mutual actions (of the magnetic molecules, a/n). I 
assume that every molecule experiences, from the part of the ensemble of the surrounding 
molecules, an action equal to that of a uniform field (original emphasis, a/n) NI proportional to the 
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intensity of magnetization and of the same direction with it. One could give to NI the name of 
internal field in order to mark the analogy with the internal pressure of van der Waals. Indeed, this 
field, adding itself to the exterior field, will account for the high intensity of magnetization of the 
ferromagnetic bodies, by the laws of the paramagnetic bodies, in the same manner with the internal 
pressure which, adding itself to the external pressure, accounts for the high density of the liquids 
by invoking the compressibility of the gases. However, this expression is liable to lead to frequent 
confusions. I would prefer instead the name molecular field (original emphasis, a/n). We shall be 
led to consider, here as well as elsewhere, a sphere of molecular activity. [(Weiss, 1907); our 
translation; emphasis added except as mentioned, a/n] 

How is this definition of the molecular field fitting in the present context? In order to see how, we refer the reader 
to some previous results [see (Mazilu, Agop, & Mercheș, 2021), Chapter 2]. The argument can be précised the 
following way: since Weiss is talking of the analogy involving a gas, we need to recall that, in the Clausius virial 
theorem for the gas, as it is used in the thermodynamics of the real gases in the van der Waals take, the temperature 
is no more a sufficient statistic. This means that it does not make any sense at the level of a molecule: the Maxwell 
demon cannot exist! So, necessarily, intermolecular central forces deriving from a logarithmic potential are 
involved in the calculations of the virial, as the forces above. Then the Maxwell-Beltrami stresses (2.2.12) should 
be, in fact, equivalent with the Thomson’s inverse cubic forces, and this is the molecular field of Weiss. The 
concept is incomplete as yet, on a few accounts, but we shall become aware of its necessities of completion as we 
go with our developments. We are just aware of their logical existence, in order to be able to pick them up when 
the case may occur. 
 To continue our main streak of discussion here, the bottom line is that the relativity, as an expression of the 
necessity of interpretation, needed the concept of wave: the collective motion of an ensemble of particles, 
impossible to be considered as static, however still in need to be viewed as an ensemble of simultaneous particles. 
Otherwise, the interpretation itself, as a necessary step in the construction of a theory of physical structures, could 
not be a full concept. Starting from this point of view on the necessities of the theoretical physics, one can better 
understand the criticism of Henri Poincaré targeting the purely phenomenological interpretation of the Lorentz 
transformation which led to the construction of the theory of special relativity as we have it today [(Poincaré, 
1905); see also (Mandelshtam, 1933)]. The purely phenomenological aspect of this interpretation – to wit: for 
instance, the shrinking of lengths in the direction of motion – seemed untenable at the time, as it does, in fact, 
nowadays. And yet, it is still with us today, applied all of a sudden to some conventional kinematical and 
geometrical concepts as Einstein once proved (Einstein, 1905a). However, Poincaré raised quite a few legitimate 
natural-philosophical issues, unanswerable at the time – and, in fact, still unanswered ever since – from among 
which, one we have found as quite remarkable, and we are compelled to consider it essential to physics by its 
implications, even today. Quoting: 

 … What would happen if one could communicate by signals which are no more luminous, and 
whose velocity of propagation would differ from that of light? If, after having settled the watches 
by the optical procedure, we wished to verify the decision with the aid of these new signals, we 
should notice discrepancies which would render obvious the common translation of the two 
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positions. And, are such signals inconceivable, if one admits, with Laplace, that the universal 
gravitation is transmitted a million times faster than light? [(Poincaré, 1905), p. 208; our 
translation and emphasis; see also (Poincaré, 1907), p. 100] 

In other words: what would happen if «we know nothing certain…» – to use the general idea of Einstein’s own 
expression – concerning the propagation of light?! In view of what was just said above, we aim to build an 
understanding of this specific objection with the help of Louis de Broglie notion of a physical ray. 
 A general alert on what this construction may mean is perceivable right away from the excerpt above, even 
intuitively we should say: according to our experience, a light signal does not give us a length, but obviously a 
distance. This distance can be associated with a length, is true, for this association was (and still is, in fact!) a 
standard procedure in the physics of all times, and was instituted in today’s relativity starting with Einstein 
himself. The fact still remains, however, that what a light signal provides us is a distance. If, however, a length is 
materially realized as a physical object – a meter stick or a moving train, as they typically assume in any 
‘operational-type’ of such arguments – then a signal can be propagated through it, in the manner of waves in 
matter: some sound waves for instance. In general, these waves have speeds of propagation through matter 
substantially different from those of propagation of light through ether. Yet, we are bound by our experience to 
conclude that they reveal indeed a length of the rod, not the distance between its ends. True, this is done in the 
very same manner the light reveals a distance within the ether, but the result is not a distance per se, like between 
two isolated material bodies apart from each other: it is revealed by a signal completely different, by its physical 
nature, from light, at least we can agree on that. Going a little ahead of us, such a length is rather associated with 
the phase of a wave, just like the wavelength of light in the physical optics. This length, though, can only be 
assumed equal to the distance we associate to it by light signals – a genuine gauging procedure, we should say – 
and according to Poincaré’s argument, such a condition can be contingently broken: there is no guarantee of an 
absolute identity between the two quantities. 
 Thus, our contention is that the Poincaré’s ‘discrepancies’ mentioned in the above excerpt are to be referred 
to the fact that the length, as associated to a rod by internal signals in matter, equals indeed the distance between 
its ends associated to the rod by light, but only in special conditions, for instance, only at rest. With a mnemonic 
phrase, this last case could be described as follows: in the direction of motion – and probably not only in that 
direction – the length associated by internal signals to a meter stick cannot equal the distance associated to it by 
light. Therefore, unlike the Marquis de Laplace, who, according to Poincaré, used an argument involving not the 
hypothesis of God, is true – as he declared to the Emperor Napoleon, according to an often-cited humorous 
incident destined to reveal the ignorance of social rulers in general – but the hypothesis of propagation speed of 
gravitation, we can use a fact of solid experience in order to construct the physical theory: the speed of sound 
through ponderous matter is perceptibly different from the light speed in ether. However, according to Katz’s 
natural philosophy involving charges, this does not say more than that a piece of ether is different from a piece of 
matter. In a word, a fundamental problem still remains unsolved: we cannot decide this way if the ether is indeed 
matter or not. And the idea sustained in physics thus far, that the ether is a kind of matter, seems to contradict the 
everyday observation that in vacuum bodies do not encounter any resistence to their motion. This view, though, 
serves best to straightening our reasoning: the length and the distance can only serve as estimators of each other 
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in measurements of the same type, but they are different in concept. The estimates are ‘exact’, if we may be 
allowed to use such expression, only in special cases. 
 Concluding therefore, we are compelled to advocate the notion that the Poincaré’s critique targets, in fact, the 
one-sided attitude – classical in essence, we have to admit – of promoting unreservedly into natural philosophy a 
thinking exclusively in terms of length as unconditionally identical to a distance, and vice versa, of course. Based 
on this thesis regarding the identity of the two concepts, taken as so obvious a truth of our experience, that it is 
not even viewed as a thesis, to say nothing of a view as hypothesis, the theoretical physics has evolved in quite a 
specific way, eliminating any other alternative possibilities. To wit, it uses, for instance, indiscriminately the same 
Lorentz transformation at different scales of space and time: at finite scale for transformation of coordinates and 
time moments associated to events in reference frames, as well as at infrafinite scale, for transformation of their 
differentials, in order to describe the motion. 
 Our immediate task is to expose some variants of Lorentz transformations, within the very concept of identity 
between distance and length, for they are most clearly indicating where to direct our theoretical efforts. There are 
some transformations that appear to be Lorentz transformations – at least no one contested this declared 
connotation of them thus far, so we adopt it as well – proposed along the history of physics for different reasons, 
and we judge them from such a perspective. The transformations we have in mind, were dubbed indeed ‘Lorentz 
transformations’, by their promoters, but they were constructed from the most general mathematical and physical 
points of view, i.e. as realizable by certain types of matrices, satisfying what appeared to be physical necessities. 
However, they are not Lorentz’s transformations per se, in the sense that they do not satisfy the groupal 
connectivity condition with respect to their physical parameters. Importantly enough, though, they respect this 
condition ‘infinitesimally’, as it were: the matrices representing them are elements of an algebra of the classical 
Lorentz group. Moreover, their study reveals one important issue connected with the concept of dipole, 
fundamental for the idea of quantization along the Planck’s line of thought: the matrices are just as essential to 
physics as the coordinates are to geometry, and need to be approached accordingly. Let us see what this is all 
about. 

 2.3 Alternative Approaches to Lorentz Transformation 

 A summary of the status of such theories would, of course, serve best the clarity of our argument. However, 
in order not to extend inadequately the work in matters that are, indeed, on the side of its purpose, we just indicate 
two works that can help anyone in making up their mind as to the status of the problem at the times we are 
discussing here [(Brehme, 1988) and (Ungar, 1988); see the works cited there]. It is just fair, though, to express 
what we see as the right summary of the works just cited by their essential line of argument. In our opinion, the 
esential problem was, all along the coming into existence of special relativity in fact, that of associating a velocity 
to light along the Maxwell’s line of electrodynamical concept: the dilation of time intervals and the shrinking of 
lengths were systematically brought into argument, either based on it or downright arguing for it, and, of course, 
this argument was never settled in a way or another. Let us, therefore, proceed directly on showing a neglected 
view, and a possible physical interpretation proper, in order to be used in settling the argument. 
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 With the previous touch of the ideas of special relativity, we shall now turn back to the Lorentz 
transformations, more to the point, to the way they are being considered from a mathematical point of view. Grant 
Fowles once advanced the idea that a Lorentz transformation in the finite range of space and time should be 
represented mathematically by an involutive matrix. The physical reason invoked by Fowles for this conclusion 
is, in fact, still mathematical: we need to describe the spacetime background by a condition of isotropy defined as 
a property of the reference frames in space (Fowles, 1977). This requirement breaks down the group property of 
the matrices that realize the Lorentz transformation. Let us present, in broad strokes, the Fowles’ line of thought. 
 From a natural philosophical point of view, the important observation here is that the idea of isotropy and 
homogeneity of spacetime must also be accounted for mathematically. And the proposal is that it does indeed, 
but by adding the concept of orientability of the reference frames used to describe that continuum in space. This 
means that the orientability becomes manifestly necessary in deciding the algebraical structure of the matrix 
representing a Lorentz transformation. To wit, Fowles looks for a Lorentz transformation between reference 
frames having the ‘same handedness’, i.e. the same orientation, if it is to speak in modern geometrical terms. So, 
considering a pair of reference frames, he comes to the conclusion that “from the isotropy of space and the 
nonexistence of a preferred frame” a Lorentz transformation requires an involutive matrix in order to be achieved: 
a matrix manifestly different from the identity matrix, which is its own inverse with respect to multiplication. 
Symbolically, this property of the transformation mimics the property usually contemplated for the reflected light 
signals used in operational construction of the relativity: in order to establish a distance, a signal sent by an 
observer should come back right away when reflected. Then, the Lorentz transformation too, applied twice should 
reproduce the original event to which it is applied, if the spacetime is ‘orientable’: 

  (2.3.1) 

Here 1 is the 2´2 identity matrix, as usual. Therefore, mathematically speaking, the ensemble of Fowles’ matrices 
representing the Lorentz transformations is what mathematicians call a semigroup containing the inverses of its 
elements (the associativity is still in effect in this set of Lorentz matrices, it is even imposed from a physical point 
of view!) 
 The structure of such a matrix is ‘two-dimensional’, if we may say so, of the type revealed by us before for 
the proper Lorentz transformation [see equations (2.1.3) and (2.1.7)]: it can be algebraically established up to two 
arbitrary parameters, involved in a linear combination of two basic matrices. This fact can be ascertained just by 
noticing that the last of the relations (2.3.1) can be taken as a Hamilton-Cayley equation for the matrix A. In 
general, the Hamilton-Cayley algebraical matricial equation, allows us to give a ‘reducing recurrence’ so to speak, 
for a certain matrix: the power of the matrix equal to its order can be calculated linearly in terms of the successive 
descending powers of that matrix, including zeroth power, which is to be taken as identity matrix no matter of its 
order. Therefore, in terms of matrices, as independent elementary objects of mathematics, the recurrence can be, 
indeed, characterized as linear. However, from the larger perspective of the matrix entries, that recurrence relation 
appears actually as nonlinear, at most algebraical, to be more specific. In the case of the 2´2 matrices the 
recurrence relation allows writing any function of a matrix as a Lorentz matrix of the kind exhibited by us in the 
previous sections, in some special conditions, of course. 

A = A−1 ∴ A2 = 1
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 The perspective just presented can be illustrated right away for the case above. Indeed, in the case of a 2´2 
matrix, the Hamilton-Cayley equation can be written in the form: 

 
 

 

It is thus seen that the square of the matrix A is a linear combination between the identity matrix, which, as we 
just mentioned, must be considered as A0 and the matrix A itself, which is naturally A1. However, speaking in 
terms of the very entries of the matrix A, this connection appears as nonlinear, of course: that much can be said 
from the very fact that the entries of A2 are homogeneous quadratic forms in the entries of A. Even though this is 
just an obvious mathematical fact, we need to draw attention on it, for it is important on many accounts along our 
present work. Continuing on along this line, and taking the second of the equations in (2.3.1) as a Hamilton-
Cayley equation, the entries of a matrix representing a Fowles’ Lorentz transformation must satisfy a system of 
two algebraic conditions: 

   

These two constraints leave, obviously, only two of the entries arbitrary. And Fowles makes here a choice: 

  (2.3.2) 

so that A can be written as a matrix involving just two arbitrary parameters: 

 

 

(2.3.3) 

Here A and b are real numbers, with A between –1 and 1. Then, he eliminates even this arbitrariness through an 
algorithm involving three distinct logical steps in his reasoning, which, we think, need to be noticed as such, for 
they are important in guiding our reasoning: (1) first, Fowles also applies the Lorentz transformation in the 
infrafinite range, so that along with the usual finite range transformation realized by the matrix (2.3.3) – the 
analog of (2.1.1) – we also have the transformation acting on the differentials of the space and time measures of 
the spacetime: 

 

 

(2.3.4) 

In fact, let us say it again, this is a customary procedure of the theoretical physics: to apply the same 
transformation no matter of scale. It needs to be mentioned, though, in the present context, because it reveals 
what appears to be a kind of unsecured a priori transition in both the case of space and the time scales. This 
extension of the linear action allows the conclusion that “a stationary point in either frame will have the velocity 
v in the other”. In terms of equation (2.3.4), for instance, this means dx¢ = 0, so that 

 

 

(2.3.5) 

A2 − (A+ D) ⋅ A+ det(A) ⋅1 = 0 where A ≡ A B
C D

⎛

⎝⎜
⎞

⎠⎟

A+ D = 0, det(A) ≡ A ⋅D − B ⋅C = −1

D = −A, B ⋅C = 1− A2

A ≡
A b 1− A2

1− A2

b
−A

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

d ′x

d ′t

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

A b 1− A2

1− A2

b
−A

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⋅
dx

dt

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

b = −v A
1− A2

∴ A ≡ A
1 −v

1− A−2

v
−1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



 73 

where v is considered as the ratio of the two differentials: (dx)/(dt), i.e. an ‘instantaneous velocity’, so to speak. 
(2) Secondly, within this instantaneous velocities’ framework, the Lorentz transformation acts as a homography, 
i.e. as a linear rational relation: if V and V¢ are calculated by the ratios of differentials of the coordinates and times, 
corresponding to each other by the Lorentz transformation realized by Fowles’ matrix (2.3.5), then we have, 
according to (2.3.4), the correspondence: 

 
 

(2.3.6) 

Thus, to an event having the instantaneous velocity V in a reference frame, we have to associate the instantaneous 
velocity V¢ in a reference frame moving uniformly with the velocity v with respect to it. (3) Thirdly, Fowles 
considers the speed of light as an ordinary instantaneous velocity. Recall that in the framework of Maxwell’s 
electrodynamics – which, again, is the Einsteinian starting reason of special relativity – the value c, usually 
assimilated as the speed of light, is actually the ratio between the electrostatic and electrodynamic units of charges. 
However, there is a priori no reason to assume that this physical constant may have the meaning which its units 
suggest. Cases are known in physics, whereby essentially different characteristics of matter have the same units. 
Notorious among these is the case that led to Bohr quantization: the action and the kinetic moment have the same 
physical units. However, this last assumption allows Fowles to assign to light signal the distinctive property that,  
through the Lorentz transformation its velocity, only changes the sign between two reference frames of the same 
handedness, remaining the same only in value: 
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In other words, the orientability of space is thereby connected only with the sign of the speed of light: it is its 
magnitude that remains unchanged, just as Maxwell once introduced it (i.e. via c2). This leads to 
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so that, in our notation conventions, the resulting Lorentz transformation given by Fowles is 

 
 

 

Therefore, these matrices can hardly make up a group, for the identity matrix is conspicuously missing from 
among them. Such a Lorentz transformation involves a 2´2 matrix which, again for our later convenience, we 
write in the form of a linear combination of two fixed matrices satisfying the property expressed in equation 
(2.3.1) up to the sign of their determinant: 
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Notice that this transformation has the same quadratic invariant at a finite scale as the regular Lorentz 
transformation [see §2.1, equation (2.1.6)]. However, this time the invariant is also secured at the infrafinite scales 
of space and time: 

   

in view of the fact that this Lorentz transformation is realized by the same matrix at finite and infrafinite scale of 
space and time. Notice, further, that in these conditions the second of the steps of Fowles procedure listed above, 
is virtually unnecessary for uniform relative motions of the reference frames and material particles, inasmuch as 
the equation (2.3.6) is valid also for the ratio (x/t) of the finite quantities, according to linear action of the Lorentz 
transformation at a finite scale. 
 However, we need to mention that, for general motions, which incidentally can be assumed as uniform only 
on infinitesimal ranges of time and space or, in fact, not uniform at all – being, for instance, fractal by their very 
nature – a connection is needed between the instantaneous velocity (dx/dt) and the velocity (x/t) upon finite ranges 
of space and time. In general, this last velocity is usually calculated as a mean velocity over finite intervals of 
time and finite space distances. For the case of uniform motions such a connection is given by the identity matrix, 
whereby the two velocities are simply identified: 

 
 

 

where a is a factor of infinitesimal order, for accordance between space scales and time scales. From this 
perspective we need to notice that the Lorentz transformation can be realized by the same kind of involutive 
matrix even in the case where 

   
In this case, though, the motion would be hardly uniform, for we have by direct integration: 

   

where A and B are two constants. This is a characteristic of the turbulent behavior in fluids (Harvey, 1966), or 
the case of creep or relaxation in the solids [(Jeffreys, 1972); see also the Wikipedia review article on Creep 
(Deformation)]. According to these observations, it is quite significant that the first of these cases is taken to serve 
for a Madelung-type interpretation of the wave mechanics (Harvey, 1966). This, in our opinion, is a clear 
indication that such an interpretation is, apparently, closely connected with the transition between space and time 
scales. We need to insist on this property as we go along with our work. 
 Thus, from the perspective of Fowles’ theory regarding Lorentz’s transformation representation – which, as 
we can see from the above staging, can hardly fit into physical idea of the concept – one can say that, physically 
speaking, the Lorentz matrix may not be necessarily connected continuously to the identity matrix: the ensemble 
of Fowles’ Lorentz matrices is not a continuous group but, as they say, a semigroup. Rather, one can suspect that 
the involvement of the identity matrix is an ‘external’ feature, connected with that scale transition property 
involved in getting this kind of Lorentz transformation. In view of the observations developed in this section, 
Fowles’ line of thought deserves a little more attention and, naturally, an appropriate appraisal. We take it as 
highly significant in connection to the Planck’s concept of resonator, inasmuch as it involves consideration of a 
pair of reference frames as a physical unit. 

( ′x )2 − ( ′t )2 = x2 − t2 , (d ′x )2 − (d ′t )2 = (dx)2 − (dt)2

dx / dt = x / t ∴
dx = ax
dt = at

dx / dt = A ⋅ x / t

dx / dt = A ⋅ x / t ∴ x = B ⋅ t A
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 The attention we believe Fowles’ idea deserves from a physical point of view is virtually nonexistent in the 
specialty literature. Fortunately, however, there is just one observation in the literature, and a valid point of 
appraisal at that, which needs to be expressly mentioned and considered, for reasons that will become clear as we 
go along with our case in this work. Namely, R. G. Cook has noticed right away that Fowles’ argument is a priori 
destined to select actually two types of Lorentz transformations, not just one. Fact is, nevertheless, that one of 
these, the one left aside by Fowles’ choice of the constant A, seems physically unfeasible, for it violates the 
causality condition (Cook, 1979). In our terms here, though, Cook’s observation carries a much heavier meaning, 
if we may say so, which surfaces when Cook’s procedure is followed with all mathematical details in constructing 
a Lorentz transformation. 
 To wit, the Cook’s argument unfolds starting from the observation that the restriction imposed on the constant 
A is not, mathematically speaking, normal. To wit, the second one of the conditions from equation (2.3.2) should 
actually be taken as: 

  (2.3.10) 
Indeed, a priori, i.e. in the very spirit of the Fowles’ mathematical construction, the real parameter A should not 
be constrained by anything. In other words, the real parameters B and C in equation (2.3.2) can also have different 
signs for arbitrary real A, and Fowles’ result is just a particular one for A limited to the real interval (–1, 1), as 
mentioned, when the two parameters B and C must have the same sign. In order to account for the condition 
(2.3.10), Cook picked the entry C of the Lorentz matrix to carry the ambiguity of sign, so that, instead of the 
choice (2.3.2), we have the following conditions describing a ‘general Fowles’ construction of a matrix, as it 
were, to be imposed on the entries of a matrix representing the Lorentz transformation: 

 
 

 

Here N is an arbitrary real number, and c is the speed of light. 
 This choice is always a priori meaningful, i.e. it makes sense from a mathematical point of view. For once, 
the speed of light needs not be considered a velocity anymore, as Fowles did, so that the construction of Lorentz 
transformation can be decided only by its linear action in a finite range. This liberates us from taking in 
consideration the homographic action of the Lorentz matrix when constructing it. Secondly, this liberation has a 
significant consequence: it means that it is not at all mandatory to consider the Lorentz transformation at the 
infrafinite scale of space and time. And, because this may very well be a separate working hypothesis of the 
physics at large, Cook’s choice carries the burden of a historically significant meaning, already mentioned above: 
c should be only a physical parameter, just as it was at the very time when Clerk Maxwell introduced it to our 
natural philosophical awareness [(Maxwell, 1892), Volume II, Chapter XIX]. Only afterwards was assumed that 
it can have the meaning of the physical velocity of a signal, as its units actually show, even if it is representing 
just the constant ratio between the electrostatic and electromagnetic units of electricity. However, the last 
conclusion emphasized above is meant to have a much deeper significance that appears clearly at the extension 
of special relativity in order to include the gravitation field. To wit: the Einstein’s spacetime approach may not 
involve at all the scales of space and time, inasmuch as the special relativity is a cosmological theory from start. 

±B ⋅C = 1− A2

D = −A, B ⋅C = N 2 , B = N ⋅c, C = ± N
c
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We will return for a deeper consideration of this issue in the next chapter of the work, insisting on the general 
relativity. 
 Coming back to our present algebraical considerations, Cook’s matrix representing an alleged Lorentz 
transformation should be of the form: 

 

 

(2.3.11) 

According to a Lorentz transformation realized by this matrix, the origin of the primed reference frame satisfies 
the linear equation in unprimed parameters: 

   
so that we can assign the value v º (x/t) to the relative velocity of the reference frames. In this case we have, in 
the conventional notation of physics: 

 
 

 

so that the Cook’s Lorentz matrix becomes 

 

 

(2.3.12) 

with the factor A decided, up to sign, by the second of the equations (2.3.11): 
  (2.3.13) 

This condition is, indeed equivalent to det(A) = -1, as it should for an involutive matrix. Obviously, the second 
choice of sign in the equations (2.3.12) and (2.3.13) leads directly to the Fowles’ Lorentz matrix from equation 
(2.3.8) as expected, with all its consequences except one, which needs to be acknowledged at any rate, for it 
answers to an important question, connected to the idea that the light speed should be a regular speed. Namely: 
does this transformation satisfy the condition (2.3.7), that led us to the (2.3.8) and, according to Fowles, describes 
the ‘handedness’ of the reference frames?! In order to answer this question, notice that first we need to solve the 
equation that shows a constant instantaneous velocity, equivalent to (2.3.7): 

 
 

(2.3.14) 

and this has two possible solutions 
  (2.3.15) 

The second sign in this equation gives, obviously, the Fowles’ case. For once, this result would mean that the sign 
of the constant c is irrelevant for defining the handedness if this constant is considered a velocity. Indeed, not 
only the value of c is a physical magnitude, but also its sign: what we have, physically speaking, from the 
Maxwell’s electrodynamical approach to matters electrical, is only the square of c, as a function of electrical 
properties of the medium supporting the light phenomenon. This was, in fact, the general option of theoretical 
physics thus far, anyway: as we already stated above, the physical magnitude of c was only introduced to physics, 
by the James Clerk Maxwell’s work on electrodynamics only via its square, representing the ratio between the 
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kinematic units of electricity and the static units. And, since this ratio is a quantity having the dimensions of the 
square of a speed, the Maxwell’s association appears as just natural. 
 Much more important, however, at least for what we have to say and debate here anyway, is the first choice 
of the signs in the equations (2.3.12) and (2.3.13). For that choice, the Fowles’ condition (2.3.14) leads to the 
imaginary values V = ± i×c instead of the real ones from equation (2.3.15), and the trouble starts brewing as to the 
possibility of representing the handedness the way Fowles did. In this case, the Cook’s Lorentz matrix is 

 

 

(2.3.16) 

so that the transformation given by this matrix becomes 

 
 

(2.3.17) 

Incidentally, by analogy with (2.1.3) and (2.3.9), we need to notice that the generic matrix of this transformation 
can be expressed as a linear pencil generated by two involutive matrices. To wit, we have: 

 
 

(2.3.18) 

This is almost the form of (2.1.3) of the regular groupal Lorentz transformation, except that the identity matrix is 
replaced by a traceless one, so that we still have to deal with a semigroup here, on which we shall conclude later 
on. From (2.3.17) we have, by a direct calculations 

  (2.3.19) 
This means that the causality contained in the usual Lorentz transformation may be occasionally lost in this case. 
Can we say that this invariance is also present at the infrafinite scale? This is a legitimate question, insofar as we 
did not follow here the Fowles’ procedure, and therefore we are not a priori entitled to extend the Lorentz 
transformation, even axiomatically, in the infrafinite range. We hold this question for a subsequent clarification, 
to be provided as we go along with our development of the present physical theory. 
 For the moment being, what we can say for sure is the following: in this last case of choice allowed by the 
Cook’s options, we are a priori entitled to a reparametrization of the transformation (2.3.17). The parameter b 
can assume any real value, so that a (re)parameterization makes sense in the form: 

 
 

(2.3.20) 

This reparametrization is just as meaningful here as it is the one from equation (2.1.4.) for the orthodox special 
relativity, because, as we said, the parameter b is not necessarily limited to a finite interval of real numbers, and 
therefore the hyperbolic sine is a priori allowed to represent its range. In spite of this, the new parameter f can 
have a precise geometrical meaning: it can be taken as the natural arclength along some geodesics of a 
Lobachevsky plane, in the Beltrami-Poincaré representation. Indeed, the conform-Euclidean metric, describing 
the Riemannian twofold which represents the Lobachevsky plane in the upper complex plane, is 

 
 

(2.3.21) 
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According to our conclusions from §1.2, this can be taken as the metric of a Maxwell fish-eye, which is an optical 
medium admitting dipoles as fundamental physical structures. Here we can add a little more, just based on special-
relativistic concepts: this metric admits geodesics described by the parametric equations 

 
 

(2.3.22) 

each one of them issuing from the point (0, x), corresponding to the ‘initial position’ from which we start 
reckoning their arclength. All these geodesics are circles of radius x and center (0,0). Therefore, according to 
equations (2.3.14), the Cook’s Lorentz transformation can be geometrically interpreted in the following way: 
choose any two geodesics of the Lobachevsky plane in the Poincaré representation, for two values of the 
parameter x: x and t say. With these values, construct the two points on the two geodesics, having the parameters 

 
 

(2.3.23) 

which correspond to the same value of the arclength: s = f. Then the Cook’s Lorentz transformation (2.3.14) can 
be written as 

  (2.3.24) 

In other words: any transformed coordinates are linear combinations (even though quite special linear 
combinations here, in the sense that they have a special form and correspond to the same value of parameter f) 
of the coordinates along the two geodesics of the metric (2.3.15) indexed by the values of coordinate and time in 
the initial reference frame. 
 For once, the geodesics in question can be taken, for instance, as Katz’s circles in the space of charge [(Katz, 
1966); see also (Mazilu, 2020), §3.1], and therefore the theory can make even a physical sense after all, within a 
Katz-type natural philosophy regarding the charges. Provided, of course, that we can establish a correspondence 
between charges and lengths, in order to mark the geodesics appropriately. We only have to notice that the metric 
(2.3.21) can be incidentally taken as describing a world of charge indeed: it is the coordinate space containing the 
center of force of the dynamic problem describing the classical Kepler problem in the case of planetary model 
[(Mazilu, 2020); see especially §2.3]. This space can be organized as a Lobachevsky plane by the methods of 
Cayleyan geometry (see §1.3 above), and has a metric that can be reduced to the form from equation (2.3.21) (see 
§1.2). This reminds us of the fact that the Lorentz transformation can be seen as a rotation of the field intensities 
of the forces generated by the Hertz particles, at the points of action of these forces. This is a second physical 
consequence of the charges of particles [see equation (2.2.4) above], a fact upon which we shall return later with 
more details. 
 As to the important issue of the ‘correspondence between charge and length’, we are led to the conclusion 
that it is a matter of quantization in matter, whose expression is with us today in the form of the Newtonian forces 
[(Mazilu, 2022); see §4.2]. The essential observation here is that, according to an important theorem of Morton 
Lutzky, there should be a relation between the systems that satisfy the Ermakov-Pinney equation – the charges, 
according to the natural philosophy of Katz, or the light according to the natural philosophy of Fresnel – and the 
motions satisfying the Kepler’s second law, i.e. the law of areas (Lutzky, 1978) [see also (Wagner, 1991)]. This 
is a relation which generalizes the very classical Planck’s constant, conceived as the ratio between energy and 
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frequency (Lewis, 1967, 1968). We are led to see in this connection, the ontological reason of the existence of 
fundamental physical structure of the world known theoretically as the Kepler motion, just as it already appeared 
once to Newton. Speaking of charges and of classical Kepler problem, we need to notice that a proper 
geometrization of the metric (2.3.21) is the Maxwell fish-eye physical medium (see §1.2), characterized by this 
metric and such a geometry supports the physical basis of the quantization in the case of matter (Mazilu, 2023a). 
Just for later convenience, let us recall that the Maxwell fish-eye medium is, in a certain way – specifically, from 
a geodesic point of view – equivalent to the mechanical system described by the Kepler motion [(Buchdahl, 1978); 
see also (Chen, 1978)]. We shall come back to this important issue of the natural philosophy in due time. For 
now, the previous observations take us in a different direction. 
 The remarks right above on the place of non-Euclidean geometry raise an important question regarding the 
special relativity itself: is either the orthodox Einsteinian special relativity, or the relativity constructed on the 
base of Fowles’ Lorentz transformation, showing the same property as the non-causal Cook’s Lorentz 
transformation from the previous section? Because, if it does, indeed, show such a property, then the weight of 
theoretical argument shifts upon the idea of non-Euclidean metrics, just as the general relativity requires. Except 
that, this time, those non-Euclidean metrics are, obviously, a priori available, even with a ready physical meaning 
at that (see §1.3 above). Thus, in constructing the general relativity we have them ‘ready to be used’, as it were; 
and, in using them as such, we surely do not have to resort on Einstein’s equations per se, but on some equations 
equivalent to them, identical only within special conditions. The answer to this question is affirmative, and has 
already been implicitly given almost a century ago, in a work that actually inspired us in appreciating the special 
relativity the way we did in this very chapter of the present work. 
 Jean-Marie Le Roux found out that at least part of the Poincaré’s objections raised to relativity as a case of 
classical interpretation – the way Einstein presented it originally, in that remarkable year 1905 – can be overcome 
with another mathematically meaningful parametrization of the regular Lorentz group of matrices (Le Roux, 
1933). And that parametrization is still actual, vividly discussed in fact, even today, by the people involved in 
special relativity developments. Notice, indeed, that a periodic function of real argument, like the sine or cosine, 
can accomplish the task of a meaningful reparametrization of the orthodox Lorentz matrix quite naturally. Indeed, 
the values of such trigonometric functions are limited to the interval (–1, 1) by default, as it were. Thus, Le Roux 
noticed that, if instead of (2.1.4.) one takes the a priori perfectly admissible transformation of parameter: 

 

 

(2.3.25) 

one can handle the relativity in terms of more ‘palatable’ concepts, so to speak. What is really the case intended 
to be made by Le Roux can be found by consulting the original work (Le Roux, 1933), because here we are 
interested in what we think is a more important aspect of the parameterization (2.3.25). Notice, for what is worth 
here, that the previous Cook’s case from the end of the last section, involves taking ib instead of b in the Fowles’ 
result. Likewise, if instead of j we take (i×f) in (2.3.25), we get the Lorentz transformation parameterized as in 
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equation (2.3.12), in view of the fact that sin(i×f) º i×sinhf and, most importantly, that we have to use an imaginary 
light velocity i×c instead of the real c. 
 However, our main interest in connection with this approach concerns an observation relating the very 
structure of a physical clock, like the harmonic oscillator, for instance, or a resonator, or even the free particle, 
for that matter. Namely, we have noticed that, according to a Katz-type natural philosophy, the charge itself, like 
the light once, for Augustin Fresnel, is bound to behave like harmonic oscillators [(Mazilu, 2020); §4.4]. That is, 
the trigonometric functions in the description of matter are just as natural as they are in the description of light 
starting from diffraction phenomena. Let us stop though, for a moment’s historical notice, that turns out, for us at 
least, to be highly significant. 
 On this occasion we believe worth our while an observation destined to straighten some historical records. 
Notice that the Le Roux’s matrix A from equation (2.3.25), put forward for the common awareness in the year 
1933, is the one discovered by Enrique Loedel Palumbo fifteen years afterwards (Loedel, 1948), which was 
rediscovered by Henri Amar even later (Amar, 1955). The corresponding geometric picture of this transformation 
is usually baptized Loedel-Amar diagram in the specialty literature. We cannot but join the old grievance once 
uttered by both Amar and Loedel, on the occasion of straightening the priority of their discoveries [see American 
Journal of Physics, Volume 25(5) (1957), pp. 326 – 327], about the lack of communication of scientific works 
due to the natural language barriers. As, fortunately, we got the good chance to live in the present environment of 
electronic communications, we were lucky enough to have discovered the works of Jean-Marie Le Roux. For 
once, this is the reason that we think it will do a good justice to all the parties involved, the (re)name of Le Roux-
Loedel-Amar for the matrix from equation (2.3.25). We just notice the different reasons of introducing this 
parameterization, as invoked in the three works referring to it, worth themselves of study, and in depth comparison 
at that. And while we are on this streak of straightening the things historical, notice that even the Le Roux’s theory 
is of a previous inspiration, from the works of Édouard Guillaume on the foundations of special relativity and 
physics, in general, for which Einstein himself apparently did not subscribe [see (Guillaume, 1920) and the works 
cited there]. 
 As far as we are concerned here, the work of Le Roux seems to us most attractive, for it presents a pairs of 
Lorentz observers as a continuous group with two parameters, the common time and the common phase, along 
the following idea. In the parameterization (2.3.25), the Lorentz’s transformation (2.1.1) leads to two relations 

 
 

(2.3.26) 

In the spirit of Jean Le Roux, we may further notice that these relations can be taken as saying that there are linear 
expressions in the two reference frames having the same values, u and v say: 

 
 

(2.3.27) 

The parameters u and v describe not a single reference frame, but pairs of reference frames, and the usual 
coordinates in each one of the two reference frames making a pair, can be written in terms of these parameters 
and the phase j. For instance, we may have: 
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(2.3.28) 

It makes sense to think of the fact that the two parameters (u,v), can be appropriated as parameters on a certain 
surface carrying the initial coordinates: the idea of surface is, again, mandatory even for the special relativity. 
This reminds us of the fact that the roots of relativity are deep into the Lorentz’s theory of the electric matter. 
Suffice it, for now, to say that the physical connection between light and matter is tied up with the concept of 
resonator, involving a pair of charges. More about the issue will be said in due time. 
 Priorities aside, notice, however, in this respect, that (tanj) can be taken as the mean of a family of statistical 
ensembles described by a quadratic variance distribution function, whose standard deviation is 1/(cosj), where 
j is the parameter of the family. As we repeatedly noticed, and occasionally even documented (Mazilu, 2010), 
this type of statistical distributions is the one staying at the foundation of the Planck quantization of the light 
phenomenon (Mazilu, 2022). Then, the fact that Le Roux’s parametrization places this kind of distribution at the 
very foundation of relativity becomes significant by itself: the Lorentz transformation connected to the matrix 
(2.3.25) has the form of a ‘statistical specification’, if we may be allowed to say so, of the values of coordinate 
and time of an event. As usual in the statistical practice, a value of a given quantity is expressed as the ‘mean, 
plus or minus the standard deviation’, obtained based on an ensemble of measurements. And so are the two 
Lorentz-transformed coordinates obtained by transformation with the matrix (2.3.25): 

 
 

(2.3.29) 

Regardless of the signs, in view of our previous developments, each one of these two formulas has the aspect of 
a statistical specification: average ± standard deviation. This would mean that the quantization itself, to which the 
Planck’s statistics is referring, is also in the very nature of things material, and following this route we may be 
able to find the right procedure of quantization to be applied to matter (Mazilu, 2023a). 
 Thus, given an event (x, t) in a reference frame, it can be located in any frame moving uniformly with respect 
to it by a recipe like that from equation (2.3.23). Only, in the present case, we are not to use the Beltrami-Poincaré 
metric (2.3.21): such a frame is described by the conform-Lorentzian metric 

 
 

(2.3.30) 

whose particular geodesics of the same center are given by equations 

 
 

(2.3.31) 

with x constant for each geodesic [(Mazilu, 2020); see §5.4, equations (5.4.21) ff]. Then, in specifying the Lorentz 
transformation given by (2.3.25) we can use the following recipe: take two geodesics of the same center, with 
parameter x having the values t and x, respectively, and choose the points corresponding to the same value of the 
arclength of geodesics, s = j on both of them, according to the formulas 
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The pair of linear combinations (– u1 + v2, – u2 + v1) then represents an event belonging to the invariant (x2 – t2), 
of Le Roux, for the same value j of the arclength along the two geodesics. 
 Now, as noticed before (see §1.2), the noncausal Lorentz transformation of Cook can be connected to the 
geometry of the Maxwell fish-eye realm, which is a conform-Euclidean geometry. Inasmuch as the causal theory 
considered by Le Roux is, in fact, the theory of special relativity, referring therefore to a distance associated to a 
length by the properties of propagation of the light or a similar phenomenon involving propagation, we can infer 
that the noncausal theory should be referring to a length associated to a distance by internal properties of matter 
in the sense of Poincaré. Therefore, it is referring in fact to the very physical description of matter, in its most 
intimate manifestation, like, for instance, the nuclear matter of the planetary model of atom. It will be, therefore, 
our task here to ascertain its true place within a physical theory, and this will be done via the de Broglie’s waves. 
But, before anything, we need to establish, in a more specific way, the connection between the Fowler-Cook 
approach of special relativity, and the continuous groups orthodox approach. As a trained eye can guess right 
away from the manner the things are presented here, this connection involves the relation between some 
involutory matrices and the matrices of the proper Lorentz transformations. In more general mathematical terms, 
this concerns the connection between a continuous group and its generator algebra. A first portion of the solution 
to this task just follows, wherein what we are taking as a fundamental analogy of knowledge – the analogy 
between the two grand relativities of the human kind, namely the Galilean and Einsteinian relativities – is made 
explicit with the assistance of the classical differential theory of surfaces. And, in order to fulfil this task, we need 
some preliminary concluding observations on what we already got this far. 

 2.4 A Conspicuous Connection in Special Relativity 

 The quintessential algebra of the transformations related to this mathematics, generically called Lorentz 
transformations, is staged by matrices like (2.1.3), having a common linear structure, as we said: 

 
 

(2.4.1) 

In connection with the historical observation from the previous section, we can have here the case of Loedel, 
where the parameters l and µ are given as trigonometric functions of the aberration angle. In the case of equation 
(2.1.3) or, better yet (2.1.5), which is more suggestive in context, they are given by hyperbolic correspondents of 
those functions. 
 As an analysis by Loedel shows (Loedel Palumbo, 1955), the hard part of the problem of physics here is to 
get over the idea of free fall – that inspired the construction of the general relativity – with its central directional 
aspect. For once, this kind of motion reveals a contradiction between the classical idea of rigidity of a physical 
structure and the special-relativistic physics. On the other hand, the central directional aspect of the motion is 
difficult to comprehend in the case of a multitude of centers of force, asking for a kind of democratic ‘equality of 
rights’, as it were. 
 The analysis of Loedel just mentioned also suggests that the solution of this problem is to be found in the 
concept of a surface, the way this is conceived for the de Broglie’s idea of interpretation, i.e. by portions of surface 
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intersecting fluxes of rays. As a matter of fact, Lorentz’s characterization of the electric matter amounts to the 
very same: conceiving a surface which describes the condition of electric neutrality of matter, in order to be able 
to define the concept of charge (see §1.5). Within this idea, we offer here a solution starting from the observation 
that the Lorentz matrix L from equation (2.4.1) can be written as a square, based on a firm mathematical theorem: 
every such matrix is the square of linear combinations of the decomposition matrices of J. Let us explain the 
reasons, and some of the terminology involved in this statement. 
 The connection between Lorentz matrix from equation (2.4.1) the matrix J entering its linear structure is 
univocal, and determined, up to a point, by the two possible actions of the matrix, which, as we shall see later on, 
allow us to characterize it even quantitatively: linear action in the two-dimensional case, and homographic action 
in the one-dimensional case. With respect to these two actions the matrix L has precise numerical characteristics, 
represented by the eigenvalues and fixed points, respectively, that remain unchanged during actions. In the case 
of matrix L, these are the solutions of the quadratic equations 

  (2.4.2) 

that is, the values: 

   

respectively. Here L(x) denotes the homographic action of the matrix L. Notice that the eigenvalues are properties 
of the linear action of the matrix, exclusively, while the fixed points are those of the homographic action of the 
matrix J entering the linear form along with the identity matrix. This is the general property of the Lorentz matrix 
written as a family (2.4.1): it has a unique correspondent involutive matrix J in its linear expression, with the 
same fixed points, but its eigenvalues are independent of this matrix. The question remains, though: what is so 
special about this matrix J, to make it noticeable in the case of Lorentz transformation? Going a little ahead of 
us, we have no problem in answering right away: it is the only possibility of rationally introducing the concept of 
surface in describing the Lorentz transformation. The rest of this chapter is dedicated to describing such a 
possibility. However, in order to make the idea more comprehensible, we should proceed gradually, easing, as it 
were, our way into the subject. 
 First, notice that J represents an involution, as in the cases of Fowles’ and Cook’s Lorentz matrices. This 
means that, applied twice on an object, it reproduces the object on which it is applied, no matter of the action 
represented by the matrix: 

 
 

(2.4.3) 

The right hand side of this equation reproduces the conditions on the matrix J resulting from the left hand side, 
considered as a Hamilton-Cayley identity for the matrix: it must have a zero trace and unit determinant, up to a 
sign, just like in the equation (2.3.2) for the Fowles’ case, or the equation (2.3.11) for the Cook’s case of a Lorentz 
matrix. But the most important consequence of these algebraical considerations is the existence of two other 
involutive matrices, I and K say, having, basically, the same algebraical properties as in equation (2.4.3), – i.e. 
null trace and unit determinant up to a sign – which are simply factors of a unique decomposition by multiplication 
of the matrix J: 

det(L− x1) = 0 respectively L(x) = x

λ ± µ respectively ±1

J ⋅ J = 1 ∴
tr(J) = 0
det(J) = −1
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(2.4.4) 

Then, one can verify right away that the product of two linear combinations of I and K: 

  (2.4.5) 

is a matrix that can be identified with L from equation (2.4.1) provided 

  (2.4.6) 

In calculating the eigenvalues of L, we need the trace and the determinant. These are: 

  (2.4.7) 

Therefore the eigenvalues of L are (λ ± µ), and we have their product as: 
  (2.4.8) 

proving that the pair (I, K) is closely connected to the structure of the set of matrices L: the Lorentz quadratic 
form representing the determinant of L from equation (2.4.1) is the product of the Lorentz quadratic forms 
representing the determinants of the two M’s from equation (2.4.5). This property of the quadratic forms – that 
is, of being the product of two similar quadratic forms – was used extensively by Adolph Hurwitz in a significant 
work, and is what we call the Hurwitz’s property of the quadratic forms (Hurwitz, 1898). 
 The three involutions I, J and K exhibit the closure property of the algebra of 2´2 matrices of null trace, 
making a vector space out of it. First, they are linearly independent vectors: 

  (2.4.9) 

Thus, any involutory 2´2 matrix, V say, can be considered a vector having the components v1, v2, v3, in the 
‘reference frame’ given by the matrices I, J, K taken as the base vectors of a reference frame to be used in 
‘expressing linearly’ the elements of algebra of involutory matrices. Indeed, the linear combination of the three 
base vectors can be written in the form: 

  (2.4.10) 
and this ‘linear decomposition’ is unique: two vectors having the same components are necessarily identical, and 
vice versa, according to equation (2.4.9). 
 The whole point of these observations is that the triad of matrices (I, J, K) can be considered as a fixed 
reference frame in the linear space of the involutory 2´2 matrices [for mathematical philosophy of such reference 
frames see (Dubois-Violette, Kerner, & Madore, 1990); an interesting physical point of view is particularly 
described in (Shchepetilov, 2003)]. In view of their matrix multiplication table 

 

 

(2.4.11) 

we have the following ‘orthogonality’ conditions, generalizing equation (2.4.4): 
  (2.4.12) 

based upon which we can infer that they form a set of linearly independent vectors, as above. 
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 There are a few interesting properties of this approach of the Lorentz transformation, which make it 
particularly attractive for physics, from a point of view connected with what we have elaborated this far in the 
present and previous works. First, the geometrical norm of the vector (2.4.10) – that is, its square – is simply the 
determinant of the corresponding matrix, up to sign: 

  (2.4.13) 
This quadratic form can be used in the construction of an absolute geometry (see §1.3) describing the three 
fundamental physical quantities correlated with the Newtonian forces, that is: the gravitational mass and the two 
charges [(Mazilu, 2020); see §3.1]. In that case, the components of vector V are the magnitudes of the three 
Newtonian forces naturally connected to gravitation and the two charges, electric and magnetic. The vector itself 
can be taken as the magnitude of such a force: in case of equilibrium this magnitude is ‘zero’, which means that 
the quadratic form from equation (2.4.13) should be zero. This is the absolute of such a Cayley-Klein geometry. 
Physically, it represents an equilibrium ensemble of material particles serving for interpretation. 
 In contemplating such a generalization, it is tempting to similarly consider the case where the Lorentz matrix 
from equation (2.4.1) is constructed with the involution I instead of J (the case with K instead of J is practically 
identical with the one already discussed above). Then, using the matrix I in order to construct such linear 
combinations, we shall have another linear family of matrices, and these two families are mutually exclusive, in 
the sense that any two matrices, belonging to different family, have a commutator proportional to K. Nevertheless, 
coming back to our discussion of the family based on I, this can be obtained as a product of two matrices M(x) 
and M(y), linear combinations of J and K, as follows: 

 
 

(2.4.14) 

having complex eigenvalues (λ ± iµ) with obvious analog notations for l and µ, to be calculated from the relations 

  (2.4.15) 

where the Hurwitz’s property is, again, obvious. This turns out to be a purely Euclidean case. 
 As we just said above, the absolute quadric of this geometry is liable to represent, in fact, a static ensemble of 
identical Hertz material particles in equilibrium, each of them described by three physical quantities known to be 
connected to Newtonian forces in equilibrium at any distance in any direction: gravitational mass (v1), the electric 
charge (v2 or v3) and the magnetic charge, complementary to electric charge (v3 or v2). This equilibrium ensemble 
is a fictitious notion, of course, – it has no reality whatsoever, according to the experience defining the finite 
world we inhabit – just as fictitious as the notion of Hertz particles, or classical material points for that matter, 
able to generate simultaneously the three Newtonian forces: there is no such particle in the finite world of our 
experience, for these forces do not act simultaneously with comparable intensities at the same space scale. 
However, following this very point of view, which involves only our imagination, the quadratic form (2.4.13) has 
two other fundamental virtues that allow its connection with the reality given by our experience. First, if the 
matrix V is taken as realizing a transformation, then it can represent an amplitude in the sense of Louis de Broglie 
(loc. cit. ante, §2.1), but involving exclusively fundamental quantities related to a Hertz particle. Indeed, its 
determinant – or the quadratic norm thereof, up to sign – is, according to a de Broglie-type of natural philosophy, 
the measure of a density given by this transformation and, being a quadratic form, makes an amplitude out of the 

detV ≡ v1
2 − v2

2 − v3
2 = −V ⋅V

M(x) = x1J + x2K
M(y) = y1J + y2K

∴ L =
def
M(x) ⋅M(y) = (x1y1 + x2y2 )1+ (x1y2 − x2y1)I

tr(L) ≡ 2λ = 2(x1y1 + x2y2 ), det(L) ≡ λ 2 + µ2 = (x1
2 + x2

2 )(y1
2 + y2

2 )



 86 

very matrix V. On the other hand, in a real world such as the world revealed to our intellect by experience, the 
quadratic form (2.4.13) is never null – the Newtonian forces exist, a fact revealed to us by motion – but can be 
either positive or negative depending on the space scale where we are considering this world as a universe. 
 To wit, at the finite space scale of our experience, where, as a rule, the charges prevail over gravitational mass 
by their Newtonian forces, the quadratic form (2.4.13) has a certain sign, say negative, just to settle the ideas. By 
the same token, at the infrafinite scale we can infer that it should also have a negative sign according to existing 
observations: there are no noticeable gravitational forces between elementary particles. On the other hand, at the 
transfinite scale of our world, where the gravitational mass prevails by its Newtonian force over electric forces, 
our imagination enters again the stage, and thus we can logically infer that the quadratic form has the opposite 
sign. And this inference is also plainly supported by astronomical observations. The bottom line here would then 
be that the sign of the quadratic form in equation (2.4.13) is characteristic to the space scale where we are 
describing the universe. This fact has an important impact on the geometry of the physical magnitudes of the 
bodies in the universe, which should be different at different space scales. 

 2.5 Framing the Idea of Surface into a Fundamental Analogy 

 We come now to one of our main points with the present work: the most important conceptual capability of 
this approach of the special relativity is the one that makes Lorentz’s and de Broglie’s ideas on the role played by 
a surface in physics, part and parcel of it. To wit: the matrices I, J, K can – actually, they must we should say, in 
view of the ideas just mentioned above – be connected with the existence of a surface. They can be, indeed, thus 
connected, and in the process of connection, the whole algebraic theory outlined in the previous section stands as 
it is. For, assume that we have a surface described, as usual [see, for instance, (Struik, 1988)] in two parameters, 
u and v say, and we use a certain location (u,v) on this surface in order to explain the universe around us. This is, 
actually, what we regularly do: in crafting physics, we use a location on Earth, specifically, the location we inhabit, 
viz. the location supporting our life. This is the basic realistic view to be taken when it comes to doing physics, 
and our idea is that we have to recognize it as such in the very construction of any physical theory. Special 
relativity, in the previous take, allows us to accomplish this need. More than this, the relativity, in Einstein’s take, 
even obligates us to adopt the point of view. 
 To be specific in our argument, let us frankly recognize that we are hardly doing physics in a point of the 
universe, as usually claimed in physical theories. By the very reason of our possibility of existence, we are doing 
physics in a place of the universe located on the surface of Earth. Implicitly or, on occasion, even explicitly, this 
specific location makes an imprint upon that physics, determining its character and, in our opinion, we have to 
consider this circumstance and to assess it accordingly, when trying to extend the physics into describing the 
universe around us. It is, again, in our opinion, not wise at all to declare right away that, when doing physics, we 
are located in a point of the universe, thereby erasing a priori a whole chain of information that needs to be 
represented in modeling the physical location we inhabit. 
 Such a removal of an important piece of information has actually a reason that may count as an excuse after 
all: it allows avoiding the necessity of theoretically representing that piece of information. For, most of the times 
we do not have the information we thus bypass, or even if we have it, the physics might not be able to tell us how 
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to bring it into the theories we create. Thus, it is a lot easier to bypass it by imagination, in case we know it 
explicitly, than to consider it a reality. Surely, sooner or later the removed piece of information strikes back, 
obligating us to properly complete the natural philosophy we have thus created, admittedly according to a 
momentary necessity. Often times, though, we do not have at our disposal means for doing this completion, so 
we further remain at the disposal of some mind inventions, incidentally based on our experience, however most 
of the times speculations framed axiomatically into a full-fledged theory. Just for a future benefit, however, we 
can even characterize the Earth’s surface in a ‘Newtonian style’ as it were: it is the surface limiting the ‘orb’ of 
Earth, i.e. that surface admitting exclusively sideways uniform motions, such as those once ascribed by Newton 
to an ‘intelligent Agent’. 
 The relativity, as we presented it in this chapter, offers us a way to carry the necessary information regarding 
location on Earth into theory, and this is what we should like to call de Broglie’s way. The reason for this 
appellation rests with the fact that Louis de Broglie was the one instituting in some detail the idea of surface in 
his physical connection with the concept of light ray (de Broglie, 1926b,c). The de Broglie’s line started, as well 
known, from relativistic reasons allowing a certain quantization in matter. However, it is only the idea of surface, 
as applied in the physical description of the classical concept of light ray, that allowed him do describe the 
diffraction phenomena based on the concept of material particle [(Mazilu, 2020); see especially Chapter 2]. That 
the idea of de Broglie belongs to relativity can be shown explicitly on this occasion, by the fact that it opens an 
understanding of what we like to call the fundamental analogy between Galilean and Einsteinian relativities, 
which gave, and is likely to continue giving great perspectives for the natural philosophy at large. 
 Speaking of the surface of Earth – that is, the surface of our secular experience, the experience which decides 
the finite scale of the space and time of the world we inhabit – we can take notice of the fact that the possibility 
exists of including its geometry into the very structure of the three involutions represented by matrices I, J, K. 
Indeed, we can define these matrices to account for any position of a surface, in general, given the possibility of 
its coordination by two parameters, u and v say. More to the point, we can define the three involutive matrices 
depending on these two parameters: 

 
 

(2.5.1) 

satisfying all the algebraic relation from the previous §2.4, with no change or additions whatsoever. Whence the 
possibility to construct a special relativity that would depend explicitly on the location (u,v), chosen, in particular, 
even on the surface of Earth, using, instead of the matrices from equation (2.4.10) – liable to suggest doing physics 
in a point in space – the matrices given in equation (2.5.1), allowing an ‘intermediation’, if we may, of that physics 
by the Earth’s surface, as is the case in reality. At rigor, the usual relativistic case would appear, in this 
construction, as only particular: the matrices from equation (2.4.10) are to be obtained from those of equation 
(2.5.1) for the particular values u = 0 and v = 1, so that we reserve for those matrices the notations I0, J0 and K0, 
in order to show that they are particulars on an incidental surface, like that of Earth. This may mean either a 
special choice of the position on the Earth’s surface – which is highly conventional indeed, and thus may be 
considered as purely subjective in a physical context – or else, possibly, they are corresponding to a special 
gauging of the surface itself. However, there is a much more important consequence of this observation, that goes 
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deeper into the structure of physics as we know it, actually concerning its own possibility. Obviously, it is only 
mandatory to insist on this consequence. 
 Indeed, let us proclaim, once again, this by and large theoretically unrecognized truth: it goes without saying 
that we are doing physics not in a point in space, as usually considered in any of the modern physical theories, 
but on a multitude of positions on the surface of Earth, depending on the location we inhabit on that surface. This 
allows us to set some order among our ideas of invariance. Indeed, if from the conclusions of doing physics on 
so many positions on Earth’s surface, we were able to extract properties valid for a generic position to be assigned 
for the Earth in the universe, this should be the consequence of a fundamental relativistic invariance, of the kind 
made first known to our intellect by Galileo Galilei. From the point of view of our awareness of the Earth’s 
position in the universe, Galilei’s relativity can be précised by saying that the conclusions of experiments we are 
able to perform on Earth are independent of the position on the surface of Earth where they are performed. 
However, this kind of independence is just a part of the whole concept of invariance, namely the one with 
reference to the Earth only. Honestly, not even that part is covered completely though, for it ignores the 
kinematical aspect of displacement from a position to the other, which was, in fact, the main initial aspect of the 
Galilean relativity. 
 The physics of our times completes the one of Galilei’s times with the awareness that the situation remains 
the same no matter of the location of Earth in the universe, which is a conclusion of an Einsteinian type relativity 
brought into analogy. For, the times of Galilei are long past, and meanwhile we got the knowledge that the Earth, 
in its journey, may never be twice in the same place in the universe. Perhaps accidentally this may happen, indeed, 
but this is just an exception of which apparently we may never be aware, so that we do not even know if it proves 
the rule or not, like any respectable exception! Now, in order to account relativistically for the position on the 
Earth’s surface, we need to construct the Lorentz transformation corresponding to that position on the surface. 
Therefore, for such a construction we cannot use the matrices from equations (2.4.1) and (2.4.4), but those from 
equation (2.5.1), which have the theoretical capability to explicitly account for the position on the surface, with 
this position represented somehow by expressions depending on the parameters u and v. The triad (2.5.1) is a kind 
of generalized Shchepetilov reference frame, assuming an extension of the meaning of the triad from equation 
(2.4.4), denoted from now on with I0, J0, K0, which, with due adjustments of course, can be seen as an original 
Shchepetilov reference frame [see §2 of (Shchepetilov, 2003)]. 
 This kind of reference frame has a deeper meaning from the perspective of analogy of the two grand 
relativities, and this meaning concerns mainly the Galilean relativity. Indeed, consider this: perhaps the classical 
Galilean relativity per se is immune to a change – its time is long gone, as we said! – but the modern physics can 
certainly benefit from this analogy. However, the generalized Shchepetilov frame helps us in realizing this benefit 
in connection with the fundamental problem set above, namely that of representing the location of our existence 
into the physical theory. To wit: from a mathematical point of view, physical results valid everywhere on Earth 
should depend on the parameters (u,v) via some invariant expressions involving these parameters. On the other 
hand, physical results valid everywhere in space should not depend in any way on the parameters (u,v) of a location 
on Earth’s surface. Not even by invariants along the Earth’s surface, since one can figure out right away that the 
Earth’s surface may evolve as the Earth moves through space, and its surface invariants may depend on its current 
position in space, so that may not be surface invariants any further. The first of these conditions – that of 
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representing the experiential facts of our knowledge – belongs to Galilean part of the analogy, the second one, 
i.e. that of representing facts valid everywhere in the universe – to the Einsteinian part. 
 This view of the two kinds of relativities has also deep consequences on their connection by analogy. First of 
all, it says that this connection cannot be taken directly, as in the usual procedure in the current theoretical physics, 
that is, with the limit c ® ¥ involved in the passage from one to the other, for that is just a particular approach. 
One always needs a surface for constructing a Lorentz transformation, if it is to take the extension of matter into 
consideration, and this is the place where the physics of Louis de Broglie, involving the physical properties of the 
wave surfaces, enters the stage. While revealing the role of this physics in its broad strokes is a task we follow 
gradually in the present work, for now let us just say that the explicit presence of a surface at the very heart of the 
physical theory fills in naturally for the need of formulating that theory in such a way that we can mathematically 
account for its independence of the location on it. The basis of such formulation is delineated as follows. 
 Assume, indeed, a relativity based on the Lorentz transformation realized by the matrix L from equation 
(2.4.1), however with the Shchepetilov matrix J taken from the reference frame (2.5.1). The two invariants of this 
matrix, given in equation (2.4.7) – that is the trace and the determinant, and therefore the eigenvalues l ± µ – do 
not depend on the parameters (u,v). Therefore the eigenvalues of the Lorentz matrix are completely independent 
of the location on surface, and can fill in for those fundamental quantities ‘valid everywhere in space’, as required 
by the analogy between the two grand relativities. In other words, the Lorentz matrix, as such, has two distinct 
eigenvalues, and these are independent of the position on the surface. In this respect it has a distinguished physical 
parentage worth recalling right now, for our future benefit on the guidance of our reasoning. 
 First, there is the Fresnel’s theory of light, whereby the force generated by light within its supporting medium 
(the ether) is independent of the direction of propagation and is parallel to the wave plane [see, for a clear 
explanation of this issue, (Poincaré, 1889), §151]. There, the role of surface is, obviously, played by the wave 
surface, as needed in the de Broglie’s theory. Then, a second example to be cited here along the same lines – an 
exampe that we consider the most important among the modern physical examples of such a theory – is that 
referring to the half-spin of particles. This appears to be a purely quantum problem, involving the eigenvalues in 
a fundamental way: two eigenvalues depending in no way on the direction in space [for a thorough documentation 
see (Schwartz, 1977)]. In this case the surface in question is simply the regular geometrical unit sphere of the 
three-dimensional space that we inhabit. In modern physics, we found that the property is certainly required for 
the prototype gauge fields – the Yang-Mills fields – which thus generalize naturally the fundamental property of 
their ancestors the Fresnel and Maxwell light fields. This way, we have a firm reason to consider these fields as 
the only rightful candidates for the universal gauge fields of our universe. 
 The question of the origin of a parameterization for the Lorentz’s matrix can be just naturally answered, 
exclusively in connection with the surface, in the manner that follows here. One has to recall that the Galilei’s 
relativity was originally referring to the motion on the quiet Earth’s surface: even if we are in motion on the 
surface of Earth, the results of experiments we perform are not affected, provided that motion is uniform. Just 
geometrically speaking, this means, first and foremost, a variation of the parameters u and v around a certain 
location on Earth’s surface, regardless of the way it is done: uniformly, uniformly accelerated, or any other 
imaginable way, whatsoever. Consequently, the matrix J from the corresponding Lorentz’s matrix L is changing 



 90 

with the location on surface, and we know that this change is described by a coframe of the sl(2,R) algebra 
[(Mazilu, 2020); equation ( 4.2.27)]. In the case of J alone, this coframe is given by the differential forms: 

 
 

(2.5.2) 

Their discriminant, which is also an absolute metric (loc. cit. ante, §4.3), is given by 

 
 

(2.5.3) 

Denote (df)2 this metric, thus suggesting that it can represent a phase f, for it is non-dimensional by its very 
algebraical construction. The important point to be noticed about this approach, is that the motion can be uniform 
on our surface, indeed, but this characteristic of the motion can be theoretically satisfied only along the geodesics 
of the metric (2.5.3), in the following sense. The parametric equations of geodesics can adopt, with a proper choice 
of the origin of phase f, the convenient form: 

 
 

(2.5.4) 

This property, which is a rational one in context, can only be contemplated by the presence of surface in the 
theoretical scenario. In the genuine case of Earth, and within spherical model, it says that the condition is satisfied 
only for the great circles of the sphere, but we shall need to continue on this statement with some further specific 
explanations. In any case, for the geodesics of a metric like that from (2.5.3), the rates of differential forms with 
respect to the variation of phase are constants, given by the relations: 

 
 

(2.5.5) 

In words: if f is taken as ‘time’ along the geodesics of the metric (2.5.3), the three rates of variation of the 
curvature parameters, represented by the coframe components are constants. As one can convince oneself right 
away by eliminating the parameter, geodesics (2.5.4) are hyperbolas on the surface: 

  (2.5.6) 
The physical interpretation of these geodesics will be discussed later in connection with the classical idea of 
interpretation. For now, let us just take notice two important points of this result: first of all, comes the observation 
that along the geodesics of the metric generated by the variation of the matrix J, a corresponding matrix I is 
constant. In other words, the rates of ‘uniform motion’ with respect to the ‘time’ f, along these geodesic are given 
by the entries of the matrix I for specified values of the parameters u and v. Secondly, notice that a certain geodesic 
of the metric (2.5.3) is sufficiently parameterized by the two values u and v or, at rigor, by algebraic expression 
involving just these two values. From the perspective of the physics determined by the space scale transition this 
is a fundamental property: we venture to say that this is the mathematical property that made the relativity possible 
in the Einstein’s take. We shall come back to this issue in concluding the present work. 
 These geodesics may or may not be paths along the original surface – the Galilei’s surface of quiet sea upon 
which the ships are circumnavigating or, in general, any surface appearing to our practical wits as coordinated by 
the parameters u and v, whatever these may be – but, the gist of the special theory of relativity, as it appears from 
the equation (2.5.4), is that the parameters u0 and v0 should be somehow correlated with a Lorentz transformation. 
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As we already noticed, they certainly do have a mathematical meaning by the choice of the ‘initial conditions’ on 
those geodesics. However, according to equations (2.5.5) these initial conditions appear as correlated with the 
entries of a matrix of type I from the involutions (2.5.1). Then, these conditions alone may also have a physical 
significance in connection to phenomena of the kind of those involved in electrodynamics. After all, the special 
relativity is a consequence of classical electrodynamics, let us not drop this fact out of our sight when doing 
physics! Accordingly, many other conclusions may come out from their hiding, just naturally we should say, if 
we also consider a type of Lorentz matrix constructed based on the involution I from among those from equation 
(2.5.1). In other words, we must consider, as a first instance, the case of Lorentz’s L as given in equation (2.4.14), 
along the same line of reasoning: the existence of a surface, and even with similar results for that matter. 
 Now, the matrix (2.4.14), being based on I, has two complex eigenvalues (l ± iµ) – here, obviously, we put 
L = l×1 + µ×I, as in the previous case of the matrix J – and these are, again, independent of the values of the 
parameters u and v: they are properties belonging to the space that contains the surface. A Galilean relativity on 
the surface coordinated by these parameters would involve not the variation of the matrix J, but the variation of 
the matrix I from equation (2.5.1), for which the coframe corresponding to (2.5.2), and representing the motion 
on surface is given by the differential forms: 

 
 

(2.5.7) 

The absolute metric of this coframe is the quadratic form: 

 
 

(2.5.8) 

We recognize, in this quadratic differential the Beltrami-Poincaré metric of the hyperbolic, or Lobachevsky plane. 
As we already mentioned it here, one can show, based on the mandatory conditions of the existence of closed 
Kepler orbits in the classical dynamics [(Mazilu, 2020); §§2.3 & 4.1], that this surface can be taken as located in 
the interior of a coordinate space containing the center of force in the classical planetary model. Let us repeat the 
analysis related to the metric from equation (2.5.3) for this case, which is more palatable, as it were, being a well-
known classical case. 
 Just like in the previous case, let (dj)2 be the metric (2.5.8), this time suggesting another phase j, obviously 
different from the previous one, that plays the part of a new ‘time’. The geodesics of the metric (2.5.8) can be 
conveniently expressed by a hyperbolic parameterization, counterpart of the one used in equation (2.5.4): 

 
 

(2.5.9) 

These are proper cycles on our surface, having the equation 
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which is the counterpart of (2.5.6). In this case, the counterparts of the rates from equation (2.5.5) are: 
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Comparing this result with that from equation (2.5.5), one can notice a remarkable duality, if we may say so, 
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the reference frame (2.5.1) is preserved, while along the geodesics of the metric (2.5.8), an involution J1 is 
preserved, where the indices represent the indices of coordinates (u,v): 

 

 

(2.5.12) 

Secondly, in view of this observation, we are certainly entitled to choose for the parameters u1 and v1 of the cycles 
(2.5.10) values along the geodesics (2.5.4), and the equation (2.5.10) of those cycles becomes: 

 
 

(2.5.13) 

This is a family of circles having two common points: (u0, v0) and (u0, -v0), and with the angle between them 
given by f. Assuming that these two points are the locations of two different charges of identical magnitude and 
opposite sign, we have here a dipole structure. Then the circles from equation (2.5.13) are the lines of the force 
field characteristic to this dipole, be it electric or magnetic, and this circumstance is liable to give us the possibility 
of an interpretation from the point of view of the physics of optical rays, which is the spiritual feudality given to 
Louis de Broglie in order to develop upon it the theory of quantization on matter. Notice that, judging by the 
equation (2.5.13), the surface in question is part and parcel of a Maxwell fish-eye optical medium (see §1.2). And, 
continuing to judge by the implications of this fact, we can proclaim that the grand analogy asks just naturally for 
the Planck’s quantization! 
 In view of the concept of fluid structure of the electric medium, used so much in matters of interpretation 
involving the classical theory of electricity, we need to reveal another feature of the equation (2.5.13): it may be 
taken as the surface appearance of a material string in the electric medium representing the nucleus of the 
planetary atom. The surface dipole phenomenon was noticed for the first time in water, and described in 
theoretical details by Professor Robert Mitchell Kiehn – may he rest in peace! – who also baptised it: currently 
the phenomenon is known as a Falaco soliton (Kiehn, 2001). The physical appearance is a pair of vortices on the 
surface of the fluid, connected by a coherent tube structure in the mass of the fluid, lasting for a long time if the 
fluid is in a quiet state, ideally forever. This must be the case in the nuclear matter too, if it is to persist in judging 
by analogy: the currently observed solar mass ejections, for instance, or the structure of the active galactic nuclei, 
may admit the same explanation. For details on the theoretical physics of these phenomena one can consult the 
2004 update of the work just cited (Kiehn, 2004). 
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Chapter 3  The Scale Faculty of General Relativity 

A hallmark of the grand analogy is, of course, the occurrence, and even the existence we might say, of the general 
relativity. However, the grand analogy entertains here an idea manifestly in contradiction with our experience at 
large, which is, however, seldom acknowledged as such. Namely, if the Earth, as a ship, is the analogous of the 
sailing ship on the quiet sea, or a submarine ship in quiet underwater, it cannot have a uniform motion through 
the universe. Indeed, this is a fact of solid experience: as we already mentioned, the mankind became aware of 
the fact that the true motion of Earth is a compound of many, practically an infinity of motions, an amalgam of 
the structure of which we cannot be aware. And yet, the very same experience shows that it is only the uniform 
motion of such a ship cannot be perceived by experiments done on it, whence the commonly accepted conclusion 
that the Earth should move uniformly through ether. Fact is that that, quantitatively speaking, this impossibility 
of perception was assigned to the relative motions of the Earth, as described by specific velocities. 
 This idea, in our opinion, put a real halt to theoretical physics: even today the theoretical physics is under its 
spell, and cannot make a significant step in building and understanding the experimental or astronomical facts as 
they are, but with reference to a uniform motion of the Earth through the universe. As we said, this fact, however, 
blatantly contradicts the experience, since the Earth cannot possibly move uniformly through the universe: it is 
impossible, according to experience, for Earth to have uniform motions with respect to all possible reference 
frames. From this point of view, the general relativity brought a substantial contribution to the logical structure 
of the analogy, and thereby a manner of completion of the classical natural philosophy: it brought the geodesic 
motion to the attention of our spirit and, with a proper generalization of the concept of time, the uniformity of 
motion can be, indeed, justified. For once, as we have seen at the close of previous chapter, with the benefit of 
the concept of surface, the idea of invariance of measured things – embodied by eigenvalues – can be maintained 
in the picture for arbitrary motions if these are represented by infinitesimals, no matter how these infinitesimals 
are quantitatively accomplished. If they are accomplished through a motion along some geodesics, then they are 
proportional with a time, indeed. This chapter aims at showing just how deep this connection can run, both in the 
history of mankind as well as in our spirit. 
 It appears that, from a natural-philosophical point of view in general, the Einsteinian theory of relativity is 
founded upon a unique general principle. Indeed, the physics underlying Lorentz transformation is ultimately 
asking to respect the everyday observation that bodies move freely as a whole, so that the interpretation of their 
physical structure must respect this fact of our experience. On the other hand, when it comes to the actuality of 
forces acting upon bodies, the gravitation seems to be indicating that the freedom is broken up by the variation of 
the velocity: in a free fall the bodies are all moving with the same acceleration on limited portions of their path, 
not with the constant velocity. The analysis of Enrique Loedel Palumbo, mentioned by us before, is precisely 
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referring to this situation (Loedel, 1948, 1955). Just summarizing it for now, the essential idea is that the 
Einsteinian relativity, as a whole, contains the ‘mathematical principles’ of a ‘natural philosophy’ aimed at 
understanding the physical structure of the matter represented by the bodies in motion. Let us take this idea along 
the relativistic approach as just presented here. 
 In order to introduce the matters of this chapter, we recall the conclusive observations of the §2.4, amounting 
to the fact that an equilibrium ensemble of particles serving for interpretation is only a figment of our imagination: 
it has no reality whatsoevver in our experience. So, classically speaking, we have no possibility of including it in 
the theory as a concept: again, it is only the general relativity that gives us such a possibility (Israel & Wilson, 
1972). The present chapter of our work includes, again, a short story of the general relativity showing how this 
conceptualization became possible. Along this line of thinking, it aims at making a fact, by and large 
unappreciated in the modern physics, recognizable: a scale transition was mathematically defined by Albert 
Einstein in general relativity, - on the occasion of undertaking the cosmological problem - which represents a 
manifest continuity of our knowledge. That definition of its creator, places the general relativity in a new light, if 
we may say so: it is not a ‘quantum leap of our knowledge’, as usually claimed, but rather an expression of 
continuity of that knowledge: the theoretical physics needs to take due notice of it. To wit: the scale transition 
defined by Einstein, continues the idea of scale transition that asked for the special relativity, which, in turn, 
continues a metric property contained implicitly in the classical mechanics. This time, however, the scale 
transition involves the electric properties of the matter exactly as the special relativity does it, but within the 
universe at large. The metric property in question, is in turn the one that suggests the very idea of wave, as this is 
necessary in completing the concept of interpretation in the Einsteinian stand. And the completion under 
consideration at this point is due, no doubt, to Louis de Broglie! So, let us see what is all this story about. 
 In mathematically rendering his chief thesis of the general relativity, namely that the matter controls the metric 
of spacetime, Albert Einstein, and after him anybody else for that matter, actually described the gravity in an 
entirely classical way. To be more precise, according to this description, the metric tensor of the spacetime 
continuum must be a solution of some partial differential equations involving the curvature of spacetime: the 
Einstein’s field equations. As Einstein presented them, these equations naturally replace the classical Poisson 
equation, describing the classical Newtonian gravity from a continuum point of view, which, in context, appears 
as just a particular case of them. Such an approach, just like its classical counterpart, inherently asks for boundary 
conditions in spacetime, like any problem involving differential equations. However, this time the boundary 
conditions, involving the metric tensor of the spacetime, became an essential issue for Einstein, and he always 
relates to them in a way or another, in almost all of his discussions on the problem of gravitation. 
 The Newtonian approach of the concept of matter per se, in its most striking aspect necessary for sustaining 
the Einsteinian thesis, namely that the matter does not equally fill the space at its disposal, is circumvented by 
Einstein, in quite a natural way too, we should say, but still, only mathematically. Quoting: 

 r is the mean density of matter, calculated for a region which is large as compared with the 
distance between neighbouring fixed stars, but small in comparison with the dimension of the 
whole stellar system. [(Einstein, 1917a), footnote on the second page of the article; our Italics 
here] 
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Therefore, even though the matter, as we perceive it, is not continuous in space, we have to take it as continuous, 
with a density estimated from what we are able to perceive as matter at a given time. Now, from the very same 
mathematical point of view, in calculating a mean density this way one has to ask, first and foremost, for the 
knowledge of the metric tensor, and then for some measure of ‘the whole stellar system’, describing as precisely 
as possible the spacetime extension conditions of that system. This seems to be an awkward job: acording to 
Richard Feynman, for instance, to cite a name of first-class repute, one can flatly talk about the impossibility of 
calculating the density this way (Feynman, 1995). Against all odds, however, the general relativity uses this 
classical concept of density, and even with theoretically sizable results at that. Thus, while the reason for such an 
unsecured, but quite successful use of the concept can be justified by the uncontested logic of general relativity 
as a physical theory, we find for it an ‘objective’ reason in fact: it turns out to have a positive return after all, 
again, only if it is considered from a mathematical perspective. This return consists of the addition of yet another 
differentia to the concept of density, above and beyond Newtonian concept: the cardinality. From this point of 
view, the Newtonian concept of density was, indeed, incomplete, and the Einstein definition can be considered as 
objective as it gets. But the general relativity has to pay a price for this, a price of continuity, as it were, which 
for its founder was unacceptable! 
 Here physics proceeds according to the apparently sound idea that the matter is always a physical structure, 
no question about that: one has to count the matter formations in order to calculate its density by the above 
prescription, so these should be physically perceptible, otherwise one cannot count them. It is in this respect that 
the concept of density becomes manifestly uncertain: by counting, it starts depending on the space scale where 
the counting is done, through the specific physical structure chiefly made available to our experience at that space 
scale. To wit: Einstein has always considered the stars as fundamental constituents of the matter in universe. 
Today, however, the stars are out of such a picture, and the galaxies are considered as fundamental matter 
formations at a cosmological scale, involving the universe at large. Indeed, we simply cannot travel to different 
places of our world in order to estimate the local density of matter independently of the position of Earth. Thus, 
the estimation of density asks for homogeneity and isotropy of the universe with respect to the matter density, 
and, in the spirit of the objectivity, the universe can only be considered isotropic with respect to galactic matter 
formations. Logically then, one would expect that the theoretical description of a scale transition would involve, 
first and foremost, a transition from stars to galaxies: the physical structure of a galaxy, considered as an ensemble 
of stars, needs to be invariant when referred to the transition of scale. This requirement mathematically assumes, 
among others, an idea of general continuum for the structure of the galaxy itself. However, from a proper 
mathematical perspective, one can safely say that the general relativity of Einstein is still limited nowadays only 
to the idea countable sets of matter formations. This is a rational idea, indeed, however it cannot be but just a 
starting point of the general concept of cardinality, judging from the perspective of a mathematical philosophy: 
the countability seems to be insufficient for the constructions of our intellect, and yet the physics appears to have 
gotten stuck with it! 
 The case, however, cannot remain at this stage, indeed: from the point of view of other qualities of matter 
involving the notion of continuity, one has to apply the general observations once made by Riemann, in order to 
be possible to rationally construct a geometry (Riemann, 1867). Our idea in this respect, is that physics has to 
accept the Schrödinger’s mathematical philosophy referring to the geometry of colors, when it comes to the 
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description of matter by its apparently continuous qualities [(Schrödinger, 1920); see also (Mazilu, 2020), 
especially the Chapter 5, and the literature cited there]. This approach would involve generalizing the countability 
of the ensembles of physical interest to the broader mathematical concept of cardinality involving ensembles of 
the powers of continua. According to Nicholas Georgescu-Roegen this is the essential mathematical condition 
necessary in any scale transition whatsoever (Georgescu-Roegen, 1971), and we also take it as essential in 
physics. From the perspective of general relativity, nevertheless, a certain liberation from the grips of the notion 
of density is needed, in order to realize such a scale transition. Strange enough, the very Einstein’s original ideas 
allow for such an emancipation. 
 Related to this issue, it should seem necessary, in the spirit of Einsteinian natural philosophy, an a priori 
geometry that could render the variation of the metric tensor in such a way as to eliminate the matter represented 
by the density of a physical structure from the scenario. That geometry though, does not appear to be the usual 
Euclidean geometry. This fact has already been shown in great detail even from the beginnings of the Einstein’s 
general relativity (Flamm, 1916), in connection with one of the first general relativistic models of the matter 
generating a gravitational field: a sphere of ideal incompressible fluid (Schwarzschild, 1916). It is this last work 
that we shall consider now, in connection with the concept of interpretation, for it allows us to land a certain order 
within the ideas about the concept of matter in physics, and in an apparently quite natural way at that. To wit: the 
work of Karl Schwarzschild is referring to the concept of incompressible fluid, as seen from the perspective of 
Einstein’s natural philosophy, and with this notion we see the implicit content of the modern concept of 
interpretation of a continuum representing the matter that fills a space. 
 What is missing here, in order to make this concept useful for wave-mechanical purposes is, obviously again, 
the concept of wave. However, a fluid continuum is as close as it gets to assuming this concept. After all, it was 
used by Erwin Madelung in his exquisite interpretation of the wave mechanics itself (Madelung, 1927), but even 
the classical approach of the theory of the perturbations in fluids implicitly contains the mathematical possibility 
of introducing the waves with interpretative purposes [(Mazilu, 2020); see §2.3]. As a matter of fact, the Louis 
de Broglie’s construction of the ray interpretation of optics is all about a physical theory of the rays distinctly 
based, in their physical details, upon the fluid theory. So, the Schwarzschild sphere of ideal incompressible fluid, 
will take us along a path where the Einsteinian theory itself proves to be all about the interpretation of the very 
spacetime continuum, but without waves and, therefore, without matter in it. This may sound strange after all, in 
view of the fact that Einstein always placed the stakes on the presence of matter in a physical theory, but the story 
is intriguing, to say the least, so we present it in some specific details. 
 We think that, in order to make our story more graspable, it is better to start with a note of the illustrious Felix 
Klein, from a letter addressed to Einstein himself, that makes our epithet ‘intriguing’, given above, quite 
understandable. This note takes Karl Schwarzschild’s work just cited above, in an atypical, rather strange context, 
considering the regular way of physics even after that very moment of its existence. Quoting, therefore, without 
further ado: 

 In order to give a physical turn to my letter after all, I note that de Sitter’s ds2 appears implicitly 
already in Schwarzschild’s paper of 24 February 1916. One just has to set χa = (π/2), c = 2, R = 
Ö(kr0/3) in formula (35) there in order to have de Sitter’s ds2. Formula (35) relates, of course, to 
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the interior (original Italics here, n/a) of the sphere at rest considered by Schwarzschild of 
gravitating liquid of constant density. Formula (30) is thus applicable, which yields p = –r0, hence 
a steady pull. [The Collected Papers of Albert Einstein, Volume 8, Princeton University Press, 
Document 566; our Italics, except as specified, n/a] 

In the first place: why do we find the context of this observation ‘intriguing’!? It is by now a familiar fact in 
theoretical physics, that Willem de Sitter’s ds2 mentioned by Klein here is referring to a special Einsteinian 
construction of the metric of spacetime, whereby the matter may not even exist from the Newtonian point of view. 
This is, obviously, contradicting the very essence of Einsteinian natural philosophy. Now, Felix Klein aims, as he 
expresses it himself in the above excerpt, at ‘giving a physical turn’ to that empty spacetime, which is why he 
brings in the Schwarzschild solution here, in spite of the fact that this solution is referring explicitly to some 
matter filling a spacetime, not at all to an empty spacetime. 
 Indeed, that solution provided by Karl Schwarzschild to Einstein’s equations, and invoked by Klein in this 
letter to Einstein, is originally referring to a special kind of matter, as we said, namely to a sphere of ideal fluid 
of constant density, and this, in our opinion, makes all the difference. For, if Felix Klein uses such a metric in 
order to give physical reason to an empty spacetime, this fact cannot be taken but only as an interpretation of such 
a continuum, the way this last concept was defined by Charles Galton Darwin, excluding, of course, the idea of 
wave (Darwin, 1927). This moment of knowledge therefore reveals the characteristic of general relativity as an 
interpretational theory. In fact, that ‘steady pull’ signaled by Klein in the excerpt above, highlights, in our opinion, 
this very circumstance, for there is no negative pressure of a classical liquid, at least not in a natural state of the 
world around us: this kind of pressure can only be connected with a variation of density, for special constitutive 
properties of the liquid. 
 In order to properly assess the issue thus raised by our intellect, let us explain in detail what we see in this 
moment of human knowledge, and then build up our argument accordingly. Because this is, indeed, one of the 
rarest instances in the history of human knowledge when our spirit faced fundamental issues raised by the intellect 
at a crucial moment of our existence, and was compelled to assume an attitude that literally changed the future 
thinking process of humanity. It has to be recognized as such in our natural philosophy, for it is one of those 
moments that changed the future of our life, and without war and violence at that: it involved just our spirit, not 
the multitudes, and, as such, proceeded without spills of blood and deaths, in a time when the multitudes on Earth 
lived under the sign of blood spilled and in the shadow of death. 

 3.1 Einstein’s Problem and Solution 

 The trail of concerns here, was opened by Albert Einstein’s Cosmological Considerations (Einstein, 1917a), 
which was dedicated to the… cosmological problem, obviously. As we already have mentioned, Einstein 
associated the cosmological issue, as he usually would do for gravitation – actually for any physics’ problem, in 
general – with the boundary conditions for the metric tensor of spacetime. On this occasion, though, a situation 
has occurred: according to the classical view of the problem of solution of partial differential equations, the 
boundary conditions had to be set at the edge of the universe, due to the very cosmological character of the 
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problem. But the edge of the universe is hazy, to say the least, and the boundary conditions had to be invented. 
The only secure way to create reliable boundary conditions was to judge by a condition of invariance, like in the 
case of the radiation, whereby the Wien’s displacement law provides such a criterion of invariance to space scale 
transition (see §1.1 of the present work). In the words of Einstein himself, such boundary conditions cannot be 
appropriated the way this choice would be usually done, for they are not invariant with respect to the extension 
of the space occupied by matter, whose dimensions were (and actually still are!) incessantly changing. Quoting: 

 In my treatment of the planetary problem I chose these limiting conditions in the form of the 
following assumption: it is possible to select a system of reference so that at spatial infinity all the 
gravitational potentials gµn become constant. But it is by no means evident a priori that we may 
lay down the same limiting conditions when we wish to take larger portions of the physical 
universe into consideration. In the following pages the reflexions will be given which, up to the 
present, I have made on this fundamentally important question. [(Einstein, 1917a); our Italics, a/n] 

A subjective touch is transparent here: Einstein may have felt himself compelled to accommodate, among others, 
the rapid evolution of astronomical discoveries, enlarging almost ‘daily’, as it were, the human knowledge, and 
with it, obviously, the size of the perceived universe. Otherwise, why would he think of ‘the same limiting 
conditions’, for these are almost certainly nonexistent within his formulation of the problem?! Going a little ahead 
of us, we can say that the Cosmological Considerations actually represent a forthright admission of the fact that 
one cannot construct limit conditions for the universe, appropriate enough in order to fulfill the requests of 
Einsteinian philosophy regarding the metric tensor. To shorten the tale, the overall conclusion of that work is that 
in order to consider it as a viable cosmology, the general relativity should be referring to a universe conceived as 
a finite space filled with matter, downright in the genuine Newtonian meaning of this statement [see (Mazilu, 
2020); especially Chapter 4]. The time, however, remains utterly undecided here! Therefore one cannot talk about 
a spacetime per se, and this is a big issue for the theory of relativity. And, fortunately we should say, this issue 
landed an alert among mathematicians, physicists, and astrophysicists alike, with great consequences on the future 
of theoretical physics, and the knowledge at large, in fact. Willem de Sitter was the recognized echoing critical 
voice of this assembly of people. 
 Indeed, against all odds Einstein did not appear disposed to give up his mathematical way of approaching the 
problem of gravitation, i.e. in the classical style, as shown above, by a system of partial differential equations 
which, naturally, necessitate boundary conditions. Accordingly, he found a method to avoid the problem of 
boundary conditions for the metric tensor, by making them virtually unnecessary. Specifically, he has split up the 
spacetime continuum back, into space and time – the ‘3+1 formalism’ as we know it today, and use currently in 
doing theoretical physics – and considered that the space resulting from this division must be finite, because in 
fact even from the point of view of our experience, which again, decides the definition of the finite world we 
inhabit, there is no other possibility. What, then, can be the relation between the spacetime and space proper? 
Mathematically speaking that relation boils down to an embedding of space in an incidental spacetime of 
prescribed geometry. However, as it turns out during its application, the procedure leaves the corresponding 
problem of time in suspension, which, obviously, is a notable disagreement with the tenets of the special relativity. 
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According to these last precepts, the spacetime (sic!) should be the world arena, not the space, and Einstein’s 
procedure reduces the time to its dynamical meaning of a parameter of continuity, of an incidental motion at best. 
On the other hand, though, and more importantly for us, Einstein makes a choice of this embedding procedure 
that is entirely in the spirit of our subject matter here, viz. the idea of invariance to scale transition. 
 Referring the interested reader to some genuine works for detailed mathematical considerations [for the 
geometric justification of the method see (Weyl, 1923), §§39 ff; see also (Cartan, 2001), Chapter 18], it suffices, 
for now, to say that Einstein sees the accomplishment of such an embedding of space as a restriction of a four-
dimensional Euclidean manifold of quadratic type from algebraic point of view, to a hypersphere of constant 
‘radius’ R in a four-dimensional space. Even from this starting point of the Einstein’s work, one can begin asking 
oneself about the particular choice of a quadratic form in four dimensions: does it have any reason at all? We 
have an affirmative answer for this: it can be taken as the metric of the background continuum, which, starting 
with Riemann, was a quadratic form. Einstein closely followed this idea, which seems to have an imanent reason 
after all: in fairly general conditions, no matter of the algebraic form of the manifold in question the metric, is 
always quadratic. Anyway, let us follow the original idea, in order to show what is the fact of the matter: hopefully, 
the underlying reasons will become clearer as we go along with our expounding of the subject. The equation of 
the original hypersphere is taken, by analogy with the sphere from the regular Euclidean case, in a canonical form, 
expressed analytically as a sum of squares: 

  (3.1.1) 

In this expression, the canonical coordinates of ‘events’ are denoted ξµ. In broad strokes, the embedding is 
accomplished as in the known classical case of embedding a surface within a regular space: the metric of 
hypersurface is constructed by restricting the four-dimensional metric to that of the hyperplane ξ4 = const. Then, 
if the four-dimensional metric is also Euclidean: 

  (3.1.2) 

using the equation (3.1.1), we can get the metric tensor of the three-dimensional space as 
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where ξk º xk are the coordinates of a position in the chosen hyperplane of the hyperspace. In this equation, our 
‘contravariant’ writing of the metric tensor is not merely sanctioned by the dummy indices rule of summation, 
but has what we consider as a physical reason, in the very classical physics of the planetary model, indeed, 
however not that physical reason invoked by Einstein himself. This issue shall be straightaway explained in this 
very chapter. 
 For the moment, though, let us take notice of the fact that the quantities accessible to measurement are here 
the contravariant coordinates with respect to the metric (3.1.3). These can be constructed by raising the indices, 
the way this operation is usually done in the very formalism of the general relativity, using the metric g of the 
ambient space obtained via the imbedding operation, with the result 
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These coordinates are essential for a stochastic physics of matter, for instance within the natural-philosophical 
framework once designed by Carlton Frederick for a kind of general relativity (Frederick, 1976). Worth 
mentioning, in this connection, is one of the major of Frederick’s theses, declaring that one among the components 
of the metric tensor plays the part of the wave function. This may be too much when taken a priori, but the gist 
of the thesis, as we shall see presently, is that the stochasticity applies to coordinate spaces, and that these 
reproduce a geometry of the metric tensor. 
 However, for now, saying ‘accessible to measurement’ for the case of coordinates may seem somewhat 
arbitrary indeed, if only in view of the fact that we have not even defined yet what the ‘measurement’ itself may 
mean, according to the well-established custom of axiomatics in physics. Concerning the coordinates (3.1.4.), 
though, we have a prescription of evaluation, which specifies them as ‘gauged coordinates’ in a precise physical 
sense, everywhere in the universe, in the world of the small, as well as in the world of the large. In other words, 
the prescription is universal, even though in the framework of the classical physics, but sufficiently compelling 
in order to determine us to take it into consideration for doing the job. Besides, this prescription is referring to the 
very same “treatment of the planetary system” from the perspective of which Einstein chose the reference frame 
in deciding the ‘limiting conditions’. However, it has the advantage of being naturally correlated to the problem 
that guided the spirit of the great Newton into the ultimate invention of all times: that of the forces. The problem 
itself, in question, is the dynamical Kepler problem of planetary motion. 
 Our observation is that the Einstein’s choice is implicit in the very mathematical treatment of the Kepler 
problem by classical dynamics. From this perspective, the procedure followed by Einstein shows that he just 
respected, up to a point, is true, a natural course of knowledge, provided we consider this course as an objective 
dynamics of ideas. This very fact can make his procedure a right one, in the first place. However, there is more 
to it, and even in a mathematical way for that matter. Indeed, we can allow for a gauging procedure, and define 
the corresponding coordinates, by writing 
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Now, in the section x3 = 0 of the metric space thus obtained by Einstein, the coordinates are defined up to a 
constant scale factor, and take a known form. If we choose those coordinates in the following manner: 

 
 

 

it is pretty obvious that the metric tensor (3.1.3), describing this section of the space is, up to a factor, the inverse 
of the matrix of quadratic form representing a Keplerian orbit as a function of the initial data of the corresponding 
dynamical problem [(Mazilu, Agop, & Mercheș, 2019), equation (4.3) ff]. The initial data of this particular 
problem are to be recognized as those ‘just transverse projections’ invoked by Newton in his letter to Bishop 
Bentley (see §2.2), occurring at the moments when the matter in its fall towards a center of force reaches the 
‘right orb’. So, from a natural philosophical point of view, with this cosmogonic Newtonian moment we have a 
manifest continuity between the two theories of the universe, Newtonian and Einsteinian. The eigenvalues of the 
inverse matrix in question are, therefore, the magnitudes of the semiaxes of the orbit, so that they effectively 
represent length gauges in the very meaning of the word. This observation has far-reaching consequences, from 
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both mathematical, as well as physical points of view, some of which will be touched as we go along with the 
present work. 
 For once, however, we have to notice the manifest attitude of contemporary physics at large, which does not 
give up the idea of motion in discussing the general concept of matter. More to the point, the physics considers 
today, as it always did in fact, the matter as a physical structure, even within the very concept of interpretation. 
Einstein himself, in the work now under our scrutiny, does not make an exception, and we know that he had to 
face harsh consequences for that. For once, he had to refer the general state of the universe to a static condition, 
and this static condition cannot be realized but only by ensembles of material points at rest with respect to each 
other. And since the physical rest cannot be defined but with respect to an already existing motion, the points at 
rest must carry the mark of the motion they had before coming to rest. Thus, one can see the natural-philosophical 
reason of Einstein’s prescription for the metric tensor of space, to which, according to our views, a classical 
explanation can be given as above: the metric tensor of space contains the characteristics of those motions from 
which the material points derived their rest, namely the Kepler motions. 
 Einstein followed such an idea closely. In fact, this is plainly just an interpretation – again, without waves in 
the picture – which he needed in order to base the whole physics on it. And the foundation upon which he builds 
is the following, quoting his own words: 

 The most important fact we draw from experience as to the distribution of matter is that the 
relative velocities of the stars are very small as compared with the velocity of light. So I think that 
for the present we may base our reasoning upon the following approximative assumption. There 
is a system of reference relatively to which matter may be looked upon as being permanently at 
rest. With respect to this system, therefore, the contravariant energy-tensor Tµn of matter is, by 
reason of ds2 = gµndxµdxn, of the simple form 

 

 

(3.1.6) 

The scalar r of the (mean) density of distribution may be a priori a function of the space 
coordinates. But if we assume the universe to be spatially finite, we are prompted to the hypothesis 
that r is to be independent of locality. On this hypothesis we base the following considerations. 
[(Einstein, 1917a); emphasis added, a/n] 

The resulting mathematical construction of the physics based on this philosophy is usually taken today as a static 
universe in the specialty literature. As one can see from this excerpt, Einstein himself takes it as a fact of 
experience, therefore undisputable as it were, and always judges the different cosmological alternatives with 
reference to this ‘static world’. Our opinion is that such a position asks for too much from a model universe since, 
as a fact of experience, what Einstein presents here is only an interpretation, and quite a particular one at that: the 
matter of this universe is conceived as an ensemble of material points at rest with respect to one another. 
Classically, this condition is taken as meaning no forces between the material points. However, it can also be 
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taken as meaning an ensemble of material points in static equilibrium in terms of forces acting between them 
(Israel & Wilson, 1972), which is exactly the Lorentz condition in defining matter [(Lorentz, 1892); see also 
Chapter 3, especially §3.2 of (Mazilu, 2020)], a condition that generated the special relativity, as we have shown 
previously in Chapter 2, §2.2 here. In this instance a drawback becomes pretty obvious: if the forces are not 
chosen appropriately, the Einstein method of embedding the space in the manifold of events may not work 
properly. 
 In the case of the Kepler problem, however, which we take as serving to provide a mathematically natural 
example for Einstein’s embedding procedure, the coordinates are determined by the initial conditions of the 
motion describing the classical orbit. Incidentally, we should keep in mind that these initial conditions are 
expressed in velocities. They determine quantitatively, via some integrals of the dynamical problem of motion – 
specifically, the so called Laplace-Runge-Lenz vector – the maximal space extension of the source of forces 
sustaining the motion from a classical dynamical point of view. Such a dynamics characterizes exclusively the 
field of forces having a magnitude inversely proportional with the square of distance in the Euclidean space. So, 
if we think, with Einstein, of this region as of a closed world – even in the physical sense, as a Wien-Lummer 
cavity, or an Einstein elevator – it should not be, by any means, a universe free of forces, in any of moments of 
its existence. From this point of view, we need to conceive a static world as an ensemble of material particles 
with Newtonian central forces between them, for it is only for this kind of forces that one can think of some kind 
of invariance with respect to a scale transition. To wit: we have here the Berry-Klein type of scale transition 
(Berry & Klein, 1984), from the perspective of which, only the Newtonian central forces are transitive [(Mazilu, 
2020); see Chapters 4 and 6 there]. After all, this is the whole point of the Loedel’s critique of the equivalence 
principle in the formulations used by Einstein himself (Loedel, 1955). And, from this point of view, Loedel’s 
proposal is liable to carry with it the germs of an idea of quantization in matter, by a procedure that parallels the 
Planck’s procedure of quantization in light (Mazilu, 2022). As we shall show later, this is, indeed, the case, at 
least if we follow the history of natural philosophical ideas a little closer. 
 Leaving, however, for the time being, the problem of universality of this kind of gauging open, we can still 
conclude that it should be valid for the planetary atom just as much as it is valid for the planetary system proper 
at the cosmic scale, and perhaps for some other related physical systems, like the spiral nebulae, for instance. In 
any case, this is the physical ‘prescription’ for the covariant coordinates of Einstein, mentioned before, and 
implicitly the prescription of the metric tensor of space, given in equation (3.1.3). The gist of the method should 
be that it is referring to a finite space, a ‘coordinate space’ if it is to use Darwin’s phrase: a space extended around 
the center of force of the Kepler problem, with the extension measured, at least in the classical case, by the 
eccentricity of the orbit. So, if we are to think of a model universe, we cannot avoid such a physical image, but 
there is a catch: the very same human experience guiding Einstein’s thought, tells us that such a world may be 
homogeneously charged from electrical point of view, exactly as the Lorentz model of the electrical matter 
demands. It appears to us that the evolution of general relativistic point of view is an illustration of the fact that, 
objectively speaking, our knowledge followed a path leading to the conclusion that the charge cannot miss from 
the cosmological picture [(Mazilu, 2020); see Chapter 3]. 
 At this point we find appropriate – and even necessary, we should say – a digression concerning the Fresnel’s 
physical theory of light, which brings us to the crux of physical connotation of the above attitude towards Kepler 
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problem. That theory needed gauging from the very start, and this gauging was based, as known, on the concept 
of ellipsoid of elasticities of the medium supporting the light. The physical motivation rests upon the fact that a 
classical dynamics in the theory of light – which, at the time of Fresnel, would make a true physical theory out of 
it – is only fortuitous. Recall, indeed, that Fresnel’s essential accomplishment was that he incorporated the local 
phenomenon of diffraction into the phenomenology of light, in order to ‘update’, as it were, the classical 
phenomenology based on just reflection and refraction phenomena [(Mazilu, 2020), passim]. The newly added 
diffraction phenomenon revealed periodicities which, in turn, brought into physical theory the idea of phase and 
thus the trigonometric functions with it. With the trigonometric functions, the second order differential equation 
is naturally part and parcel of the mathematical rendition of the theory, and with such an equation the second 
principle of a dynamics, involving elastic forces, comes forward just as naturally from a physical point of view. 
Provided, of course, that either we are not interested in the inertia forces, or these forces involve a different 
mechanism of their existence: that is, other than merely the action at a distance. In hindsight, based on the Berry-
Klein gauging theory (Berry & Klein, 1984), we can say that we have to be a little more cautious when it comes 
to this quite unsecured interpretation of the light phenomenon. As a matter of fact, the historical development of 
physics shows, in our opinion, that this should be the case, indeed. 
 Useless to say, Einstein did not follow, in any of his works on the relativity, the problem of motion the way 
we just sketched it here: that is, with reference to a particular case of embedding, which naturally – that is: by the 
very mathematical course of the solution to the Kepler dynamical problem – ensues from the classical dynamics. 
Instead, Einstein just noticed that the tensor (3.1.3) does not satisfy the field equations for the prescription (3.1.6) 
of the energy tensor, which he has taken as undisputable, and consequently he has followed the classical way of 
solving the Seeliger paradox for the Poisson equation: it is this way that he chose in introducing the gravitation 
in the first place, so we have to recognize that he was consistent with his very own natural philosophy. Which, in 
the case in point here meant the adding a ‘cosmological term’ to his fundamental tensor Gµn, thus changing it into: 

  (3.1.7) 

The cosmological constant l was, indeed, introduced here simply in the spirit of Einstein’s initial procedure of 
constructing the general relativity [(Einstein, 1916b), §16]. To wit: he was extending that procedure in order to 
replicate the mathematics of the ‘classical’ Seeliger amendment for the Poisson equation, and thus to save his 
fundamental natural-philosophical prescription, which basically states that ‘matter prevails over geometry’. In 
other words, Einstein followed the problem of correlation between field and matter, consistently, just as he did it 
earlier, on the occasion of building the general relativity, but with (3.1.7) as the fundamental tensor in the field 
equations, instead of just Gµn. 
 Classically, as we said, this correlation is given by the equation of Poisson, which makes the potential a 
fundamental characteristic of the field, provided the density of matter is not a problem. However, from this point 
of view, a Newtonian universe is doomed to nonexistence. For, such a universe is spatially finite, ‘although it 
may have an infinite mass’. In this universe, the radiation of stars may well travel radially outwards with no 
return, and so may, in fact, the very fundamental matter structures do, for instance by a sort of statistical process, 
of the kind we know today as a Penrose process of extraction the energy, but from the black holes (Penrose, 
2002). Quoting Einstein again: 

Gµν − λgµν
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 We might try to avoid this peculiar difficulty by assuming a very high value for the limiting 
potential at infinity. That would be a possible way, if the value of the gravitational potential were 
not itself necessarily conditioned by the heavenly bodies. The truth is that we are compelled to 
regard the occurrence of any great differences of potential of the gravitational field as contradicting 
the facts. These differences must really be of so low an order of magnitude that the stellar velocities 
generated by them do not exceed the velocities actually observed. [(Einstein, 1917a); our Italics 
here, a/n] 

This excerpt suggests that Einstein may have felt that the potential in matter asks for a separate quantitative 
definition. Maybe by something like an Emden-Fowler equation for instance, as in the later Thomas-Fermi 
method of nuclear physics, if it is to maintain the guise of a physics based on partial differential equations in the 
picture. While the incentive of such a way of reasoning comes, again, from a nuclear theory, thus having kinship 
with the classical Kepler problem, in the times we are talking about, such a situation was nevertheless unbearable 
for Einstein, as the last sentence of this excerpt shows. 

 3.2 Willem de Sitter’s Solution 

 This is the point where we must give the floor to the significant critical voice of illustrious astrophysicist 
Willem de Sitter, which seems most suitable in unveiling the true nature of the whole involvement of some great 
minds of this moment of human knowledge (de Sitter, 1917). For details one can also follow (de Sitter, 1916), 
especially the third paper of that series of articles. It is the time, indeed, to reiterate the fact that, from the point 
of view of a scale transition, the Einstein’s procedure of embedding the manifold of positions – viz. the space – 
into the manifold of events – viz. the spacetime – is akin to Fresnel’s procedure of construction the wave surface 
from infinitesimal pieces [see (Hamilton, 1841) for a geometrically unitary presentation of the construction, in 
the spirit we appropriate it here]. That is, it carries the special significance of the mathematical transition from 
infrafinite to finite scales, and vice versa, if it is to use the suggestion of Nicholas Georgescu-Roegen [(Mazilu, 
2020); see Chapter 6 there]. Namely, the Einstein’s choice of the procedure of embedding, reveals what is 
physically of interest in the embedding: the geometrical structure of the space of events at the infrafinite level 
[equation (3.1.2)] should be, from a metric point of view, the same as the geometrical structure at finite and 
transfinite levels [equation (3.1.1)]. This choice is consistent with the choice made initially by the special relativity 
and represented in equation (2.1.8). True, the identity is just a particular case of invariance with respect to the 
transition of scales, but it is an invariance nevertheless. Also true, the space positions are just particular type of 
events – to wit: they are simultaneous events, according to what seems to be an obvious natural point of view – 
but events, nevertheless. 
 However, while reasonable from the point of view of a customary natural philosophy suggested by the metric 
geometry, such a procedure breaks a particular kind of symmetry apparently imposed by the theory of special 
relativity. This symmetry asks for considering the four coordinates as equivalent, so that the time coordinate and 
the location coordinates play a similar part in the theory, and this is reflected in the covariance of field equations. 
The time sequence defining the common time of the positions in space, nevertheless, becomes completely 
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arbitrary in Einstein’s procedure, and this might give our intellect an unwarranted freedom which, when taken, 
may lead to some paradoxes. As, indeed, has happened later, on the occasion of the well known case of the 
Gödel’s universe, when the identity between the compass of inertia and the compass of gravitation came into 
question from the very cosmological point of view (Gödel, 1949, 1952). 
 This is why Willem de Sitter has applied Einstein’s procedure to an ancillary five-dimensional finite quadratic 
manifold, in order to preserve the ‘relativistic’ symmetry manifested by the equivalence of the space and time 
coordinates, in the exact form in which that symmetry appears for the regular case of the three-dimensional space 
of positions from the original Einstein’s case. Thus, formally speaking, de Sitter uses an a priori five-dimensional 
quadratic manifold instead a four-dimensional one, in order to get a four-dimensional manifold as the result of 
embedding, according to the very rule put forward by Einstein’s relativity: 

  (3.2.1) 

In case the resultant coordinates x are locating events indeed, one of these coordinates must be imaginary, in 
order to respect the very prescriptions of special relativity, in describing the spacetime geometrical continuum. 
Assuming, therefore, the same type of invariance in the transition from the finite to infrafinite scales, i.e. an 
invariance taken exactly in the form assumed by Einstein himself, as in equation (3.1.2), the metric of the 
spacetime can be written in a form analogous to (3.1.3): 

 
 

(3.2.2) 

The indices run this time through four values, which is the reason we chose the Greek letters for them, for the 
Latin indices are always reserved by us for the three-dimensional case. The observation of Felix Klein, from the 
excerpt that started our presentation of this issue, is referring, formally as we said, to this kind of embedded 
metric. For, based on this entirely legitimate, according to Einstein’s idea of scale transition, approach – and thus 
defending the very Einsteinian relativistic manner of procedure when it comes to the formal equivalence of the 
space and time coordinates – de Sitter found an apparent shortcoming of the Einstein’s fundamental thesis 
regarding ‘matter prevailing over geometry in the universe’. And this started that short wonderful period of time 
during which an exchange of ideas took place, that historically came to be known as the Einstein-de Sitter debate. 
Let us consider the case in a little more detail here [for a proper support on the general argument see (Weyl, 1923), 
especially §39 of this German edition of the renowned work of Hermann Weyl, nonexistent in any of the previous 
editions and their future translations]. 
 In order to do the job of applying the general relativity to cosmology, Willem de Sitter followed closely the 
Einstein’s very own path, which started with the observation of impossibility of proper boundary conditions for 
the metric tensor of the spacetime. His first move in the choice of some cosmological boundary conditions would 
be, of course, an a priori metric tensor of the spacetime at infinity. Apparently, though, he nurtured the idea that 
the matter is missing there, for the Mach’s principle in the Einstein’s expression was contradictory, to say the 
least. First of all, the very roots of relativity, in its first instalment as special relativity, would suggest a quadratic 
metric of the form given in equation (3.1.2), as the first move into positing the empty spacetime metric: that is, 
empty of what we consider as matter according to the tells of our senses. This was, indeed, the result of special 
relativity, which constitutes, in the Einstein’s original approach (Einstein, 1916b), the very starting point of the 
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general relativity, anyway. To wit: Einstein’s task was, according to his natural philosophy starting from 
considerations of electrodynamics, the one of constructing the general-relativistic metric in order to include the 
gravitation in the picture. Such a metric needed to be conceived as a metric of spacetime, and Einstein’s starting 
point was the observation that the special relativity can be considered a metric theory within spacetime, for the 
metric tensor: 

 

 

(3.2.3) 

Regarding this choice, both Einstein and de Sitter agree on a conclusion worth noticing: it is not a proper choice. 
The reason: it requires a special reference frame, namely the frame of the kind mentioned by Einstein in the 
excerpt above. Obviously, from cosmological point of view, the conditions at the boundary of the universe have 
to be the same no matter of the reference frame. In hindsight, we can even say more, just based on general natural-
philosophical arguments: the tensor (3.2.3) does not represent a spacetime empty of matter, inasmuch as the light 
itself can be considered as matter, at least according to some points of view in physics, if not with all of them. 
However, as de Sitter concluded, the weight of a sound argument is not based on the materiality of light, but on 
its connection with the Mach’s principle. 
 Indeed, we are here to discuss a specific historical reason, not ideas of a general philosophical nuance, so that, 
giving finally the floor to Willem de Sitter, we quote those historical reasons of the time moment when the debate 
took place: 

 … the desire has arisen to have constants of integration, or rather boundary-values at infinity 
(for specifying the values of the metric tensor, a/n), which shall be the same in all systems of 
reference. The values (3.2.3) do not satisfy this condition. The most desirable and the simplest 
value for the gµn at infinity is evidently zero (original Italics here, a/n). EINSTEIN has not succeeded 
in finding such a set of boundary values, and therefore makes the hypothesis that the universe is 
not infinite, but spherical: then no boundary conditions are needed, and the difficulty disappears. 
From the point of view of the theory of relativity it appears at first sight to be incorrect to say: the 
world is spherical, for it can by a transformation analogous to a stereographic projection be 
represented in a euclidean space. This is a perfectly legitimate transformation, which leaves the 
different invariants ds, G etc. unaltered. But even this invariability shows that also in the euclidean 
system of coordinates the world, in natural measure, remains finite and spherical. If this 
transformation is applied to the gµn which EINSTEIN finds for his spherical world, they are 
transformed to a set of values which at infinity degenerate to 

 

 

(3.2.4) 

 It appears, however, that the gµn of EINSTEIN’s spherical world (and therefore also their 
transformed values in the euclidean system of reference) do not satisfy the differential equations 
originally adopted by EINSTEIN, viz: 
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  (3.2.5) 

 EINSTEIN thus finds it necessary to add another term to his equations, which become 

  (3.2.6) 

 Moreover it is found necessary to suppose the whole three-dimensional space to be filled with 
matter, of which the total mass is so enormously great, that compared with it all matter known to 
us is utterly negligible. This hypothetical matter I will call the “world matter”. 
 EINSTEIN only assumes three-dimensional space to be finite. It is in consequence of this 
assumption that in (3.2.4) g44 remains 1, instead of becoming zero with the others gµn. This has 
suggested the idea to extend EINSTEIN’s hypothesis to the four-dimensional time-space. We then 
find a set of gµn which at infinity degenerate to the values 

 

 

(3.2.7) 

 Moreover we find the remarkable result, that now no “world matter” is required [(de Sitter, 
1917); our Italics, except as indicated]. 

Let us stress it again: starting with a concept of ‘smeared’ density, Einstein arrives to the idea that the static 
universe he constructed has to be filled with matter. As we see it, this last term implies a concept of continuity of 
matter above and beyond that of Newton, whose natural-philosophical thesis extracted from experience was that 
‘the matter does not fill the space’, to put it in the most general terms. This was, for Newton, the very reason for 
defining the density, in the first place, as a ‘attribute of the matter in filling the space at its disposal’, if we may 
say so: the matter is continuous, but has different ‘degrees of continuity’, reflected by its density. However, in 
Einstein’s case, the kind of continuity enticed by ‘filling of space’ would deny the very possibility of defining the 
density by counting, which obviously was, and still is actually, a fact of experience: the universe is, certainly, not 
filled with matter, at least not at all space scales. Something must be wrong in Einstein’s conclusion, and de Sitter 
got the culprit in Einsten’s digression from the very ideas of relativity, as conceived by himself. For, by the very 
relativistic reasons, de Sitter found that, using the Einstein’s modified equations (3.2.6) for the metric (3.2.2), 
transcribed in an appropriate relativistic spirit, of course, there is a nontrivial solution satisfying (3.2.7) for null 
energy tensor, therefore, in the absence of matter, but with a non-zero cosmological constant. Parametrically, the 
solution of de Sitter is characterized by the values: 

 
 

(3.2.8) 

where r is the density of ‘world matter’, and l is the cosmological constant. Consequently, there should be no 
matter filling the spacetime, when proper boundary conditions (3.2.7) are used. Let us provide some details of the 
mathematical procedure toward this conclusion, for they are certainly helping us in making up our own mind 
about this important moment of our knowledge. 
 First, there is the essential issue of the world-matter, in hindsight quite important, but only in view of the 
concept of inertia. De Sitter’s explanation of this concept is staggering by its clarity. Quoting: 

Gµν = −κ Tµν − (1 / 2)gµνT( )

Gµν − λgµν = −κ Tµν − (1 / 2)gµνT( )
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 If all matter were destroyed, with the exception of one material particle, then would this 
particle have inertia or not? The school of Mach requires the answer No. If, however, by “all 
matter” is meant all matter known to us, stars, nebulae, clusters, etc., then the observations very 
decidedly give the answer Yes. The followers of Mach are therefore compelled to assume the 
existence of still more matter. This matter, however, fulfils no other purpose than to enable us to 
suppose it not to exist, and to assert that in that case there would be no inertia. This point of view, 
which denies the logical possibility of the existence of a world without matter, I call the material 
postulate of relativity of inertia (emphasis in the original here, n/a). The hypothetical matter 
introduced in accordance with it, I call world-matter (emphasis in the original here, n/a). Einstein 
originally supposed that the desired effect could be brought about by very large masses at very 
large distances. He has, however, now convinced himself that this is not possible. In the solution 
which he now proposes, the world-matter is not accumulated at the boundary of the universe, but 
distributed over the whole world, which is finite, though unlimited. Its density (in natural measure) 
is constant, when sufficiently large units of space are used to measure it. Locally its distribution 
may be very unhomogeneous. In fact, there is no essential difference between the nature of 
ordinary gravitating matter and the world-matter. Ordinary matter, the sun, stars, etc., are only 
condensed world matter, and it is possible, though not necessary, to assume all world-matter to be 
so condensed. In this theory “inertia” is produced by the whole of the world-matter, and 
“gravitation” by its local deviations from homogeneity. [(de Sitter, 1916), the third paper; 
emphasis added, except as mentioned, n/a] 

Obviously, we have to deal here with fictitious processes, pure figments of our imagination: one cannot imagine 
a real process in which the whole matter of the universe ‘is destroyed’, except for one single particle, in order to 
check that inertia exists or not. But the whole enormity of assumption is most apparent when one invents a thing 
just to suppose that it does not exists, and takes this for reality! If this invention is indeed a fact of the Newtonian 
natural philosophy, then one can appreciate indeed Einstein’s completion of this philosophy, and his definition of 
density of matter connected to it. This is the density from equation (3.2.8). However, the Mach’s principle is 
redundant, to say the least. Regarding the path to that result: again, when it comes to mathematics, de Sitter 
somehow ‘felt’ that the Einstein’s procedure of embedding is correct as a general philosophy, but it is not applied 
correctly. To wit, for a relativist it is important that the spacetime, not the space, should be properly described by 
the equivalence of coordinates. Even in spite of the fact that the five-dimensional quadratic manifold (3.2.1) 
remains in suspension for now, regarding its origin and physical meaning! 
 Let us see how de Sitter got his result. Hereafter we adopt the spherical symmetry, as de Sitter did, with a 
proper system of coordinates mapping the space, as used by Einstein himself, where, by means of the equation 
(3.1.3) the metric of his spacetime becomes: 

 
 

(3.2.9) 

Notice, in this expression, the character of the space, as reflected in its metric, expressed by the second term in 
the equation of the spacetime metric: optically speaking the space can be represented as a Maxwell fish-eye 
medium, as the quadratic differential form in the square brackets [compare §1.2, equation (1.2.15)]. Thus, the 
Einstein’s static universe cannot be arbitrary, for the events are correlated by light. In this transcription we used 

(ds)2 = c2(dt)2 − R2[(dχ )2 + sin2 χ ⋅(dΩ )2], (dΩ )2 =
def
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the definitions of the Cartesian coordinates with respect to the spherical angles of colatitude and longitude (θ,φ), 
within following notations: 

 
 

(3.2.10) 

When applying the same treatment as the one leading to the metrics (3.1.3) or (3.2.2), we first need to replace the 
last relation in (3.2.10) by three corresponding relations, as follows: 

 
 

(3.2.11) 

After some calculations, with r and x4 from this equation, and with xk from (3.2.10), the equation (3.2.2) gives the 
metric of this spacetime in the form 

  (3.2.12) 

where (dΩ)2 is the line element measure of the usual unit radius sphere, as in equation (3.2.9). The result (3.2.8) 
of Willem de Sitter goes with the Einstein’s equations of this metric. It motivated the de Sitter’s conclusion of a 
certain lack of physical meaning of the metric tensor. Quoting: 

 We can also abandon the postulate of Mach, and replace it by the postulate that at infinity the 
gµn or only the gij of three-dimensional space, shall be zero, or at least invariant for all 
transformations. This postulate can also be enounced by saying that it must be possible for the 
whole universe to perform arbitrary motions, which can never be detected by any observation. The 
three-dimensional world must, in order to be able to perform “motions”, i.e. in order that its 
position can be a variable function of the time, be thought movable in an “absolute” space of three 
or more dimensions (not the time-space x, y, z, ct; Italics here are from original, n/a). The four-
dimensional world requires for its “motion” a four-(or more-) dimensional absolute space, and 
moreover an extra-mundane “time” which serves as independent variable for this motion. All this 
shows that the postulate of the invariance of the gµn at infinity has no reaI physical meaning. It is 
purely mathematical! [(de Sitter, 1917); our Italics except as indicated, n/a] 

A harsh conclusion for the Einsteinian natural philosophy, if we recall that this one places the stakes precisely on 
the fact that the physical meaning of the metric tensor of spacetime is a key point in the very physics of matter 
existing in that spacetime. In an Einsteinian context, the Mach’s postulate guarantees the fact that inertia is caused 
by the matter spatially located beyond the local experimental accessibilities, and de Sitter found that, according 
to a ‘correct’ Einsteinian doctrine that matter must be nonexistent. 
 The de Sitter’s conclusion recorded above, can therefore be taken to show that this cannot be the case, if it is 
to judge – still within the framework of the Einsteinian natural philosophy! – from the point of view of a metric 
of the universe, which seems relativistically more appropriate. And when we say ‘more appropriate’, we have in 
mind a relativistic mentality, basically manifested in conceiving the manifold of events in its general 
understanding, i.e. without including the idea of simultaneous events in order to describe a state of space per se. 
Add to this the necessity of the time ‘as independent extra-mundane variable’, and one can understand that the 
Einsteinian natural philosophy is certainly doomed, indeed, by the physical theory of general relativity, and that 
in its very own terms, actually, if de Sitter’s conclusion is respected. 

x1 = r sinθ cosϕ , x2 = r sinθ sinϕ , x3 = r cosθ , r = Rsinχ

R2 − r2 − x4
2 ≡ R2 cos2ω , x4 = Rsinω cosχ , r = Rsinω sinχ

(ds)2 = cos2ω ⋅c2(dt)2 − R2{(dω )2 + sin2ω ⋅[(dχ )2 + sin2 χ(dΩ )2]}
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 The first reaction of Einstein, after the analysis of the de Sitter’s work, was a natural one: there are so many 
uncontrolled new parameters in a multidimensional space theories, that the culprit may be in their very definition. 
And he went on to notice that those conclusions of de Sitter may, in fact, be unsubstantiated, insofar as the metric 
tensor of the de Sitter’s spacetime does not satisfy in the whole universe some natural requirements of the theory 
(Einstein, 1918). Indeed, by the transformation: 

 
 

(3.2.13) 

the metric (3.2.12) can be recast into the form (de Sitter, 1918): 

 
 

(3.2.14) 

For ζ and η real, this de Sitter transformation is legitimate, for his x4 coordinate, equivalent, ‘by permutation’ as 
it were, to the space coordinates, is imaginary: x4 º ict. Therefore, in the metric (3.2.14) of such a universe that 
contains the matter, all of the coordinates are real. The calculation of the contravariant metric tensor, necessary 
for the construction of the Einstein’s field equations, requires that the determinant of this tensor should be 
everywhere and any time nonzero. From (3.2.14), this determinant comes down to 

  (3.2.15) 

with obvious singularities for ζ = 0, θ = 0 and ζ = π/2. Therefore, in the points of this spacetime with de Sitter’s 
coordinates having such values, the metric tensor is not an invertible matrix, so that the gravitational Einstein’s 
equations are not valid. Einstein notices that the first two singularity points are removable by a proper choice of 
the space coordinates; however, the third one persists, and one cannot see any possibility to remove it within de 
Sitter’s embedding procedure, so that he concludes: 

 If the De Sitter solution were valid everywhere, it would show that the introduction of the “l-
term” does not fulfill the purpose I intended. Because, in my opinion the general theory of relativity 
is a satisfying system only if it shows that the physical qualities of space are completely (original 
Italics here, n/a) determined by matter alone. Therefore, no gµn-field must exist (that is, no space-
time continuum is possible) without matter that generates it. 
 In reality, the De Sitter system (2) [the metric (3.2.14) here, n/a] solves equations (1) (these 
are the vacuum Einstein equations having a cosmological term: Gµn–lgµn= 0, a/n) everywhere, 
except on the surface r = (p/2)R. There – as in the immediate neighborhood of gravitating mass 
points – the component g44 of the gravitational potential turns to zero. The de Sitter system does 
not look at all like a world free of matter, but rather like a world whose matter is concentrated 
entirely on the surface r = (p/2)R. This could possibly be demonstrated by means of a limiting 
process from a 3-dimensional to a surfacelike distribution of matter. [(Einstein, 1918); our Italics, 
except as indicated, n/a] 

As one can take notice right away, Einstein has gotten a new problem here, namely the one of dealing with the 
cosmological constant, called to save the day, as it were, for the general relativity in matters cosmological. As it 
turns out, according to the findings of Willem de Sitter, this new constant tends by itself to ruin the philosophy it 
is called to save – the very Einstein’s natural philosophy – ‘from the inside’, rather than saving it. Anyway, 

sinω sinχ = sinζ , tanω cosχ = tan(iη), x4 = Rζ , r = Rη

−(ds)2 = 1
R2
(dζ )2 − R2 ⋅[c2 cos2ζ (dη)2 − sin2ζ (dΩ )2]

g = −sin4ζ cos2ζ sin2θ
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Einstein’s overall conclusion is that, until contrary proven with unquestionable certainty – which, according to 
him, would mean to prove that the singular (hyper)surface is an illusion due to the particular choice of the 
‘mapping procedure’ – represented by the coordinates used in representing the hypersurface representing the 
world – the de Sitter universe is a universe containing matter, and thus the main thesis of the Einsteinian natural 
philosophy is actually in no real danger. 
 That ‘proof’ came, indeed, but not quite as ‘contrary’ as one might think. First, Willem de Sitter himself has 
shown that the singularity signaled by Einstein is physically unreachable [(de Sitter, 1916), the third paper of that 
series; see also (de Sitter, 1917)]: the light would take an infinite time interval to reach it, therefore a fortiori it is 
not physically accessible to matter formations. This might not be an unrealistic conclusion, were we to consider 
the classical acceptance of the Mach’s principle: after all, the inertia for instance, is due, according to this 
principle, to that matter which is out of any possible physical reach, just like the matter of de Sitter’s singularity 
signaled by Einstein. However, insofar as we are under the spell of the action at a distance, we might have to face 
the dilemma of a force of inertia propagating with infinite velocity, which was very uncomfortable at the times 
we are talking about. After all, the de Sitter’s discussion was, indeed, based on a clear distinction between inertia 
and gravitation, but in what concerns the involvement of light in this physical reasoning we may have to recall 
that the idea was rejected from the very beginning – it has been agreed that the boundary values (3.2.3) are not to 
be taken into consideration! – so that a comparison between light and matter might not be in order here. Anyway, 
as we see it, this was just the course of explanation adopted by Felix Klein. To wit: by keeping the light in a 
physical scenario, just as it was initially introduced by the special relativity’s precepts. This meant, implicitly, 
that light was to be considered as a form of matter. 
 Fact is though, that concerned with this issue, Einstein inquired for ideas here and there, approaching some 
of the German-speaking mathematicians of the time (see, in this connection, The Collected Papers of Albert 
Einstein, Volume 8, Princeton University Press; especially the English rendering of the volume, having the 
correspondence connected to the historical moment of Einstein-de Sitter debate, commented on pp. 351–357, and 
the whole correspondence translated, as indicated there). Among the mathematicians, Felix Klein himself – long 
and reputably concerned with the issues of non-Euclidean geometry [see (Klein, 1891, 1897) for documentation], 
especially with its cosmological connection – has given an answer related to the a priori choice from equation 
(3.2.1), used by de Sitter in applying the Einstein’s procedure: it is valid a priori for the whole five-dimensional 
space, i.e., with no limitations whatsoever due to the embedding method. That is, there is a five-dimensional 
quadratic form, containing one negative term though, and representing a four-dimensional manifold in a five-
dimensional background space, having a pseudo-Euclidean metric of exactly the same signature as the quadratic 
form (loc. cit. ante, Document 566). From a scale transition perspective, Klein’s answer covers two or three points 
of physical interest, deserving to be acknowledged at any rate [for the completeness of certification see §1.3 
above; for details one can consult (Klein, 1918, 1919)]. 
 First of all, Klein upholds the idea that the equation (3.2.1) of the manifold chosen by Einstein to represent 
the finite scale must always be a problem of non-Euclidean geometry (as in our Chapter 1, §§1.3 and 1.4 here). 
Apparently, he finds mathematical backing for this idea in the fact that Einstein’s procedure of construction of 
the metric may be taken as an expression of the existence of an absolute geometry, and insists mainly upon the 
group-theoretical aspect of the problem (Klein, 1918). Such a geometry can be, indeed, constructed a priori, as a 
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Cayleyan geometry based on an absolute having any geometrical form, in any dimensions. It can be a 
homogeneous quadratic form of any signature, so that there can be an Einsteinian cosmological metric in three 
dimension, as conceived by Einstein himself, just as well as a de Sitter metric based on purely relativistic idea 
regarding the physical equivalence between time and space coordinates. In hindsight, we can say even more: there 
can be a Cayleyan geometry based on an absolute algebraically represented by any homogeneous function of 
coordinates (Barbilian, 1937). For instance, it may be found that the problem of isotropy of the universe, as 
described in terms of the variation of the so-called Hubble parameter (Misner, 1968) can be considered as a 
problem of metric geometry in a Cayleyan framework referred to a natural cubic form as absolute, that mimics 
the volume of a Cartesian reference frame (Mazilu, Agop, & Mercheș, 2019). 
 Secondly, inasmuch as the mathematical construction may be taken as a purely fictional thing – as, in fact, all 
things mathematical can! – Klein hastens to indicate a ‘physical proof’, as it were, in that the metric thus obtained 
is a particular Schwarzschild solution for a sphere of ideal fluid (Schwarzschild, 1916). This, in our opinion, is 
the message of the excerpt from the letter addressed by Klein to Einstein, and reproduced by us in the introduction 
of the present chapter, which started our discussion. In order to sustain this opinion, we need to notice that there 
is, in Klein’s ‘demonstration’ from that excerpt, a potential danger arising with the idea that this may be thought 
of as a kind of a ‘backfiring’ argument. Indeed, the Schwarzschild solution in Klein’s argument is acquired via 
Einstein’s equations with no cosmological constant and in the presence of matter in the form of an incompressible 
fluid. In other words, by citing the Schwarzschild solution in this instance, the advocate adopts, in fact, a plain 
Einsteinian argument! That is, taking it as an argument in supporting the de Sitter’s philosophy, may be considered 
as proving a priori the very Einstein’s philosophy. However, the same argument works equally in reverse, i.e. in 
showing that a solution of Einstein’s equation for the presence of matter – the Schwarzschild solution for a sphere 
of incompressible fluid – can be reproduced as a solution of a universe without matter, but with a l-term. In this 
case, the Schwarzschild solution can be taken as offering only an interpretation of the de Sitter universe, in the 
sense of Darwin’s definition for the necessities of wave mechanics – short of the concept of wave, of course – 
and this is just the point of view we want to promote. One might say that Felix Klein actually professed the wave-
mechanical interpretation avant la lettre, as it were! 
 Everything hinges, in the Klein’s argument, on the physical legitimacy of non-Euclidean geometry, and this 
is the main point at issue. As we said, it is known today that such a geometry can be built a priori, therefore 
independently of any physics, in order to represent, mathematically, some physical conditions of confinement of 
a general natural-philosophical character [(Mazilu, 2020); see Chapter 4 there]. It can be built as a Cayleyan 
geometry (see, for illustration, but not only for that, §3.4 below) and, as we have also shown in this very chapter 
(see §3.1), apart from mathematical details to be explained as we go along with the work here, the classical Kepler 
problem ‘endorses’ Einstein’s idea in a specific physical way, involving the matter indeed, in one of its most 
essential features. To wit: the components of the metric tensor adduced by us in demonstrating the feasibility of 
Einstein’s embedding procedure can be taken, in fact, as ‘integrals of motion’, coming naturally from the 
mathematical treating of the classical Kepler motion as a classical dynamical problem. Fact is that the de Sitter’s 
metric, in any one of its instances, can be obtained as a Cayleyan metric in the sense indicated by Felix Klein [see 
(Castelnuovo, 1931); see also (Du Val, 1924) for geometrical details on the de Sitter’s world], and the absolute 
of this geometry has a remarkable physical reality, to be discussed later in this work. 
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 The third of Felix Klein’s points to be mentioned here, is that, as a consequence of the non-Euclidean 
geometry, he was able to indicate the possibility of eliminating that arbitrariness of the ‘extra-mundane’ time, by 
a functional representation of the time sequences necessary in rendering the de Sitter’s spacetime as a space of 
events. In so doing, he has the merit of using a continuous function of the ratio of coordinates on submanifolds 
of the manifold of events (3.2.1), representing the finite scale of the world. This ‘functional approach’ to the 
concept of time sequences can be taken as a warning sign that such a concept, in general, needs the idea of wave 
at its very foundation, a realization of which came a few years later with Louis de Broglie’s work. Let us give 
some details in order to get a better grip on the subject. These details follow, in fact, Felix Klein’s own argument. 
 Notice that the metrics (3.1.3) and (3.2.2) can be obtained from (3.2.9) and respectively (3.2.12) by an usual 
‘mapping’ as de Sitter himself shows it: projection of a ‘sphere’ to a ‘plane’ (de Sitter, 1917). Consequently the 
metric in this dilemma, namely (3.2.14), is indeed intimately related to such a ‘mapping’ procedure, which may 
be liable to put it into question. From this perspective, Klein notices that if one takes the real coordinates as given 
by the parametric equations (Klein, 1919): 

 

 

(3.2.16) 

naturally satisfying the quadratic constraint assumed implicitly by de Sitter 
  (3.2.17) 

the de Sitter metric from equation (3.2.14) becomes the metric form with constant coefficients, satisfying the 
Einstein’s conditions of formal invariance when passing at the infrafinite scale: 

  (3.2.18) 

In other words, this geometry is formally identical in the finite and the infrafinite ranges, and therefore satisfies 
the Einstein’s choice for a general ‘physical embedding’, which thus turns out to be a ‘law’ – the law of ‘metric 
invariance’ at the transition from the finite scale to infrafinite scale, and vice versa – once it is not postulated as 
Einstein did. 

 The possible time sequence in this universe will be given by a time coordinate to be calculated by formula: 

 
 

(3.2.19) 

which gives the ratio of the two coordinates involved as a ‘solitonic solution’, if it is to use terms closer to our 
times [(Mazilu, 2020); see §3.1 there, equation (3.1.26) ff]. This induces Felix Klein into further noticing the 
encounter of two observers of this universe, which he renders in quite a pictorial way, to the effect that they will 
always argue on the common time [see also (Klein, 1918)]: 

 It is amusing to picture how two observers living on the quasi-sphere and equipped with 
differing de Sitter clocks would squabble with each other. Each of them would assign finite time 
ordinates to some of the events that for the other would be lying within infinity or that would even 
show imaginary time values. [The Collected Papers of Albert Einstein, Volume 8, Princeton 
University Press, Document 566; our Italics, a/n] 
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A matter of concern still remains, nevertheless, for Klein, expressed by the fact that he based his construction 
directly upon a non-Euclidean geometry. Having no reference to an Euclidean geometry which, according to 
Einsteinian philosophy, would suggest the absence of matter, the solution presented by Klein could be easily 
construed as just a mathematical tweaking having no physical basis. Then again, taken as such, it could be very 
easily placed, as we said, into the category from which it was supposed to pull the de Sitter’s singularity. This is, 
we think, the reason why Klein was not wrong at all in suggesting a physical argument based on Schwarzschild 
solution, as signaled above. As it turns out, though, he is right in choosing this solution, indeed, but only as an 
interpretation as we said, and leaving in reserve the fact that the a priori dimensionality five can be justified from 
a physical point of view. However, in order to better understand this issue, we need first to see the connection of 
the problem with the Cayleyan geometry, and then elaborate a little upon the very Schwarzschild solution in 
question. Let us, for now, just say a few words on this very solution. 

 3.3 The Schwarzschild Matter Sphere: Framing de Sitter’s Idea 

 The Schwarzschild solution is basically the one nowadays well-known for the foundation of the modern 
concept of black hole. In this instance, however, it represents the “gravitational field of a homogeneous sphere of 
finite radius, consisting of an incompressible fluid”, as Karl Schwarzschild himself states. An excerpt from his 
original work could, again, be useful in clarifying not only the necessity of this solution within the framework of 
natural philosophy, but even the general attitude adopted by physics ever since, and made possible only by the 
advent of the general relativity, with all its problems that specifically motivated the human mind. Quoting: 

 As another example concerning Einstein’s theory of gravitation, I calculated the gravitational 
field of a homogeneous sphere of a finite radius, consisting of incompressible fluid. The 
specification “consisting of incompressible fluid”, is necessary to be added, due to the fact that in 
the framework of the relativistic theory, gravitation depends on not only the quantity of the matter, 
but also on its energy and, for instance, a solid body having a specific state of internal stress would 
produce a gravitation different from that of a liquid. [(Schwarzschild, 1916); our Italics] 

Once again, notice that the work of Schwarzschild is “concerning Einstein’s theory of gravitation”, and this speaks 
clearly of the fact that the reference of Felix Klein to it, in support of de Sitter solution cannot be but an 
interpretation. The other emphasis in this excerpt contains the clearest essential difference between the new 
natural philosophy, brought about by the Einsteinian general relativity, and the old Newtonian natural philosophy: 
it is the internal state of the matter, with all its details, that counts in controlling the external gravitational field, 
not just the ponderous mass. In hindsight, the ponderous mass only controls the reference states of static 
equilibrium serving for interpretation. One may say that this is the real feature brought by cosmology to bear upon 
the general relativity: it can explicitly describe the moment of interpretation in physical theory. And this plainly 
justifies the Klein’s procedure of using the Schwarzschild solution in a place where, apparently, it has no reason 
to show up. This conclusion is, in fact, quite a positive addition coming out of the new train of ideas brought by 
the relativity into the natural philosophy in general. It is this addition that made possible the idea of a gravitational 
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collapse, for instance, usually accompanying the different presentations of the concept of black hole, to mention 
just one of the most significant spiritual achievements of the physics of last century. Not only this, but a deeper 
thinking shows us that the concept of vacuum needs to be revised in its essential differentiae. 
 With the idea of interpretation, there is a sound reason for taking the Schwarzschild solution – which is 
explicitly referring to matter as a homogeneous incompressible fluid – as physically justifying the de Sitter 
system, which is obviously referring to a universe without matter, according to Einstein’s theory involving the 
cosmological term, once its density turns out to be zero. In fact the homogeneous fluid should be considered here 
as giving an interpretation to matter, entirely analogous to the classical interpretation of its archetype, the ether. 
Which is what Poincaré, for instance, felt necessary in matters of electromagnetic ether (Poincaré, 1900), in order 
to complete, in an appropriate manner, the theory of Lorentz referring the electrical matter. What, in our opinion, 
should be concluded from this story as a physics’ task, is what Poincaré already did in his 1906 Theory of Electron 
from Rendiconti di Palermo: construct an internal state of stress based on the idea of interpretation. Whence the 
necessity of an explicit theoretical consideration of that ‘internal state of the matter’ mentioned by Schwarzschild, 
for which a proposal will be advanced in the present work in the form: the Schwarzschild fluid must be, in fact, a 
Lorentz electric fluid [(Lorentz, 1892); §§57, 66 and 67; see also §1.3 of the present work]. 
 On the other hand, a fluid is the principal ingredient, if we may, in the interpretation of ether in the spirit of 
Samuel Earnshaw (see §1.3 above). Therefore the Planck’s vacuum must be interpreted this way. However, this 
interpretation speaks of a special kind of vacuum, in need to be understood correctly on occasions. This vacuum 
is defined not by missing matter, but, on the contrary, by the presence of a matter which only lacks some of the 
possible properties. It seems worth our while elaborating a little on this statement, since it is very important for 
understanding the ideality of the concept of physical vacuum. 
 Let us think, just for the moment being, of how the general relativity was possible: classically speaking, the 
forces of electromagnetic nature between the physical structures of matter are overwhelmed by gravitation at a 
cosmic level (Weyl, 1952), so that they are simply unnoticeable. Obviously, so they were too for Newton, 
otherwise the concept of universal gravitation could not be with us today. So, the general relativity came to be 
created as a theory of universal gravitation in vacuum: logically, this vacuum was the absence of matter which 
does not have a gravitational mass. However this does not mean that this kind of matter could not have the 
neglected electromagnetic properties. These properties started the Einsteinian special relativity in the first place, 
and they continued to haunt the general relativity, in the form of the electromagnetic vacuum, from its very 
beginning, in a Maxwell-Einstein theory, as they call it today. Likewise, in the microscopic world the 
electromagnetic forces appear to be dominant: a vacuum is then to be conceived as matter missing the 
gravitational mass. It is this kind of matter that cannot be logically conceived in physics nowadays, except in the 
form of light: the concept has been started by Augustin Fresnel. 
 Coming back to our subject here, one can, in short, say that the Schwarzschild’s result concerning the physics 
involved in the general-relativistic problem of an ideal fluid sphere, is the following. First, the equation of state 
of the sphere of incompressible fluid of density r0 and pressure p – the equation (30) mentioned by Klein in his 
first excerpt reproduced by us in the introduction to this chapter – is calculated by Schwarzschild as a benefit of 
introduction of an angular coordinate c – which can count as a phase in the economy of general relativity, for it 
is hardly an ordinary angle – by an ‘equation of state’ as it were, of the form: 
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(3.3.1) 

This equation is referring to a gravitational field in the interior of the sphere described by a metric which later 
came to be termed as the ‘interior Schwarzschild metric’: 

 
 

(3.3.2) 

where (dW)2 is the unit sphere metric. This is the equation (35) mentioned by Klein in the excerpt that started the 
present story. For the gravitational field in the exterior of the sphere, Schwarzschild gets the ‘exterior solution’: 

 
 

(3.3.3) 

Here r – the radial coordinate proper – and α are given by the expressions: 

 
 

(3.3.4) 

with the constant χa calculated for the value of the radius ra of the fluid sphere. 
 In the interest of a proper understanding of the position of solution (3.3.3), mention should be made that this 
is the one usually taken today as the prototype metric in the discussion of the modern concept of black hole. It is 
formally the same as the one obtained by Schwarzschild himself in a previous work on the gravitational field 
described in the general relativistic way by Einstein equations for the classical material point. The only difference 
with respect to that case is in the expression of r entering the equation (3.3.3): in the case of fluid sphere it is 
defined by equation 

 
 

(3.3.5) 

while for the classical material point r = α3, the value corresponding to ca = p/2. 
 Karl Schwarzschild closes his paper on the fluid sphere of which we are talking here, with a series of 
observations, that, again, we find quite remarkable. However, what startles most among these observations is 
Schwarzschild’s conclusion, which warrants entirely, from the point of view of natural philosophy, the embedding 
procedure of Felix Klein, as described above. Namely, if in the metric from the equation (3.3.2), which describes 
the material sphere of ideal fluid, we take dt = 0, we get the metric of the space proper, within which the matter 
thus described from the physical point of view – i.e. interpreted via a homogeneous incompressible fluid whose 
internal state is thermodynamically characterized by a pressure p etc. – resides. It is on this point that 
Schwarzschild concludes with ones of the most penetrating observations about the coordinate space of the close 
realm of existence of the Earth itself, imagined as a sphere: 

 This is the line-element of the so-called non-Euclidean geometry of a spherical space. The 
spherical space geometry holds also in the internal region of our sphere. The curvature radius of 
such a spherical space is Ö(3/kr0). Our sphere has formed not all of the spherical space, but only 
a region in it; this is because χ cannot grow up to π/2, but grows up only to the boundary limit χa. 
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Concerning the Sun the curvature radius of the spherical space, which determine the geometry of 
the interior of the Sun, would be equal to about 500 radii of the Sun... 
 It is an interesting result of Einstein’s theory that it calls for the reality within gravitating 
spheres of the geometry of spherical space, which hitherto had to be regarded as a mere 
possibility. [(Schwarzschild, 1916); our Italics] 

In the case of Klein’s transition to the de Sitter metric, the coordinate χ covers the entire a priori range at its 
disposal: χa = p/2. As the density is physically decided by the equation of state (3.3.1), we have r0 = –p, i.e. in the 
verbage of Klein, ‘a steady pull’. This, in our opinion, bestows a significance of universality upon Schwarzschild’s 
fluid, necessary in accomplishing any interpretation via this kind of fluid: the density of matter has to be taken as 
equivalent here to a stress state, it is not only characteristic to the ponderous matter. According to this principle, 
the de Sitter continuum can indeed be interpreted as a Schwarzschild fluid in ‘steady pull’, as Klein states it in 
his letter 566 to Einstein, from the Princeton Volume 8 cited above. Taken as such, the Schwarzschild’s solution 
can rightfully offer, as we said, an interpretation even to the ether, therefore to a vacuum, and so much the more 
to an electromagnetic vacuum for that matter, therefore to a de Sitter world, as Felix Klein once suggested. 
 The physics called upon by Klein’s interpretation of de Sitter’s world has still many other connotations related 
to the very Schwarzschild solution allowing that interpretation. For once, we have here the first modern reference 
to the idea of space with matter in a certain state, which can be appreciated as a theoretical-physical structure, 
once it has a space extension ‘measured’ by the planets’ orbits. Indeed, that ‘500 radii of the Sun’ represents a 
spherical space around the Sun, enclosing the internal planets of the solar system up to just about the mid-distance 
between Mars and Jupiter. This is manifestly an essential example of a physical structure, insofar as it represents 
matter penetrated by space. Now, if the non-Euclidean geometry is the one that dominates the space in which the 
solar matter exists, this geometry should be of a special type: it should be a hyperbolic geometry of the second 
kind, in a modern nomenclature apparently due to Klein himself, i.e. a Lorentz geometry in the jargon of the 
modern theoretical physics, but for a one-sheet hyperboloid [see (de Sitter, 1916), the Third Paper, footnote on 
page 10; for the modern connotation of the geometrical theory see also (Duval & Guieu, 2000)]. From the formal 
point of view of the absolute geometry, however, this is not to say that it should be any different from the spherical 
geometry mentioned by Karl Schwarzschild and used by Felix Klein in his calculations, for they are formally 
identical [see (Pierpont, 1928) for the analytic geometry of the ruled quadrics]. 
 We cannot close the presentation of this issue of interpretation without marking the Einstein’s own closing 
position in the debate around de Sitter’s findings. This position is usually qualified as ambiguous, to say the least: 
it is claimed that Einstein never publicly acknowledged the fact that he was not right, nor he published his 
corrected position in the critique of de Sitter’s work. We do not find his attitude any different from that he had on 
the occasion of Cosmological Considerations. A quotation from the letter of Einstein, written in response to 
Klein’s observations from the Document 566 cited above, seems to show a manifest consistency of attitude: 

 De Sitter’s world is, in and of itself, free of singularities and its space-time points are all 
equivalent. A singularity comes about only through the substitution providing the transition to the 
static form of the line element. This substitution changes the analysis-situs (emphasis in the 
original here, a/n) relations. Two hypersurfaces 
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t = t1 and t = t2 
intersect each other in the original representation, whereas they do not intersect in the static one. 
This is related to the fact that, for the physical interpretation, masses are necessary in the static 
conception, but not in the former one. My critical remark about de Sitter’s solution needs 
correction; a singularity-free solution for the gravitation equations without matter does in fact 
exist. However, under no condition could this world come into consideration as a physical 
possibility. For in this world, time t cannot be defined in such a way that the three-dimensional 
slices t = const. do not intersect one another and so that these slices are equal to one another 
(metrically). [The Collected Papers of Albert Einstein, Volume 8, Princeton University Press, 
Document 567; our Italics, except as mentioned] 

In cauda venenum! … considering these conclusions of Einstein as the ‘tail’ of the whole story: one has to pay 
due attention to the essential passage to a static world, for in there is the culprit lurking. According to this brief 
account we appreciate that Klein has shown, in fact, that an interpretation should be necessarily connected to the 
de Sitter’s conception: ‘the former one’, in the excerpt above. We also must appreciate that the general relativity 
has the virtue of offering such an interpretation. Finally, it says that the ‘static world’ may not even need masses 
for interpretation, for it is actually referring to the very masses as simple quantities of matter. 
 Rarely, if ever, is it mentioned the fact that classical dynamics works essentially based on the same principle: 
one cannot define the Newtonian forces but only based on Kepler laws. In this case, though, the definition of 
force is pending on a fictitious material point generating the elastic force located in the center of Keplerian ellipse, 
where the matter is manifestly absent [(Mazilu, Agop, & Mercheș, 2021); Chapter 5]. The Fresnel’s physical 
theory of light works based on the same principle: there is no matter along the light ray in order to generate the 
elastic force necessary to generate dynamically the vibrations of light. Fact is that Einstein never abandoned his 
position in this argument, which he may even have considered of no consequence for the Einsteinian natural 
philosophy. Whatever was essential has already had been published by now, and in hindsight we seem to have a 
corollary that may be formulated like this: we have to deal here with an interpretation, and, as such, the issue 
must be turned to an entirely another forum of discussion. 
 Fact is that the cosmological definition of matter needs a static stance, and Einstein’s contention is that this 
stance cannot mean a physical system unless it has the geometrical form of a quadratic manifold at any scale of 
the world: infrafinite as well as finite or transfinite. However, more importantly for an interpretation based on the 
Einstein ideas, the Schwarzschild solutions seem to be most appropriate. One of them, that is the solution from 
equation (3.3.3), has already proven its usefulness in the definition of the possible coordinate systems, even 
independently of the reference frames [see (Fronsdal, 1959, 1991); also (Bertotti, 1959b)]. It helped in developing 
an important physics of the black holes, with all its cortege of significant concepts that make part of the modern 
theoretical physics. As to the metric from equation (3.3.2), its presence was significantly less conspicuous, due to 
a large extent to the remarkable properties of its particular case represented by the metric (3.3.3). In our 
undertaking, the Schwarzschild theory, by and large, indicates two important things: first that a Cayleyan 
geometry seems to be working here with an absolute having, say, the radius of about ‘500 radii of the Sun’, to use 
the words of Schwarzschild himself. Secondly, the matter in its physical manifestations is internal to this absolute 
in a precise way: an inaccessible region, comprising the Sun, and an accessible region containing some internal 
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orbits of the kind once mentioned by Madelung on the occasion of his interpretation of the wave mechanics 
(Madelung, 1927). These are to orbits of the four interior planets of the solar system, where the density of matter 
is maximal. Further geometrical considerations here will give us the physical meaning of the Bohr-Sommerfeld 
quantization, as we go along with our development. 

 3.4 The Cayley-Klein Geometry of de Sitter’s Universe 

 One can only guess that what we call here Einstein’s embedding procedure [equations (3.1.1) and (3.1.2)] is 
hardly an Einstein original procedure, ranking equal to, say, the equations of gravitation in originality. Just a 
perusal of Harry Bateman’s Electrical Waves (Bateman, 1915), with its rich bibliography, mostly to a specific 
literature that occurred after Riemann, can convince us of the fact that the rapid evolution of the non-Euclidean 
geometry could not leave this procedure untouched. Einstein just adopted an existing geometrical procedure, and 
if there is any originality in this adoption, it must to be sought for somewhere else. We see it in the choice of the 
quadratic form having the same signature for both the finite and infrafinite scales of the four-dimensional world, 
with all its consequences. The most important of these consequences is the abstract definition of the quadratic 
manifolds, which may be taken as abstract with respect to geometrical customs – the symbols involved may not 
be necessarily coordinates – but quite concrete in physical terms: they can represent charges in the electromagnetic 
matter. But… there is a but in adopting such representations! 
 Notice that the relations (1.2.19) and (1.2.24), can be associated in an Einstein-type of embedding procedure, 
which would mean that the Einstein’s embedding equations (3.1.1) and (3.1.2) are actually referring to an optical 
universe of the Maxwell fish-eye type, having the conform-Euclidean metric (1.2.12). This relationship can be 
extended to generality with reference to the charges in a Katz-type of natural philosophy, whose association with 
one another in a monopole and, further on, in a dipole, assumes a four-dimensional Euclidean-type algebraic 
manifold [(Mazilu, 2020), §4.4]. Then, if we can dispose of the idea of projection connected to (1.2.19) and 
(1.2.24) - which seems quite particular in the context of a cosmological theory - and thus get Einstein’s 
embedding results independently of projection, we have a manner to pass from the static charges to the currents 
represented by their differentials using the concept of surface [see §1.3, equations (1.3.12) ff]. In this case, the 
embedding procedure, which, mathematically would involve a transition between finite and infrafinite scales of 
the world, would turn out to be equivalent to the transition between the static charges and the currents, which is 
the case that broke through with the Maxwellian electrodynamics. We search, therefore, for such a liberating 
procedure from the grip of projection, and this is offered by the idea of Cayleyan geometry. 
 For once, it is the de Sitter’s idea of an empty universe which can help us: if in the equations (3.1.1) and 
(3.1.2) the coordinates are real numbers, they can be taken as representing charges, just as well as any other 
physical quantities. Assume, now, that the Einsteinian hypersphere is projected from its center (0, 0, 0, 0) on one 
of the two tangent hyperplanes x4 = ±R. The two projections, on the north and south poles, are identical. We shall 
work this example in detail, however by suppressing one of the space coordinates, x4 say, in order to get a well 
known case serving only for guiding purposes. Then, based on this example we shall try to extend the results to 
four dimensions, in order to be able to appraise the de Sitter’s idea in a right way. Thus, we have the sphere 
centered in origin and radius R: 
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  (3.4.1) 

and project it onto the upper tangent plane x3 = R (the so-called north pole; x3 = - R being, obviously, the south 
pole of the sphere) from its center. Now, let us say that (x, y, R) are the coordinates of the point in the tangent 
plane on which the point of coordinates (x1, x2, x3) of the sphere is projected from the origin of sphere. Then the 
projection procedure is described by the system of equations 

 
 

(3.4.2) 

where l is a parameter; the colon in the last equality shows that the last ratio defines the parameter l. Now, if the 
Euclidean metric of this continuum reproduces the signature of the quadratic form (3.4.1), then in terms of the 
coordinates of the plane we can write this metric as: 

  (3.4.3) 

Using (3.4.1) and (3.4.2) for calculating l, we get: 

 
 

 

so that the metric (3.4.3) becomes: 

 
 

(3.4.4) 

This is an infinitesimal distance, and thus can play the part of a metric. The expression from the right hand side 
shows that it can be calculated by Laguerre’s formula for distance. Let us show the calculations, in detail. 
 If we denote by X a point in this three-dimensional space, then a coordinate representation is given by a triplet 
of numbers representing the point in the sense of Cartan. We can define them as follows: memorize them 
somehow, and then carry them everywhere and realize the position in any place via an adequate reference frame. 
A slight change in notation is in order here, serving to the fact that we intend to use from now on the lower indices 
for the points, rather than to coordinates: 

  (3.4.5) 

Note that in this association, X is not necessarily taken as a vector: it is just a triple of numbers. We shall build 
the geometry based on the properties of the quadratic form from the left hand side of equation (3.4.1): 

  (3.4.6) 
The condition of having X as a real point is (X, X) > 0, even if this quantity is unspecified by the idea of a sphere 
in space, or something like that. The condition (X, X) < 0 defines, from a geometrical point of view some purely 
imaginary points. However, from a physical perspective, such points can even be only partially imaginary, so to 
speak. The physical interpretation depends only on the condition (X, X) = 0, and this can always make sense in 
physics, pending a condition of quantization. For instance, in our case here it can represent the condition of 
equilibrium of Newtonian forces within the static ensembles of particles serving for interpretation. Then stochastic 
processes can be defined, in order to assimilate the fundamental physical quantities generating the three forces, 
with lengths, serving to realize the Cartan’s program of constructing a geometry. These stochastic processes are 
to be defined, for instance, in terms of some specific Lewis-Lutzky invariants [see (Mazilu, 2020), §4.3], and thus 

ξ1
2 + ξ2

2 + ξ3
2 = R2

ξ1
x
=
ξ2
y
=
ξ3
R
=:λ

(dξk )
2

k∑ = (x2 + y2 + R2 )(dλ)2 + λ 2 (dx)2 + (dy)2{ }+ 2λdλ(xdx + ydy)

λ 2 = R2

x2 + y2 + R2
∴ 2λdλ = −2R2 xdx + ydy

(x2 + y2 + R2 )2

(dξk )
2

k∑ = R2 (dx)
2 + (dy)2

x2 + y2 + R2
− xdx + ydy
x2 + y2 + R2

⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

X =
def

(x, y, z)

(X ,X ) ≡ x2 + y2 + z2



 121 

they should constitute the mathematical expression of the necessary memory in the global problem, analogous to 
the classical inertia. In such a case only the mass can be imaginary, but from the point of view of the equilibrium 
Newtonian forces – the static forces serving for interpretation – it can always be taken as imaginary. 
 In order to construct this absolute geometry, which we often have called here Cayleyan after its inventor’s 
name (Cayley, 1859), and now will settle for the name Cayley-Klein geometries, in order to respect the historical 
order of things mathematical [see for details and discussion (Klein, 1897)], we take the quadratic form (3.4.6) as 
a norm for the points in our space of points. It induces an internal multiplication, or a dot product of points by the 
polarization process: 

   

with an obvious correspondence between the indices of points and the indices of coordinates. This dot product 
helps us in characterizing a straight line in space – the essential concept necessary in constructing a metric. The 
straight line joining the points X1 and X2 is the locus of the points 

  (3.4.7) 
with λ and µ variable numbers representing some homogeneous parameters, coordinating the position of points 
along the straight line. This straight line intersects the absolute quadric (X, X) = 0 in two points, having the 
homogeneous parameters partially determined by the quadratic equation: 

   
‘Partially determined’ means here ‘up to an arbitrary factor’. For, indeed, we cannot extract from this equation, 
but only the ratios of these homogeneous coordinates – usually taken in analytical geometry as non-homogeneous 
point coordinates along the line – in the form of the roots of equation, i.e. 

 
 

(3.4.8) 

As it turns out, though, these two ratios are just enough for our purpose to build a metric of the space. 
 Let us explain the general philosophy of this construction: a metric usually represents in geometry the distance 
between two infinitesimally close points, so that what we need first is to define a distance between points in 
general. Now, we do not have in our experience but the Euclidean distance: any other such quantity goes by 
analogy. The quantity that reduces to distance between two points in the Euclidean case turns out to be the cross 
ratio of four points on a straight line: two of these points are fixed and used as a reference frame on the line, while 
any other two points are taken as the current pair of points between which we calculate the distance. The two 
points from equation (3.4.8) can be taken as the reference frame along the straight line defined by equation (3.4.7), 
and with them we can construct the cross ratios involving all pairs of points of the line. Then the distance is given, 
up to a numerical factor, by the logarithm of such a cross ratio (the so-called Laguerre’s formula, as announced 
before). Let us see how this philosophy really works. 
 Given the two points X1,2 the straight line joining them contains all the points of the form X = tX1 + X2, using 
for location a non-homogeneous parameter. In order to define the distance between the two points, we can choose 
arbitrarily two other points on the line, X3,4 say, to play the part of a reference frame on the line, to which we need 
to refer any point belonging to the line. Then the cross ratio of points on line is simply defined as the cross ratio 
of the corresponding non-homogeneous parameters t. So, we settle for the definition: 
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(3.4.9) 

of the cross ratio of our four points on the line. The Laguerre distance between the first pair of points is simply 
proportional to the logarithm of this quantity. It depends, of course, on the second pair of points of the cross ratio, 
but this ambiguity can be substantially reduced if we refer the construction to the absolute of space. First, notice 
that according to equation (3.4.7), the parameter t has the values t2 = 0 for the point X2, and, correspondingly, the 
value t1 = ∞ for the point X1. In view of this, the cross ratio (3.4.9) takes the simple form 

 
 

(3.4.10) 

The two points X3 and X4 must offer us the advantage of allowing a standardization, if we may say so, of this 
construction. To this end, they must be chosen, as we said, on the absolute, since every pair of points in space has 
a corresponding pair of points on the absolute, these being the points where the corresponding straight line 
containing our points intersects the absolute. With this choice, the corresponding parameters t3,4 are then given by 
the two ratios from the equation (3.4.8), so that equation (3.4.10) becomes 

 
 

(3.4.11) 

which is, indeed, sufficient for defining a metric by the Laguerre formula. This ratio, however, is complex of unit 
modulus so it cannot serve the intended purpose, which requires reality of the distance. The conclusion can be 
ascertained from the fact that the quantity under the sign of square root is always negative for real vectors in the 
Euclidean space. Nevertheless, according to Felix Klein, even with this cross-ratio, we can still construct a 
differential version of the distance by Cayley’s method, viz. a metric of space (Klein, 1897). Indeed, the distance 
according to Laguerre’s formula is only proportional to the logarithm of the cross ratio, and therefore it involves 
an arbitrary constant. The logarithm of the cross ratio from equation (3.4.11) is a purely imaginary complex 
number, so that, if we choose the proportionality constant as a purely imaginary complex number the things are 
getting in order. Thus, the Laguerre distance given via the logarithm of the cross ratio (3.4.10) can be represented, 
indeed, by the distance given via the logarithm of cross ratio (3.4.11): first, the ratio of the two expressions 
involved in this last equation is a purely imaginary complex number and, secondly, we are at liberty to choose an 
imaginary number as the constant that multiplies the logarithm defining the Laguerre distance. 
 With these observations we can construct a differential version of the distance – a metric of space. Thus, 
assuming that the two points X1 and X2 are infinitesimally close X1 = X, X2 = X+dX, we can calculate the necessary 
quantities in equation (3.4.11) as 

   
Now, in the real domain, we can accept that the quantity (X,dX)/(X,X) is an infinitesimal quantity of the first 
order, while (dX,dX)/(X,X) is an infinitesimal quantity of the second order. Thus the cross ratio (3.4.11) can be 
expanded and, to first infinitesimal order of infinitesimals, it is 
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The logarithm of this quantity is given, to the same first infinitesimal order, by the second term from the right 
hand side, which is, of course, a purely imaginary number, as we just said. Then, we can set things in order by 
Klein’s recipe: multiply the logarithm with a purely imaginary constant quantity, i×R say, in view of the fact that 
the metric per se is defined up to an arbitrary scale factor. Thus the Cayley-Klein – or absolute – metric of this 
geometry can be finally written in the form of a quadratic differential: 

 
 

(3.4.12) 

with R an arbitrary real quantity. This equation is a regularly considered form of the Cayley-Klein metric, with 
reference to any absolute of space. It turns out that this expression is also valid in larger conditions of space 
definition: complex points, general definition of the absolute as a quadric in this space, etc. Dan Barbilian, to 
mention a notable case, used it for the cases where (X, X) is a homogeneous polynomial of arbitrary degree – a 
quantic, in algebraic phraseology – thus generalizing the metric (3.4.12) even further (Barbilian, 1937). 
 However, as long as the absolute is a quadric – i.e. a general surface specified by an equation quadratic in the 
coordinates – using the properties of the dot and cross products of the real vectors in space, the metric (3.4.12) 
can be written in the form: 

 
 

(3.4.13) 

The previous results obtained by projection are to be found here by assuming that one of the coordinates – 
specifically z – is constant, specifically R, so that, in such a case, we have 

  (3.4.14) 

If we apply this to the metric (3.4.13), we get the result: 

 
 

(3.4.15) 

which, no question, coincides with (3.4.4) up to a factor, but reveals an interesting position of the metric of the 
Maxwell fish-eye (1.2.18) for the two-dimensional case. Before commenting on this result let us go over to one 
more dimension, as promised. 
 So, let us now replicate the previous case for the three-dimensional space as carrier of the Cayley-Klein metric 
instead of the two-dimensional plane. We just have to get started from the Einstein’s quadratic with four terms 
instead of that from equation (3.4.1): 

  (3.4.1¢) 

Formally then, nothing changes from what has already been done so far, except the final formula (3.4.13): there 
is no possibility of a vectorial connection between the dot- and cross-products in the four-dimensional case. 
Indeed, the dimension of the cross-product space here is six, and therefore the cross-product – which is obviously 
a skew-symmetric tensor – cannot be assimilated to a vector in four dimensions. However, an identity of the same 
kind with the one from the three-dimensional case – specifically involving quadratic quantities – is also 
maintained in this case, under the name of Lagrange identity, whose concise form in the four-dimensional case is 
(Pierpont, 1928) [see (Barbilian, 1974), for a nice demonstration in the most general case]: the sum of squares of 
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the six 2´2 different determinants Sab, made out with the columns number a and column number b of the 2´4 
matrix table, constructed from the coordinates of two points: 

 
 

(3.4.2¢) 

can still be expressed by the difference between the product of the norms of the two lines of the table, as 
represented by the left hand side in equation (3.4.1¢), and the square of the dot-product of these lines, as induced 
by the norm thus defined. To wit, we have: 

 

 

(3.4.16) 

Here, as in equation (3.4.5), we understand that the point X is specified by the four coordinates 

 
 

(3.4.17) 

Within this convention, the metric can be written as in equation (3.4.13), with 

   

Making t = ±R, as in equation (3.4.14), we get the Cayley-Klein metric in the form 

 
 

(3.4.18) 

with summation over positive permutations of the three coordinates x, y, z, whose first term is: 

 
 

(3.4.19) 

and second term is the square of the differential area in space, up to a factor, of course: 

 
 

(3.4.20) 

No doubt, the metric (3.4.19) is a Maxwell fish-eye metric, just like that from the guiding two-dimensional 
example: the equation (3.4.18) matches (3.4.15), and so the theory provides now now the metric in the form once 
used by Constantin Carathéodory in his optical researches (see §1.2 of the present work). 
 Now, the promised comment may be in order, regarding the great advantage of the emancipation from the 
classical chains of the projection mapping. Notice first, that Willem de Sitter might not have been entitled to reject 
the idea of a spherical world on the grounds of invariance, for the projection – and, therefore, an incriminating 
coordinate transformation – is eliminated from among the procedures [see de Sitter’s commentary in the excerpt 
before the equation (3.2.4)]. Secondly, this emancipation from the idea of mapping, gives a very much needed 
freedom to mathematical formalism, in order to be used for physical purposes. To offer a significant example, for 
once we have a principle of confinement, like the one used in the Berry-Klein theory of gauging of the classical 
forces (Berry & Klein, 1984): particles contained in a spherical enclosure, interacting with this enclosure via 
forces acting in the infrafinite range of time, i.e. collision forces, but ‘at infinity’, as it were, in view of the 
properties of the absolute. Such an absolute can even be generalized to an ellipsoidal surface, with virtually the 
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same results (Klein, 1984). Physically one can think of applying these principles to a Wien-Lummer cavity 
containing light and matter, or to an Einstein elevator in order to describe the gravitation field. We are thinking 
of using them in describing the physics of brain (Mazilu, 2023b). 
 Now, while the results above are still fresh in our mind, we think the time is ripe for a pertinent observation 
that can regulate, to a great extent, what follows from the present work. Bartolomé Coll, in the later times, drew 
attention upon the fact that the initial Riemann’s program of construction of a n-dimensional manifold having as 
metric a quadratic form in the differential of coordinates (Riemann, 1867) requires n(n – 1)/2 functions that can 
be determined by the physical nature of the manifold itself (Coll, 1999, 2007). Coll’s observation is that the 
gravitation can be described as a universal deformation, starting from a flat metric. This replicates the historical 
case of Einstein’s construction of general relativity (Einstein, 1916b), and finds encouraging support in the fact 
that for the three-dimensional case (n = 3) it can be ‘legiferated’, as it were, by a geometrical theorem (Coll, Llosa, 
& Soler, 2002). 
 Now, the case of the Cayley-Klein metric (3.4.18) is particular for this theorem, viz. the Theorem 1 (or 
Theorem 2) of (Coll, Llosa, & Soler, 2002), for a metric tensor of the general form: 

  (3.4.21) 

with an obvious renotation of the coordinates. The metric tensor of this form is typical in the physical description 
of the mediums like the Maxwell fish-eye, and can be used in introducing the gravitation indeed, by a method 
involving the name of great Maxwell again, but in connection with a realization of electrodynamics. The method 
will be described in concluding this work. For once, a few other observations are in order. 
 Stating our results here in terms of Coll’s universal deformation, we must say that any cosmological metric 
of Einsteinian type, must be the universal deformation of a Maxwell fish-eye metric. This statement has a 
tremenduous impact into description of the physics of universe. In order to catch a glimpse of this importance, 
we just need to notice that the universal deformation provided by the Cayley-Klein geometry always brings in a 
metric of the type needed for the cosmological boundary conditions of Einsteinian general relativity [see §3.1, 
the equation (3.1.5) ff]. On the other hand, going a little ahead of us, we can say that, if the light is the carrier of 
information in this universe, then its physical structure is decided (sic!) this way: Einstein did not ask too much 
from the light; he just did not ask enough! 

 3.5 A (Re)Assessment via the Grand Analogy 

 We can say that the Maxwell fish-eye metric is the background part of the Cayley-Klein metric (3.4.18). And, 
when we articulate ‘background’ here, we have in mind even a solid physical meaning: this metric describes in a 
purely Einsteinian natural philosophical way, the physics of the universal supporting medium of our existence. 
Based on this observation, we shall try to reassess the key point of the Einstein-de Sitter debate, in order to be 
able to extract from this historical moment what we think as the right moral. With absolute geometry, the moot 
point of a five-dimensional world is out of picture. Using the constant R for the normalization of the coordinates, 
in order to bring the Maxwell fish-eye metric to the dimensionless form used in §1.2, we get for the metric (3.4.19) 
the known expression (1.2.15), which is the space metric used in equations (3.2.9), (3.2.12) and in the 
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Schwarzschild solution (3.3.2), serving for interpretation in general relativity. As for the rest, given in (3.4.20), 
of the Cayley-Klein metric (3.4.18) – the Coll’s universal deformation part of the metric, as we would like to call 
it, constructed according to Cayley-Klein geometrical recipes (see §3.4 above) – a simple but a little tedious 
calculation gives the result 

 
 

(3.5.1) 

where r = S(x2) and (dW)2 is the metric of the unit sphere, as usual. Adding this term to the Maxwell fish-eye 
metric (3.4.19) and using the transformation (1.2.14) to replace r, gives (3.4.18) as 

 
 

(3.5.2) 

Thus, under a universal deformation according to Cayley-Klein geometry, the space metric does not change its 
algebraical form, only the characteristic phase defined by equation (1.2.14) is reduced by half. The character of 
the metric does not change by this Coll universal deformation. If, according to Coll’s main thesis, the gravitation 
is responsible for the deformation, then this property of the Maxwell fish-eye metric is of essence. Let us show in 
what sense we understand this statement. 
 With a little stretching of the mathematical notions, this metric description of a universe – known as the static 
universe of Einstein ever since the times of historical debate – is actually a particular case of a hologram. First of 
all, just by being a projection, such a description surely qualifies as a ‘photography’. With this observation, 
Willem de Sitter’s objection can be better understood. Originally, this objection was referring to the fact that the 
prescriptions of relativity, which require a four-dimensional spacetime as an arena of reality, were simply 
forgotten by Einstein in this case (de Sitter, 1917). But from the point of view of the concept of a hologram, one 
can see immediately that this objection can be actually split in two subordinate parts. First, the one essentially 
stressed by de Sitter himself, is that the manifest relativistic equivalence between space coordinates and time 
coordinate was lost in Einstein’s construction: a three-dimensional universe cannot possibly describe but only a 
space filled with matter, and the time can only be a continuity parameter of a classical nature. As a matter of fact, 
with the metric (3.1.3) one forgets completely about time, for we only have a static universe, as mentioned above. 
So, de Sitter applied the Einstein’s procedure to a five-dimensional abstract space, and projected this abstract 
space onto a four-dimensional spacetime, thus preserving the Einstein’s method, but considering, on this occasion, 
the spacetime physical, according to the precepts of relativity, not the space alone as Einstein did. Here the second 
subordinate objection surfaces, as to the possible physical meaning of the assumed five-dimensional manifold. 
And, while we are on it, notice that neither (3.1.1) nor (3.1.2) may have a physical meaning, if not conceived as 
the manifolds of events, as in special relativity. The basic agreement of both Einstein and de Sitter is that this case 
cannot be accepted. However, there is a little subtlety in the relativistic equivalence of the time and space 
coordinates, that cannot be better illustrated than by the concept of a hologram, as we shall show right away. 
 Indeed, in order to do this job in utmost generality, let us use the previous idea – suggested, as a matter of 
fact, by Einstein’s projection method – of the universe as a hologram. Certainly, as we just said, by such a 
projection the universe qualifies as a photography. In this case, the point of Willem de Sitter’s objection to this 
method can be associated with the fact that, a universe being three-dimensional, the projection must be a bona 
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fide hologram, rather than just a simple photography. At rigor, such a hologram can be considered as a set of 
photographies of the same object, taken simultaneously at different ‘phases’, as it were, which is, in fact, the way 
a hologram is technically realized. To further elucidate this issue, while making our case along, notice that 
Einstein chose the universe x4 = constant, when he would be completely free to choose also any of the other three 
possibilities xk = constant, with k taking the remaining values in turn. The correctness of the choice he made is, 
nevertheless, a priori guaranteed by symmetry: a sphere filled continuously with matter, is the same any way you 
look at it! However, as de Sitter has noticed in the excerpt above, a simple projection leads to Euclidean case, and 
the theory gets stuck with it. If the symmetry is somehow broken, for instance by an interpretation of matter with 
particles having no homogeneous numerical density inside the sphere, all of the four Einstein’s projections are 
needed simultaneously in order to describe the resulting universe as a bona fide hologram. 
 This was the case signaled by Willem de Sitter and, relativistically speaking, it arises no matter of the 
conditions of symmetry and continuity of matter, i.e. even in the ideal conditions of classical physics or relativity, 
where the interpretation involves just classical material points. However, in the case of relativity, the coordinates 
and the time must be equivalent from the point of view of any perspective of projection, so to speak. In his 
argument, de Sitter considered the Minkowski metric of the spacetime continuum. Then an Einstein projection at 
constant time would give the universe proper of classical mechanics, as a continuous set of simultaneous points, 
if an incidental interpretation is in place. All the other three remaining projections break the symmetry: they are, 
each one of them, Lorentz three-dimensional worlds different only by the pair of space coordinates used in 
projection [see (Mazilu, 2020), §3.1 for a formal illustration of such a world, in the case of charges]. So, if it is to 
apply any considerations of a symmetry here, only these three last projections can be, in the last resort, considered 
as equivalent. The universe must then be, according to Einstein’s recipe, necessarily described at least as a ‘binary 
hologram’, if we may say so: one of the ‘photographies’ is the regular Einsteinian static world at a given 
relativistic time, the other is a Lorentzian three-dimensional world, which is a plane world, but ‘in motion’, as it 
were. Mention should be made, in connection to the historical case in point, that all of the parties ever involved 
in the Einstein-de Sitter debate did not consider but a single ‘photography’ instead of a hologram, and thus many 
conceptual details were left for the future to be decided. In other words, a burden falls on us: it is our duty to 
properly assess what that moment represents indeed for physics! 
 These natural-philosophical considerations, are mostly issues of theoretical physics proper, to be deferred to 
further appropriate works [see (Mazilu, 2023a) for initial details]. They certainly become necessary, for instance, 
in problems of physiology of brain and heart, where the concept of hologram serves for the definition of the 
memory (Mazilu, 2023b). What we need to extract from this tale is the description of a universe in general, as a 
concept: it is, indeed, a hologram. And it is legal, we have to admit, to realize it as a single ‘photography’, as the 
protagonists of the historical debate did in fact. However, such a hologram must contain any number of 
‘photographic phases’ depending on the structure of matter contained in the universe to be described. For, the 
problem is, in fact, if we can dispense with the idea of projection and describe a hologram as a whole, like its 
name implies, in order to be able to discern ‘the phases’ in it. These phases need to be used in describing the 
universe as a physical structure, which, in turn, must be used for prediction purposes. The solution to this problem 
was virtually provided by Felix Klein even before Albert Einstein became… Einstein, but it was particularly 
obvious on the occasion of Einstein-de Sitter debate, for which Klein was the distinguished ‘moderator’, as it 
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were. It is offered by the concept of absolute or Cayleyan geometry, presented in the previous section. In order to 
properly understand this issue, we first need to explain the coming to being of the concept of hologram. 
 We take as beyond any reasonable doubt the fact that the wave concept of wave mechanics, at least as it was 
initially conceived by Louis de Broglie, originates in the physics of light. Time and again, along the evolution of 
wave mechanics towards its condition of a free-standing physical method, people have returned upon the concept 
of wave, refining it over and over. However, we should take notice that the refinements in question went, by 
choice, only about mathematical subtleties. And, in spite of the fact that they were not particularly intended for 
that purpose, those mathematical subtleties had mostly the final effect of harmoniously incorporating into the 
existing idea of wave some old concepts usually deemed as being only of historical interest for the physics of 
light. For, they were directly descending to us from the times when the physics of light itself would come to being 
from the maze of mechanics and geometry. Those old concepts regarding waves had an actuality for the physics 
of light at the historical moment when they were revealed to physics, but their prominence faded away in time, 
outshined, as it were, by the rising tide of calculation techniques which, naturally, attracted the physicists and 
lured the natural philosophers and historians of science with a promise of ‘democracy’, if we may be allowed to 
use this word here. To be more precise, that ‘democracy’ meant what it actually means even today: accessibility 
to physics, regardless the reason, for all those who can handle a little mathematics. Incidentally, this may count 
as a progress, indeed, and is usually taken as such in almost all modern historical assessments. However, mention 
should be made that this progress scarcely touches the natural philosophy: very few are the individuals who, 
capable of handling mathematics, are at the same time capable to assume the position of an authentic natural 
philosopher. 
 The explanation of this phenomenon of our knowledge – that is, regarding the refinements of concepts, and 
all – is as simple as it gets: like any other concept of physics, the wave itself is a product of analogy. This, in fact, 
seems to be the best occasion to elaborate a little on our understanding of the concept of analogy itself, since it 
might be out of the usual line in some respects. Generally speaking, the analogy is defined by a standard to which 
the analogue, viz. the object concept, in case we are talking of concepts, is referred, in a process of comparison 
and assessment of differentiae. Apparently, though, there is an objective law of evolution of our knowledge, 
namely that if in the process of analogy the standard concept is not present in the object concept with all its 
differentiae, the analogy does not work properly, that is, it does not properly serve its intended purpose. This lack 
of appropriateness is manifested through the fact that the analog concept itself objectively evolves to its defining 
finality by the tendency of including in its own idea all the differentiae possessed by its standard of reference, no 
matter if this one actually had them, or only had to have them at the inception moment of the process of analogy. 
Now, most of the times – if not all of them! – the concepts of human knowledge are actually incomplete. To wit: 
they cannot be present as standards in any analogy whatsoever, with all their differentiae, simply either because 
the man is not aware of those differentiae, or they are themselves incomplete as ideas. This basically means that 
the human concepts ‘grow differentiae’, so to speak, only when they are used in analogies: a certain differentia is 
to be recognized as such in the analog concept – even though it is not present in the standard one – and therefore 
needs to be transferred back to the standard in order to complete it as a concept. 
 It is, perhaps, worth presenting this conception, at variance with a distinguished historical case in the logic: 
Gotlob Frege’s celebrated request of ‘meeting halfway’. This historical case is, in our opinion, an example 
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showing that the natural philosophy – science in general – goes beyond the everyday experience, to which the 
natural language is immanently confined. Quoting: 

… By a kind of necessity of language, my expressions, taken literally, sometimes miss my thought; 
I mention an object, when what I intend is a concept. I fully realize that in such cases I was relying 
upon a reader who would be ready to meet me halfway – who does not begrudge a pinch of salt. 
 Somebody may think that this is an artificially created difficulty; that there is no need at all to 
take account of such unmanageable thing as what I call a concept… [(Frege, 1960); our emphasis, 
a/n] 

The Frege’s ‘object’ needs to be taken as equivalent to our ‘standard concept’ above, for an object is the word 
designating a concept presented to our wits by the senses: that specification of Frege to the effect that he was 
‘intending a concept’ leaves no doubt about the fact that a concept needs more than senses in order to have the 
differentiae embodied in an object. We need to recall, however, that the natural philosophy – science, in general 
– goes beyond words, for our experience implies the necessity of explaining the objects themselves. 
 Present case in point: in expounding the Louis de Broglie’s concept of wave [(Mazilu, 2020), passim], the 
standard concept – that is the light, which, no doubt can be taken as an object of our experience – is almost always 
used with no reference to the old details concerning the initial description of the light, in the times when its 
concept was itself an object concept for analogy. However, we need to mention that the idea of wave in the case 
of matter occurred to de Broglie only in connection with the possibility of attaching a frequency to a material 
point (de Broglie, 1923) suggesting a periodic motion that can be assigned to that material point. Louis de Broglie 
saw a wave in this periodic motion, liable to make out of the classical material point a ‘wave phenomenon called 
material point’ according to his very own expression (de Broglie, 1926c). The first article from that 1923 series 
(de Broglie, 1923a) opened the ‘Pandora’s box’, as it were, of the wave-particle duality. While the train of issues 
was triggered by the idea that the matter’s fundamental formations (specifically the electrons) may have a wave 
associated to them, what strikes us most is the fact that all those three works of de Broglie from that fateful year 
1923 are mainly concerned with issues connected to light, from which the concept of wave is borrowed: 
diffraction phenomenon, and the interference explaining it. This means that the very concept of wave, taken as 
standard in the de Broglie’s wave-particle analogy, would miss many fundamental differentiae in the original 
Fresnel’s physical theory of light that instituted the diffraction as a phenomenon in its general phenomenology. 
 Fact is that Louis de Broglie remained always concerned with the properties of light, as inferred from the 
properties of matter, rather than with the properties of matter per se. To wit: after setting the things as straight as 
possible with all issues he could perceive in connection with the frequency association to a material point via 
energy (de Broglie, 1925), he had to face the essential one among these, associated with the proportionality of 
intensity of light with the square of its amplitude. This occurred in the times when the issue became critical 
through the works of Erwin Schrödinger, who presented quantization in matter as a problem of eigenvalues 
(Schrödinger, 1928, 1933). Thus, de Broglie realized the fact that the solution of the problem should be associated 
with the modern idea of propagation, represented by d’Alembert equation (de Broglie, 1926b,c); however, in 
order to finalize the solution, he had to put in order the details related to the old concept of a light ray. 
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 Indeed, it is only this concept that would make us capable of comprehending an idea of corpuscular intensity 
needed for the probabilistic interpretation of the wave function, through its differentia of transport. And it was 
on this occasion, that some missing points of the Fresnel’s physical theory of light had to be recognized into a 
new description of the concept based on an approach of the diffraction phenomenon. This approach had, first, to 
arrange physical properties for the wave surface, up to the point where it became a potential of velocities. Then 
the idea of flux of particles through this surface became essential, so that the density of particles had to be taken 
as proportional to the square of the amplitude of the wave. The moral of this story is that Louis de Broglie’s theory 
had to ‘update’, as it were, the description of diffraction phenomenon according to Fresnel’s physical theory of 
light, and this update went as far as to include into theory the old concept of ray, as it appeared to Newton and 
Hooke way earlier than the time of Fresnel (Mazilu, 2020). 
 Now, as we see it, the fact that the initial idea of de Broglie sprung from special relativity, points out towards 
the consistency of another analogy discussed by us here in some detail, namely the one between Galilean relativity 
and Einsteinian relativity – the ‘grand analogy’ of modern physics, as we would like to call it. From this 
perspective, the de Broglie’s idea of duality reveals the important role that the Earth’s surface – as a ‘cradle of 
civilization’, if we may be allowed to use a poetic description – has to play in our knowledge, a role just as 
important as its secular one of supporting the life on Earth, and hints to a connection, by continuity as it were, 
between the two kinds of relativity, Galilean and Einsteinian. First of all, this ‘grand analogy’ clarifies the concept 
of general relativity as presented right above in this very chapter. 
 More to the point: the Galilean relativity needed the idea of a smooth surface, upon which the reference frames 
would be able to move uniformly. According to our experience this can be realized on a quiet sea, indeed, but 
only using our imagination, since a quiet sea per se does not exist in the reality revealed to our intellect by the 
facts of daily experience. No doubt, this idea of surface was suggested by an already existing notion of reference 
frame, namely the sailing ship. This is essentially a limited space – a coordinate space, one can say, having in 
mind what physics made in time out of it – whose counterpart in the case of ether was realized only later in 
physics, again, in connection with the light phenomenon. To wit, it was associated with those physical properties 
of the light that led to the idea of quantization. It is the Wien-Lummer cavity, used in studying the thermodynamical 
properties of light, i.e. those properties that led to the Planck’s archetypal quantization procedure [see (Wien, 
1900); see also (Lummer, 1900); the work that launched the idea of cavity in the experimental physics of light is 
a joint work of these two authors (Wien & Lummer, 1895)]. 
 Then questions aroused by the analogy between the two relativities, can be elucidated. A first one, comes 
right away: do we have at our disposal the counterpart of a ship, in the Earth’s journey through the universe? The 
answer is affirmative, on account of the fact that the equivalent of a classical ship is simply a Wien-Lummer 
cavity. According to this view, the idea of ship – and, with it, the concept of reference frame – needs to be 
completed with some further differentiae, for such a reference frame is more like a modern submarine ship, so to 
speak, rather than a regular sailing one. In fact, this is one of the best documented physical facts in the recent 
history, theoretically as well as experimentally: the space around Earth contains radiation having the Planck’s 
spectral distribution (Fixsen, Cheng, Gales, Mather, Shafer, & Wright, 1996). Let us explain this statement. 
 It is known, indeed, that all of the spectral energetic distributions in the case of light, Planck’s included, of 
course, must obey the Wien’s displacement law (see §1.1 for further details). This law, in turn, is an expression 
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of independence of the spectral distribution of the dimensions of the enclosure containing the radiation that 
happens to represent the light in that enclosure (Mazilu, 2010). This kind of invariance is manifestly a space scale 
transition invariance: the one that allows us to posit that the laws of radiation found in a terrestrial laboratory, are 
also laws of radiation of the world at large, acting, therefore, in any coordinate space whatsoever. And the NASA 
work results published in the year 1996 (loc. cit. ante) prove, at the highest possible technological level ever 
reached by man, that the background radiation around Earth has a Planck’s spectrum, just like any kind of light 
studied on Earth inside Wien-Lummer experimental cavities. This, we believe, shows that the idea of a ‘ship’ is 
handy for the general relativity, in the form of a coordinate space described by us based on Earth surface. 
Therefore, the analogy between Galilean relativity and Einsteinian relativity can also be extended for general 
relativity on this account, provided, of course, the second basic term of this analogy exists, in the form of a… sea: 
the analog of the quiet sea! Here, the Willem de Sitter’s idea gets into play, with its world without matter. 
 The de Sitter moment of our knowledge acquires, therefore, a fundamental meaning: it introduces a charge 
sea, of the kind usually illustrated in physics by Dirac or Fermi ‘seas’ [see (Dirac, 1935), for an early encounter 
of the theory of fields and particles with the de Sitter’s world]. One can come up with this idea, just from Einstein’s 
considerations: the homogeneous quadratic four-dimensional manifold used by him for the embedding procedure 
is simply what the geometers call a Veronese variety, that can be taken as representing Katz’s natural 
philosophical ideas regarding the charge [see §3.4 above; see also (Mazilu, 2020), §§ 3.1 and 4.4]. This sea of 
charge is, according to de Sitter, not matter just yet: the Einstein’s precepts of natural philosophy do not apply 
here. Only starting from this point on, the matter is coming into being, and the grand analogy tells us just how 
this can happen: in this sea of charge – obviously, a continuum of the kind constructed by Einstein, and revealed 
by the analysis of de Sitter – the motion of reference frames, with elementary particles playing the part of 
‘submarines’, cuts waves and leaves wakes, as it were, just like the ships in the still water of a Galilean quiet sea. 
 Indeed, as our experience plainly shows, there is no motion of ships without wakes on the surface, or within 
a quiet sea. These wakes are lasting for periods dictated by the physical properties of the water. It is, of course, 
our duty, then, to show how these wakes represent, for instance, the inertia of matter or, more generally, the 
memory of the world, imprinted into de Sitter background, as it were, just like the wakes representing the memory 
of a motion of the sailing ships in the case of a quiet sea. For once, this brings to our attention a valid differentia 
of the of physical concept of memory: it would mean that the memory is intimately connected to the concept of 
motion. It is, perhaps, a third differentia of this concept, besides the equation of motion and the trajectory: it 
imprints memories into electrical background. And, the grand analogy shows that within a process of 
interpretation, this idea can be accounted for by the concept of turbulence. Until further elaboration, though, we 
only have to take due notice of the fact that the analogy between Galilei’s relativity and Einstein’s relativity works 
just perfectly even on this account. 
 If anything, the Einstein-de Sitter debate, described by us above, has a positive connotation, even though we 
have to express it… negatively: there cannot be a position per se of the Earth in the universe, just as there cannot 
be any cosmological boundary conditions for the metric tensor, in the sense of Einstein. Thus, in assigning the 
metric tensor, we have to limit ourselves to the use of classical integrals of motion, and work with them in the 
way prescribed by Einstein in building his cosmology. It is for this case that the de Sitter’s metric tensor (3.2.7) 
can get a physical meaning in connection with the eccentricities of the cosmic motion of the Earth’s system and 
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this is the most we can do in order to accomplish an Einsteinian-type natural philosophy. As we have shown 
above, from this perspective the Einstein’s recipe simply means a prescription of the cosmologic metric tensor 
according to a manifest continuity of our knowledge: it only sanctions the fact that it does not make any sense to 
talk of closed Newtonian orbits otherwise. 
 On a positive note, this conclusion also means that, just like Newtonian dynamics, the general relativity should 
work only with the prescription of position of a central point of attraction inside the core of the Earth. Such a 
position, however cannot be given but only with a certain probability in a region of space filled just with the 
matter per se. That region contains matter that needs to be described by the same statistics as the one used by 
Planck for the realization of the quantization of light: the Earth itself is a Wien-Lummer cavity, existing at the 
cosmic scale in another Wien-Lummer cavity, existing… and this hierarchy goes on and on, both ways, in 
infrafinite as well as transfinite space ranges, in view of the scale-transcendent Wien’s displacement law. This 
should be the message, as it can be read in the above-mentioned NASA results: we take it as such anyway. It is, 
as we said, one of the most significant discoveries of the humanity in the last times: results of our experience, 
therefore valid in the finite space range, and proved to be valid in the infrafinite range by the Planck’s statistics 
leading to quantization, turn out to be valid at a transfinite scale of space. In other words, the quantization seems 
to be the only universal law of physics! 
 On the other hand, thus understood, Einstein’s prescription carries a heavy mathematical meaning, that needs 
to be noticed right away. Namely, it sets the metric tensor as a matrix function of integrals of motion describing 
the classical motion – the components of the Runge-Lenz vector – in the associated Kepler problem of the 
dynamical explanation of the Moon’s motion, for instance, if it is to consider the case of Earth. As Willem de 
Sitter would put it, this turns out to be a right cosmological prescription of the metric tensor, after all. But it is by 
no means a prescription at infinity per se or, if it is considered as such, this infinity has to be dealt with by the 
mathematical procedures of the absolute geometry. Indeed, the Einstein’s prescription of the space metric should 
be, somehow, equivalent to a Cayleyan prescription of the metric (see §1.3), which appears as a particular case 
of Coll prescription. This was, indeed, noticed right away by Felix Klein on the occasion of reading Einstein’s 
Cosmological Considerations [see (Klein, 1918), for his almost obsessive insistence on the point that physicists 
should take notice of the fundamental concepts of geometry, in their construction of a spacetime theory] as already 
remarked before. In order to better grasp the close connection between the Lorentz transformation and the 
Cayleyan geometry, one can also consult the extensive work of Jean-Marie Le Roux, elaborated within just about 
the same time period [see (Le Roux, 1922), especially §§26–31], and the already cited work of Guido Castelnuovo 
written a decade later (Castelnuovo, 1931). 
 On a note that reminds us of Gottlob Frege, we need to mention that the previous manner of (re)assessment 
incites, and is, in fact, incited itself, by some pertinent observations on the meaning of certain words uttered, on 
the occasion of the old Einstein-de Sitter debate that we presented here, especially by Willem de Sitter. On these, 
we think, it is appropriate to insist by the way of closing the present chapter, in order to recall ourselves that the 
word remains yet the main tool of understanding in the world of humans. It is possible that originally these words 
would have been associated with a completely different meaning. However, they helped us in establishing a kind 
program of the present work, exactly as they were written and reached us, so that we feel, in a way, even obligated 
to explain them according to their original mathematical association. 
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 In order to associate them with what, in our opinion, is a proper understand, one must start from the idea that 
the Einstein’s natural philosophy can be summarized by the following two points, unfortunately unrecognized as 
such in the modern physics: 1) a length is perfectly equivalent to a distance, as long as the electrodynamics is 
involved in our judgments, and 2) if the gravitation enters the play the two magnitudes – length and distance – 
are no more equivalent. These aspects of the Einsteinian natural philosophy where particularly stressed during 
the old debate, especially by the commonly recognized circumstance that the whole Einstein-de Sitter argument 
is centered around the fact that the metric tensor from equation (3.2.3) is not a proper choice for the cosmological 
boundary condition of the metric tensor. The deep reason, at least as we see it, is that it cannot represent a metric 
tensor, because the relativistic quadratic form itself is not a metric per se but an estimation, that can be even taken 
as a statistical sampling estimation. To wit: that quadratic form is referring either to the estimation of length, 
sampling an equivalent distance, or to the estimation of distance, sampling an equivalent length. The metric per 
se cannot be constructed but only cosmologically, in the manner indicated by Einstein, and when it comes to 
boundary conditions we have to take in consideration de Sitter’s philosophy. Going a little ahead of us here, we 
can say that the metric associated with the tensor (3.2.3) represents only a statistical sampling variance of either 
the distance when the length is measured, or of the length when the distance is measured. However, geometrically 
speaking, a variance cannot be always a metric. It may be of interest to take heed – as we shall actually do here – 
of the fact that a variance is taken as such a metric in the original ‘Riemannian’ geometrical spirit (Riemann, 
1867), for the case of the theory of colors [(Silberstein, 1938, 1943); see also (Silberstein & MacAdam, 1945)]. 
 Secondly, in our opinion, the definitions (3.2.10) and (3.2.11) of coordinates, mathematically support the 
thesis that ‘the world is not at all spherical’, which is contrary to Einstein’s cosmological thesis. To wit: by its 
very definition, r depends on a further variable – again, a phase – that can itself depend on the direction in space, 
but it is always connected to the space extension of the relevant Einstein ‘instanton’, previously denoted by R. In 
this take, the equation (3.2.10), for instance, presents the radial coordinate as a statistical estimate of R, while 
(3.2.11) is, in the same sense, even more precise. The whole point of these definitions appears to be that the radial 
coordinate can be different in different directions: from the perspective of a general theory of surfaces, the 
universe is, indeed, not at all spherical, except in its mathematical description. 
 Now, all this having thus been stated, de Sitter’s words to the effect that the ‘whole universe performs 
arbitrary motions, which can never be detected by any observation’, should direct our thinking not toward an idea 
of ‘hidden’, as they are usually taken, but toward that of ‘impossible to be observed’. For, this last way of thinking 
leaves us the possibility of description by the concept of scale transition. There is a fundamental example here, 
provided by our experience: the existence of instantaneous arbitrary motions, that is motions performed at the 
infrafinite scale of time, can be assessed only by the observation of their offshoots, such as the existence of atomic 
transitions, for instance. They just cannot be described according to regular rules of describing the motion, that’s 
all. More to the point, they cannot be described by the classical dynamics, within Newtonian natural philosophy 
but, as we try to show here, they can be described within Einsteinian natural philosophy, as geodesic motions. A 
sample of such a description has already been offered in the previous §2.5. 
 When taking the scale transition standpoint, we can even sustain an argument to the effect that the ‘extra-
mundane “time” which serves as independent variable for this motion’ makes physical sense after all. This kind 
of time is mentioned by Willem de Sitter in connection to Einstein’s static world. And, far from being a nuisance, 
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it should, on the contrary, be taken as a ‘primary commodity’, as it were, for the theoretical physics at large. The 
general idea is, again, that if the universe should be holographic at any rate, in the sense mentioned by us before 
– namely that, as a physical object it is placed in a region that cannot be but a de Broglie limit of a wave surface 
within a ray – the extra-mundane time cannot be but the phase of a certain wave. It is in this capacity that the 
Einstein’s arbitrary time is actually a commodity rather than a nuisance, as we just said, for it allows us to define 
the time in a direct connection with space scale transition. All these observations will be developed as we go on 
with our discourse. For the moment, let us concentrate on a concept of instanton enticed by such an ‘extra-
mundane time’. 
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Chapter 4  Holography: Coexistence of Light and Matter 

The previous presentation of the Einstein-de Sitter debate shows that it places a particular emphasis on the concept 
of interpretation, which, in our opinion, was, and still is the main issue of the theoretical physics. Not only this, 
but it seems to us that the case even shows that the general relativity needs to include in its curriculum a special 
chapter dedicated to interpretation. More to the point, the general relativity, at least as it stands today, proves to 
be all about the interpretation. And it did, indeed, include an explicit reference to interpretation, as the historical 
facts brought about by us above show, at least partially if we may say so: the issue, obviously, was not solved in 
a conceptual way, as it were, but rather historically, by evolution of the corresponding mathematical discipline 
created through the general relativity. This chapter, therefore, is intended to be all about the conceptual solutions 
aroused along this historical evolution. 

 4.1 The Ernst Physics 

 There was a case along the evolution of the theory of general relativity when it revealed the capability of 
solving the problem of interpretation not in terms of coordinates, not in terms of symmetries, but in terms of 
coordinates related to symmetries. This case presented a solution to the problem of interpretation in the exact 
classical way: the existence of static ensembles of particles, maintained in equilibrium by the natural forces 
connected to their classical properties, that is, gravitational mass and charges (Israel & Wilson, 1972). Obviously 
such ensembles are fictitious along with their elements, insofar as the three natural forces can never be in 
equilibrium at any space scale. This means that, as the Einsteinian natural philosophy reveals, the limiting static 
universes are just logical instruments to work with, never to be realized in the world of our senses. 
 One might say, that the general relativity has grown the capability of describing such fictions by the very 
natural philosophy it entices. However, the work of Israel and Wilson just cited above, seems to have an 
apparently fresh hint of circumventing the indeterminacy related to the metric tensor of general relativity with 
profitable outcome regarding the general ideas of measurement and interconnection between the theory of nuclear 
matter and gravitation. This really means a way to describe the real world we inhabit. So let us show the essentials 
of the Israel’s and Wilson’s work. 
 In short, the starting point of the work of Israel and Wilson is, indeed, just the fundamental assumption we 
have chosen for the basis of our natural philosophical approach of the physics here, as well as anywhere else for 
that matter. In a way, therefore, we are even obligated to follow this work, for it has the fundamental problem of 
static forces in sight almost explicitly, as a natural possibility of existence of the static ensembles of Hertz material 
particles necessary for interpretation. Thus, it reveals, in the framework of the general relativity, that necessary 
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static solution required by Einsteinian natural philosophy, and transposes it into general relativistic terms, without 
any requirement regarding the symmetry of the space coordinates used. The only such requirement regards the 
time coordinate: the metric of spacetime must be stationary, i.e. it possesses just one Killing vector related to the 
‘symmetry of time’, as it were, which from a mathematical point of view actually counts as an incentive for 
considering Einstein’s ‘3+1 split’ of the spacetime. Let us quote, therefore, the original words: 

 Coulomb’s law and Newton’s law of gravity are formally identical apart from a sign. Hence, 
classically, any unstressed distribution of matter can, if suitably charged, be maintained in neutral 
equilibrium under a balance between the gravitational attraction and electrical repulsion of its 
parts. Indications that this obvious Newtonian fact has a relativistic analog, first emerged when 
Weyl obtained a particular class of static electromagnetic vacuum fields (Weyl, 2012), later 
generalized by Majumdar (1947) and Papapetrou (1947) to remove Weyl’s original restriction to 
axial symmetry, and further studied by Bonnor (1953, 1954) and Synge (1960). The Papapetrou-
Majumdar fields are to all appearances the external fields of static sources whose charge and mass 
are numerically equal (in relativistic units: G = c = 1). That they are indeed interpretable as 
external fields of static distributions of charged dust having equal charge and mass densities has 
been shown by Das (1962), who has examined corresponding interior fields. [(Israel & Wilson, 
1972); emphasis added, and bibliography suitably updated when necessary, n/a] 

It is, indeed, ‘an obvious Newtonian fact’ but the classical physics could never present the problem this way; nor 
does it even the Hertz’s update of mechanics, in spite of a rational definition of the concept of material particle 
[(Hertz, 1899), p. 45]: the Newtonian natural philosophy does not know of static ensemble of equilibrium under 
Newtonian forces. Having in mind the results arising from the Einstein-de Sitter debate, as we presented them in 
the previous chapter, and the work of Israel and Wilson from which we excerpted the text above, we can say that 
the general relativity is the only branch of theoretical physics which is forced to settle for the problem of static 
ensembles by an idea of equilibrium of forces. The way it solves this problem is not complete, indeed, but the 
approach shows why, and this is one of the most intriguing achievements of the physics of our times: it sees 
motion where there is none! 
 The Israel and Wilson’s work starts with the general observation that a stationary spacetime metric – a metric 
with a single Killing vector, where all of the components of the metric tensor of this spacetime do not depend on 
the time coordinate – can be conveniently written in the form 

  (4.1.1) 
Here the summation convention over repeated alternating indices is adopted. Based on this, in an appropriately 
chosen system of physical units (Weinberg, 1972), the Einstein’s field equations for the electromagnetic field as 
the only form of matter – the electrovacuum, as they call it – can be written as: 

  (4.1.2) 
As Israel and Wilson show in detail [see also (Perjes, 1971) and (Mazur 1983)], it turns out that these equations 
take the form of a system of nonlinear partial differential system: 

  (4.1.3) 

(ds)2 = f ⋅(dx4 +ω ldx
l )2 − f −1 ⋅(γ mndx

mdxn )

Gαβ = −8πTαβ

f∇2E = ∇E ⋅(∇E + 2Ψ *∇Ψ ), f∇2Ψ = ∇Ψ ⋅(∇E + 2Ψ *∇Ψ )
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Here the symbols are used according to our overall convention: the Greek indices run from 1 to 4, while Latin 
indices run from 1 to 3, representing space indices, the index 4 being reserved for the time coordinate. The 
spacetime metric tensor is here defined by 

   

and the three-dimensional corresponding metric (gmn) is used to raise and lower the indices in space coordinates 
operations. As we said, the property of stationarity means that all these components do not depend explicitly on 
the time coordinate. Then a potential 4–vector (A, A4) º (Ag) describes the electromagnetic field whose intensities 
are given by its covariant curl: 

   
This electromagnetic field contributes to the only energy tensor T of the problem, having the components 

 
 

 

and the tensor G correlated with it in equation (4.1.2) is the Einstein tensor of the metric field defined so as to be 
used in Einstein’s field equations like (3.2.5) above: 

 
 

 

Here Rab is the Ricci tensor of the metric, and R is the corresponding scalar invariant of the curvature. In terms of 
these symbols we then have in equation (4.1.3): 

  (4.1.4.) 

where F is a magnetic potential and f is an arbitrary function. Once we know the three functions ℰ, F and f we 
are able to construct the three-dimensional Ricci tensor corresponding to the metric (gmn) by formula 

  (4.1.5) 

where the round parentheses mean symmetrization with respect to indices specified by them, of the monomial in 
which those indices participate. For more details one can also consult (Mazur, 1983). 
 It has been noticed quite a few times along history ever since, that the problem of gravitational field in the 
general relativistic formulation could be solved if the logic would be taken a little out of the usual line, as it were. 
Such would be, for instance, the case if the space metric g would be allowed to be arbitrary. This circumstance 
would give us the possibility to choose it conveniently. In fact, Israel and Wilson notice that equations (4.1.5) 
may be taken as compatibility conditions between a preselected space metric and the complex fields ℰ and Y, 
rather than field equations per se. They found that, in the particular case of an a priori flat space metric, the 
compatibility conditions amount to a single linear relation 

  (4.1.6) 

and the whole construction comes down to solving the Laplace equation: 

  (4.1.7) 

equivalent to the system (4.1.3). By equation (4.1.6) the gravitational field determines an electromagnetic field – 
or vice versa, of course. This electromagnetic field is however not a transition field as we usually know it from 
the quantum mechanics of classical atom, but rather reflects the omnipresence and permanence of the very 
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gravitational field, as in the case of de Sitter continuum. Charles Misner and John Archibald Wheeler admirably 
captured these attributes of the gravitational field – actually of the space itself taken as an acting physical entity 
in the sense of Einstein’s general relativity – and studied in depth their meaning for physics in a work that made 
epoch ever since it was published (Misner & Wheeler, 1957). Along the present work we are only interested in 
making clear that the equation (4.1.6) is actually a mark of a measurement process, by showing its relevance for 
the case of a de Sitter universe in general, and especially for the planetary model. 
 The system of partial differential equations (4.1.3) was first introduced to physics by Frederick Ernst, for the 
significant case of the stationary axial symmetric – involving, therefore, two Killing vectors: one symmetry for 
time, and one for space – vacuum and electrovacuum fields (Ernst, 1968). This is why the complex potential ℰ 
from equation (4.1.4), defined, according to equation (4.1.7), up to a linear rational transformation of a complex 
harmonic function, usually carries his name ever since: Ernst potential. Even on that pioneering occasion, Ernst 
has noticed the fact that a functional relation between the pure gravitational and pure electromagnetic complex 
potentials solves the problem of gravitational field in a convenient background. But Ernst went a little further: 
just about the same time he proved that the above Einsteinian theory yielding the equations written here as (4.1.3) 
and (4.1.5), is still reducible to a variational principle, even when applied for a more general case of time 
dependent and nonaxially symmetric fields (Ernst, 1971). Thus, in the general case we have a variational principle, 
whereby the gravitation and electromagnetism are separated, so to speak, in the variational principle producing 
the field equations: 

 
 

 

Here R(g) is the scalar curvature of the metric g. We can see now that only in a flat space or, with some minor 
provisos, in a space of constant Riemannian curvature, this principle involves exclusively the Ernst’s complex 
potential for, in that case, the curvature is zero and we have: 

 
 

(4.1.8) 

In other words, only in cases where the gravitational field defines an electromagnetic field by a linear relation 
like (4.1.6), or vice versa, the gravitational field is described exclusively by a complex potential. The Ernst 
equations (4.1.3) thus reflect the physical interdependence between fields, which is reduced by these equations to 
the classical mathematical problem of a harmonic mapping, as represented in equation (4.1.8). 
 Indeed, in this case, the equation (4.1.8) shows that one can define the Einsteinian gravitational field by 
harmonic mappings (Eells & Sampson, 1964). Richard Matzner and Charles Misner were the first to notice that 
the variational principle (4.1.8) is actually an answer to the problem of harmonic maps (Matzner & Misner, 1967), 
a fact explicitly recognized and amplified later on by Misner himself in a general account for the harmonic 
mappings models in physics (Misner, 1978). From this point of view, the equation (4.1.8) simply describes a 
harmonic mapping from the Euclidean space to the Riemannian sl(2, R) manifold. This fact is much better palpable 
if, instead of Ernst potential ℰ we use the field variable defined by h º i×ℰ, where i is the imaginary unit of the 
complex numbers, so that the equation (4.1.8) becomes 
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(4.1.9) 

Obviously this variational equation describes a harmonic map between the ordinary flat space of metric g, and the 
complex half plane possessing the Beltrami-Poincaré metric, exactly as in the case of Kepler motion (see §1.2 of 
the present work). But here the physical interpretation is a little bit different. 
 The complex potential h seems more appealing to us, inasmuch as it is much closer to the way this sl(2,R) 
geometry is built, from many points of view, including even a physical one. Indeed, equation (4.1.4.) for the case 
of null electromagnetic field (pure gravitational field, as it were) we have, according to previous algebra: 

   
so that the real part of the potential is an arbitrary ‘phase’, as it were, while the imaginary part is an essential 
component of the metric tensor itself, of the spacetime continuum: 

   
This has always the nice quality of being positive and also has a physical ‘fixed point’ unity (light speed), features 
required by both the geometry of the upper half-plane in the Poincaré representation of hyperbolic plane, and by 
the relativity itself. By this very fact we might say that the Beltrami-Poincaré metric should be physically 
legitimated. And it has an attractive theoretical advantage: this metric can be given a priori, by as a Cayley-Klein 
metric, based on the unit plane disk as an absolute (see §3.4 above). This means that we can use it, for the 
necessities of mathematical descriptions of any fictions serving for both the necessities of interpretation, as well 
as for the field description. 
 The evolution of theoretical physics along the last part of the previous century plainly confirms this 
conclusion. A significant example will be provided in this very chapter, with the case of the archetype gauge 
fields: the Yang-Mills fields, a natural successor of the Maxwellian electromagnetic fields. Another attractive 
theoretical point of the complex potential h, is that the differential equations to be obtained as the Euler-Lagrange 
equations that give the solution to variational principle (4.1.9) – the ‘Ernst equations’ of the problem, as one calls 
it in this specific case – take the relatively simple form 

  (4.1.10) 

where the gradient and the Laplace operator are both taken in the metric g of the ambient space. These equations 
are the whole point of our elaboration thus far. They allow remarkable solutions of the metric tensor for empty 
space, having direct connection with de Sitter background discussed by us in the previous chapter. 
 In order to exhibit one of these solutions – the one that inspired us most – we have to notice first that the Ernst 
equations (4.1.10) are obtained from the variational principle (4.1.9), and this principle involves a Lagrangian 
constructed simply by replacing the differentials with the components of the gradient operator in the Beltrami-
Poincaré metric form of the hyperbolic or Lobachevsky plane: 

 
 

(4.1.11) 

Vincenzo Benza and Piero Caldirola took notice that the geodesics of this metric – the semi-circles in the upper 
complex plane, having the center on the real axis of the plane – can also be obtained from a Lagrangian constructed 
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based on the same idea as the harmonic mappings: replace the differentials with the derivatives with respect to a 
variable, j say, playing the part of affine parameter of the geodesics. That is, the equation of the geodesics is 
formally a… ‘Ernst equation’ in a ‘space of one dimension’, as it were: 

 
 

(4.1.12) 

where a prime means differentiation with respect to the designated independent variable. Based on this 
observation they devised a method of solution that, in our opinion, is the key to a concept of interpretation (Benza 
& Caldirola, 1981) [see also (Benza, Morisetti, & Reina, 1979) for the description of the method in the case of a 
metric having even two Killing vectors: stationarity in time and axial symmetry in space]. To wit: assume those 
solutions of (4.1.10) that depend on coordinates of the background through j. Then, we have after some 
calculations: 

 
 

(4.1.13) 

Now, if the parameter j is a harmonic function of space coordinates, the Ernst equation is compatible with the 
equation of geodesics, and then its solution is given by the parametric equations of the geodesics. If j is not a 
harmonic function, this construction is not possible. However, if we are at liberty to choose a parameter which 
is harmonic in coordinates, denoting it f say, the equations of the geodesics are, indeed, Ernst equations. To wit, 
the equation (4.1.13) gives: 

  (4.1.14) 

and h(f) is a solution of Ernst equation. This situation asks, nonetheless, for a connection between the two 
parameters, imposed by the fact that f needs to be harmonic. In order to find this connection, assume a change of 
parameter from j to f, which means: 

   
so that f is a harmonic function of space, if it is connected to j by the differential equation 

 
 

(4.1.15) 

Thus, if f²(j) = 0, j itself can be taken as a harmonic function. A few details on the practical use of this method 
are worth our while, inasmuch as they help us in better understanding the concept of instanton. 
 The metric (4.1.11) is the one from equations (2.3.21) or (2.5.8), in a ‘complex disguise’, so to speak. Indeed, 
they differ just by a constant factor, for we have: 

 
 

 

The relevance of this metric for the theory of gravitation rests upon the fact that the three differential forms (2.5.7), 
generating it as a sl(2, R) metric, represent three conservation laws. There is a mathematical reason for this [see 
(Schutz, 1982), for instance]: the metric possesses three Killing vectors, known to represent conserved quantities. 
These conserved quantities are given by the projection of the momentum forms, obtained from the metric taken 
as a Lagrangian, along the Killing vectors of the metric: they turn out to be the differential forms from equation 
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(2.5.7), indeed. We shall need here such constructions along this work, and will return to this issue in due time. 
For now, however, we just indicate a ‘brute-force’ method, as it were, in order to prove that the differential forms 
(2.5.4) represent indeed conserved quantities along geodesics of the Beltrami-Poincaré metric. Namely, in real 
terms, the equation (4.1.14) of the geodesics, splits into two differential equations: 

  (4.1.16) 

where the accent represent derivative with respect to the parameter f along the geodesics. Now, one can verify 
by calculations that when transforming the differentials (2.5.7) into rates along geodesics – by replacing the 
differentials du and dv of the variables with the derivatives u¢ and v¢ respectively – these rates are constant under 
the constraints given in equation (4.1.16). For the relevance of this construction in the problem of gravitation one 
can consult [(Kinnersley, 1974), §2.4]. Now we can be more explicit on the meaning of the method of Vincenzo 
Benza and his collaborators. 
 Indeed, if the constants c1, c2, and c3 represent the three conserved quantities along a geodesic, this one is an 
object that can be considered as a ‘point’ of coordinates (c1, c2, c3), located in the sl(2,R) Riemannian space. Let 
us see what is such an object, geometrically speaking. Along the geodesic we have: 

 
 

(4.1.17) 

which is a compatible system in the differentials du and dv, provided the determinant from expression 

 

 

(4.1.18) 

vanishes. This gives a linear relation among the three ‘coordinates’ (c1, c2, c3): 
  (4.1.19) 

which, in the complex h-plane represents a circle centered along the real axis v = 0: 

  (4.1.20) 

The upper half of this circle is the geodesic of parameters (c1, c2, c3). Obviously, in order that this figure is real, 
we need to have D > 0. The bottom line is that a geodesic is a point of coordinates (c1, c2, c3) located in a three-
dimensional space on a plane of equation (4.1.19) containing the origin of the space. 
 Now, a parametrization of the geodesic (4.1.20) that satisfies the conditions (4.1.17) is: 

 
 

(4.1.21) 

and therefore f is defined in terms of u and v by the following linear combination: 

 
 

(4.1.22) 

This condition of compatibility of the system (4.1.17) needs further interpretation, but for now we concentrate on 
a solution suggesting some connections we already used in this work. 
 However, what we assume to be an ‘Ernst physics’, viz. a physics based on the existence of a complex 
potential, has an entirely different incentive. This incentive is connected to an idea of continuity between the 
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Newtonian and Einsteinian natural philosophies, as revealed by the analysis of the classical Kepler problem. We 
shall dedicate later more attention to this problem but, for now, just notice that a solution of the problem (4.1.14) 
can be written directly as 

 
 

(4.1.23) 

with a real, but otherwise arbitrary. While this solution can be verified, again, ‘brute-force’, as it were, by a little 
longer, but nonetheless direct calculation, our source of inspiration in getting it is classical, if we may say so: its 
existence is the guarantee of existence of the Kepler motion, which is the cornerstone of the modern physics. It is 
worth reproducing here the reasoning, for it is connected with our assessment on the Einstein-de Sitter debate, 
made in §3.4 above. 
 We shall come back to this issue in due time, to wit: on the occasion of description of Yang-Mills fields, 
which turn out to be a remarkable expression of the Ernst physics. However, for now, we base our story on 
previously published results [(Mazilu & Agop, 2012), Chapter 4; (Mazilu, Agop, & Mercheș, 2019), Chapter 4; 
[(Mazilu, Agop, & Mercheș, 2021), Chapter 6]. The fact of the matter is that the solution (4.1.23) of the Ernst 
equations, for a harmonic function f, gives a harmonic application from sl(2,R) to the Euclidean space. The ‘Ernst 
physics’ of this application starts with observation that the quantity tanhf represents the eccentricity of a Kepler 
orbit at the location where f is calculated, having an arbitrary orientation described by the parameter a. Imagine 
a toroidal canal surface, representing an electron extended spatially in motion around nucleus. One of the 
constitutive material particles of this electron, is located in a point inside a sphere playing the part of absolute for 
the Cayley-Klein geometry of our electron. That particle is prone to motion on one of the orbits of an ensemble 
having the eccentricity tanhf, and stochastic, equally probable, orientations given by a. This is exactly the 
situation envisioned by Newton on the occasion of invention of the forces [(Newton, 1974), Book I, Section II, 
Corollary III of Proposition VII], therefore a classical Newtonian situation. As it turned out, the Yang-Mills fields 
are an expression of the Ernst physics too (Forgács, Horváth, & Palla, 1981): plainly an Einsteinian situation. We 
add nothing more on this occasion, that is, other than the Ernst physics turns out to be a key for understanding 
our very knowledge. The reasons for this statement will follow as we go on with our work. 

 4.2 An Account of Light in Terms of 2´2 Matrices 

 The previous section reveals, among others, the remarkable part played by the homographic transformation 
in the economy of general relativity: details apart, the metric (4.1.11) from which the Ernst Lagrangian is 
constructed, turns out to be the invariant metric of the homographic action of 2´2 matrices with real entries on 
the complex dual variable (h, h*). According to Benza-Caldirola theory, the parameter of geodesics of the 
Beltrami-Poincare metric (4.1.11) must be a phase describing the algebraic expression of the complex potential h 
as in equation (4.1.23). When comparing this result with equation (1.2.16), a twofold conclusion of physical 
interest emerges. First of all, the metric (4.1.11), and therefore the Einstein’s vacuum field equations of the case, 
are referring to a Maxwell fish-eye medium, describing the relativistic background. In view of the fact that this 
metric can be obtained as an absolute metric, of the kind shown in §3.4, it must count a priori as a cosmological 
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metric like the one put forward by Einstein himself (see §3.1). This would mean the existence of a four-
dimensional manifold of Euclidean type in which the space as a three-dimensional Riemannian manifold of 
constant curvature is embedded. And this four-dimensional manifold is, according to de Sitter results, the 
continuum of charge. Here comes the second conclusion by comparison with equation (1.2.16), bringing the 
classical argument of existence of closed orbits in the Kepler problem: such a continuum of charge must be the 
continuum represented by the space extension of the center of force in the Kepler problem, that is the nucleus of 
the planetary atomic model. 
 There are quite a few logical issues marring the conclusions we just noticed, and these issues, in our opinion, 
determined the natural philosophy to take the path it followed, in order to reach us as it did. Two of these are 
worth mentioning, for they are of essence for our argument. They both derive from the problem of nucleus: a 
continuous distribution of charge. First, comes the thesis of Dewey Bernard Larson – may he rest in peace! – 
making a case against the nuclear atom (Larson, 1963), which must be realistic indeed, except that it is 
misdirected. In fact, none of the theses of Larson can be understood within the idea of a physical structure of the 
atom: we need to assume the concept of scale transitions. A continuum can only be related to motion, assuming 
that this motion takes place instantaneously. In other words it is effected at a given space scale – finite, infrafinite 
or transfinite – however, in a different scale of time. The problem is to decide in what consists that difference 
between the scale of time and the scale of space and this is simply decided by the inequivalence between length 
and distance! We shall deal with these issues in due time. Just summarizing, for now: at the cosmological scale, 
where the point locations and time moments are decided, the differentials of lengths are distributions of charges 
along the lines, generated by instantaneous motions. This is why we can deal today with one-dimensional 
relativity (see §§2.3 and 2.4). 
 The second issue that determined the path of natural philosophy, is best illustrated by reference to Louis de 
Broglie: in his argument that concerns us here, he is referring to the spacetime continuity by mixing, as it were, 
two essentially different points of view: the ‘global’ continuity of events, as understood in the special relativity, 
and the continuity representing the motion, which must be, at least in its classical take, a ‘differential’ continuity. 
For instance, (x,t) represents, from a relativistic point of view, an event in a two-dimensional manifold supporting 
the idea of ‘globality’. The global continuity is here represented by transformation between events: Lorentz 
transformations, in the case of Louis de Broglie’s physics. When talking of a motion, x must be a continuous 
function of t, and in order to associate a velocity to the motion, this continuity should even be differentiable. In 
general, the differential spacetime continuity is represented by a connection between the differentials of the 
coordinate and of time. In a global representation, this connection can be a kind of Lorentz transformation only 
in the cases where it is linear and homogeneous – in order to be compatible with the differential continuity of the 
motion – so that it can be expressed by a matrix. 
 By reasons of the kind of those just signaled here, one should make, therefore, a clear distinction between the 
Lorentz transformation proper, and the transformation between differentials. This means that just as the Lorentz 
transformation is usually considered a transformation of time moments and positions, where the time is 
contemplated as a sequence of moments, the transformation between differentials must be regarded as somehow 
independent, not always obtainable simply by a differentiation. In other words, it is only the transformation 
between differentials that takes the time and the coordinates in a ‘measured’ continuity, so to speak, necessary 
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for the description of motion by a speed. In order to grasp the right connection between the two kinds of continuity, 
and, moreover, even to justify it from all the proper points of view, we shall reproduce here, firstly, the 
mathematics presented by Victor Lalan a long time ago, and based exclusively on the theory of continuous 
parametric groups (Lalan, 1937). Then, secondly, once we are able to discern what the group theory asks for in 
the problem of implementing the idea of continuity, we shall use this point of view for the transformations of 
differentials themselves. In order to become more familiar with the general theory of the families of parametric 
transformations in the form used by Victor Lalan himself, one can also consult some early works on the 
application of the theory of continuous parametric groups in the problems of relativity and geometry [see, for 
instance, (Mandelshtam, 1933) and (Vrânceanu, 1962b)]. 
 Victor Lalan took notice of the fact that in the case of a one-dimensional physical theory, whereby the events 
are located by a space coordinate whose values are assigned using an external reference frame and a time moment 
whose values are assigned with an external clock, the invariance with respect to the origin of events imposes right 
away the fact that the possible transformations must be of the form: 

 
 

(4.2.1) 

Here the coefficients A, B, C depend on the relative velocity v of the reference frame in which the coordinates are 
(x',t') with respect to the reference frame where the coordinates of events are (x,t). This means that the 
transformation assigns coordinates of the events in any reference frame moving uniformly with respect to the 
original one, once we have these coordinates in this last reference frame. 
 Operationally, though, the procedure is not that simple. For, suppose we want to physically check the 
coordinates (x',t'); in this case the trouble starts brewing. First, we need to have for the primed coordinates the 
very same physical means we have in the initial coordinates. In this one-dimensional case we are essentially 
talking of the same kind of physical clock used into establishing the time sequences. However, the time sequences 
indicated by two different physical clocks – supposed to be attached to the two reference frames – are a priori 
completely different, and we need to make sure that the moments from the two time sequences corresponding to 
each other via transformation (4.2.1) are the right ones. Or else, the transformation (4.2.1) should be taken as 
assigning the events (x',t') to known (x,t), and there is no problem: what we measure then, are just the coordinates 
provided by this transformation, and the case is closed. Otherwise we need to synchronize the two clocks, and 
the physical synchronization was always a place where the arbitrariness moved in, disguised in the form of 
assumptions regarding the correspondence between two time sequences. 
 However, coming back to the pure mathematical problem here, there are some constraints under which this 
one-parameter family of transformations should be a continuous one-parameter group, usually known as Lie’s 
theorems. Understandably, the group parameter is simply the relative velocity v of the reference frames, which is 
assumed to vary continuously: once chosen a frame for reference, the relative velocity with respect to this frame 
is in a one-to-one correspondence with the ensemble of reference frames moving uniformly with respect to it. 
Then, in order to be a group, the family of transformations should contain the identity transformation, obviously 
for v = 0. The simplest way to satisfy this condition comes down to assuming that A, B, C depend on the relative 
velocity in such a way that, within the first order in the value of relative velocity, we have 

 
 

(4.2.2) 

′x = A(x − vt), ′t = Bx +Ct

A(v) = 1+αv, B(v) = βv, C(v) = 1+ γ v
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with a, b, g – constants. b and g here are not to be confused with the parameters thus designated in the special 
relativity, as in the case of previous Chapter 2: they are simply taken as parameters with no other particular 
assignment. That is, no other assignment than the one that might result from the necessities of the present chapter. 
Then, the differential equations of the continuous group can be obtained in the first order in parameter v: they will 
express the continuous evolution of the very group transformation with respect to this continuous parameter. 
However, this very circumstance raises an issue again, for the transformation may not be linear in parameter, and 
may even involve more than one parameter. 
 In order to deal with this issue, notice that from the perspective of scale transition, the differential group 
equations mean the transition between finite and infrafinite scales of both space and time. In fact, we may not be 
much out of the truth by saying that this scale transition is the one that dominates the mathematics of actual 
physics, at least up to this point in time. The groupal condition imposes a kind of factorization (Mandelshtam, 
1933): the derivatives of the group variables with respect to the group parameter are linear functions of 
coordinates. By a change of the parameter of continuity, the differential equations of the group can be reduced to 
such a linear form: 

 
 

(4.2.3) 

Without this change, a linear form of the group equations is only approximate, as we just said. Here φ is what 
they usually call a ‘canonical parameter’ of the transformation: it is not the relative velocity itself! The requirement 
of continuity entails that for φ = 0 we should have the coordinates x and t in the ‘initially’ chosen reference frame. 
The clear advantage of this choice of parameter, is that the system (4.2.3) can be integrated directly, by the 
following method (Vrânceanu, 1962b): write it down in the form 

 
 

(4.2.4) 

and then construct, based on this writing, exact differentials of the form: 

 
 

(4.2.5) 

that may represent the differential of the canonical parameter. Then the requirement becomes obvious, that the 
left hand side of the equation (4.2.5) must be an exact differential, and this condition takes a nice algebraic form. 
To wit: the equation can be, indeed, integrated directly, if the coefficients of the variables in the denominator are 
proportional to those of the differentials in the numerator, viz.: 

 
 

(4.2.6) 

for in that case the left hand side of (4.2.5) is manifestly an exact differential. Thus, in such a case we have, within 
the chosen initial condition for coordinates, 

  (4.2.7) 

and in order to adequately write down the transformation (4.2.1) everything comes down to finding the proper 
constants m, n and l. Obviously, for real parameters a, b and g there are only two possible values of l for which 
(4.2.6) has nontrivial solution, and these are given by the roots of the quadratic equation 

  (4.2.8) 

d ′x
dϕ

=α ′x − ′t , d ′t
dϕ

= β ′x + γ ′t

d ′x
α ′x − ′t

= d ′t
β ′x + γ ′t

= dϕ

md ′x + nd ′t
(mα + nβ ) ′x − (m− nγ ) ′t

= dϕ

mα + nβ = λm, m− nγ = −λn

m ′x + n ′t = (mx + nt)eλϕ

λ 2 − (α + γ )λ +αγ + β = 0
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representing the condition of compatibility of that system. Using one of these roots in the equation (4.2.7), the 
transformation (4.2.1) can be written in the form: 

 
 

(4.2.9) 

Then, the equation (4.2.8) means also two possibilities of the very same algebraical nature for the new parameter 
c, which obviously should have the physical meaning of a velocity, and these possibilities are given by the 
quadratic equation equivalent to (4.2.8): 

  (4.2.10) 

Assume now that the roots of this equation are different and, for once, real. The finite transformation that concerns 
us can be drawn from the two specimens of equation (4.2.9), corresponding to the two values of c provided by 
equation (4.2.10): 

 
 

(4.2.11) 

We can better handle this transformation if it is given in the form of a matrix equation: 

 

 

(4.2.12) 

so that the representative matrix is the 2´2 table 

 

 

(4.2.13) 

From equation (4.2.11) we have, obviously: 
  (4.2.14) 

which means that this algebraic expression is an invariant of the family of transformations. In order to grasp 
something of a possible meaning of this invariant expression, notice that if l1 + l2 = 0 it becomes the usual 
quadratic Lorentz invariant. Indeed, in this particular case, one can disregard the power in equation (4.2.14), and 
take the invariant as a Lorentz quadratic form. However this quadratic form is not referring to the original (x, t) 
variables, but to some special linear transforms of these two variables, determined exclusively by the two invariant 
speeds c1 and c2. In short, the quadratic invariant is: 

 
 

(4.2.15) 

This becomes the known Lorentz invariant only under the supplementary condition c1 + c2 = 0, which is satisfied 
by particular transformations with a = 0 in equation (4.2.3). 
 But let us stop here, for a little while, and take due notice of the fact that the form of the groupal invariant 
(4.2.14) was the one chosen by Laurent Nottale in order to introduce through it his considerations regarding the 
scale relativity [(Nottale, 1992); the 2003 updated version, §§3–6]. That this is a right choice in order to do such 
a job is an obvious thing in the theory developed up to this point: the groupal equations (4.2.3) from which this 
invariant originates are, like any continuous group equations, manifestly scale transition equations. However, 
nothing proves here that expression (4.2.14) is a scale transition invariant – i.e. it can be written as such in the 
infrafinite or transfinite range – and this condition remains to be further analyzed as a distinct possibility. 
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 Before going any further, though – and while the case is fresh in our mind – let us assume now the other class 
of different roots of equation (4.2.10), namely the roots that are complex, to wit: 

 
 

(4.2.16) 

Here a star means complex conjugation, as usually in physics. The whole theory just presented above also goes 
unchanged here. However, it is worth marking the fact that the invariant (4.2.14) has to be written, this time, as a 
genuine phase factor, viz.: 

 
 

(4.2.17) 

where the parameters are connected by equations 

 
 

(4.2.18) 

The ‘Lorentzian condition’ which, as we have seen before, comes down to l1 + l2 = 0, has to be written this time 
in the form lR = 0, in which case these speeds are 

 
 

(4.2.19) 

and the invariant phase factor constructed with these values is: 

 
 

(4.2.20) 

Therefore, the invariance is literally understood here ‘up to an arbitrary phase factor’, involving the phase fR. No 
question then, this is the second one of Cook’s cases (see §§2.3 and 2.4), involving an ‘unorthodox relativity’, as 
it were, and the groupal theory of relativity, as presented here, makes it somewhat ‘legal’. At some point of our 
discussion we shall have to insist on this aspect of the physical theory. For now, let us just notice that from a 
groupal point of view, the relativity needs two signal velocities, in case we are bent on an operational definition 
of terms. In this case, the medium supporting the signal is constitutively anisotropic from the point of view of the 
elastic properties, and this is why such a relativity should be termed as anisotropic. However, the elastic properties 
of the medium are not the only incentives for considering the anisotropy, as we shall show right away. But, let us 
come back to our main argument of this section of our work. 
 A quick comparison between the matrix of the transformation (4.2.1) and the matrix (4.2.13), gives the 
connection between the velocity parameter v of the family of transformations, and the canonical parameter φ, in 
the form: 

 
 

(4.2.21) 

Using the last equality from this equation, we can transcribe the additivity property of the canonical parameter of 
this continuous group, φ: φ3 = φ1 + φ2, as a composition property of the corresponding velocities, i.e.: 
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After due calculations, we have the Lalan’s relation of composition of velocities [(Lalan, 1937), equation (10¢)]: 

 

 

(4.2.22) 

which reduces to the usual relativistic rule for c1 + c2 = 0 (Einstein, 1905a). Consequently, either this equation or 
the equivalent one resulting from it – by the transformation given in equation (4.2.8) – for the eigenvalues l1,2 of 
the transformation matrix, must have a special physical importance, which can be revealed via the theory of 
groups. In order to conclude this mathematical line, we can say once again that there are, indeed, by law as it 
were, two limit speeds for the description of the kinematics of the classical material points, as long as this 
kinematics has to respect those relativistic precepts associated with the property of scale transition of the special 
relativity. For, as we have already mentioned quite a few times before, the differential equations of a group are, 
indeed, an expression of the scale transition in physics. In cases where these speeds are equal in magnitude but 
of different algebraical signs, we have the special relativity with its regular Lorentz transformations and, 
consequently, with everything that follows logically from this observation. 
 In order to realize where, from a physical point of view, the importance of the groupal transformation resides, 
we have to assume an operational point of view. So, let us first notice the form of the transformation matrix 
(4.2.13) in the special case of Einstein’s relativity. It is: 

 

 

(4.2.23) 

As we have noticed before, this is clearly a regular Lorentz transformation which, however, admits a physical 
interpretation, as we shall show here in due time. For now, though, notice that in the case of complex roots, the 
equation (4.2.21) becomes 

 
 

(4.2.24) 

where c º cR + icI. As we have seen above, the ‘Lorentzian case’ is given this time by cR = 0, so that, in this 
specific case, the equation defining the velocity becomes: 

 
 

(4.2.25) 

This is a genuine case of phase to be associated with a moving particle. In view of the observation that the existing 
Einsteinian relativity is, in fact, an interpretation, but without the necessary wave in the picture, the phase factors 
above are to be associated with material particles: they need to be considered, for instance, as some de Broglie 
phase factors. 
 Taking this case for granted, a conjecture presents itself quite naturally, capable to put things in order for a 
logical theory of physics: the case of complex roots in special relativity defines the phase factor that should be 
considered as a result of collapsing of wave function after measurement. For, according to Charles Galton Darwin, 
even though the theoretical results cannot be presented but in a ‘wave language’, as it were, the experiment always 
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involves particles, and we need an interpretation, in order to ‘translate’ the wave-theoretical results into ‘particle 
facts’. In these conditions, the phase factor (4.2.25) should be the de Broglie wave factor associating a frequency 
to the ‘wave phenomenon called material point’, in order to ‘report the case’, as it were. Thus, even though for 
the time being we do not know anything about the wave function, outside the optical analogy, of course, that 
much we can figure out: the phase factor to which the wave function reduces after measurement has to be a de 
Broglie phase factor, just in order to account for measurement. This realization allows us to take the conclusion 
from an 1995 article of Boris Kayser and Leo Stodolsky to a new natural-philosophical level that does not deny 
the existence and the role played by the wave function, but only aims at making more precise the role and status 
of the phase factor. Quoting the conclusions of that work: 

 … the superiority of the amplitude approach seems clear. This is not only because of the greater 
simplicity of calculation, deriving from the fact that the amplitude is invariant while the 
wavefunction is not. By choosing to focus on the probability amplitude, something attached to a 
process (original emphasis, a/n), we avoid the conceptual difficulties associated with a reified, 
“existing” wave function. The latter is now relegated to the role of a secondary quantity, one 
describing the changes in the amplitude. Since there is no longer any wavefunction to “collapse” 
in the first place, the psychological and philosophical discomforts associated with the said 
“collapse” disappear. Also, on a pedagogical level there is less danger of the frequent confusion 
of probability amplitude waves with the waves of some physical entity like the electric field. 
Concerns with bizarre constructs like enigmatic parallel universes, worlds haunted by restless 
prowlings of possibly dead cats, disappear, cats and all. The best answer, finally, to the “question 
of the collapse of the wave function” is that there is no wave function [(Kayser & Stodolsky, 1995); 
our emphasis, except as noticed, a/n]. 

Obviously, when our authors speak about amplitude, they understand here the classical amplitude of probability, 
on which alone the theoretical physics of the last century imposes conditions of invariance. It is not without 
interest, though, finding the conditions of transition in space and time connected with the transiting matter, for 
those conditions of invariance are referring to matter only. Keeping the phase factors in our view, directs our 
thinking towards one of the most important theoretical issues of contemporaneity, along the line that the 
wavefunction needs not be eliminated at all, but only its phase needs to be reconsidered. And the holographic 
phenomenon from the case of light proves to be liable to help us in understanding this issue, and even offer a 
solution to it: in short, the holography is a universal phenomenon of the world we inhabit. 
 Among the many modern spiritual phenomena connected to the present-day theoretical physics’ concepts, 
there is a theory explaining the collapse phenomenon of the wave function by the so-called protective 
measurements [see (Aharonov, Anandan, & Vaidman, 1993, 1996), and the most recent collection of original 
works we are aware of: (Gao, 2014)]. In broad strokes, a protective measurement is a measurement where a field 
intervenes in order to protect the physical wave function representing the space extension, from the necessary 
collapsing in a sequence of measurements. Occasionally, the gravitational field was suggested by these authors 
as playing such a fundamental role here, in saving the wave function from collapse. What we argue here, is that 
the phase factor is there from the very beginning, and the collapse phenomenon is a reality, indeed, representing, 
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in fact, the necessary scale transition in the measurement phenomenon: just like in the classical case of light, 
which is the quintessential phenomenon transiting the scales of our world. The problem, in our case, is to 
understand and express theoretically the involvement the gravitation directly in the scheme of relativity, as we 
already suggested in Chapter 2 (see §2.2). In the present context – that is, in the context of the continuous group 
theory as presented right above – this errand of theoretical physics has already been carried out a long time ago 
in the moder era, by Vladimir Grigorevich Boltyanskii – may he rest in peace! The idea is thereby suggested that 
the gravitation regulates even the electromagnetic phenomena which, as we have seen, stay at the very foundations 
of special relativity (Chapter 2 above), and even involved a specific analysis by Einstein himself (Einstein, 1919). 
The way we see it, one cannot possibly avoid this way of thinking in the theoretical physics at large, so let us, 
therefore, present the special ideas of Boltyanskii in the problem of connection between the gravitation and 
relativity. 

 4.3 Vladimir Boltyanskii: a Way of Describing the Gravitation 

 It is now time to draw some ‘methodological’ conclusions, if we may say so, from the display above, in order 
to apply them in the case of differentials. In the groupal presentation of Victor Lalan, the Lorentz geometry, as 
expressed by a quadratic metric form, is obtained only as a particular case where the two speeds that describe the 
light – therefore, from the most general perspective of the de Broglie association wave-particle, a special 
propagation! – are equal in magnitude and opposite in sign, as in Cook’s type relativity [see §2.3, equation 
(2.3.15)]. The problem arises, however, if in the cases where the two propagation speeds are different, the 
geometry can still be Lorentzian, and under what conditions this geometry preserves the quadratic character of 
the metric. As long a the metric is quadratic, the case would not involving some ‘unsecured’ scale transition, as 
it were, from the finite scales to infrafinite ones, both in space and time. After all, this is the spirit of Einstein’s 
cosmological considerations (see §3.1). Vladimir Grigorevich Boltyanskii gives a positive answer to this question, 
using a linear transformations, indeed, which acts upon the differentials of coordinates and time though – therefore 
at the infrafinite scale of space and time – not on the coordinates themselves (Болтянский, 1974). The certified 
importance of the works of Boltyanskii on this subject rests also upon the fact that he makes out of the problem 
of gravitation a problem of control (Boltyanskii, 1981), whereby the control is exerted through the intermediary 
of a… wind, as it were, specifically a kind of Zermelo wind, if it is to take into consideration the physical phrase 
used in such instances for a long while [see (Gibbons & Warnick, 2011) for the details and history of the concept]. 
And here one has what we see as the most important feature of Boltyanskii’s approach: the ‘motion’ to which this 
control is referring is generated by a ‘gravitational level’ formally calculated by the sum of the two limit speeds, 
as in the Lalan’s case. The main physical fact making such an assumption an essential point of this theory is that 
in the special relativistic case proper, there is no gravity! This is, after all, just the Einstein’s original thesis, no 
question about that, but coming here with a mathematical formalism ready to be used physically. And we shall 
indicate a possible way of using it. Let us, therefore, briefly render the development of essentials of the idea of 
Vladimir Boltyanskii. 
 To start with, we write the transformation of the differentials in the form of a linear transformation: 
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(4.3.1) 

and this can be taken as a homographic, or Möbius transformation between what may appear to be some 
instantaneous velocities, i.e. the ratios of the differentials of space coordinate and those of time coordinate: 

 
 

(4.3.2) 

In this instance of the transformation, we have to deal with a homography between the magnitudes of 
instantaneous velocities, which generalizes the de Broglie’s homography between phase and group velocities, for 
instance. Boltyanskii uses the equation (4.3.2) in order to get the most general transformation (4.3.1) algebraically. 
The basics of the manner in which this can be done were shown in the Chapter 2, §2.3 of the present work, but 
let us repeat the procedure here, for there is an important point of difference. 
 First of all, Boltyanskii takes notice of the fact that such a homography is well defined by the condition of 
existence of two speeds invariant by homography, plus the condition that a classical material point maintains its 
identity at rest, i.e. at zero velocity, as well as at any arbitrary speed, v say. While we are on it, let us notice that 
this last condition is the only one that can insure the physical fact that a classical material point, or a Hertz material 
particle for that matter, can be taken as a reference frame. In the infrafinite space range, more to the point in the 
microscopic world of our daily experience, where the instability of matter is regular, this condition is essential 
from a theoretical point of view: one cannot use as reference frames but stable particles. For now, let us notice 
that in the conditions just stated above, using (4.3.2) we can write, indeed, the system of linear algebraical 
equations: 

 
 

(4.3.3) 

where c1 and c2 are the two invariant speeds, and v is the velocity of motion of the material point, which, by the 
transformation, is corresponding to its rest velocity 0. In other words, the transformation itself essentially 
represents a moving material point starting from rest. For the two invariant speeds, Boltyanskii actually uses the 
symbols ρ and σ; however we continue to use the Lalan’s notations, with the hope that the invariant speeds, like 
those of light itself, would be properties transcending the space and time scales, as in the original case of 
Maxwell’s electromagnetics: they are the same in the transfinite, finite and infrafinite ranges. Also, we hope to 
exhibit some conditions in which this invariance is valid, and these conditions would involve some fields. 
 The solution of system (4.3.3) above, completely determines the homographic action (4.3.2) of the matrix in 
question. Indeed, the linear-fractional action (4.3.2) is well defined just by three of the entries (A, B, C, D) of the 
corresponding matrix, one of these entries being superfluous in the homographic action of the matrix. On the 
other hand, though, the linear action (4.3.1) of the matrix, is not completely defined this way, i.e. by only three 
parameters. More precisely, it is defined only up to an arbitrary factor, so that Boltyanskii writes the linear 
transformation in the form: 
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where, this time, D is the entry of the matrix that in the solution given by the system from equation (4.3.3) turns 
out to become an arbitrary factor. By a direct calculation involving the transformation (4.3.4), we get the 
invariance of a quadratic metric – not of the general form metric as in equation (4.2.14)! – under the additional 
condition that the transformation has a unit determinant, which settles the constant D. Thus, the metric is quadratic 
from the very beginning, no need to assume any further relations, and can be written as: 

  (4.3.5) 

Here, we have used the very Boltyanskii’s original notations f and c for the quantities to be calculated according 
to the following formulas: 

 
 

(4.3.6) 

A comparison between equation (4.3.5) and the equation (4.2.15) from the finite Lalan’s case, shows that the 
transition from finite to this infinitesimal case must be effected under the condition l1 + l2 = 0. Then, the great 
merit of Boltyanskii may rest upon the fact that he finds a physical interpretation of the condition c1 + c2 = 0: the 
absence of gravitational field. Let us document this idea a little closer. Among other things, Boltyanskii obtains 
the general rule of composition of velocities, as given by Victor Lalan, and reproduced by us in equation (4.2.22), 
but with the important observation that any two reference frames have relative velocities with respect to each 
other, satisfying the condition 

 
 

(4.3.7) 

Therefore, if c1 and c2 are absolute constants, as their Maxwellian ancestor is usually considered, the harmonic 
mean of the relative velocities must be a constant – for motion as well as for propagation, we should add – well 
defined by these absolute constants: the relative velocities are different, so that, in general, there is no reciprocity 
between reference frames! But, if there is reciprocity for propagation, i.e. c1 + c2 = 0, there is also reciprocity for 
motion, i.e. v1 + v2 = 0, and vice versa. Seems just normal: if the invariant velocities obtained based on the 
transformation of the differentials are those from Lalan’s theory – which is referring to the coordinates 
themselves, not to their differentials – then these velocities must, nevertheless, satisfy to some further restrictions. 
One can even say that, for an analogy between de Broglie waves and the light waves one has to pay a price, 
represented by the condition from the equation (4.3.7). The important fact here is that this price can, indeed, be 
payed – may be not quite in full, though, but it can be payed anyway! – only by an addition to the condition of 
scale transition. Noticing that v1 + v2 = 0 is the usual case of the material points in vacuum, the equation (4.3.7) 
can be viewed as saying that even the invariant velocities are referring to such points. In this case it tells us much 
more about the very cause which might determine the breaking of this classical vectorial symmetry. 
 Indeed, noticing that for f = 0 the metric (4.3.5) goes over into the usual Lorentz metric, Boltyanskii advanced 
the idea already mentioned above (see also §§2.3 and 2.4) which, again, seems quite natural in this context: the 
condition c1 + c2 ¹ 0 should be due to the gravitational field. Therefore, this should be the correct way of 
introducing the gravitational field directly from the special theory of relativity, i.e. with no intervention 
whatsoever of the Mach’s principle. After all, according to Willem de Sitter, the Mach’s principle has to be 
avoided at any rate! Starting from this idea, Vladimir Boltyanskii translates the regular problem of motion of a 
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classical material point into a problem of control, as we said, which makes sense even in secular terms. Indeed, 
one can say in no ambiguous popular terms that the gravitational field controls the motion on a certain direction. 
This property is manifestly the classical condition of existence of any field for that matter. Quoting, however, the 
original words, the conclusion sounds: 

 The velocity of any motion is restricted in all reference frames Xα by inequalities like ρ£ vα £σ 
(the limit values correspond to light motions, the intermediary ones – to «gravitational motions»), 
i.e. – c ≤ vα–f ≤ c. If we introduce the parameter u  = vα–f = ẋα–f, we get the relations 

 
 

(5) 

Thus, the consideration of all possible motions in a frame Xα leads to the controllable object (5). 
The light motions are optimal (by the rapidity of action) trajectories of this object. Notice that 
passing from a frame Xα to another frame Xβ the number f = (σ + ρ)/2 does not change, i.e. the 
equation (5) is invariant with respect to transition from a frame to another, so that this invariance 
appears as a consequence of the relativistic postulate (ρ and σ are the same in all reference frames) 
[(Болтянский, 1979); our translation, original Italics and captions] 

The theory can be extended to the case of three-dimensional velocity vectors (Boltyanskii, 1995), which allows 
for a generalization of the metric (4.3.5) to a stationary metric of the spacetime, in the so-called “3+1 form” 
invoked by Einstein in connection with the cosmological problem (see Chapter 3, §3.1 above), that proves to be 
necessary to both the theory of the Ernst’s complex potential (§4.2 above) and, for instance, to the membrane 
model of the black holes [(Price & Thorne, 1988); for details see (Mazilu & Porumbreanu, 2018)]. 
 This fact gives us the occasion for an essential observation: in our experience the gravitation is manifested as 
an acceleration of any free radial motion – free fall as they regularly call it – on Earth. Now, the relativistic point 
of view here, is usually expressed in the manner of Wolfgang Rindler, whereby the motions are represented by 
lines on a one-sheeted hyperboloid, and, obviously, so are represented the propagations (Rindler, 1960). In this 
case, in the interpretation process the matter can be represented by matrices offering transformations between 
‘light motions’, and this fact is made possible only by the Boltyanskii’s kind of considerations. The great merit 
of the theory of Boltyanskii rests, therefore, with the accomplishment of this possibility, which, from our 
perspective, offers the explanation that follows, for the connection between light and matter. 
 In order to make our point, notice that in a Boltyanskii-type approach there is an apparent inconsistency: we 
have at our disposal only two of the invariants connected with the idea of a homography, so that it may seem that 
the Boltyanskii’s form of the matrix from equation (4.3.4) is not quite ‘unequivocally’ associated to a particle. 
For once, it does not say us what is happening with the particle in the interval of velocities between 0 and v. 
Indeed, in this approach we are associating invariantly only the two invariant speeds, playing the part of 
propagation velocities. Boltyanskii’s equation (4.3.3) introduces these speeds, (c1,c2) in our notation, through the 
roots of the quadratic equation 

  (4.3.8) 

derived from equation (4.3.2) under condition v = v¢: for any pair of reference frames there are two such invariant 
velocities. However, if the action is not involutive, as in §2.3, there is a third invariant parameter of a homographic 

!xα = f + u, |u |≤ c

Cv2 + (D − A)v − B = 0, v ≡ dx / dt
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action, which in Boltyanskii’s procedure sketched by us above, is replaced by an ad hoc assumption. It is the third 
relation from equation (4.3.3), namely the velocity associated to zero velocity serving to identify kinematically 
the reference frame: unlike the two speeds, this is not an invariant of the transformation. Its necessity, even within 
Boltyanskii’s approach as it is, would suggest, though, that the construction must be ‘broken’ in order to be 
completed with the intervention of a third particle in need to be referred to this bi-frame, as it were. This can be 
done, indeed, but within a proper mathematical framework. And a proper mathematics would ask here for a 
consistent treatment: this means a structure of the entries of the matrix realizing the transformation, given 
exclusively in terms of the invariants of the homographic action, which thus can be taken as some ‘coordinates’ 
identifying our particle. Out of these three invariant ‘coordinates’, the original Boltyanskii’s procedure uses just 
two: the invariant velocities. A proper third invariant of the homographic action of a given matrix, is the 
characteristic cross-ratio of the homographic relation, which is a constant for a given homography. In cases where 
the transformation is involutive, this constant is –1. But in general, by its very definition, in this specific case we 
have for that cross-ratio an expression of the form: 

 
 

(4.3.9) 

where v0 is any possible velocity of the particle. According to this formula, the right invariant association of 
Boltyanskii, would be, instead of the velocity v from the third relation (4.3.3), the cross-ratio (v, 0; c1, c2), that is, 
the exponential factor from equation (4.2.21). Now, if we arrange the equation (4.3.9) conveniently, in the form 
of an action like that from equation (4.3.2), and identify the coefficients accordingly, we get the following system 
of equations for the entries of the matrix realizing the homographic action in terms of the ‘invariant coordinates’: 

 
 

(4.3.10) 

This system also defines the linear action (4.3.1), even if only up to an arbitrary factor, by the characteristic 
invariants of its homographic action. Mention should be made, again: this family of transformations with three 
parameters is a characteristic to pairs of reference frames, understood in the usual manner of Lorentz 
transformations. However, this time, such a doublet is invariantly defined, and the reference to it does not break 
its ‘symmetry’, as it were. Unfortunately, the ‘reference’ in question is hard to define within the operational 
procedures of the special relativity. Fortunately, though, on the other hand, there is another way to define it, 
perhaps not quite so ‘operational’, however endorsed by pure mathematics. 
 Notice, indeed, that the definition of our doublet is only connected to the transformation between the two 
events: in a given physical background – ether, matter, field, etc. – any two events associated by the transformation 
are, in fact, referred to such a doublet. In this respect, the definition (4.3.10) reveals an interesting form of the 
Boltyanskii matrix, able to show what the reference to the doublet it describes may physically mean. Namely, if 
we disregard the arbitrary multiplicative constant from the definition of its entries according to this system, the 
matrix can be written in the form of a linear combination of two singular matrices: 
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This is a linear pencil of matrices generated by the two singular matrices, representing an ensemble of pairs of 
reference frames. We shall show now that between c1 and c2 there should always be a homographic relation: after 
all, this is a well-established mathematical theorem. 
 To start with, let us notice that in coordinates (A, B, C, D) a point represents a matrix. The quadratic form 
representing a quadric, more specifically, a hyperboloid: 

  (4.3.12) 
is simply the locus of points of coordinates (A, B, C, D) representing the ensemble of singular matrices. 
Geometrically, we have here a one-sheeted hyperboloid, which is a doubly ruled surface: it has two systems of 
generators described by the parameters c1 and c2. This can be ascertained as follows: take, for instance, the first 
singular matrix from the linear pencil (4.3.11). The representation (4.3.10) gives the point of coordinates 

 
 

(4.3.13) 

One can take notice right away that there are two systems of planes whose intersections can count as two straight 
lines – the generators or the rulings of our quadric – at the intersection of which the point (4.3.13) is located on 
the quadric in question, namely: 

 
 

(4.3.14) 

So these equations describe the two systems of generators of the hyperboloid, whose parameters are the invariant 
speeds c1 and c2, i.e., taking the heed of existing special relativity, some propagation speeds of this world. Now, 
assume a generic point of coordinates (a, b, g, d) say, in this space, located inside or outside the quadric (4.3.12), 
not on the quadric itself, to wit: ad - bg ¹ 0. Thus, such a point represents a nonsingular Boltyanskii matrix. Its 
polar plane with respect to the quadric (4.3.12), meets this very quadric along a hyperbola having the equation 

 
 

(4.3.15) 

In other words: an arbitrary nonsingular matrix represents a transformation which gives a correspondence 
between the two propagation speeds. The last equality in this equation can be taken – and we, for ones, effectively 
take it – as a generalized Boltyanskii relation between the two propagation speeds defining a doublet. Let us 
justify this statement of ours. The correlation (4.3.15) can be written as a linear connection between the product, 
the sum and the difference of the two invariant velocities of a doublet: 

  (4.3.16) 
Any relation between the two invariant velocities is included by this general equation. For instance the 
Boltyanskii’s gravity level f = 0, means basically a matrix K0 – g = b = a+d = 0 – from the Lorentz matrices of 
the Cook’s type (see §2.4). Thus, the equation (4.3.15) actually counts as a generalized relation of Boltyanskii 
type. A more profound meaning of this generalization should be discussed later. 
 Thus, in a theory of this kind, the nonsingular matrices give correlations between the two invariant velocities 
of a doublet, acting just like a piece of matter in the process of refraction. Once again, the ‘kind’ of theory we 
understand here, is the ‘Boltyanskii kind’ involving, in general, the idea of field, just a little amended, as it were: 
the Lorentz transformation at the infrafinite scale should be determined by all three invariants of its homographic 
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action. Again, in equation (4.3.3), Boltyanskii used just two of these invariants in his original theory: the invariant 
speeds, playing the part of propagation velocities. In order to count as an invariant, the third one should be the 
characteristic cross-ratio of the homography. Using a canonical parameter of the group, this should be an 
exponential factor like that from equation (4.2.21) or that from equation (4.2.24): a phase factor. This may be 
taken as the key point to the concept of protective measurements, as we have noticed before. The hard part of the 
problem is the existence of the two invariant velocities, but these may appear naturally within the sl(2,R) algebra 
approach of relativity, of the Fowles’ or Cook’s type (see §2.3). 
 While this last problem asks for more involved considerations, for the moment we have, even though not quite 
so directly and, certainly, not intuitively, a confirmation of the above image of the world, in the situation of Earth 
itself, tantamount to Lorentz approach to electrodynamics of the moving bodies (see §2.2 of the present work). 
As a matter of fact, it is this situation that allows us to consider the Earth, as well as its fictitious counterpart, the 
black hole, as prototypes of the concept of physical particles. Indeed, start by noticing that, if in the last of the 
equalities (4.3.15) c1 is a constant – like, for instance, the speed of light of our experience – the variation of c2 is 
determined by the variation of the four parameters (a, b, g, d) according to differential equation: 

  (4.3.17) 

where w k are the known differential forms making the components of the sl(2,R) coframe [see (Mazilu, 2020); 
equation (4.2.27)]: 

 
 

(4.3.18) 

Such mathematics is, indeed, prone to describe the situation of Earth, where c1 is the Maxwellian speed 
representing the ratio between the electrodynamic and electrostatic units of force: it does not have to be 
considered more than that, and the Maxwell’s association of it with a speed acquires a new meaning. It means 
that for the universe around Earth, this ratio should be a constant, and all the speeds of propagation, in the matter 
as well as in the vacuum – are to be referred to this constant. Just as they were, indeed, historically speaking: this 
is, after all, an unquestionable fact of our experience. To wit: this is how the relativities have come to being in the 
Einsteinian physics. 
 Then, a fundamental problem of theoretical physics would certainly be how to attach the equations (4.3.17) 
and (4.3.18) to the de Broglie’s region from the case of Earth. Provided, of course, we know something about the 
existence of such a region which, again, is only a figment of our imagination, just like the Poincaré fluid in the 
case of interpretation of the electromagnetic ether (Poincaré, 1900). We have such an example of region in the 
case of black holes: it is a region where the electrodynamics’ equations are valid, helping us in explaining 
physically the so-called membrane paradigm (Price & Thorne, 1986, 1988). This suggests a host of ‘subordinate’ 
analogies connected with the grand one, between Galilean and Einsteinian relativities. In general, if between these 
speeds there is a correspondence given by the homography from equation (4.3.15), the equation (4.3.17) 
represents the whole spectrum of velocities of the signals serving to establish the lengths, for those kinds of matter 
existing in the vacuum characterized by the light of velocity c1. In other words, the sl(2,R) coframe from equation 
(4.3.18) simply represents the matter existing in a certain vacuum, characterized by the ratio (c1)2 between the 
electrostatic units of electricity and the electrodynamic units. 
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 4.4 A Modern Account of the Mutuality of Fields 

 The Ernst’s approach of the field equations of general relativity reveals a ‘mutuality’, as it were, between the 
fields, for instance in the form given in equation (4.1.6) according to Israel and Wilson. In view of the conclusions 
of the Einstein-de Sitter debate, the whole point of this theory can be expressed by a law amounting to the fact 
that between the boundary conditions for the metric tensor, and the actual metric tensor per se, a harmonic 
principle of application should be involved. In other words, a harmonic principle gives the field equations starting 
directly from the boundary conditions, which, classically, are simply ‘initial conditions of the classical Kepler 
problem, in disguise’, so to speak, as given, for instance, in equation (4.1.23). The only proviso, according to 
Ernst’s own mathematics (Ernst, 1971), is that the background space must be an Euclidean manifold. 
 As we see it, everything in the man’s possibility of explanation of the world we inhabit depends on the proper 
consideration of the Planck’s concept of resonator, as a fundamental structure of the modern theoretical physics. 
Now, for most people this statement can be taken as peremptory, since that subjective phrase: ‘as we see it’ hardly 
really matters in a comparative logical argument where others may see something else. However, the intuitive 
basis of our statement is encouragingly simple, therefore quite appealing: if the fundamental structure of the world 
must be experimentally verified at any rate, the verification depends on the existence of dipoles, and this is our 
reason for this statement. For then, the only experimental device serving this task should always be a Wien-
Lummer enclosure: it is the only device known to provide experimental evidence transiting the scales of the world, 
in both time and space, due to the nature of the object of study, that is of the light. For, as we repeated quite a few 
times by now, our essential tenet in this respect is that the light is the only phenomenon that transits the scales of 
the world. 
 Then the issue of describing the gravitation must be solved within the same kind of experimental physics, and 
for it another experimental device must be considered along the same lines of transition between the scales of the 
world: the Einstein elevator. It was also realized experimentally – incidentally, we take here the modern cosmic 
space experience of humanity as ‘experimental physics’ – but, apparently, not at any scale of the world. However, 
the account of theoretical physics of the last half of the previous century, which follows here, suggests an 
equivalence of the two fundamental devices of our experience. In its turn, this equivalence is able to show what 
is the kind of interdependence of the fields that satisfy it. And thus, the story that follows becomes our reason for 
the statement above regarding the fundamental structure of the world, so that it may be taken not quite as 
peremptory as it may seem at the first sight, after all. 
 At the infrafinite scale of the world, the three matrices I0, J0, and K0 from the §2.4 above, provide a basis for 
the isotopic spin, represented as an involutive matrix like the one we have in equation (2.4.10). It seems, therefore, 
worth our while exploring here the idea that Einstein’s line leading from electrodynamics to special relativity, is 
also the line that led to the modern idea of Yang-Mills fields – that is, generalizing the Maxwell fields on the basis 
of a quantum philosophy – which are the quintessential gauge fields of the modern theoretical physics. There is, 
nevertheless, a change in emphasis in doing this, that shows where and how the Einstein’s infrafinite scale 
intervenes, and how the finite and transfinite scales are to be described based on this idea. For a proper 
documentation, let us first quote the whole abstract of the original 1954 epoch-making work of Chen-Ning Yang 
and Robert Mills, that means so much for the today’s theoretical physics: 
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 It is pointed out that the usual principle of invariance under isotopic spin rotation is not 
consistent with the concept of localized fields. The possibility is explored of having invariance 
under local isotopic spin rotations. This leads to formulating a principle of isotopic gauge 
invariance and the existence of a b field which has the same relation to the isotopic spin that the 
electromagnetic field has to the electric charge. The b field satisfies nonlinear differential 
equations. The quanta of the b field are particles with spin unity, and electric charge ±e or zero 
[(Yang & Mills, 1954); our italics, n/a]. 

It is best, in view of the statements contained in this excerpt, to explain our incentives in considering here the 
Yang-Mills fields, in connection with this agenda of the renowned work just cited. Our contention is that the 
choice of the basis (2.5.1) is the one that fills in for the nonlocality of the gauge fields. With the initial choice 
(2.4.1) for the characterization of the isotopic spin [see (Yang & Mills, 1954); especially the literature cited there], 
only the ‘rotation’ is sought for. However, on the occasion of that choice, a few items were conceptually omitted, 
that have been partially touched by the evolution of physics in different directions ever since. These became issues 
that remind us, once again, that we are not doing physics in a point in space, but always on a surface, and this is 
a fact to reckon with in building our understanding of the world we inhabit. 
 The first one of these issues, coming to our mind right away, for it is conspicuously present into modern 
theoretical physics, is that the definition of the Yang-Mills fields, just like the definition of their ancestors, the 
Maxwellian fields, asks for the concept of surface in a precise way: the fields should be part and parcel of the 
physical definition of that surface [(Yang, 1977), and the literature cited there; see also (Gu & Yang, 1977)]. 
Secondly, we have the observation that the isotopic spin is not compatible with the idea of localized fields, but, 
like its Maxwellian ancestor, it is leading to the idea of gauge invariance, which, nevertheless, can be explored 
only locally: there is not an extant general form of the frame (2.5.1) that allows for the definition of localized 
fields from a nonlocal perspective. And thirdly, there is not, in the modern physics, a characterization of the 
quanta of the Yang-Mills fields as ‘quanta’, in the sense made possible by the Maxwellian ancestor of them. What 
we understand, in this statement by ‘made possible’ is mainly referring to ‘possible by the same means as those 
of Planck’s procedure of quantization, leading to the idea of quanta of light: physical, mathematical, and 
statistical’. Such a ‘possibility’ is contrary to today’s actual view in theoretical physics, whereby in the process 
of quantization of the gauge fields one follows mainly the second quantization procedure. While these three 
missing points of the initial proposal of the epitome gauge field will be gradually touched by us, what we got thus 
far allows for an observation regarding the first two points from the definition of the gauge fields: the choice 
(2.5.1) is a particular one among the general cases connected with the concept of surface. 
 The reason for this situation seems to us clear, for it emerges explicitly in the subsequent evolution of the 
Yang-Mills theory into a gauge theory: unlike its Maxwellian ancestor, it is characterized by nonlinear equations 
of motion, which make a necessary statics of the matter rather hard to understand. In understanding this statement, 
a first observation is instrumental, regarding the analogy between the general relativistic philosophy and the gauge 
fields theory: the nonlinearity triggers self-interaction of the fields, a fact made notorious in a quite striking 
fashion for the physics of modern times, by the case of solitons (Scott, Chu, & MacLaughlin, 1973). The self-
interaction, allows an idea that the field themselves generate the physical quantities which, as we know from the 
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classical physics, generate it in turn – the charges, the mass etc. – and thus eliminates the necessity of sources of 
fields. Further on, along with the concept of sources, the nonlinearity thus eliminated the classical idea of a statics, 
which turned out to be virtually disposable, thus making the external sources from the case of electromagnetism 
obsolete. Quoting: 

 … In the absence of external sources of isotopic spin, the bµ field interacts with itself, since 
the bµ field possesses an isotopic spin and hence is self-generating. In this latter characteristic, the 
bµ field is different from the electromagnetic field, which is described by linear equations in the 
absence of other fields. (The nonlinear equations describing the self-generating bµ field are in some 
respects similar to the equations of general relativity.) 
 We seek in this paper to find a solution of the (unquantized) bµ field in the absence of other 
interacting fields. Our aim is then similar to that of Born and Infeld [the celebrated article on 
nonlinear electrodynamics (Born & Infeld, 1934), a/n), except that they started with equations 
which were written down on a more or less ad hoc basis. [(Wu & Yang, 1969); emphasis added, 
n/a] 

Those ‘respects’ in which the equations describing the bµ field ‘are similar to the equations of general relativity’ 
proved to be equivalent, from an essential point of view, as we see it, to the Ernst equation leading to the Maxwell-
Einstein vacuum field equations (see §4.1 above). Consequently, what follows in this section is a short story of 
the path followed by theoretical physics to this conclusion. 
 We start this story with a fundamental work of C. N. Yang, that we have found quite explicit in explaining 
the task of the gauge theory of Yang-Mills type (Yang, 1977). Quoting, therefore: 

 There has been great interest in recent years in sourceless gauge fields. A self-dual gauge field 
is sourceless. We shall consider a flat space 

  (4.4.1) 
and a self-dual SU(2) gauge field. The main purpose of this Letter is to show that the condition for 
self-duality of the field can be integrated once, resulting in a set of Laplace-like equations for three 
unknown functions. All considerations are local in character, and do not refer to global properties. 
[(Yang, 1977); emphasis added, a/n] 

Notice, from the very beginning, a hint of analogy with the general relativity: the metric (4.4.1) has to be compared 
with the Einstein’s choice from equation (3.1.2). Both of them represent a geometric situation at an infrafinite 
scale of physics, being expressed in differentials. This tells us that either the Yang-Mills generalization of the 
classical electromagnetic fields is not described by equations involving the field propagation per se, like its 
classical Maxwellian ancestor or, as in Yang & Mills original characterization, the existence of the isotopic spin 
fields at the infrafinite scale ‘is not consistent with the concept of localized fields’. 
 Fact is that the story of physics of the later times spins around this last line, involving, at the finite scale of 
the world, the Einstein’s idea of representation by quadratic form (see §§3.1 and 3.2 above). This situation 
deserves a logical explanation: the striking success of the general-relativistic natural philosophy, as well as that 
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of the Yang-Mills fields theory, lead mathematically to the idea of some common roots. This idea is obviously 
connected with the metric (4.4.1) which is formally identical with (3.1.2), and this can be taken as symptomatic. 
It started with Newton’s theory of ‘nascent moments’ or ‘genitae’ of the finite quantities [(Newton, 1974), Book 
II, Section II, Lemma II]. Leaving aside the numerous points of criticism raised along history, and judging Newton 
in a Voltairian perspective ‘by the question he asks’, the differentials in general are the nascent moments of the 
quantities: the set measures on the quantities just about to be born and are not to be treated as the finite quantities 
about to come to being from them. The point at issue of all critics of Newton, however, was, in our opinion, 
pertinently analyzed by the great philosopher Georg Wilhelm Friedrich Hegel in his Science of Logic [(Hegel, 
2010), Book One: The Doctrine of Being, Section II: The Magnitude (or Quantity), especially Chapter 2: The 
Quantum]. For our purpose here, the results of this analysis can be summarized as follows: while for the genitae 
there is a whole philosophy to justify their logic, in the case of finite quantities there is no logic at all. The finite 
quantities are simply ‘data’, and this should tell everything about their definition. This is the philosophy of C.-N. 
Yang, who then proved that the quadratic form in finite variables can be obtained via an integration, representing 
quasiparticles. 
 As we can see it, this situation was intended to be stopped with Einstein’s equation (3.1.1), which defines – 
in the Hegelian spirit, as it where – the ideal quantities representing the infinity, with respect to which only (sic!), 
are we allowed to define the finite quantities. This is the whole logic of Einstein theory: it should be based on 
cosmology, that alone allows us to define the finite quantities, the same way as these last ones allow us to define 
the infinitesimal quantities. Geometrically, the procedure is involved enough, as the Einstein’ and de Sitter’s 
debate show us, but it can be framed in a Cayley-Klein geometry (see §3.4 above) and thus subsumed to a Kleinian 
logic, that has anything to do with physics: the Ernst physics, as we called it here. Once again, the Yang-Mills 
fields, in the C.-N. Yang’s take, are a brilliant illustration of this kind of physics. So, let us come back to the 
streak of discussion of the present section. 
 From an Einsteinian point of view, the problem is quite simple: the general relativity started from the idea of 
Newtonian force fields, but it could not construct them as reference. This basically means that, according to 
Einstein’s natural philosophy, these force fields can only be fields at infinity. On the other hand the Yang-Mills 
gauge theory allowed the construction of such fields as self-interacting gauge fields since the field equations are 
nonlinear. So, the problem of construction of such fields at a finite scale occurred (Wu & Yang, 1969), playing 
the part of static fields, and its solution involved, indeed, quadratic forms (Marciano & Pagels, 1976), but also 
turned out to involve cubic forms (Uy, 1976) or, in general, a function satisfying a nonlinear equation of Klein-
Gordon type, for the so-called ‘f 4 field’ (Corrigan & Fairlie, 1977): 

  (4.4.2) 
Here ‘�’ is the d’Alembertian, in a quite familiar notation. A special solution of this equation can be written as: 

  (4.4.3) 
with a0 adequately chosen and l arbitrary. This represents a pseudoparticle of ‘instanton’ type, indeed (Belavin, 
Polyakov, Schwartz, & Tyupkin, 1975). Remarkable enough, this solution represents the finite scale physics, as 
described based upon the idea of gauge fields. This statement is based on the idea of comparison with Einstein’s 
condition (3.1.1), which can be taken as a constraint on the field. But the implications are by far deeper than that. 
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 Everything, in the theoretical physics of Yang-Mills fields of the second half of the 20th century, revolves 
around this concept of pseudoparticle. On this state of the case, a discovery of C. N. Yang, reported in the work 
from which we took the excerpt above (Yang, 1977) allowed the connection of the concept of Yang-Mills gauge 
field with the Ernst equations (Forgács, Horváth, & Palla, 1980, 1981). This concurrence of circumstances 
indicated us a manner of connection – mutuality, as we would like to call it – between light and gravitation that 
will be explained here based on the grand analogy of physics. However, in order to explain it properly, let us first 
present the concepts from a mathematical point of view. 
 As we said, Chen-Ning Yang’s definition for the fields generalizing the classical Maxwell ones (Yang, 1974, 
1977), explicitly hints towards the concept of surface and even further, towards the concept of a phase connected 
with this surface. That is, the self-dual field is described by a set of four potential vectors b – not just one potential 
vector like in the case of the classical electrodynamics – represented as a 3´4 matrix, with the field components 
being the entries of this matrix: 

 
 

(4.4.4) 

Here i is the imaginary unit of the complex numbers, sk are the regular Pauli matrices, and the summation rule is 
respected. The Latin indices take three values, while the Greek ones take four values in this case. The field 
strengths are defined by 

 
 

(4.4.5) 

where the entries of matrix C are the structure constants of the Pauli matrices’ algebra. This algebra, usually taken 
as a so3 algebra, needs to be replaced, in our opinion, with the sl(2,R) algebra of the matrices (2.5.1), in order to 
realize the de Broglie’s program. 
 However, as it stands now, we have the following definition for the field strengths: 

  (4.4.6) 
for which the condition of self-duality can be written as: 

  (4.4.7) 
where 𝝐 is the four-dimensional Levi-Civita symbol. Now, C. N. Yang has noticed (Yang, 1977) that in the 
complex coordinates defined by 

  (4.4.8) 
the self-duality can be expressed as 

  (4.4.9) 
where the indices are replaced by the representative coordinates in the complex (y, z) plane. Starting from this 
point, we just summarize Yang’s discovery, referring the interested reader to the original works for details. 
 First, we need to take a little closer look at the Yang’s concept of a gauge field, for this is the most attractive 
part of the concept in these gauge fields. He just takes the Weyl’s theory of the electromagnetic field (Weyl, 
1952), to a new level, so to speak, the ‘integral level’, as he calls it, by asserting that a gauge field is intimately 
connected to a path in space time and, most importantly for us, this connection is mediated through a phase 
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(Yang, 1974). This phase can be expressed by a group of matrices, whose infinitesimal transformations have to 
match the classical condition of propagation in spacetime. At the infrafinite scale, the matrices can be written as: 

  (4.4.10) 
Here 1 is the identity matrix, as usual, and the matrices Xk are those generating the gauge group, and satisfy the 
specific commutation relations of the group: 

  (4.4.11) 
where C is the matrix of structure constants of this group algebra. Then the field strengths are related to the closed 
paths in spacetime, thus generalizing Weyl’s differential definition of the classical Maxwellian electromagnetic 
fields: 

  (4.4.12) 
with the matrix f defined as in equation (4.4.5). Here the round arrows mean cycles starting and ending in x. 
 Based on this concept of gauging, Chen-Ning Yang demonstrates the existence of a generating matrix, with 
which all the self-dual fields can be constructed. In the geometry of coordinates (4.4.8), the equation (4.4.9) allow 
for a special choice of the generating matrix, called by Yang the R-gauge. Using his own notations, this matrix is 
of the form: 

 

 

(4.4.13) 

where f is a real function of coordinates, and R is a complex function. The self-duality equations become 

 

 

(4.4.14) 

where the upper star index means complex conjugate. Now, Yang makes one further choice for an even more 
particular solution of these equations, satisfying the conditions: 

 

 

(4.4.15) 

which leads to a special set of potentials just surfacing within the theoretical physics at that time. Quoting: 

 These potentials are exactly of the form of the Ansatz 

  (4.4.16) 

which has been discussed by Corrigan and Fairlie (1977), by Wilczek (1976), and by ’t Hooft 
(1974, 1976) in the search for sourceless SU(2) gauge fields on Euclidean space [(Belavin, 
Polyakov, Schwartz, & Tyupkin, 1975); (Witten, 1977); (Jackiw, Nohl, & Rebbi, 1977)]. All 
published self-dual gauge fields (known to the author) can be gauge transformed to the form 
(4.4.16), which is equivalent to (4.4.15). They are special cases of (4.4.14), which give all self-
dual SU(2) gauge fields. [(Yang, 1977); references updated when necessary, a/n] 
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The Yang’s theory raises a legitimate question: in what respect are the gauge fields describable by the classical 
idea of propagation? The theory itself gives the answer, even though it is not quite so obvious for an untrained 
eye: as the decomposition from the right hand side of equation (4.4.13) shows, Yang’s R-gauge is actually a 
propagation condition according to the rules of the physics of optical instruments generating light beams (Abe & 
Sheridan, 1994). Better yet, we can explain such a condition based on the concept of holography, which was 
actually the inception point of Yang’s approach of Yang-Mills field problem in the first place. 
 It is, perhaps, best to insist a little more, right on this point on the ‘holographic moment’, as it were, of the 
Yang-Mills fields, for it is indicative on the methodology of approaching this important problem and its solution. 
Chen-Ning Yang realized the importance of surface loops in the definition of the concept of gauge fields probably  
in the late sixties or early seventies of the last century (Yang, 1974). What we call here the ‘holographic property’ 
came with a multiplicity of surfaces on which these loops are represented (Wu & Yang, 1975), on which Yang 
recognized a kind of invariance: each one of these surfaces carried a specific field of electromagnetic type, but 
all these fields have the same field strength (Yang, 1977). Then we need to consider that the field strength is what 
in the world we inhabit can be taken as physically accessible, for instance as matter in a quantization process of 
the Planck type. Then, the different phases, are surfaces upon which ‘photographs’ are imprinted in the form of 
specific field potentials. This, in our opinion, is the genuine holographic property of the Yang-Mills fields, and it 
is, obviously, the classical acceptance of the holography. Let us elaborate further on this issue. 

 4.5 Holography as the Universal Phenomenon of our World 

 Taking heed of the presentation from the previous section, we extend here the holographic property to a 
universe in general. One of the consequences of the theory regarding the thermodynamics of radiation, is that the 
frequency needs to be presented as a statistic, ranking evenly with temperature (see §1.1). This section is all about 
how the frequency can be seen as such a statistic: we construct an ensemble having it as a representative, and this 
ensemble is the holographic instanton. On the other hand the holographic property of the frequency connects it 
with the property of curvature of the surfaces, which is the essential property of gauge fields. 
 In the case of classical ideal gas ensemble, the energy allows a statistic, taken occasionally even as a sufficient 
statistic (see §1.1 for details). To wit: because this energy is purely kinetic, it provides a statistic that can be 
associated with the temperature via its variance over the molecular ensemble. If it is to continue this ‘statistical 
tradition’ in order to accomplish an interpretation ‘classically’, as it were, inside a Wien-Lummer cavity serving 
for describing the thermodynamic equilibrium between matter and light, the light must be cogitated from the same 
statistical point of view, and this task is, theoretically speaking, a lot harder. For once, the concept of intensity of 
light strongly indicates that it is the amplitude of the light signal that has to be taken as a statistical variable. This 
motivated Einstein on striving to conclude upon the nature of its statistics (Einstein, 1909). And, as that work 
conclusively shows, in our opinion Einstein may be considered as the only one among physicists who grasped the 
true physical nature of Planck’s method of quantization. Let us expound this issue a little further. 
 Notice, indeed, a fact of concern here: when considering the radiation as a thermodynamical system, a 
contradiction, already signaled in §1.1, creeps into our reasoning. This can be relegated to the fact that the formula 
for entropy, used by Planck in calculating the entropy of radiation [see (Mazilu, 2022), equation (2.1.2) there], is 
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an equilibrium formula from thermodynamical point of view, but is used to connect two apparently different 
temperatures embodied in the limiting cases of Rayleigh-Jeans and Wien for the laws of radiation. In other words, 
since according to principles of thermodynamics we cannot physically conceive one and the same system as 
having a given temperature, but being composed of two physical parts existing at different temperatures, there 
can be no equilibrium at all: those two parts are necessarily exchanging energy between them. In fact, according 
to Born, the differential equation leading to his radiation law [(Mazilu, 2022), equation (2.1.9)] was taken by 
Planck only as an interpolation between the two extreme cases – Rayleigh-Jeans’ and Wien’s radiation laws – 
and thus the emphasis changes its place from thermodynamics to a mere mathematical methodology: the 
differential equation of Planck would appear as a purely mathematical trick. Still, the problem is not solved, since 
the methodology cannot be justified but by a statistical reason of independence of two sub-systems. If the radiation 
system at a given temperature is described by such an equation, this means that in the interaction with the 
environment the whole physical system behaves partly as being at high temperature and partly as being 
concurrently at low temperature, according to the two laws of radiation that served to Planck’s reasoning. Thus, 
we are entitled to conclude that the temperature plays a dual role here, and even this occurrence still needs to be 
further explained from a physical point of view. 
 Planck himself, in carrying over his method of quantization, opted, as well known, for the idea of resonator, 
whose existence is not only allowed, but is even imposed we should say, by the established Kirchhoff’s laws of 
equilibrium radiation as, in fact, Einstein himself has noticed. However, as we have shown in §1.2 here, the 
concept of Planck’s resonator asks for a special optical medium, a fact that Einstein could not take in consideration 
at that moment in time. It is from this historical perspective that we define what we like to call the universal 
property of the world we inhabit, namely the holography. In designating this property as universal, we have in 
mind, first of all, that it is characteristic to both light and matter: it is, indeed, a property of the world we inhabit, 
more accurately speaking. In describing it we follow closely one recent work of ours, describing the holography 
in a particular instance (Mazilu, 2023). 
 The idea of particle – predominantly that of photon – appears, according to discussion right above, to reside 
upon the correlation between the two fundamental ‘sub-processes’ of the light just mentioned, considered 
separately as components of a thermodynamical process representing the light. It is quite significant then, in 
sustaining this conclusion – and Albert Einstein himself took notice of this in the work just cited above (Einstein, 
1909) – that he established the physical properties of a quantum only based on just one of the two parts of radiation 
of the light process, namely the Wien’s law of radiation (Einstein, 1905b). This may be taken as a particular case 
of the general explanation of the quantization, and, actually, we take it as such. That one part of the light process 
considered by Einstein for quantization represented, nonetheless, a single temperature, indeed, from the two 
possible temperatures involved in the light process here, and thus it was ‘legal’, as it were, from the point of view 
of equilibrium thermodynamics. In general, however, i.e., considering the whole process that represents the light, 
a particle becomes an agency of transition between the light at high temperature and the light at low temperature, 
so to speak. In modern terms this can be translated thus: insofar as the light is sometimes considered as the modus 
essendi of the vacuum – like in the case of Planck’s quantization, for instance – the particle accomplishing its 
interpretation can just as well be seen as the modus essendi of the vacuum tunneling process. Fact is, that the 
multiplicity of vacuum – the existence of an infinity of vacua simultaneously – seems to be an already settled 
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issue today, at least from a modern theoretical point of view (Jackiw & Rebbi, 1976). In this case, however the 
vacuum would appear as absence of the physical properties of matter (see §3.3 above), not as the absence of the 
matter itself. 
 Just about this kind of conclusions are documented in the works of Einstein addressed to the theory of thermal 
radiation (Einstein & Hopf, 1910): the pursuance of the Einstein’s former idea as presented just above, did not 
lead to conclusive results on the issue at hand. Citing the original conclusion: 

 Therewith is also proved the validity of equation (1) and the impossibility of constructing a 
probability theoretical relation between the coefficients of the Fourier series that describes the 
thermal radiation [(Einstein & Hopf, 1910a); emphasis added, a/n] 

The ‘equation (1)’ mentioned here is a law of probability whereby the elementary probabilities of different 
amplitudes in the Fourier series representing the light are statistically independent. Implicitly, in their statistical 
dependence, we see the Einsteinian idea on the possibility of describing the matter influence on the light. Quite 
obviously and, of course, naturally, the light is conceived here in the manner of heat: the name of Fourier tells 
everything in this sense. For, ever since the times of Joseph Fourier, the light, just like the heat, was represented 
by a series whose terms are considered harmonic oscillators, and Einstein and Hopf were looking, in the work 
just cited, for the law of probability of these components in the series. A theoretical statistical idea of description 
was found by them possible, however only based on components of the Fourier series representing the light that 
are statistically independent. This fact erases a priori any possibility of statistical description of the correlation 
between the components of Fourier series representing the light, and thus brings with it the a priori impossibility 
of considering the correlations between the two extremal ends of the light spectrum. Quoting again: 

 One has wanted to find the reason why all exact statistical analyses in the field of radiation 
theory lead to Rayleigh’s law in the application of this approach to the radiation itself. With some 
justification, Planck  brings up this argument against Jeans’s derivation. However, in the above 
derivation (i.e. the derivation of Einstein & Hopf, a/n) there is no question whatsoever of a 
somehow arbitrary transference of statistical considerations to radiation; the energy equipartition 
theorem was applied only to the translatory motion of oscillators. But the successes of the kinetic 
theory of gases demonstrate that this law can be considered as thoroughly proved for translatory 
motion. 
 The theoretical foundation we used in our derivation, which is certain to contain an unfounded 
assumption, is thus nothing else but that underlying the theory of light dispersion in completely 
transparent bodies. The actual phenomena differ from the results deducible from this foundation 
owing to the fact that additional kinds of momentum fluctuations are discernible in the former (i.e. 
in those ‘actual phenomena’, a/n) which, in the case ot short-wave radiation of low density (the 
condition used by Einstein in 1905 to introduce the idea of light quanta, a/n), enormously 
overwhelm those obtained from the theory. [(Einstein & Hopf, 1910b); emphasis added, a/n] 

With the perspective of one century over this issue, let us take another look at it, starting, however, with another 
point of view regarding the statistical principles serving to our approach. If we may be, again, permitted to express 
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the idea, in remembrance of the divine Voltaire, let us «judge Einstein by the questions he asks, rather than by 
the answers he offers», and try to give an answer ourselves, where his answer seems to us unsatisfactory or 
incomplete. Luckily for us, we have at our disposal plenty of ‘shoulders of giants’ to stand upon! 
 As we have seen in §1.1, the Wien’s displacement law is a criterion of selection for any law of radiation, and 
we extend it over the parameters involved in the expression of such a law. The classical theories of mechanics 
and electrodynamics indicate two of these parameters that can be expressed as statistics: the temperature and the 
frequency; the rest of the parameters involved in such a law are universal constants. The temperature is, in fact, 
the only parameter that can rightfully be called a statistic in this case, based on the studies of thermodynamics of 
the classical ideal gas: the molecules of matter are the only ones involving “translatory motion” supporting a 
statistics that leads to temperature. That the radiation is prone to having a temperature characterizing it, is a 
thermodynamical conclusion backed up by the Kirchhoff’s laws of radiation: enclosed, with a gas in a Wien-
Lummer cavity, the whole system reaches an equilibrium in the thermodynamical acceptance of this word. 
However, there is no such statistic correlated to frequency so that, obviously, we cannot say that an incidental 
statistic in this case is supported by a motion of translation, like in the case of ideal gas alone. 
 And yet, a case may be made for such a statistic, and we need to consider it, insofar as it has special ties with 
the case now under scrutiny. Besides, it is a good guiding post, as it were, on our way of construction of a statistic 
for frequency, and it seems to be supported by the fact that Planck’s formula appears to be a statistical distribution, 
just like Wien’s spectral density on which Einstein based his heuristic reasoning from 1905 [(Priest, 1919); see 
the §1.1 above]. On the other hand, the process of associating with each other of the charges from a de Sitter 
continuum representing the universal physical background of the world, is a stochastic process involving, in the 
case of a resonator, two random phases: one for the electric charges and one for the magnetic charges [(Katz, 
1965); see also (Mazilu, 2020); Chapter 3]. In matters of Newtonian force equilibrium, therefore a fortiori in 
matters of interpretation, the charges are associated with a phase [loc. cit. ante, equation (4.4.1) to (4.4.3)]. Thus, 
the stochastic process of charge association is described by a second order differential equation of oscillator type: 

  (4.5.1) 

where e and g are the electric and magnetic parts of the charge q, respectively, and the accent means differentiation 
with respect to the arbitrary phase f. This means that the particle possessing the charge q(f) is characterized by a 
linear uniform ‘motion’ having the equation: 

 
 

(4.5.2) 

so that e and g, for instance, may appear as statistics correlated to this ‘uniform motion’ x(t) in an incidental 
ensemble of such ‘particles’, just like in the case of the classical molecular gas. This result is known as Arnold’s 
theorem [(Arnold, 1988), p.44], and is by and large taken as a manner of ‘transforming the harmonic oscillator 
into a free particle’, and vice versa (Bernardini, Gori, & Santarsiero, 1995), thus easing out the solutions of quantal 
equations of motion for instance (Aldaya, Cossío, Guerrero, & López-Ruiz, 2011). One may say that there are 
two such ‘free particle’ generated by charges of electric and magnetic type, and two statistics appear here as just 
natural for the process of associating charges. In the spirit of our discussion right above, we may be tempted to 
see a connection between the statistics characteristic to the harmonic oscillator, and that characteristic to the free 
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particle. This last one is characterized by the parameter temperature, as the molecular kinetic theory instruct us, 
while the first one is confuse, to say the least. Namely, while the quantum theory of radiation teaches us to tie it 
up to frequency as a statistic analogous to temperature, the Arnold’s transformation above strongly indicates a 
statistic connected to the amplitude, as Einstein himself searched for, therefore to the charge. Let us concentrate 
on the case of charge, for it sheds a specific light upon the case of the amplitude. 
 We cannot but notice that in the above association of charges here, frequency does not appear yet: we have to 
deal only with functions, a priori periodical is true, and expect to define the frequency… when the time comes 
for it to be considered, as it were. Then, the physics’ question is: how, and when could that time come?! An 
answer is handy right away: just the way it comes with the motion of a free particle in the Galilean environment. 
That is, associated with an equation of motion. And, as shown above, the equation of motion, as a concept, is 
‘common’, in fact, for the free particle and harmonic oscillator: they only differ by an Arnold transformation. If 
we apply that recipe from equation (4.1.2) to a genuine free particle itself, as we have it from our experience in 
one dimension, we find that the Arnold transformation enjoys the properties of a special realization of the sl(2,R) 
type structure [(Mazilu, 2020), Chapter 4, §4.2]: 

 
 

(4.5.3) 

where (x,t) are the coordinate and the time of the original uniform motion of the particle. This is a realization of 
the SL(2,R) group structure, which gives us a possibility of interpretation by an invariant function 

 
 

(4.5.4) 

suggesting, on one hand, that the Newtonian forces are the only admissible forces in the case of ensemble of 
particles realizing the interpretation and, on the other hand, that the group (4.5.3) is referring to a ‘radial motion’ 
as it were, of the free particles serving for interpretation, whereby x plays the part of standard deviation on their 
ensembles (loc. cit. ante). 
 However, we still do not find any trace of the concept of frequency – as we know it from physics, of course, 
for an a priori periodicity exists, mathematically speaking – in this approach of the description of free particles. 
If we really need to touch this concept from physics’ point of view, we obviously have to consider the case of a 
genuine oscillator, whereby the frequency comes with a differential equation involving, apparently, the elastic 
properties of the continuum to be interpreted. This idea was instated in physics even from the times when Fresnel 
added the diffraction phenomenon to the phenomenology of light, which classically – that is, as inherited from 
Newton’s and Hooke’s theory of the light rays – included just the phenomena of reflection and refraction. From 
this perspective, one can say that by ‘updating’ this way the classical phenomenology of light, Fresnel just gave 
an interpretation (Fresnel, 1821, 1826, 1827) to the old Hooke’s ideas on the description of light phenomenon in 
material media [see (Hooke, 1665), pp. 53 – 69]. And when addressing the issue that way, a thing became obvious, 
indicating the insufficiency of the diffraction phenomenon in completing the phenomenology of light: the 
essential concept describing the light phenomenon is that of a phase. The frequency can come out of this game 
only as an invariant, specifically related to an SL(2, R) type action of the group of 2´2 matrices, as indicated in 
equation (4.5.3) for the time. In other words, in order to introduce the frequency we first need to properly introduce 
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the phase, and connect the frequency to it in a way that completes even the Fresnel’s diffraction theory: according 
to Louis de Broglie’s theory of diffraction, this theory misses at Fresnel a few essential points that imposed the 
concept of quantization (Mazilu, 2020). 
 To this end the phenomenology of light needs to be ‘updated’ once more, over the diffraction phenomenon 
added by Fresnel: the phenomenon to be added this time is the holography, and the job has already been done, a 
posteriori as it were, based on the Louis de Broglie’s ideas, therefore basedon the very quantization procedure 
(Gabor, 1948, 1949, 1950). This fact can be easily accomplished along the line of reasoning that follows here, 
strictly connected to the properties of the second-order differential equation. Namely, the ratio, say t, of the two 
fundamental solutions of such a kind of equation, entering the Arnold’s theorem for the case of an undamped 
harmonic oscillator of frequency w, defines this frequency by a third order nonlinear differential equation 
involving its Schwarzian derivative, acording to a formula that can be readily verified by direct calculation: 

 
 

(4.5.5) 

Then, if t is the time imposed by the oscillator on the corresponding free particle according to Arnold’s theorem, 
it is by no means unique: any homographic function of t with constant coefficients corresponds to the same 
frequency. This is a mathematical property of the Schwarzian derivative [see (Needham, 2001), Chapter 5, §XII, 
Ex. 19(v)]. In other words, there is an ensemble of oscillators, which has a priori the cardinality of a three-
dimensional continuum, corresponding to the same frequency defined as in the first of the equations (4.5.5). If 
we call phase such a homographic function of time, this property is plainly a definition of the holographic 
phenomenon in the original Gabor’s acceptance. 
 Our specific task now translates into substantiating this statement in the very spirit of Einstein’s philosophy 
just described above, that led to the quantization of light. It is expected that the statistical as well as geometrical 
properties of procedure will transpire just naturally as we follow the task. Notice that a typical term of the Fourier 
series of the kind taken by Einstein and Hopf to represent the light in a Wien-Lummer cavity, should be of the 
form of a complex signal (Einstein & Hopf, 1910): 

  (4.5.6) 
Here, the amplitude A(t) and the phase q(t) are to be considered as random continuous variables. These two 
numerical characteristics may be supposed real and continuous, just for the sake of argument for now; the things 
may be more complicate but, in order to settle our ideas, this is the basic situation. We try to associate a frequency 
to such a complex signal, and this amounts to an association of q(t) with a solution of the second order differential 
equation dynamically describing the harmonic oscillator. So, we must establish an equivalence, which, in real 
terms, comes down to a system of two differential equations for amplitude and phase: 
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which is a kind of Kepler’s second law, in the form usually known as the area law, suggesting a periodic motion 
for the amplitude itself, when compared with the details of a classical Kepler problem. Of course, here this means 
that we shall need a kind of interpretation of this amplitude, and such an interpretation involves, as we have shown 
above, the classical idea of free particle. This was, indeed, realized on the occasion of a description of the 
collective motions in the case of nuclear matter (Goshen & Lipkin, 1959). Therefore, taking for guidance the 
second of the classical Kepler laws, we may need to revise even the concept of particle, since the equation (4.5.8) 
is referring to a full orbit, and such a particle can be located in any point of this orbit, ‘equally likely’ so to speak. 
In other words, not only the position in space, but even the position of the particle serving for interpretation along 
its trajectory is actually a random process of the kind described by Schrödinger on the occasion of offering an 
interpretation for his newly introduced wave function. Quoting the very words of Schrödinger, the wave function 
would represent the ‘strength’ of existence of a particle in a given position: 

… If we like paradoxes, we may say that the system exists, as it were, simultaneously in all the 
positions kinematically imaginable, but not “equally strongly” in all… [(Schrödinger, 1928), p. 
120; our emphasis, a/n] 

According to this view, the second of Kepler laws should be a first incentive for the introduction of the stochastic 
element in the very classical mechanics: those simultaneous positions could not be ‘kinematically imagined’ but 
by a dynamics of Newtonian kind, based on static Newtonian forces. The ‘equal strength’ would then be described 
through the wave function introduced by Schrödinger himself. It is important to keep this idea in reserve for later 
purposes. For now, though, using the equation (4.5.8), it can be shown right away that the first equation from the 
right hand side of (4.5.7) gives an Ermakov-Pinney equation for the amplitude: 

 
 

(4.5.9) 

where R0 is a real constant. The connection with the periodic motion per se is then as follows. Let A be the 
composite amplitude of a two-dimensional harmonic oscillator, described by a quadratic form in the partial 
amplitudes of component signals varying in time according to the equation of q(t) from (4.5.7), i.e., in particular: 

  (4.5.10) 
where q1 and q2 are two independent solutions of the equation from the left hand side of (4.5.7). This amplitude 
satisfies the equation (4.5.9) with R0 the constant from (4.5.8). Thus, the frequency w0 should be associated to the 
components of the vector |Añ in an obvious way, inasmuch as they are oscillators. 
 It is in these conditions, however, that one can conclude directly from (4.5.10) that the square of amplitude of 
the signal from equation (4.5.6) itself – that is, practically, the intensity of signal it represents, if it is to speak in 
optical terms – satisfies a linear third-order differential equation of known type, that can be gotten right away, 
based on the Ermakov-Pinney equation (4.5.9): 

 
 

(4.5.11) 
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 First of all, we have the striking conclusion, namely that Louis de Broglie was right after all, and in detail at 
that: the equation characterizing an optical ray is referring, indeed, to the square of the amplitude of an optical 
signal, just as de Broglie described it for the necessities of the physical optics. Then, because the square of the 
amplitude of a recorded signal is, according to de Broglie, the numerical density necessary for an incidental proper 
interpretation, the equation (4.5.11) should also be taken as an equation for that density. For once, this would 
mean that the much discussed density waves, for instance in problems of astrophysics, are the support of a physical 
structure of continua. This conclusion of ours is apparently secured by the fact that equation (4.5.11) is one of the 
fundamental equations of the theory of regularization of the classical Kepler problem. However, the optical 
medium of our experience, may not be arbitrary after all: as long as the light can be explained as a periodic 
process, it needs to be described as such a process in a Maxwell fish-eye medium at some level, for the equation 
(1.2.11) comes with an optical medium having the refraction index given by equation (1.2.4). And this optical 
medium is, indeed, a Maxwell fish-eye. 
 It may appear that, with this conclusion, we are rushing in a little, ‘where the angels fear to tread’, as they say. 
For once, the kind of ray described by a refraction index (1.2.4), which asks for an equation like (4.5.11), may 
not be universal, at least not to the same degree as the equation (4.5.11) for the mathematical model of a signal. 
The optical medium, described by a refraction index, such as that given in equation (1.2.4) may be very particular 
indeed. However, it is worth recalling that this kind of ‘particular’ is just mathematical here: as we have shown 
in the previous chapter, from a physical point of view this kind of mathematically particular medium, may prove 
to be physically universal after all. And speaking of the light per se, this may be the case, indeed. 
 A warning sign on this issue is the existence Hanbury Brown-Twiss effect: there are intensity correlations of 
the rays issuing from the same distant source of light (Hanbury Brown & Twiss, 1956, 1957). Indeed, the square 
of the amplitude means an intensity in the optical realm. And if an equation like (4.5.11) proves to be universal 
according to the general mathematical structure of a signal, then we can conclude that the medium of refraction 
index (1.2.4) is that necessary all-pervading medium of the classical ether type, support of every phenomenon in 
the world we inhabit. Anyway, at least we have a guidance in our proceedings. To wit: we need to follow the idea 
of a meaning of the refraction index as suggested by this ray optics, and then, more importantly, to follow the 
track of an equation like (4.5.11). It is, indeed, particularly important to know if such an equation appears 
anywhere else in physics at all, and in what conditions. 
 A key problem thus remains to be solved here, though, since it is directly connected to the equation (4.5.10), 
which, in turn, is conditioning any result declared thus far: how can we define the frequency in a proper way. This 
way is taken to mean a way that incorporates the all-inclusive phenomenon of holography from the very 
beginning?! This optical phenomenon is, indeed, the most comprehensive phenomenon of optics: according to 
Louis de Broglie’s theory of light ray it concludes the phenomenology of light to the point were it can be used as 
such even in the case of matter. A sound solution imposes by itself through an implementation of the idea of 
coherence, and can be obtained using the ‘Kepler’s second law’ (4.5.8), which seems to be an apt universal 
mathematical fact, endorsed by the theory of regularization [(Mazilu, 2020); §3.4]. Taking, then, for the amplitude 
as a function of phase, the very definition provided by the Kepler’s second law (4.5.8), will be consistent with 
the holographic principle defined according to the original Dennis Gabor’s ideas on coherence. For once, such a 
definition means that the time variation of phase must be physically recognizable in the intensity of a certain 
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wave: the intensity is, in fact, not independent on the phase of signal. Then, proceeding just mathematically, we 
are able to transform the Keplerian condition (4.5.8) into a second-order differential equation for the amplitude 
of the complex signal: 

 
 

(4.5.12) 

where C is a constant. Indeed, by comparison with the oscillator’s equation of motion, the right hand side of this 
equation defines the frequency in terms of the phase of a general signal, like (4.5.6), by the equation (4.5.5). 
Therefore, we can take this last formula as defining the frequency, thus including the holographic phenomenon 
into the definition of a general optical medium. Then our problem is reduced to the mathematical description of 
this phenomenon, and the definition of frequency according to (4.5.5) provides a natural way. 
 Everything thus revolves, in problems of frequency, around the definition of the Schwarzian derivative [see, 
for the relevant details and a comprehensive presentation of this operation (Needham, 2001), Chapter 5, §§X, XI, 
XII]. The outstanding property in this definition, of which we shall make much use in this work, was already 
mentioned here: any solution of the equation (4.5.5) is defined up to a homographic transformation. This would 
mean that the manifold of solutions of equation (4.5.5) corresponding to a general phase is three-dimensional, not 
in the sense of the linear superposition rule, though, but in the sense that it can be surveyed by locating its points 
with three parameters. In the superposition rules’ phrasing, we rather have here a nonlinear superposition rule 
with three basic solutions of the equation [see (Cariñena, Marmo, & Nasarre, 1998), §§2, 3, especially equations 
(3.51–53)]. More precisely, knowing three solutions of the equation (4.5.5), a fourth one can be found right away, 
without any integration, because it must have a constant cross ratio with those three (see §4.3 above). In order to 
prove this statement, we use the general relation of transformation of the Schwarzian [see (Needham, 2001), 
especially Chapter 5, §XII, Ex. 19(iii)]: 

  (4.5.13) 
where {q,f} is the Schwarzian derivative of the phase q with respect to the phase f. If this derivative is null, the 
two phases are connected by a homographic relation [ibidem, Ex. 19(v)], i.e.: 

 
 

(4.5.14) 

so that equation (4.5.13) becomes 
  (4.5.15) 

Therefore, the homographic action of the matrices 2´2 can cover the whole ensemble of solutions of the equation 
(4.5.5). According to this theorem, the general form of a solution for equation (4.5.5) depends on three parameters: 
it can be obtained from any particular solution by the group formula (4.5.14). In other words, we can locally 
construct the whole system of phases of a signal having a definite frequency – in technical terms: a ‘frequency 
coherent signal’, i.e. the kind of signals used in the technical implementation of holography – starting from a 
particular one. The whole system of phases corresponding to the same frequency – this one being defined by the 
equation (4.5.12), with an amplitude as in equation (4.5.10) – is the orbit through a particular phase q of the group 
of real homographies. This is a continuous group with three infinitesimal generators, locally described as a sl(2,R) 
Riemannian space. Therefore, this Riemannian space is the local expression of the holographic phenomenon, 
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which here has a precise meaning: the whole system of phases corresponding to the same frequency. This gives 
us a possibility of interpretation – and speaking of interpretation here, we mean interpretation in the wave-
mechanical sense, whereby the phase can be associated to a particle (Darwin, 1927) – mathematically describable 
in the terms that follow, mimicking the actual construction of a hologram. 
 First, one needs to find a ‘seed phase’, as it were: a phase that remains the same during the holographic 
process. This is the hard part of the mathematical description of the holographic phenomenon according to the 
previous definition involving the idea of Fourier series or even integrals: finding the phase whose information is 
carried over into any other phase. One can thus better appreciate the definition (4.5.5) of the frequency, which 
allows us a firm mathematical characterization of the coherence, and thereby a clearcut characterization of the 
phenomenon of holography. Let us, therefore, assume for the moment that we have found that ‘seed phase’, and 
denote it by q. The whole system of phases f carrying the very same information is described by equation (4.5.14), 
with q = constant. Thus, any phase f coherent with q in the sense of our definition of frequency, is mathematically 
describable by the solutions of a differential equation of Riccati type, that we take as defining an instanton 
(Mazilu, 2020): 

  (4.5.16) 
This means that, in cases where the phase q defines a time, the equation q = constant defines ‘an instant’ of that 
time, and this instant is spatially described by equation (4.5.16). This equation correlates the variation of phase at 
the same frequency and the same seed phase with the variations of the three parameters describing the holographic 
phenomenon. Here the differentials (w k) are the components of the standard sl(2,R) coframe [see (Mazilu, 2022), 
equation (4.4.3)]. If we are able to transform this equation into an ordinary differential equation with respect to a 
certain ‘time parameter’, then it gives us an expression of the phase rate to be used in equation (4.5.12), in order 
to define the amplitude. 
 Now, in most cases which we have encountered thus far in our study, this transformation is an easy task 
facilitated by the metrics of the sl(2,R)-type: as a rule, these metrics possess three Killing vectors, for which the 
dual rates (w k/dt) are constants along their geodesics [see (Weinberg, 1972), Chapter 13; also (Schutz, 1982), for 
details in a modern mathematical spirit]. It is known, indeed – and we shall repeat the procedure in due time here 
for a typical case of interest, – that the differential forms of the sl(2,R)-type coframe are projections of the 
momentum forms generated via the metric Lagrangian, along the Killing vectors. Therefore, in such cases, the 
equation (4.5.16) becomes an ordinary Riccati differential equation along the geodesics: 

  (4.5.17) 
where (a1, a2, a3) are three constants characterizing the sl(2,R)-type geodesics in question, and a dot over means 
differentiation with respect to the arclength of the geodesics. This means that a geodesic becomes a point in the 
sl(2,R)-type Riemannian space. So, according to the holographic principle formulated as above, i.e. based upon 
the idea of frequency coherence, only along such geodesics the physical theory may happen to be interpretable in 
the wave-mechanical sense. Of course, the process asks for an inversion of the amplitude defined by the rate of 
phase (4.5.17), so that the inverse of the amplitude will appear, by Arnold’s theorem, as describing a free particle. 
Indeed, using the combination of the Kepler law (4.5.8) with the equation (4.5.17) gives: 
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(4.5.18) 

which represents the radial motion of a free particle, whose kinematics is described in a time provided by the 
phase f. 
 We have strong reasons to believe that, physically speaking, this should be the case: for once, according to 
Wagner’s theorem [see (Mazilu, 2020), Chapter 4, §4.3] this holographic space is the realm of the free particles 
realizing the oscillators. The most important of these clues, though, is the fact that the holographic definition of 
the frequency characterizes indeed the nucleus of a planetary atom. This statement seems to us sufficiently proven 
as a consequence of the classical dynamical problem associated to Kepler problem (Mazilu & Agop, 2012). 
However, in the theory of nuclear matter per se, this idea comes associated with an interpretation via the concept 
of collective coordinates (Goshen & Lipkin, 1959). So, we need to insist on the physical aspect of the problem 
from the perspective of these two natural philosophical concepts. For this we need first some special geometrical 
considerations regarding the realizations of homographies, for they are the basis of definition of the holographic 
phenomenon. Inasmuch as a homography is simply defined as an action of the 2´2 matrices, specifically on phases 
in this case, the realizations in question involve some properties of these very matrices, as determined by their 
actions. 
  

r2

a1φ 2 + 2a2φ + a3
= const, A2 = r−2



 174 

 
 
 

Chapter 5  An Old Einsteinian Case for Gravitation and Atomic Structure 

Einstein never gave up the idea of getting rid of the cosmological term in his equations describing the gravitation, 
and he started reconsidering his natural-philosophical position right after Cosmological Considerations, making 
it even ‘official’, as it were (Einstein, 1919). If he was consistent or not in correctly following the concepts during 
this reassessment, this is another question, but we are not entitled to judge him anyway, for there is no point in 
such a judgment: when the concepts are virtually nonexistent the spirit goes just by guess. An educated guess, is 
true, but still, a guess. This means that, if we feel an urge to judge at any rate, the words of Voltaire certainly 
must be held in view: judge the man by the questions he asks not by the answers he offers. As we see it, though, 
with the benefit of retrospection of over a century of theoretical physics, part of whose conclusions we just 
selected in the previous chapters, Einstein was right after all. The modern approach of his general relativity by 
the model of harmonic mappings can be taken as a solid proof of this statement, as we shall document right away. 
This fact, however, does not exclude that others may have been right as well. The man is just a finite being: he 
can grasp just a part of the truth which, as such, is universal. Then, the point of his existence, mostly in cases 
where the concepts are poorly defined or even nonexistent, is to relate to others negatively, as Einstein – and 
every theoretical physicist, in fact – plentifully did. But this is the man’s ‘prerogative’, if we may say so, due to 
his finiteness: it does not mean that the very differentiae of a concept of knowledge he promotes are contradicting 
others’ such differentiae. Let us proceed with expounding this remarkable example of our process of knowledge. 
 With the contribution of de Sitter, the idea may have surfaced in those old times, that the physical construction 
of the world necessarily involves charges. On the other hand, with the contribution of Hermann Weyl, [see (Weyl, 
1923, 1952)] it became quite obvious that a ‘static condition’ is vitally necessary to the construction of a physical 
theory, but, unfortunately, it could not be properly included within its structure (in making up our mind, the 
documents 619 and 626 among the English translations, Volume 8, The Collected Papers of Albert Einstein, 
Princeton University Press, have substantially contributed). In our opinion, this static condition is all about the 
moment of interpretation of the theory of relativity, serving to connect it to the classical views, without involving 
the concept of wave. In this case we need an interpretation in terms of particles exclusively and, what may count 
as belittling the whole Einsteinian natural-philosophical point of view in this respect, is the Einstein’s own 
struggle to insert a physical interpretation of matter where there is simply no call for it. 
 Indeed, any interpretation whatsoever involves only figments of our imagination – material points, Hertz 
material particles, partons, quarks, and so on; the list can be completed with many other examples of such 
inventions serving for the sole purpose of interpretation – but not physical particles. Especially in the matters 
regarding the cosmological term introduced ‘accidentally’ by Einstein, this problem became acutely pressing and, 
at least as far as we can understand it, even in an explicit form. To wit: incapability of our intellect to ‘gauge’ in 
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a more precise way the intervention of imagination in the solution of the problems of physics otherwise than 
mathematically, became critical at that time and, in our opinion, remained critical even to this day. This fact, 
however, is due to the limited posibilities of mathematics at the very time when spirit needs it, which is quite a 
natural circumstance of the process of knowledge, as a matter of fact. Quoting, specifically: 

 Not only the problem of matter, but the cosmological problem as well, leads to doubt as 
to equation (1) [equation (3.2.5) of the present work, a/n]. As I have shown in the previous 
paper, the general theory of relativity requires that the universe be spatially finite. But 
this view of the universe necessitated an extension of equations (1), with the introduction 
of a new universal constant l ,  standing in a fixed relation to the total mass of the 
universe (or, respectively, to the equilibrium density of matter). This is gravely 
detrimental to the formal beauty of the theory. [(Einstein, 1919); emphasis added, a/n] 

An observation: in the context of Einstein’s work containing this excerpt ‘the previous paper’ would appear 
as (Einstein, 1916a); however, Einstein is most probably referring in fact to the Cosmological 
Considerations (Einstein, 1917a), since the first one of these two references does not seem to make any 
sense in this instance. Thus, he appeared to have taking for granted that the problem of cosmological 
boundary conditions has not an orthodox solution, but can be overcome only by conditions of statical spatial 
symmetry of an instance of the universe: spherical symmetry in this specific case. 
 Note in passing that, as the history shows, Einstein seems to have been the only one among theorists who 
have seen a ‘grave detriment’ here. Also note that the work (Einstein, 1916a) contains a formal presentation of 
equations of the electromagnetic field in four-dimensional arrangement needed for the development of relativity, 
and that an equivalent of this presentation, to wit (Lorentz, 1917) has, as Einstein himself noticed, a counterpart 
presentation of the same problem, but with emphasis on the forces rather than the fields. Such an approach, at the 
time we are talking about, proves consistency from the part of Lorentz: the concern of equilibrium of forces 
describing the stability of matter was his first incentive to create the Lorentz transformation in the first place, the 
transformation that led to the special relativity. However, the 1917 approach of electrodynamics along the same 
lines proves, in fact, to be easier to generalize along the idea of static condition in a de Broglie’s concept of ray, 
in general. To wit: if, according to holographic principle, the fields – taking after the Yang’s explanation of the 
Yang-Mills prototype – define the different ‘phases of matter’, then the forces representing the intensities of 
action of those fields due to their ‘coherence’, as it were, need to be taken as invariants. Once again, in this sense 
we can see the Newton’s definition of forces as a first theoretical instance of the procedure of quantization. 
 Anyway, going back to 1919 article, we need to take notice of the fact that, after carrying the necessary 
analysis, Einstein came up with a set of problems that – again, in our opinion – were sound, and deserved a 
concentrated concern in order to be solved but, unfortunately, they were only partially solved, or even remained 
unsolved to this very day. Quoting: 

 The above reflections show the possibility of a theoretical construction of matter out of the 
gravitational field and electromagnetic field alone, without the introduction of hypothetical 
supplementary terms on the lines of Mie’s theory. This possibility appears particularly promising 
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in that it frees us from the necessity of introducing a special constant l for the solution of the 
cosmological problem. On the other hand, there is a peculiar difficulty. For, if we specialize (1) 
[equation (3.2.5) of our present work, a/n] for the spherically symmetrical static case, we obtain 
one equation too few for defining the gµn and fµn (the skew-symmetric tensor of electromagnetic 
field, a/n) with the result that any spherically symmetrical distribution (original emphasis here, 
a/n) of electricity appears capable of remaining in equilibrium. Thus the problem of the 
constitution of elementary quanta cannot yet be solved on the immediate basis of the given field 
equations. [(Einstein, 1919); emphasis added, except as indicated, a/n] 

The rest of our present work is dedicated to showing how quantization, in the form put forward by Max Planck 
(see Chapter 1, §1.1) can help in solving some of the problems raised by Einstein in these conclusions. We also 
intend to show support of our opinion that the problems just raised by Einstein were reasonably formulated, and 
only partially solved, or even remained unsolved, to this day, as we said. This is, indeed, a case that we can make 
about the discrepancy between the possibilities of the existing, at a certain time, mathematics, and the necessities 
of the natural-philosophical – and even purely philosophical, we should say – spirit at a moment of our knowledge. 
And, if this case still remains unconvincing, an example will be presented in our conclusions, with a solution of 
the problem within the mathematical means of this very day and time. 

 5.1 Removing Planck’s Restriction on the Dipole Structure 

 Edward Kasner is often cited as a reputed name in matters of cosmology (Kasner, 1921b), specifically in 
connection with cosmological solutions of the Einstein field equations [see, for instance, (Landau & Lifshitz, 
1971), Chapter 12]. These solutions are unambiguously addressed to the vacuum field equations as they were 
conceived by Einstein, both in his initial general relativistic theory (Einstein, 1916b), and in the Cosmological 
Considerations (Einstein, 1917a) where he included the celebrated cosmological constant. As we have already 
shown above, Einstein himself started regretting the introduction of this cosmological constant, and with good 
reasons at that, according to his very own natural philosophy, which justified him in trying subsequently to 
eliminate it from the curriculum of general relativity. In his almost immediate attempts to get rid of this constant, 
which appeared to him as “gravely detrimental to the formal beauty of the theory”, Einstein suggested new field 
equations of the form [see (Einstein, 1919), §2, equation (1a)]: 

 
 

(5.1.1) 

that may be able to ‘free us from the necessity of introducing a special constant l’. Here T is the energy tensor 
which, if determined exclusively by electromagnetic fields in the Maxwell’s take (see §4.1 above), satisfies the 
identity tr(g-1×T) = 0. This identity is also satisfied by the tensor from the left hand side of equation (5.1.1), so 
that this form of the field equations of general relativity can have a touch of rational basis, as it were, just like the 
original field equations (4.1.2). Einstein noticed that the equation (5.1.1) is a consequence of equation (4.1.2) with 
the tensor T determined exclusively by electromagnetic fields, “but not conversely”. This statement may be taken 
by itself as a valid proof of the fact that general relativity, as Einstein conceived it, asks for something more than 
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mere electromagnetic fields, but he has apparently opted for the idea that only an electromagnetic structure is 
prone to determine the internal physical structure of the fundamental particles. This may be true, indeed, only, as 
we shall see, only with a little tweak in conceiving the electromagnetic fields, however, not at all outside the 
Maxwellian picture. 
 Indeed, in carrying out the analysis, Einstein reached what we think as an ‘ultimate conclusion’, namely that 
one has to follow the idea of Gustav Mie, along the lines indicated by David Hilbert in 1915, in building a unitary 
physics based on his natural philosophy. Parenthetically: we have followed all these works in their English 
translations, printed in the collection (Renn & Schemmel, 2007). The work of Gustav Mie is only reproduced in 
fragments there, but just in case, one can also consider the (still partial) translation of the Mie’s theory of matter 
due to D. H. Delphenich, in order to fill in for the missing parts of the translation of Renn and Schemmel, or vice 
versa. In order to understand why Einstein wanted to avoid “the lines of Mie’s theory” (see the excerpt right 
above), let us describe this theory in its broad strokes. 
 The essential one from among the points raised by Mie’s theory is the existence of a space-extended electron 
having an electromagnetic internal structure. In our context here, it helps if we take notice, once again, of the 
fact that this electromagnetic structure is understood in the sense of Maxwell, not in the sense of the definition of 
Lorentz, involving the idea of an already existent interpretation [(Lorentz, 1892); see the §1.3 above]. Along the 
line thus chosen, Gustav Mie even reached the idea that the inertial and gravitational masses of such an electron 
are different, which, however, could not grow into a proper fruition, due to the eternal problem impairing the 
theoretical physics up until the wave mechanics emerged: the interpretation deals with figments of our 
imagination, not with real physical structures, and physics cannot give up asking physical structures for any 
interpretation. Not even today, when it works manifestly with figments of imagination, gives it up asking for such 
physical structures, and if they are nonexistent in reality, it invents realities that might contain them. Anyway, it 
is on the occasion presented by Mie’s theory of matter, that Einstein found a good opportunity, so to speak, of 
(re)appraisal of his own theory of general relativity, this time with the explicit hope to get rid of the cosmological 
constant. After a careful analysis of his original field equations of gravitation (Einstein, 1916b), he concludes: 

 So if we wish to contemplate the possibility that gravitation may take part in the structure of 
the fields which constitute the corpuscles, we cannot regard equation (1) [equation (3.2.5) of the 
present work, originally proposed by Einstein in 1916, a/n] as confirmed. [(Einstein, 1919); 
emphasis added, a/n] 

Let us say it once again: ‘the fields which constitute the corpuscles’, if it is to conclude on a corpuscle structure 
by the case of an electron, are to be understood as electromagnetic fields described, according to Gustav Mie, by 
the Maxwell equations. So, Einstein has modified the field equations as shown in equation (5.1.1), along the lines 
of his proposed cosmological equations (Einstein, 1917) – equation (5.1.1) looks like (3.2.6), only with a special 
value of cosmological constant – and carried the analysis according to his natural philosophical line, based on 
these field equation. The conclusion of this analysis is altogether encouraging, in that it allows implicitly the much 
needed – for Einstein at least! – riddance of the cosmological term. Whence the following optimistic conclusions. 
Quoting, therefore: 
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 The scalar of curvature (that is the invariant G, of the Einstein tensor G, a/n) plays the part of 
a negative pressure which, outside of the electric corpuscles, has the constant value G0. In the 
interior of every corpuscle there subsists a negative pressure (positive G–G0), the fall (that is, what 
we currently designate today as the gradient, a/n) of which maintains the electrodynamic force in 
equilibrium. The minimum of pressure, or, respectively, the maximum of the scalar of curvature, 
does not change with time in the interior of the corpuscle [(Einstein, 1919); emphasis added, a/n] 

Obviously, admitting the equation (5.1.1) – which, as we said already, is essentially the equation (3.2.6) of our 
present work, however with a special value of the cosmological constant ‘naturally’ included in it – Mie’s natural-
philosophical ideas can be accommodated without further hypotheses: the ‘lines of Mie’s theory’ can, therefore, 
be avoided. However, based on our experience with the Yang-Mills descendants of the Maxwellian fields [see 
§4.4 above; see also (Mazilu, Agop, & Mercheș, 2021), Chapter 4, equation (4.53) ff] we see in this conclusion a 
little different message: it is just the lines of a Maxwellian theory of the internal structure of particles that must 
be avoided, not those of the Mie theory per se. And, we have to add now, not even the whole Maxwellian 
philosophy, associated with the internal structure of the particles should be avoided. For once, the ‘internal 
pressure’ might be of electromagnetic nature after all, but still, “the problem of the constitution of elementary 
quanta cannot yet be solved on the immediate basis of the given field equations”, as Einstein himself has noticed, 
indeed. Why? 
 The ‘elementary quanta’ here are quanta of electricity: they necessitate Planck’s quantization, indeed, but 
within the matter, not in the light, i.e. not outside the matter. Besides, there is no possible restrictive physical 
condition for the charge of a sphere in equilibrium, in order to introduce the quantization condition: as far as we 
can see, this condition can only be satisfied by a ‘fragmented’ surface of a ‘fractal’ type. Incidentally, notice that 
there cannot even be such conditions for a smoothly closed surface: the very static Newtonian force, which the 
relativity tries to avoid, is the essential condition of this kind of quantization. Interestingly enough, we must notice 
that Gustav Mie himself touched this issue and, more importantly for what we have to say here, he approached it 
from the very point of view of the constitutive element of matter used by Planck himself: the dipole (see Chapter 
Four in the Delphenich’s translation of the Mie’s theory). Even more interesting is the fact that Mie reached the 
conclusion that this dipole should have a substantially different electromagnetic structure from the one we are 
accustomed to conceive based on the classical dipole of charges – the case considered by Planck himself – and 
may even have the properties of a magnet, for instance. Incidentally, this conclusion is way out of the Maxwell 
line of approach of the electromagnetic theory and, along with the Planck’s quantization procedure, it is one of 
our strong incentives in (re)introducing the Lorentz’s interpretative ideas in the structural physics of matter. So, 
again in line with the physics of the epoch we are discussing now, that is, by having a physical structure in view, 
Mie concludes: 

 It is extremely difficult to establish more exact conditions for the possibility of existence of 
such elementary dipoles, but it should be of little use in view of our total ignorance of the nature 
of the world function. For once, I will assume that there are such elementary dipoles, and I will 
draw some consequences from this assumption. [(Mie, 1913), our translation from German, 
emphasis added; one can also consult the translation by Delphenich indicated before, a/n] 
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Gustav Mie’s ‘world function’ is an extension of the energy in the form of a Hamiltonian, involving therefore the 
geometry of a background in its calculations. This involvement, however, amounts to associating in calculations, 
in a specific way, of course, the metric geometry of such a background. Therefore, it is this metric geometry of 
the background that should interest us here. In turn, the metric geometry obviously involves… a metric, which, 
in the views of the general relativity, is always assumed to be a quadratic differential form, and here is the point 
where Edward Kasner has entered the stage. 
 The notable undertake of Kasner’s is referring to the possible quadratic differential metrics for the vacuum 
field equations – the vacuum can be considered a background by default, as it were – corresponding to Einstein’s 
initial proposal for the field equations (Einstein, 1916b), and to the equations (5.1.1) respectively, that is: 

 
 

(5.1.2) 

It regards the metrics allowed by these equations assuming that they are a sum of quadratic differential forms in 
one, two or three of the four spacetime variables (Kasner, 1925). Notice, again, that the first equation here implies 
the second one, but not vice versa, as Einstein has already noticed himself. This means that the vacuum is not the 
same in the two cases, but only the first of these vacua can be taken as ‘universal’, that is: existent in the case of 
matter as well as in the case of light. Two Kasner cases are important for us here, insofar as they proved to be 
essential for the theoretical physics of the last century. 
 The first significant from among Kasner’s results along this line (Kasner, 1921a) is about the field allowed by 
the first of the equations (5.1.2). It states that the quadratic differential equation involving the sum of four terms: 

  (5.1.3) 

cannot take place if there is a permanent gravitational field in the sense of Einstein: the first of equations (5.1.2) 
does not provide solutions for this case. Here x1, x2, x3, x4 are the coordinates in the Einsteinian four-manifold. 
Taking them in the special relativity spirit – that is, as representing lengths and distances alike – Kasner translates 
this result into a kind of incompatibility between light and gravitation, of the nature of the incompatibility which 
led to the rejection of the background metric (3.2.3) by both Einstein and de Sitter, in the cosmological case. It is 
significant though, in our context, to mention that the ‘permanent gravitational field’ is represented in Kasner’s 
case by a conformally flat metric of the form 

  (5.1.4) 

From the point of view of the scale transition, this is the condition that the gravitational field is the same for any 
value of the infrafinite distance representing the propagation of light. Interestingly enough the Einstein’s 
equations would tell us that the ‘permanent gravitation field’ thus conceived is perfectly determined at a finite 
scale of the world, in both space and time. Indeed, Kasner has found that the solution of Einstein’s field equations 
Gab = 0, is given in this case by a nonhomogeneous quadratic form as in equation (5.1.4), where the function F of 
finite coordinates is given by: 

 
 

(5.1.5) 

provided the center of this quadric is located on the quadric: 
  (5.1.6) 
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In this case, there may be, incidentally we should say, an admissible transformation of coordinates that reduces 
(5.1.4) to a sum of squares, therefore to a situation where the metric tensor is a constant diagonal matrix. 
Therefore, the permanent gravitational field is inexistent, indeed, since the metric is flat. In any case, with this 
result, the metrics include cases of the Maxwell fish-eye type in four dimensions. Notice also, from a modern 
perspective, as it were, that the general metric (5.1.4) is of a particular Coll type [(Coll, 1999); see also §3.4 
above], for it misses the deformation part of a full Coll metric. This may be taken as an incentive to describe the 
static case: it simply corresponds to a conform Euclidean metric in four dimensions. Any universal deformation 
of it would then involve the presence of matter. Another immediate result of Kasner, shows that an Einstein’s 
original gravitational field cannot be embedded in a five-dimensional Euclidean flat (Kasner, 1921b). In other 
words, one cannot use Einstein’s procedure of embedding for a five-dimensional flat. This last conclusion may 
count as a solid reason for introducing the cosmological term, after all. 
 For, indeed, such a conclusion of Kasner’s does not mean that the de Sitter’s philosophy would not work for 
embedding here, since the whole mathematics supporting such a philosophy is not based on the first of the 
equations (5.1.2), but on the second. Thus, on a positive note (Kasner, 1921c), the field characterized by the 
second equation from (5.1.2), is embeddable in a six-flat, staged, in a geometrical description, by two unit spheres. 
The resulting spacetime metric is then given by a sum of two quadratic forms, each one of them involving just 
two of the four variables. It is this result of Kasner that, in our opinion, is of essential concern for physics at large: 
it liberates us from the Planck’s proviso consisting of the description of dipole physical components as vibrating 
exclusively along the axis of dipole. This observation is helping us in creating a generalized model of dipole, 
good for any occasion, as it were, in the matter as well as in the light. Indeed, this liberation gives us the 
opportunity “to assume the vibrations as taking place in space instead of in a straight line only”, if it is to use 
words of Planck himself (see §1.1 of the present work). Let us elaborate a little on this issue. 
 The necessity of such a liberation comes just naturally, according to our developments thus far in the present 
work, from the idea of a general optical medium having the characteristics of a Maxwell fish-eye: if the material 
particles are moving along the geodesics of this medium, these particles, among which the ‘elementary quanta’ 
of Einstein can certainly be included, must have a fortiori three degrees of freedom. The dipole structure should 
then be an Ampère element limited along its ‘axis’ by two portions of surfaces that must have a negative curvature 
if the charges are involved in the physical structure (see §§1.3 and 1.4 above). This structure can then be 
geometrically explained by the infinitesimal deformation of surfaces, a phenomenon induced through the presence 
of charges in the medium [see §1.3 above, equations (1.3.12) ff, and §1.4; see also (Mazilu, 2023a), §3.1]: the 
charges at the ends of an Ampère element get an extra-displacement as a result of the infinitesimal deformation. 
Such a phenomenon, considered from the perspective of the concept of instanton, can offer us the possibility to 
explain the classical structure of a planetary atom, in the intuitive manner that follows. 
 Assume, indeed, the following, more realistic image – at least we see it that way! – of a planetary atom: a 
spatially extended spherical nucleus of positive charge – suggested by the dynamical analysis of the classical 
Kepler motion – and a spatially extended spherical electron of negative charge (Dirac, 1962), considered, say just 
by analogy. The incentive of such an analogy can be given by the description of nucleus combined with the fact 
that in the reality of our experience the planetary model involves planets having their own satellites. A kinematic 
approach can be assumed for the uniform charge of each of these two spheres, based on the concept of instanton: 
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each one of the spheres is an instanton. Kinematically, this image even acquires an intuitive meaning: the two 
charges, considered attached to the Hertz particles serving for interpretation, are moving instantaneously over the 
Riemannian space of instanton. To wit: they move so fast inside respective spheres, that these regions appear, in 
each and every instant of time, reckoned, of course, at the time scale of the Kepler motion of the electron around 
nucleus [see §4.5, equation (4.5.14) ff], as uniformly charged with positive and, respectively, negative charges. 
In other words, we have a single type of interpretative charged material particles in each one of the regions, but 
that charge is acquired so fast by them in each space at their disposal, that this space appears to us as uniformly 
charged at the time scale of the Kepler motion. 
 In a Schrödinger phrasing, like that in the excerpt from §4.2 above, the charge is ‘simultaneously in all 
kinematically possible states, however not equally likely’. The ‘equal likeliness’ of the presence of the charge 
inside the sphere is measured by a special probability density. The physics here resides on what we would like to 
call the Feynman’s interpretation concept. This concept was used by Richard Feynman just as ‘a side topic’, so 
to speak, to what he considered the right concept of interpretation assisted by the idea of quantization. However, 
as a benefit of the idea of scale transition, we are compelled to see in it a genuine concept of interpretation. 
Quoting, indeed: 

 The wave function y(r) for an electron in an atom, does not describe a smeared-out electron 
with a smooth charge density. The electron is either here, or there, or somewhere else, but 
wherever it is, it is a point charge. On the other hand, think of a situation in which there are an 
enormous number of particles in exactly the same state, a very large number of them with exactly 
the same wave function. Then what? One of them is here and one of them is there, and the 
probability of finding one of them at a given place is proportional to yy*. But since there are so 
many particles, if I look in any volume dxdydz I will generally find a number close to yy*dxdydz. 
So in a situation in which y is the wave function for each of an enormous number of particles 
which are all in the same state, yy* can be interpreted as the density of particles. If, under these 
circumstances, each particle carries the same charge q, we can, in fact, go further and interpret y*y 
as the density of electricity (original emphasis here, a/n) Normally, yy* is given the dimensions 
of a probability density, then y should be multiplied by q to give the dimensions of a charge 
density. For our present purposes we can put this constant factor into y, and take yy* itself as the 
electric charge density. With this understanding, J (the current of density of probability I have 
calculated) becomes directly the electric current density. 
 So in the situation in which we can have very many particles in exactly the same state, there is 
possible a new physical interpretation of the wave functions. The charge density and the electric 
current can be calculated directly from the wave functions and the wave functions take on a 
physical meaning which extends into classical, macroscopic situations. [(Feynman, Leighton, & 
Sands, 1977), Volume III, §21–4; our emphasis, except as mentioned, n/a] 

We reproduced this lengthy paragraph from the well known course of lectures in physics, first of all in order to 
get the gist of a classical interpretation: a kinematics is needed in order to describe the charge – incarnated as 
electron in the excerpt above – as being ‘here or there or somewhere else’, where ‘here’ means ‘attached to a 
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Hertz material particle of the interpretative ensemble’. The prototype of this kind of kinematics was, indeed, 
constructed by Richard Feynman himself in his renowned and widely recognized approach of the wave mechanics 
(Feynman, 1948, 1949). However, the excerpt above turns out to be also useful in suggesting that the 
Schrödinger’s interpretation of the wave function (see §4.2 above) is by no means in disaccord with the general 
idea of interpretation involving the concept of material particle. The wave function of Schrödinger even gains a 
bonus of clarity here, regarding its meaning: it represents that instantaneous density of the charge, which, 
obviously, is in a manifest way different from a Newtonian density, and was described in physics of the last 
century as a probability density. With the concept of instanton, it appears that this probability density belongs to 
the class of densities characterizing ensembles which have quadratic variance functions in terms of their means. 
In other words, the probability density in question is part of the same class of probability densities discovered by 
Max Planck on the occasion of the prototype quantization (Mazilu, 2022). 
 Thus, in order to upgrade the Feynman’s interpretation into the main concept of interpretation of physics, we 
can say that ‘the existing interpretative particles are charged properly at any instant, everywhere inside the Kasner 
spheres’, with a probability described by a density given through the wave function. However, this wave function 
is here suggested as a construction upon waves exclusively propagated with speeds superior to a certain 
experimental limit, for instance the speed of light, as in the case of de Broglie’s wave groups. Putting this issue 
aside for a later deeper analysis, the fact remains that the two instantons of the classical planetary model can be 
described, in a ‘Kasner’s view’ as it were, as continuous static charges, represented as one continuous manifold 
of dipoles. Each one of these dipoles is instantaneously established – again, with ‘instantaneity’ defined in terms 
of time scale of the Kepler motion describing the model – by the connection of a material particle from one region 
with a material particle from the other region. This connection can only be formally described by a Lorentz 
transformation of the Cook’s type (see §2.3 above). One can say that both the electron and the nucleus of the 
planetary model are two Maxwell fish-eye mediums instantaneously connected by a family of Lorentz 
transformation. The result is an Ampère element, which can be imagined as a continuous congruence of straight 
lines, representing instantaneous dipoles of an arbitrary physical nature: electric, magnetic or mixed, depending 
on what kind of charges are connected within an instant. 
 This is, in our opinion, a situation geometrically described by Edward Kasner’s theory, and according to this 
description, it can be tied up with the Einstein’s second set of equations (5.1.2). More to the point, Kasner’s results 
can be summarized as follows [(Kasner, 1921c); see also (Kasner, 1925)]: if the metric form is necessarily a 
quadratic differential in four variables, then the Einstein equations proper [the first one of the equations (5.1.2)] 
allow for only an Euclidean, or a conformal-Euclidean metric. On the other hand, the Einstein’s equations with a 
cosmological term [the second one of the equations (5.1.2)] allow only for a solution which is either Euclidean 
or conform-Euclidean (the de Sitter’s case), or a sum of two metrics of surfaces of constant negative curvature. 
This last case can be represented geometrically as an Einstein-type embedding of a four-dimensional manifold 
into a six-flat represented by the union of two unit spheres, as presented above. This case, – as we see it, the most 
important of the Kasner cases – needs a closer attention for reasons to be presented right away. 
 Transcribing all the above geometrical facts into equations, the last result here can, for once, be expressed in 
a remarkable way, justifying the fundamental occurrence of instantons in the above imagine of the planetary atom. 
Namely, if on this Einsteinian manifold, the second of the equations (5.1.2) is valid, then we can only have, up to 
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some multiplicative constants, that may be considered either explicitly or somehow included in the definition of 
the coordinates, the following form of the metric of the four-dimensional continuum: 

 
 

(5.1.7) 

This metric (re)presents the universe as formed of two ‘blades’ – that can be viewed as surfaces of negative 
curvature, via the methods of a Cayley-Klein geometry where the Euclidean sphere serves as absolute (see §3.4, 
above) – each of these ‘blades’ physically representing an instanton, as above (see also §4.2). Indeed, the metric 
(5.1.7) can be considered as the cosmological metric of an Einsteinian four-manifold embedded in a six-
dimensional flat described by the equations: 

 
 

(5.1.8) 

in coordinates (Z1, Z2, Z3, Z4, Z5, Z6), assumed to be real. Each one of the two terms from equation (5.1.7) can be 
considered, indeed, as the Cayley-Klein metric of the geometry having as absolute one regular quadric of any 
signature from among the two equations (5.1.8) (see §3.4). In this case, mathematical physics must consider 
undertaking the task of describing the connection of the geometries of the two ‘blades’, by a mathematically 
proper procedure, compatible with the existence of the two Beltrami-Poincaré metrics entering the formula 
(5.1.7). This is what we would like to call the mathematical physics of Kasner’s geometry of a de Sitter universe. 
 Apparently, the term ‘blade’ was used for the first time in the modern theory of general relativity by Gerald 
Rosen, on the occasion of a first undertake of the problem of electromagnetic fields from the geometrical point 
of view (Rosen, 1959). This significant work was followed right away by another one, just as significant, of Bruno 
Bertotti on the same subject, who undertook the term as such (Bertotti, 1959a), but also came to recognize the 
high significance of Edward Kasner’s work on the subject (Bertotti, 1959b). In particular, in this last work Bertotti 
has shown that “any manifold which is a product of two surfaces of constant curvature” can be obtained as a 
solution of the Einstein electrovacuum equations, with cosmological term: 

 
 

(5.1.9) 

a result which inspired our writing in the equation (5.1.8) above. This writing only suggests the general idea that 
any surface of constant curvature can be obtained as an embedding in the sense of Cayley-Klein geometry, having 
one of the quadrics (5.1.8) as absolute. 
 Concluding this section with a final note, we need to mention this overall result of Kasner: the only fields that 
satisfy the second set of equations (5.1.2) correspond to a metric of constant Riemannian curvature (Kasner, 
1921c). This justifies, in the most general manner, as it were, the Ernst’s conclusion mentioned by us in the §4.1 
above: there should always be a relation between the gravitation and the physical fields connected with the 
existence of the electricity in the universe [see equations (4.1.6) thru (4.1.8)]. Our contention goes even a little 
further: if the planetary model is to be described by a kind of mathematical procedure involving a unitary 
description of the ‘continuous congruence’ between two negative curvature surfaces, then a metric description of 
such a congruence can be taken in constructing a general harmonic map based on the same principles as the Ernst-
type map. This harmonic map describes the physical fields in the Euclidean space of our existence. So, with this 
logic of approach at our disposal, let us concentrate on the task of describing the possible meaningful 
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correspondences between two constant negative curvature surfaces, first from a geometrical point of view. For, 
the two Kasner blades of a universe cannot be really separated as in the case of Maxwellian fields [see (Rosen, 
1959); also (Bertotti, 1959)]: they need to be upgraded to Yang-Mills fields, and this cannot be done without a 
connection between the two blades. 

 5.2 The Mathematical Physics of Kasner’s Metric Geometry 

 The closing observations of previous section allude to a special mathematical physics of the Kasner’s 
geometry based on the metric (5.1.7). In order to get the gist of this physics we shall start with the description of 
the geometry: according to the precepts of Einsteinian physics, this geometry is not independent of physics and, 
with the completion of Einsteinian philosophy realized by de Sitter, even the space itself must have a physical 
component in electricity (Misner & Wheeler, 1957). Then, our contention amounts to the simple fact that the 
matter makes its mark in the universe we inhabit through an action that generalizes the fundamental rotation 
described by the classical charges as a kind of a duality rotation, to use the modern theoretical terms (see §2.2). 
 In short, Edward Kasner reproduces the whole philosophy of general relativity, aimed towards bypassing the 
impossibility of a direct solution of the Einstein’s field equations: the Einstein’s field equation cannot be, 
practically speaking, solved as they stand. Then, the procedure instituted even from the early stages of Einsteinian 
doctrine’s development, is to go on finding physically meaningful, but mathematically simpler metric tensors, on 
which the Einstein’s field equations are enforced. The whole imbedding method of Einstein (see §§3.1–3 above) 
is a quintessential example. With the equations (5.1.7) and (5.1.8), Edward Kasner adds a twist on this procedure, 
making it liable to be turned into a universal physical method of reasoning along the lines that follow. 
 First of all, according to previous section of this chapter, the fundamental unit of matter – the dipole – is 
liberated from the Planck’s constraint imposed by the idea of dynamic vibration along the axis of the dipole: each 
one of the two charges to be associated with each other into a dipole, are free to move, but ‘instantaneously’, if 
we may say so, on two surfaces of negative curvature. In view of the fact that the motion is instantaneous – i.e. it 
can be considered as taking place at an infrafinite scale of time – the two surfaces are carrying what at the finite 
scale of our experience appear as continuously distributed charges. Then, each point of one of the two surfaces, 
when associated with each point of the other surface, forms a genuine Ampère current element, as once cogitated 
by Joseph Liouville (see §1.5 above). The whole construction can be seen, geometrically speaking, as a 
congruence of lines joining the two negative curvature surfaces, so that the correspondence between charges can 
be described as a family of Bäcklund transformations [(Reyes, 2003); a good account of the Bäcklund 
transformation serving the physics’ purposes, is provided by (Sasaki, 1979), §§4 and 5; [see also the 
comprehensive work (Rogers & Schief, 2002) on this subject]. With this observation we have reached a key point 
of the theory on which we shall be concentrating for the remainder of this work: we aim at presenting the essential 
manner of mathematical approaching the physical procedure of interpretation. 
 To start with, we can present the general philosophy almost intuitively: each one of the two parts of the 
Kasner’s cosmological metric (5.1.7), can be cast in the form (2.5.8), either in real terms or in complex terms. 
Then we have two surfaces of negative curvature to be set in correspondence with each other, and this 
correspondence can be constructed effectively. Indeed, write one of the metrics in (5.1.7) as: 
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(5.2.1) 

Here, the notations are as follows: z º u + iv, is a regular complex variable, having the real components (u, v), and 
z* is its complex conjugate. In the second form of this metric a fact become obvious, which has been made known 
to Poincaré by the end of 19th century. Namely, the metric (5.2.1) retains its form for the homographic real 
transformations of the complex variable z: 

 
 

(5.2.2) 

This can be verified right away, by simple calculation. But then, the Riemannian geometries of the two surfaces 
of negative curvature involved in the Kasner metric (5.1.7) should be just naturally connected due to this very 
condition. Let us first describe the basics of a generic geometrical structure of the metric (5.2.1). 
 In view of the results of §4.5, we shall discuss this geometry based on an absolute given by a one-sheeted 
hyperboloid. There are some incentives to do it this way, that will be explained as we go on with the closing of 
our presentation. The first among these, is that this universe can be discussed directly in terms of matrices, in a 
manner analogous with the discussion of the Yang-Mills fields (see §4.4 above) or, better yet, with the very idea 
of fundamental analogy of the two relativities (see §2.5 above). Secondly, such an absolute is topologically 
equivalent to a torus, which is the natural shape of the canal surface representing a finite electron in its classical 
journey around nucleus. And last, but by no means the least of these incentives, is the fact that we have a natural 
geometrical connection between charges this way, as explained right above. As we see it, this connection validates 
the ideas of Riemann and Betti (see §1.5), thus providing a natural definition for an Ampère element, along the 
lines of the ‘Planck’s dipole as a fundamental structure of a universe’. In other words, an Ampère element is the 
fundamental quantum structure of the world, equivalent, at the infrafinite scale of the world, with a Wien-Lummer 
enclosure, or with an Einstein elevator necessary in describing the gravitation. 
 Start, indeed, with the equation (4.3.10) representing a 2´2 matrix, assumed to have the homographic action 
characterized by the complex numbers z and z* as fixed points, and by a specific cross-ratio k which, in this case, 
must be necessarily a complex number having unit modulus, as we have already shown in §4.5 on the occasion 
of an amendment of the Boltyanskii’s theory of anisotropic relativity. Thus, in these conditions the equation 
(4.3.10), assumed to determine a general matrix which realizes the homographic action from equation (4.3.15) 
can be transcribed as 

 
 

(5.2.3) 

The resulting matrix can be considered real, insofar as its entries are defined up to a factor that can be chosen 
conveniently, so as to make them real indeed. However, using, for now, the entries (5.2.3) of our matrix as they 
are, we shall try to build a differential geometry in the absolute style, as given in the §3.4 above. To this end, we 
will be using as absolute the geometrical representation of the singular matrices, i.e. a one-sheeted hyperboloid, 
as we did in the §4.3. Considering the homographic action of the matrix with the entries given in equation (5.2.3), 
the coframe differential 1-forms, written according to the recipe from equation (4.3.18) can be written in terms of 
the variables z, z* and k. A direct, but a little tedious calculation gives these differential forms as: 
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(5.2.4) 

This coframe satisfies the Maurer-Cartan equations (1.4.16) with the structure constants given by (1.4.17), which 
are characteristic to an sl(2,R) coframe. This structure is preserved with a change in the action it describes: it is, 
in fact, a simply transitive action, as we shall show right away. 
 It is now the appropriate time, we think, to sketch, in this case, the calculations we have promised in the §4.2, 
regarding the Killing vectors of the Beltrami-Poincaré metrics. Namely, the differential forms (5.2.4) define some 
basic operators via the momentum 1-forms corresponding to the Lagrangian given by the Killing-Cartan metric: 

 
 

(5.2.5) 

This Lagrangian provides the following momentum 1-forms: 

 
 

(5.2.6) 

These are three independent 1-forms, helping us in finding the frame of sl(2,R) algebra, that is the infinitesimal 
generators of the group. All we have to do, is to write the coframe (5.2.4) linearly in the components of the 
momentum, and then replace these very components by the partial derivatives with respect to the corresponding 
variable serving as lower index to the component of momentum. The final result of this procedure gives the 
following vectors: 

 

 

(5.2.7) 

These vectors satisfy what we take as the standard structure relations of the sl(2,R) algebra: 

  (5.2.8) 

corresponding to the structure constants from equation (1.4.17). 
 Now, let us apply this procedure for the involution I from equation (2.5.1), whereby k = -1, – like for any 
involution in fact – so that the coframe (5.2.4) is 

 
 

(5.2.9) 

which coincide with the coframe from equation (2.5.7), up to a sign. Correspondingly, the frame (5.2.7) is, up to 
an arbitrary factor: 

 
 

(5.2.10) 

ω 1 = 1
z − z*

dk
k

+ 1− k
k
dz − kdz*

(z − z* )2
, ω 2 = − z + z

*

z − z*
dk
k

+ 2 k −1
k
z*dz − kzdz*

(z − z* )2
,

ω 3 = z ⋅ z*

z − z*
dk
k

+ 1− k
k
z*2dz − kz2dz*

(z − z* )2

(ds)2 =
def

ω 1 ⋅ω 3 − (ω 2 2)2 = dk
2k

⎛
⎝⎜

⎞
⎠⎟

2

+ (k −1)
2

k
dz ⋅dz*

(z − z* )2

pk =
dk
2k2

, pz =
(k −1)2

k
dz*

(z − z* )2
, p

z*
= (k −1)

2

k
dz

(z − z* )2

B1 = 2
1

z − z*
k ∂
∂k

+ k
k −1

∂
∂z

− 1
k −1

∂
∂z*
, B2 =

z + z*

z − z*
k ∂
∂k

+ k
k −1

z ∂
∂z

− 1
k −1

z* ∂
∂z*
,

B3 = 2
z ⋅ z*

z − z*
k ∂
∂k

+ k
k −1

z2 ∂
∂z

− 1
k −1

z*2 ∂
∂z*

[B1,B2]= B1, [B2 ,B3]= B3 , [B3 ,B1]= −2B2

ω 1 = −2 dz + dz
*

(z − z* )2
, ω 2 = 2 z

*dz + zdz*

(z − z* )2
, ω 3 = −2 z

*2dz + z2dz*

(z − z* )2

B1 =
∂
∂z

+ ∂
∂z*
, B2 = z

∂
∂z

+ z* ∂
∂z*
, B3 = z

2 ∂
∂z

+ z*2 ∂
∂z*



 187 

We can thus conclude that, each of the two negative curvature surfaces of Kasner – the blades – involved in the 
metric (5.1.7), is characterized by a set of three vectors like these, satisfying the commutation relations (5.2.8). 
Assume y and y*, the complex variable describing the companion negative curvature ‘blade’ of the one described 
by z and z*, as in §4.4. Then the equivalent frame (5.2.10) will be written as: 

 
 

(5.2.11) 

The two surfaces are, obviously, isomorphous. The variations on one of them, as described by the corresponding 
operators (5.2.10) or (5.2.11), must satisfy some connection corresponding to this isomorphism. 
 Such a connection is described, in finite terms, by one or more of what we call joint invariants of the two 
surfaces, according to a theorem due to Marius Stoka – may he rest in peace! – [see (Stoka, 1968), Chapter II; 
see also (Leuci & Pastore, 1994), and (Mazilu, 2006)]. With reference to the vectors (5.2.10) and (5.2.11), this 
theorem can be formulated as follows: the joint invariants of the actions generated by the two frames B and C are 
solutions of the system of partial differential equations of Stoka: 

  (5.2.12) 

We take this result somehow out of its usual geometrical meaning, and here we have the best occasion to illustrate 
what we mean by this. In geometry, the solution of this system of partial differential equations would mean 
families of curves in the complex plane y, depending on two parameters z, or vice versa, of course. In a physical 
context of the kind we have here, the function f(y, y*; z, z*) would mean the functional form of the constraints to 
which the correspondence between the two Kasner surfaces having the metrics involved in the background field 
(5.1.7), must be submitted. While the geometrical context may suggest an incidental subordination – z are the 
parameters and y are the variables, or vice versa – the physical context suggest an ‘equivalence’, since the group 
action is what prevails here, not the geometrical shape. 
 As a case in point, we have the solution of the system (5.2.12), with (5.2.10) and (5.2.11) for the vectors B 
and C, which are functions of the single algebraic form: 

 
 

(5.2.13) 

This is one of the six possible values of the cross-ratio of the four complex numbers. When this cross-ratio is 
constant, we have a matrix with entries as in equation (5.2.3) acting on (y, y*), as in equation (5.2.2), or vice versa: 
a matrix depending on (y, y*), acting on the variables (z, z*). In real terms expressed in the blade variables entering 
the Kasner’s cosmological metric equation (5.1.7): y = x1 + ix2, z = x3 + ix4, the quantity (5.2.13) is a ratio of two 
quadratic forms: 

 
 

(5.2.14) 

which may be taken as the mathematical condition of the definition of static Yang-Mills fields (Wu & Yang, 
1969). Theoretical physics knows, indeed, of different functional forms of such a condition [see §4.4 above; see 
also (Marciano & Pagels, 1976) for a purely quadratic case, and (Uy, 1976) for a purely cubic case of geometrical 
varieties to be used in the theoretical physics of the Yang-Mills static fields]. Obviously, in the case of purely 
geometrical purposes, it is sufficient to report the last ratio of equation (5.2.14) as a joint invariant, for then the 
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first is automatically invariant [see (Stoka, 1968), p. 54]. However, from a physical point of view, this omission 
may hide a possible phase difference, for instance in the cases where the two complex numbers represent charges 
(see §4.5 above). 
 All we can say regarding the relation between physics and geometry, based on Stoka theorem applied to 
Yang’s geometry of fields, is that the expression (5.2.14) must be homogeneous of zero degree. If the charges are 
involved here, then such an expression should be taken as representing the coefficients in the Ampère 
generalization of Newtonian central forces [see §1.5, equation (1.5.4)]. If we consider the situation of the Yang-
Mills fields, as described by the two complex variables (y, z), according to Ernst’s theory in the C. N. Yang’s take 
(see §4.4), then the logarithm of the algebraic expression (5.2.13) is just the natural candidate for a geometrical 
distance between the Kasner’s blades representing the de Sitter background of a universe. Then the two complex 
coordinates are simply charges in the Katz’s acceptance of the natural philosophy of charges, and the cross-ratio 
(5.2.13) is the natural candidate in constructing the field intensities according to C.-N. Yang’s idea (see §4.4 
above). 

 5.3 The Archetype Kasner’s Blades of Physics 

 The classical Kepler dynamical problem reaches a moment when it comes so close to special relativity that 
we are tempted to put the mark of identity on them. This section is all about that mark of identity. Mathematically, 
it can be labeled by an idea of confinement which, physically speaking, must be imposed upon velocities. Only, 
these velocities need to be carefully considered, for they make, indeed, an essential difference between the 
classical Kepler problem and the modern Einsteinian relativity. In the Chapter 3 above, we presented the essentials 
of this relativity. We think opportune presenting again, even if only in broad strokes, the dynamical Kepler 
problem, from the perspective of the planetary model described, say, more phenomenologically, in §5.1 above. 
 To start with, the equation of motion of the Kepler dynamical problem, and its solutions in polar coordinates 
(r,f) of the plane of motion can be written as: 

 
 

(5.3.1) 

The physical constant k includes in its algebraical structure both the physical properties of the two interacting 
bodies generating the Newtonian forces, as well as the inertial properties of the moving body. From a purely 
physical point of view, the last of equations (5.3.1) is, in fact, an equation for velocities. To wit, it connects the 
current velocity (ȧ/r), where ȧ is the area constant of the Kepler’s second law, to the initial velocity v of the orbit. 
This connection is accomplished by a translation of magnitude (k/ȧ), having a physical origin, and a rotation of 
an angle given by the orientation of the actual position vector r of the mobile material point along its orbit. This 
material point can hereby be identified through its initial velocity (v1, v2), chosen to describe that orbit. For, 
obviously, one can see from equation (5.3.1) that a complete Kepler orbit of a material point is a trajectory that 
can be labeled univocally by its initial velocity: there is no other orbit corresponding to this initial velocity, if the 
physical conditions reamin the same. And, going further along this way of reasoning, a complete Kepler orbit 
corresponds, univocally, to a given material point, even in a ‘precise’ sense, if we may say so: given no further 
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specifications, the material point having the initial velocity (v1, v2), can be found anywhere on the ellipse 
represented by the second of the equations (5.3.1), equally likely. This means that the parameter f can be taken 
as a statistical variable, which was, indeed, the case, historically speaking, revealed by the precepts of the wave 
mechanics. 
 On the other hand, the historical development of the human knowledge contradicts the idea of closed orbits 
on two accounts. First, it revealed that the real orbits are never a closed curves, viz. ellipses, as Kepler inferred 
for the first time from the analysis of the data of Tycho Brahe referring to planet Mars: in reality, there is always 
a perihelion advance of the orbit, to say the least, and this reality came to be described by the general relativity. 
In a word, the Kepler ellipse is one of those figments of our imagination, helping us in settling on the problem of 
interpretation and its solution. As well known, the first interpretation ever in this case was given by Newton in 
the form of classical dynamics, whose remarkable product is the very equation (5.3.1). On the other hand, the 
natural philosophy of the beginning of the last century, slowly slipped with that ‘equally likely’ towards taking it 
as ‘equal likelihood’, thus transforming the conclusion into a ‘measurable’ one, according to the theory of 
probability. It is in this form that the wave mechanics came to contradict it: Schrödinger found that the material 
point in revolution can be found ‘simultaneously in all kinematically possible positions on the trajectory, but not 
equally likely’. As known, he even provided a measure of the likelihood: the square modulus of the wave function, 
and this is how the angle f started being a statistical variable. 
 Now, from a purely mathematical point of view, Kepler’s inference is only valid if the initial velocity, having 
the components (v1, v2) in the plane of motion, is limited in its Euclidean magnitude by the physical quantity (k/ȧ), 
which compels us to take this last physical quantity as a limit velocity. Indeed, the equation (5.3.1) gives the 
trajectory of the dynamical problem describing the Kepler motion in the field of Newtonian forces – i.e. central 
forces having the magnitude inversely proportional to the square of the mobile position vector with respect to the 
center of force – as a general conic section described in polar coordinates with respect to the center of force. Such 
a conic section happens to be an ellipse only in the cases where its label – i.e. the initial velocity of the material 
point in motion – satisfies the inequality: 

 
 

(5.3.2) 

and only in those cases. Classically, this is a well-known condition of limitation of the velocities playing the part 
of labels for Kepler trajectories: it thus describes a particular ensemble of particles, out of all possible Hertz 
material particles from the ensemble giving the interpretation to the Hertz material point we call electron. On the 
other hand, it describes the eccentricity of the orbit, which is actually all we can have about it in reality. In other 
words, the vector of initial velocity is a fictitious vector that we can only be inferred from the shape and size of 
the orbit, which are the only parameters we can effectively measure. In this case the condition (5.3.2) can be taken 
as measuring the extension of the space accessible to the center of orbit with respect to the center of force, and 
this is an estimation of the space occupied by the center of force. 
 Indeed, speaking of the planetary atom, as described in §5.1, if the electron has a closed orbit – assuming the 
condition of ‘closed’ an ideal one, in the sense that the shape of the electron is the same after running through the 
orbit – then, from a classical point of view, all of the constituent material particles from the interpretative ensemble 
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of a ‘nucleus’ of that revolving electron should have closed orbits in the interior of a toroid in space. This toroid 
can be described as a solid figure delimited by a canal surface generated by the shape of that nucleus. The ideal 
condition also assumes that the Hertz material particles of the electron’s ‘nucleus’, will have their own trajectories 
all along the Kepler orbit of the electron. This is a genuine condition of confinement of the very material particles 
from the interpretative ensemble of the nucleus of a material point in general: they belong to a space confined by 
a well-defined geometrical manifold. It is worth now, for us, describing a family of Kepler orbits, of an ensemble 
of material particles serving for the interpretation of the structure of electron, from this very point of view. 
 According to equation (5.3.1) an ensemble of material particles is described in the vicinity of a center of force 
by an equation of the form: 

 
 

(5.3.3) 

The particle takes this orbit at the point of coordinates (r0,f0) with respect to the center of force, in a plane 
undecided with respect to its orientation: again, such orientation is ‘equally likely’, and the physics of the last 
century came to deny the statement on a few accounts! But let us take the things in a reasonable direction, just in 
orde to make our point. Fact is that regarding the orientation of the plane of orbit, we do not know too much, 
given just the initial conditions as above. To wit: we only know that the plane normal would have to be given by 
the direction of the vector product ȧ = r´dr, between the position of the revolving point, and its infrafinite variation 
– the fundamental displacement, as they say – and thus, unfortunately, it has to remain undecided from a metrical 
point of view, just as undecided as the differential dr appears to be. However, the equation of orbit, taken in the 
form (5.3.3), does not contain but the magnitude of this vector product – not at all its direction – as given by the 
second of Kepler’s laws, so that an initial position vector can be assigned to the trajectory, that can be calculated 
from the initial velocity: 

 

 

(5.3.4) 

Now, if in the Cartesian coordinates with respect to the center of force we calculate the coordinates of the center 
of the orbit itself, they are also determined by the initial conditions, according to equations: 

 
 

(5.3.5) 

The equation of the orbit with respect to this center, can be simply obtained by the translation 

   

which results in the Cartesian equation of the orbit: 

 
 

(5.3.6) 

The semiaxes of orbit are then given by the eigenvalues of the inverse of the matrix of this quadratic form: 
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(5.3.7) 

so that the eccentricity of the conic (5.3.6), assumed an ellipse, is given by 

 
 

(5.3.8) 

Therefore, in the eccentricity of the current orbit of the Kepler motion, we can recognize a past of the particle 
moving along that orbit, according to the laws of the classical dynamics. However, what we have in mind with 
this past is a more profound meaning than these mathematical displays, which can be exhibited by going back in 
history, to Newton himself. 
 Indeed, the choice of the initial velocities determining the Kepler orbit – only regarding its shape and 
orientation, in fact – can be related to that fictitious event, whereby a ‘just transverse impulse is infused’, in 
Newton’s imaginary scenario involving a particle that falls towards a center of force. Newton ascribed that 
transverse impulse to ‘an intelligent Agent’, as shown in the excerpt from his letter to Bishop Bentley, given by 
us in the §2.2. We, on the other hand, can see in this initial condition an opportunity to give a physical identity to 
that ‘intelligent Agent’: it is given by the static charges assigned to particles (see §2.2). To be more precise, the 
Newtonian scenario can be ‘improved’, as it were, with the proviso that in the fall of particle towards a center of 
force, charges are suddenly created on the ‘particle’s own orb’, that rotate the static fields generated by its own 
existing charges, thereby generating a current around the center of force. Thus, the ‘intelligent Agent’ is not to 
be identified with God, as sometimes proclaimed, based, in fact, on the very Newton’s words, but to a physical 
law. Like anywhere else in our life on Earth, for that matter, we have to recognize that God does not control the 
events in the world, as everybody seems to believe in the human society of all times: He just prescribed the law… 
according to which this world must work! The events happen according to the law: this statement should not be 
taken as a paradox. Every term of it has logical and scientific consistency by law! 
 However, for the moment, let us make a ‘Newtonian connection’, as it were, with another concept of our 
knowledge: the special relativity. Notice that in order to generate a closed orbit, the ‘just transverse impulse’ of 
Newton must imprint to the falling particle, at ‘its own orb’, a tangent velocity of magnitude lower than ȧ/k. This 
fact gives us the possibility to describe the space measured through the eccentricity of the orbit around the center 
of force in the dynamical Kepler problem, by a Cayley-Klein geometry in two dimensions, as in §3.4. Theoretical 
physics knows nothing of this kind; however, it knows instead of a Lobachevsky space of velocities in the special 
relativity (Fock, 1959). Fact is that the Lobachevsky geometry can be presented as a Cayley-Klein geometry 
whose absolute is given by the spherical wave surface of light. For consistency, let us present the case along the 
lines of the present work. 
 If we denote by X a point in this space of velocities, then a coordinate representation is given by a quadruple 
of numbers as in equation (3.4.17), with the numbers x, y, z purely imaginary, making the component of the vector 
i×v, while the component t º c – the speed assigned to light: 
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Thus, the points which satisfy the condition (X, X) = 0 – the light fronts – are geometrically shaping an absolute 
for this geometry, and thereby the universe we live in can be represented relativistically by the metric geometry 
of a Maxwell fish-eye (see §3.4 above). Among other things, the common contemporary concept is that, 
physically speaking – but with reference to our experience nevertheless – these light fronts represent the 
propagation of light if the limit velocity c is a constant. Specifically, the points with positive norm (5.3.9) represent 
inertial motions, as usual, while the points with negative norm represent, for instance, de Broglie waves in the 
regular case of special relativity. The idea is that some other ensembles of Hertz material particles can likewise 
be described in the case of the Kepler motion. 
 The norm (5.3.9) induces an ‘internal multiplication’ of points by the ‘polarization’ procedure corresponding 
to the norm from equation (3.4.16). According to this prescription, we have for the Lagrange product of a point 
with its infrafinite counterpart, entering that equation, the expression: 

   
This will give us the four-dimensional equivalent of the formula (3.4.13) as a sum of two contributionswhich we 
write here, intentionally, as: 

 
 

(5.3.10) 

Our intention of speculation is simple: if the first part of the metric appears as a genuine metric of the continuum 
of velocities, the second part can then be interpreted as a genuine Coll universal deformation (see §§3.4 and 3.5) 
Thereby we can read that, if the Coll’s thesis that the gravitation can be described by a universal deformation is 
valid, then the gravitation is manifested by a variation of the electromagnetic properties of a de Sitter background 
continuum. Meanwhile, notice that this metric is not exactly the metric of a Lobachevsky space of velocities, 
which, in fact, is given only by the first part of the expression (5.3.10) [see (Fock, 1959), §§16,17; especially the 
equation (17.01) of this reference]. 
 The main point of difference is that we assume here that the speed assigned to light is variable, while in the 
special relativity it is a constant. If we assume c as a constant too, this condition comes down to dc = 0, and the 
Cayley-Klein metric (5.3.10) reduces, indeed, to Fock’s metric. However, there is more to conclude from (5.3.10) 
in this case, if we take the Kepler dynamical problem for guidance. For, in this problem the norm (5.3.9) is 
replaced by the condition (5.3.2) of existence of the closed orbits, in which case the correspondent of the maximal 
velocity c is (k/ȧ) and this quantity is manifestly variable with the incidental interpretation particle carrying that 
property. Just tentatively speculating, this variability makes the classical dynamical Kepler problem essential in 
a holographic universe, for we have 
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which means that c here is an intensity connected with the phase represented by the angle of revolution of the 
particle in the dynamical Kepler problem [see definition (4.5.12) of the amplitude by coherence; compare also 
with the interpretative condition (4.5.18)]. 
 Thus, we wrote the absolute metric (5.3.10) as a sum of two terms with the clear intent of accounting for the 
variability of c in a particular way: in the framework of special relativity the first term from equation (5.3.10) is 
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the the Fock’s metric of velocity space, and it is a direct consequence of the Einstein’s law of composition of 
relativistic velocities. In this undertake, one can say that the whole metric (5.3.10), itself, generalizes the 
relativistic metric of the velocity space, which can be obtained from (5.3.10), for instance in cases where the first 
component of the point X is a constant, as we did before: the differential of a constant c is always zero, and the 
second term in (5.3.10) vanishes. In other words, in this case there is no infrafinite four-vector velocity in the 
relativistic physics as we inherited it from Maxwell electrodynamics and used into Einsteinian special relativity: 
since the speed of light is a constant its differential is zero, and there is not an infinitesimal fourth component of 
acceleration, to be expressed as the variation of the corresponding component of the velocity. It is known, indeed, 
that in special relativity the four-vector acceleration needs to be constructed in a special way, involving the force 
and the proper time of the motion. 
 However, as equation (5.3.2) suggests, a relativistic-like description can be obtained by identifying the vector 
v with the initial condition of motion, and then taking c º k/�̇�. Every closed Kepler orbit is thus described by some 
initial velocity having a magnitude smaller than this particular value. The metric (5.3.10) could therefore be 
applied for describing the structure of matter contained in the nucleus of revolving body of the planetary model 
of physics, but there is a drawback. Indeed, in this interpretation, the matter of the revolving material point can 
be taken to be a ‘swarm’ of Hertz material particles, as once described by Joseph Larmor in a very suggestive 
work (Larmor, 1900). Obviously, as we noticed above, the value of c is here variable with each particle of the 
Hertz material point in revolution. And, as each particle is uniquely labelled by its initial conditions, there should 
exist a correlation between the limit velocity c and the label of the particle. The nature of such a correlation can 
be inferred directly from (5.3.10), because this formula discloses still another condition in which the metric 
reduces to the usual ‘relativistic’ one, more general than that of maintaining c a constant. This condition is given 
by the differential equation 

  (5.3.12) 

which guarantees the vanishing of the second term in (5.3.10). In other words, in this generalization of special 
relativity, there are, actually, two cases in which the metric becomes purely relativistic in the sense of Fock. 
 One of these is, of course, the usual case of constancy of the value of limit velocity, which precludes the 
infrafinite differential measure for the time component in the realm of velocities taken as four-vectors: there are 
only regular finite four-vectors and infrafinite three-vectors in this case. On the other hand, there is also a case of 
differential measure in this realm of the four-velocities, given by equation (5.3.12), and involving the connection 
between the time component and space components of the four-vectors. These last velocities are ‘reciprocal’ with 
respect to the ‘sphere’ given by the initial conditions of the Kepler problem. Such a reciprocity is akin to a ‘de 
Broglie duality’, as it were, between the phase and wave-group velocities. However, this time it is the inertial 
matter which imposes it upon light. In general, therefore, one can assume that c is not a constant, regardless of 
this last situation, and describe a universal… special relativity starting from a ‘double’ relativistic metric, to be 
obtained from (5.3.10) in two special cases: one for considering the light in ether, the other considering the matter 
in ether. 
 For the first case we cannot decide anything yet, but the last case can always be described, indeed, by two 
absolute metrics corresponding to two limit velocities. In order to get the gist of the method to accomplish such 
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a task, let us assume the case of constant c: the idea here is that only after analyzing this case closely, we can 
properly improve on it. The absolute metric (5.3.10) turns out to be: 

 
 

 

In the three-dimensional velocity space of relativity, this metric can be written in the form 

 
 

(5.3.13) 

while in the two-dimensional case of the Kepler motion it can be written in the form 

 
 

(5.3.14) 

where, this time, e suggests the eccentricity vector of the orbit. There is no formal difference between the two 
formulas, (5.3.13) and (5.3.14), except the dimension of the velocity space and the fact that this last one of this 
relations is controlled by gravitation according to Newtonian precepts. Keeping this last condition in reserve for 
later considerations, the equation (5.3.14) can be obtained from (5.3.13) just by choosing to work in one of the 
planes of coordinates of the velocity three-dimensional space. Perhaps it is worth mentioning again that in 
describing the gravitational field according to Einsteinian natural philosophy, we simply cannot consider the 
Newtonian case as just particular: it turns out that it is manifestly involved in the construction of the fields, at 
least by the boundary conditions (see §3.2). 
 In order to settle our ideas, we choose to work on the formula (5.3.14), in the Cartesian components of the 
eccentricity vector, for then it is more transparent how the space extension of matter can enter our reasoning. 
Indeed, the eccentricity vector e, represents the relative position of the center of orbit of the dynamical Kepler 
problem, with respect to the center of force [see equation (5.3.5) above]. Therefore it can be taken as a rough 
measure of the limited space extension of the matter generating the force field in a planetary model. One can 
surely assume that the geometry of the space containing the matter which generates the force field in the classical 
Kepler problem is not an Euclidean geometry, but a Lobachevsky geometry and, optically speaking, a Maxwell 
fish-eye medium. In other words, we have a geometry of the space containing the center of forces: it is the 
hyperbolic geometry. To make this statement even more understandable, notice that the Cayley-Klein metric 
(5.3.14) can be cast into the Beltrami-Poincaré form 

 
 

(5.3.15) 

by the transformation 

 
 

(5.3.16) 

and thereby get the general relativity by a harmonic mapping, via Ernst prescription (see §4.1 above). 
 This will make an understandable connection between special relativity and general relativity right within the 
classical framework: no assumptions of finiteness of the velocity of fields, no electrodynamics in describing the 
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foundations. To wit: in view of the similitude between the metrics (5.3.13) and (5.3.14), the first one of these can 
be cast in the form (5.3.15), just like the second one, and this opens the possibility of some mathematical-
philosophical sound speculations. For once, one can assume that, in a planetary model, the equation (5.3.13) is 
referring to the revolving spatially extended electron, by describing the particles of its interpretative ensemble. 
Likewise, (5.3.14) is referring, as we said, to the interpretative ensemble of the nucleus proper of the planetary 
model, and therefore to the Einsteinian cosmological boundary conditions for the metric tensor. These structures 
being geometrically isomorphous, can be taken as validating the Kasner approach to Einsteinian cosmology (see 
§5.1), so that the theory from the §5.2 is applicable. The bottom line: we can have a conclusion on the existence 
of a certain connection between charges and speeds, contained in the cross-ratio (5.2.13), and transcending the 
usual apparent invariance of the charges of our experience. This idea will be developed in extenso with another 
occasion, since it needs a more comprehensive discussion, for which there is no room on this occasion. For now, 
though, let us give a comprehensive geometrical description of the Kasner’s correspondence between the two 
blades of the metric (5.1.7), just in order to see where it leads us from the perspective of the Ernst principle of 
general relativity. 

 5.4 The Kasner’s Blade as a Negative Curvature Surface 

 There is, again, an element of arbitrariness left with the above representation of the physics of planetary model, 
leading to the necessity of a reverse interpretation (Mazilu, Agop, & Mercheș, 2021). This concept would mean 
simply an Einsteinian representation of ‘the discrete’ by ‘continuum’ [(Einstein, 1917a); see introduction to our 
Chapter 3 above], just as the interpretation proper means representation of ‘continuum’ by ‘discrete’. It is 
necessary, primarily as a concept we should say – we do not have a concept for the matter density, other than the 
Newtonian one, of course – inasmuch as in the connection between space and matter one cannot escape the 
definition of Einstein for the density of matter. This means that the density is effectively dependent of the space 
scale of our perception of matter. In hindsight, we can even add to this physical attribute of density another 
important one: for the same space scale, the density of matter depends on the time scale of its observation. 
Anyway, this reverse interpretation is, in our context, particularly simply made possible by the Beltrami-Poincaré 
metrization of the hyperbolic plane. Indeed, the metric (5.3.15) is conformal to an Euclidean metric, and this last 
one is known to be invariant with respect to rotations in plane. At the risk of repeating well-known things, we 
need to point out in some detail how this arbitrariness shows up in the hyperbolic geometry, just for the sake of 
completeness if for nothing else. Let us state here that for what follows we have found the necessary inspiration 
in the works of Alexander Petrovich Shirokov – may he rest in peace! – and his collaborators, from among which, 
two are of special interest: (Shirokov, 1988), (Perelomova & Shirokov, 1990). 
 It turns out that in the (u,v) coordinates, as defined in equation (5.3.16), this geometry exhibits a special 
invariance connected with what is known as the Bäcklund transformation fore-cited in §5.2 above. These 
properties are connected with the Euclidean properties of the metric (5.3.15), assumed a priori valid in this 
geometry. Following a known routine, we take a point P in the hyperbolic plane as being described, like in the 
ordinary geometry of surfaces, by the coordinates (u,v), so that its infrafinite vector variation can be written in 
the form [(Flanders, 1989), p. 134] 
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(5.4.1) 

This formula makes the fact obvious, that the hyperbolic plane is conformal to the Euclidean one, indeed, but it 
needs a little explanation. Notice that we denoted here the base of vectors by (ê1,ê2), indicating an orthonormal 
reference frame according to our Euclidean notation conventions, i.e. a frame satisfying the relations: 

  (5.4.2) 

Obviously, the dot-product here cannot be Euclidean: manifestly orthogonal, the two vectors cannot be Euclidean 
unit vectors. However, they are hyperbolic unit vectors, i.e. unit vectors in the Lobachevsky plane, equipped with 
the metric (5.3.15), whereby the dot-product involves the metric tensor. That is, in general, for two arbitrary 
vectors, U and V say, belonging to the space equipped with a metric generated by the tensor m, for the dot-product, 
or the internal multiplication, as they sometimes call it, we have: 

 
 

(5.4.3) 

where 1 is the identity matrix as usual, and m º (1/v2)×1 is the metric tensor from (5.3.15). In the right hand side 
of the second of these equalities, the Greek indices run over the values 1 and 2, again, according to our usual 
convention, and the summation over dummy indices is understood. The coframe from equation (5.4.1) is given 
by the two differential forms 

 
 

(5.4.4) 

The Beltrami-Poincaré metric (5.3.15) is, obviously, the sum of their squares, as in the Euclidean case. 
 Now, we have to insist on the Frenet-Serret formulas for the previous reference frame, in order to have a 
differential-geometric theory as in §1.3. Notice, to this end, that by a direct calculation, we get 

 
 

(5.4.5) 

with an obvious ‘ket’ notation for the column matrices. As the metric tensor is not constant, the Frenet-Serret 
formulas are not given by a purely skew-symmetric matrix as in the genuine Euclidean case, and this complicates 
a little the process of obtaining those formulas, which thus becomes more involved. 
 Let us find the Frenet-Serret formulas of an evolution that leaves the metric unchanged, in general. Assuming 
the usual rules of differentiation when it comes to the variation of the quadratic forms, a variation of the quadratic 
metric can be formally expressed as: 

  (5.4.6) 

where m is the metric tensor, áu| º (u, v) in a Dirac notation, and a gauging g is assumed, to the effect that the 
differentials of coordinates on surface are solutions of the equation: 

  (5.4.7) 
Thus, the gauging condition transfers the second differentials of coordinates onto some first differentials 
representing the entries of a gauging matrix. What makes a gauging condition out of the second equality (5.4.7) 
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is the fact that it must be unconditionally valid, i.e. valid independently of (u,v). This means that the equation 
(5.4.7) is not an equation of evolution: it is valid for the whole portion of surface coordinated by (u,v). Then, for 
that portion of surface, the matrix from the second equality in (5.4.6) must be a matrix with null entries, for it is 
a priori a symmetric matrix: 

  (5.4.8) 
In this case one can easily figure out that the non-symmetric matrix mg entering this expression, should be given 
by an equation like the following: 

 
 

(5.4.9) 

where a is an arbitrary skew-symmetric matrix. It involves just one arbitrary differential parameter in the two-
dimensional case. One can say that, in this case, the last equation in (5.4.9) defines the gauging matrix ‘almost’ 
completely, knowing the metric tensor. 
 Now, using (5.4.9) for a Beltrami-Poincaré metric, the gauging equation (5.4.7) becomes: 

 
 

(5.4.10) 

where a is the mentioned arbitrary ‘differential parameter’. If this differential parameter is defined such that the 
second order differentials are homogeneous quadratic forms in the first order differentials, the problem simplifies. 
For instance, if we choose a×v3 = du, then the matrix equation (5.4.10) represents the system of equations of 
geodesics of the Beltrami-Poincaré metric, as given, for instance, in the equation (4.1.16) in this case, only written 
in differentials, instead of derivatives: 

 
 

(5.4.11) 

We can even go a little further along this line of reasoning, with the consideration of a differential factor in 
equation (5.4.10) defined up to an exact, but otherwise arbitrary differential, introduced via an arbitrary phase, f 
say, in the mathematical picture, under the defining condition: 

  (5.4.12) 
Here f, our arbitrary ‘phase’, defines the differential factor a, and the minus sign is chosen only because we have 
in mind a later convenience. Then the equation (5.4.10) can be written in the form: 
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whence it becomes obvious that the choice df = -du/v, which means D|duñ = |0ñ represents the equations of 
geodesics (5.4.11) written in a matrix form, and therefore characterizes the parallel transport along the geodesics 
of the Lobachevsky plane. According to Dan Barbilian, this choice defines ‘the angle of parallelism in the 
Lobachevsky’s plane’ (Barbilian, 1938). 
 In order to describe a general reference frame of the hyperbolic plane, satisfying the conditions (5.4.2), where 
the dot-product is defined via equation (5.4.3), we define a family of two a priori orthogonal unit vectors 
depending on the phase just introduced. These vectors play the part of a répère mobile in the sense of Cartan: 
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(5.4.14) 

Then a direct calculation shows that we have the following Frenet-Serret equations that generalize (5.4.5), by 
describing the evolution of this frame in terms of the differential parameter (5.4.12): 

 
 

(5.4.15) 

Here the following notations are used: 

 
 

(5.4.16) 

for what appear to be some absolute differentials of the orthonormal Lobachevsky frame: the matrix from the 
right hand side of equalities (5.4.15) is skew-symmetric again, that is the relations (5.4.2) are preserved by this 
differentiation, with the definition (5.4.3) for the dot product. 
 Then one can verify that, along the geodesics (5.4.11) the coframe (W 1, W 2), obtained by a rotation of angle 
f of the coframe (s 1, s 2) given in equation (5.4.4): 

  (5.4.17) 

has the following equations of evolution: 

 
 

(5.4.18) 

The equations (5.4.17) and (5.4.18) formally represent what is usually known as the Bäcklund transformation of 
the negative curvature surface representing the Lobachevsky plane. 
 Now, this transformation allows the construction of a simply transitive action of the SL(2,R) type group in 
three variables with three parameters. The construction proceeds as follows: notice, again, that the Bäcklund 
rotation (5.4.17) leaves the Beltrami-Poincaré metric unchanged, and this is the arbitrariness we are talking about: 

  (5.4.19) 
On the other hand, by a direct calculation one can verify the condition 

 
 

 

Based on this relation, one can construct the following structure equations specific to a so(2,1) group algebra: 

  (5.4.20) 

where W 0 is the newly introduced differential form: df + du/v, whose vanishing defines the parallel transport of 
the Lobachevsky plane. This algebra is a Riemannian space having the metric given by the quadratic differential 
form (Shirokov, 1988): 

 
 

(5.4.21) 

where for the differential symbol we have used the definition from equation (5.4.16). 
 The new Lie algebra is therefore a Riemannian space of negative curvature (Vrânceanu, 1967). Such a 
Riemannian space is the central feature of our physics here, as a representative continuum of the matter per se. 
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)ê1 − (

dv
v
)ê2
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This feature makes the space prone to describing the process of reverse interpretation, as we said before. Let us 
elaborate on this aspect of the problem, for it is destined to illuminate us on the kind of forces which are described 
by the Riemannian geometry, and their relationship with the manifold of events, i.e. with the spacetime. On the 
other hand, one can expect to get a glimpse of the kind of mathematics we need in order to rationalize the 
Einstein’s procedure of defining the density on account of the concept of scale transition. 

 5.5 A Geometry of Schwarzschild’s Statement 

 The essential note distinguishing the Einsteinian natural philosophy from the Newtonian natural philosophy 
is best rendered, in physics’ terms, through the words of Karl Schwarzschild excerpted by us in the previous §3.3. 
We venture rewriting them here again, just for the sake of continuity of our discussion, as it were: 

 The specification “consisting of incompressible fluid”, is necessary to be added, due to the fact 
that in the framework of the relativistic theory, gravitation depends on not only the quantity of the 
matter, but also on its energy and, for instance, a solid body having a specific state of internal 
stress would produce a gravitation different from that of a liquid. [(Schwarzschild, 1916); our 
Italics] 

Now, we really believe that the overall task of the present work is best served with a conclusion of it, along the 
message contained in this note. In a word: the Newtonian natural philosophy is simply concerned exclusively 
with interpretation, while the Einsteinian natural philosophy is also concerned with its consequences, contained 
in the notion of reverse interpretation. The general idea here, of an Einsteinian extraction, is that the transition 
from discrete to continuum involves the concept of field in the Yang-Mills form (see §4.4 above). 
 To start with, the algebra spanned by the differential forms (5.4.20) characterizes a simply transitive SL(2,R) 
action in the complex range, corresponding to the transitive action (5.2.2) of the group of real 2´2 matrices. In 
modern terms, this transitive action serves as a quintessential example in the construction usuall called the Selberg 
trace formula [see (Selberg, 1956), especially §4] and used fruitfully in the theoretical description of the chaos 
(Gutzwiller, 1984, 1985, 1990). It can be realized as a transitive group action in three variables with three 
parameters given by the replacements 

 
 

(5.5.1) 

where k is a complex unimodular factor (Barbilian, 1938). Consequently, along our line of ideas here, this 
mathematics tells us that each one of the two blades of the Kasner’s cosmological metric must be described by 
such an endomorphism, and this gives us the possibility of establishing a complex form of the matrix realizing 
the action [one can consult (Mazilu, Agop, & Mercheș, 2021), Chapter 6, for details on Barbilian mathematical 
theory]. The frame of infinitesimals of the action (5.5.1) differs very little from the Beltrami-Poincaré frame from 
equation (5.2.10), involving just one more term added to B3: 
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but satisfies the very same structural equations (5.2.8). The differential forms (5.4.20) play here a special role: 
they are the real components of the absolute invariant coframe. Indeed, the differential 1-forms 

  (5.5.3) 

turn out to be both right and left invariants of the action (5.5.1). In the complex variables of this group action, 
they can be written as 

 
 

(5.5.4) 

Obviously, the Kasner’s y-blade from the §5.2 must be described in the very same way, with (z, z*, k) replaced by 
(y, y*, l), where l is a complex variable of unit modulus. Then the cross-ratio from equation (5.2.13) is not the only 
joint invariant characterising the correspondence between the two Kasner blades of the cosmological de Sitter 
solution of Einstein’s equations. 
 This can be seen by solving the system of Stoka equations (5.2.12) for the frame B from equation (5.5.2) and 
its correspondent C in (y, y*, l) variables. The solution says that any joint invariant must be an arbitrary function 
of the following three fundamental algebraical formations: 

 
 

(5.5.5) 

out of which the first one is the cross-ratio from equation (5.2.13). While the first of these algebraical formations 
would suffice in describing the Yang-Mills fields according to Ernst formalism, in considering the whole two-
blade picture, it proves to be insufficient: one has to add the last two expressions (5.5.5) in constructing the 
connection between the two blades of an Ampère element. Everything depends here on the validity of introduction 
of a phase in order to describe the three-dimensional situation of a Bäcklund transformation. 
 The action (5.5.1) represents the invariance group of a cubic equation having real roots (Barbilian, 1938). Its 
geometric relevance for us here is that the group characterizes a Cayley-Klein geometry having a one-sheet 
hyperboloid as absolute. On the other hand, from a physical point of view, the variables (z, z*, k) or (y, y*, l), are 
liable to represent what Karl Schwarzschild designated as ‘specific states of internal stress’, participating in 
producing the ‘specific gravitation’. This can be shown along the lines that follow. Given a complex quantity z 
and a unit modulus complex number k, as above, one can always construct three real quantities: 
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that may be taken as the roots of a cubic equation. Here j is taken as the cubic root of unity. Such a cubic equation 
can then be considered as the characteristic equation of a 3´3 matrix, whose physical meaning can be associated 
with a field of stress or strain existing in a universe described by Kasner’s cosmological two-blade solution. 
Grosso modo, the rational explanation of such a cosmology is the following: the matter of universe appears 
sparsely to our experience, inasmuch as this experience is dominated by senses and is thus scale dependent: spatial 
and temporal scales. As we need a continuum, according to Einsteinian natural philosophy, in order to describe 
it, we certainly need a reverse interpretation which brings us to the Barbilian scheme of cubic space. One can see 
that the complex 2´2 matrix (Barbilian, 1938): 
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(5.5.7) 

which connects homographically the real numbers (r1, r2, r3) the the three ‘standard’ numbers (1, j, j2), represents, 
in a unique manner, the cubic having the roots (5.5.6), as transforms of the standard cubic roots of unity [see for 
details (Mazilu, Agop, & Mercheș, 2021); Chapter 6]. In this case, z and z* are the roots of the Hessian of cubic 
in question. The four coefficients of the cubic can be considered as homogeneous coordinates of a point in a three-
dimensional space, where any cubic having real roots determines a projective structure having the topology of a 
one-sheeted hyperboloid [(Barbilian, 1938); see (Mazilu & Agop, 2012) for more details]: this is the ensemble of 
cubics having their Hessians apolar with the Hessian of real-roots cubic. 
 These cubics, that is the ones represented by points on what we should like to call the Barbilian hyperboloid 
in order to honor the name of its promoter, must have Hessians with real roots. Indeed, one of the three 
determining values of the cross-ratio of two pairs of points in harmonic range – as the roots of the Hessians should 
be in the case of apolarity – must be –1; a negative value of the cross-ratio cannot ever be realized with two pairs 
of complex conjugate numbers: as one can see from the first expression (5.5.5) for the pairs (z, z*) and (y, y*), 
such a cross-ratio is always positive. Thus the condition of apolarity can only be reached with two real numbers, 
(y1,y2) say, instead of (y,y*). Then the condition of apolarity comes down to the following connection between the 
two real numbers 

 
 

(5.5.8) 

In other words, the two real numbers must be connected by a homography realized with the matrix 

 

 

(5.5.9) 

which is a matrix of the type I from those of the frame (2.5.1). 
 If the whole mathematical development thus far is meant to assist the process of inverse interpretation, then 
this last statement has a tremenduos importance: it means that the invers interpretation is the objective foundation 
of the special relativity (see §§2.3 – 5). In view of this conclusion, we need to insist a little more on the classical 
meaning of this side of continuous group theory. This will be done in the next chapter, by the way of an example 
illustrating the intermingling of the gravitation with electromagnetism. 
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Chapter 6 Conclusions: the Dipole in a Unified Physics of Einstein 

We just cannot overextend the present work beyond a decent measure, and so – hoping that it is not already too 
late – it should be the time to conclude it with some observations coming out from the previous analysis of the 
Einsteinian approach to physics. We must confess that, in view of our opening with our ‘profession of faith’, a 
kind of social perspective is guiding this conclusion: the word out, in the society at large, is that as time goes by, 
the spirits usually tend to settle for a resting peace, along with the beings that carried them on the face of Earth. 
Then our duty, as rational social beings, is to sanction this peace, perhaps with our very existence at that, if 
nothing else. Regarding the physics, though, as the previous presentation hopefully illustrates, it so happens that 
there is something else to consider: some spirits could not have been put to rest along with the men that carried 
them on Earth. They continue stirring us up with a sense of lack of satisfaction, when it comes to understanding 
them through their very creations. To be more precise, the questions they once asked have not been satisfactorily 
answered neither by them, nor by us all along the time. After all, this may be taken as the way how our wisdom 
grows! Otherwise a spirit like Voltaire, for instance, could not once utter the often-cited word of the wise: «judge 
the man by the questions he raises, rather than by the answers he provides to those questions». The giants on 
whose shoulders we are standing today, to use the words of old Newton, would not answer the questions they 
asked as properly as these questions have been asked, and neither did we for that matter: whence our 
dissatisfaction, and thereby the motivation bearing the progress of knowledge. 
 Apparently, Newton’s word of wisdom is incomplete though: standing on the shoulders of giants one has to 
look where they are looking, in order to be able to claim having seen further! For, those giants are, surely, not 
blind, like the old Orion once: they do not carry somebody just in order to see for them! The idea of approach of 
the quantum itself by Einstein is relevant for the case (Einstein, 1917b), for it shows that a first-rate spirit cannot 
approach the knowledge of the world but unitarily. Indeed, as we will show through a couple of definite examples 
in this concluding chapter of the present work, the problem of quantization is closely connected with that of the 
universal regulating field of the universe – the gravitation – and Einstein, by the physics he practiced, as well as 
by his attitude with respect to society, touched every side of the science associated with this connection. The way 
we see it, life of Einstein, like that of Newton before him, is an example of attempts to show us the many directions 
we have to look when ‘standing on his shoulders’: the special relativity, the general relativity, the quantization, 
all seem to have a common denominator in Einstein’s mind. And, certainly, they do have a common denominator 
with the idea of forces and dynamics already existent in the old Newton’s mind at the epoch when Albert Einstein 
became … Einstein. So, here, in this final touch of the present work, we have an attempt to lay rest upon their 
spirits, beyond that social customary «may he rest in peace!» we uttered quite a few times along our present 
development. We feel, indeed, that they are ones of the very few among us that deserve more than this in order 
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to rest in peace: namely, they need to have a report showing that we have tried, and are even able to understand 
about their spiritual productions what they could not understand themselves: that something which gave them the 
dissatisfaction that continuously fed their unrest while dwelling in this world! 

 6.1 Einstein: Quantization Condition from Gravitation’s Perspective 

 For once, we are now in position to bring in our story another part of Einstein’s spirit, this time related to the 
very condition of quantization, indeed: in the classical mecanics’ take – which, specifically, means what we know 
today as the Bohr-Sommerfeld quantization condition – it falls in contradiction with the Planck’s quantization 
procedure (Einstein, 1917b). As we reiterated here quite a few times by now, the idea is that this contradiction 
should be due to the fact that the very analogue of the Planck’s constant, in the case of matter quantization, is not 
just… the Planck’s constant, but a geometrical invariant of the Lewis-Lutzky type [(Mazilu, 2020), §4.3]. In our 
opinion, the first instance of such invariant is just the Newtonian central force, having the magnitude inversely 
proportional with the square of distance, whose invention thus appears the result of a quantization procedure avant 
la lettre, as it were. 
 It would be impossible to think that Einstein did not touch the very problem of Planck’s constant in a way or 
another. After all, he was the only one we are aware of, who appears to have understood the essence of Planck’s 
quantization procedure (on which we already commented in §4.5 above), as well as the most interested one, 
among physicists, in a clarification of the connection between gravitation and fundamental physical structures 
(Einstein, 1919). So, it must not apear as a surprise the fact that he was preoccupied with the very structure of the 
Planck’s constant for the case of application of quantization in matter (Einstein, 1917b). The modern acceptance 
of the task of the old work is, however, not what we just stated above: in today’s physics at large, the Planck’s 
constant is seen as an absolute constant, ranking equal to Maxwell’s c2, for instance. Nobody seems to think today 
that the Newtonian forces, to name the most shocking of the examples, may count as an expression of quantization 
in nature. The modern thinking seems to have taken different directions. 
 Martin Gutzwiller, for instance – to name one of the founders of the modern theory of chaos, may he rest in 
peace! – based on the work just cited, sees Einstein as the “Godfather of Quantum Chaos” (Gutzwiller, 1985). As 
a matter of fact Gutzwiller’s work can be taken as the only source of details – especially mathematical – in 
showing the implications of that work of Einstein from 1917. Regarding the geometry of chaos, Gutzwiller 
emphasized the role of what we took here as Maxwell fish-eye medium [(Gutzwiller, 1985), §§4 and 5]. But what 
we consider the most interesting of his achievements in connection with Einstein’s work, is an improvement on 
the Selberg’s trace formula in the spirit of our §5.5 above, contained in a work where he even raised a considerable 
apology to that old paper of Einstein (Gutzwiller, 1984). Finally, Martin Gutzwiller has a detailed mathematical 
and physical account of the modern problems of chaos (Gutzwiller, 1990), whereby the Einstein’s role in quantum 
theory of matter is reiterated, with important mathematical details. 
 What first stirred our interest in Einstein’s old work, is the book that Gutzwiller designated as ‘the only 
reference to Einstein’s paper in the ensuing 40 years’ since Einstein’s work has appeared [(Lanczos, 1970); this 
is the 4th edition of the book of Cornelius Lanczos, with the first edition in 1949, where he used extensively the 
Einstein’s ideas in constructing the Hamilton-Jacobi theory]. However, people only started noticing Einstein’s 
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article after Joseph Keller’s paper on the structure of Planck’s constant, issued a decade later than Lanczos’ first 
edition of the work we just mentioned (Keller, 1958). Citing Gutzwiller on this issue, one can say that… 

… Such a total neglect of an incisive comment on a ‘hot subject’ by the world’s best-known 
physicist is almost beyond comprehension, in particular, since many close colleagues wrote large 
and learned reviews of the whole topic in the early 1920s [(Gutzwiller, 1990), p. 208] 

But the neglect did not stop there: in hindsight, one can say that it continues even today, for it appears that 
understanding Einstein is a deeper problem than ever thought, measurable only with his personality. Citing again: 

… Remarkably, even in 1979 during all the noise of Einstein’s 100th birthday, this particular paper 
barely made it into the bibliography of his most knowledgeable biographer [Abraham Pais, a/n; 
the work in question is (Pais, 1979)], but there is no discussion of it. [(Gutzwiller, 1984), p. 216] 

‘With due contrition and humility’ – to use the Martin Gutzwiller’s own words – we may be allowed to notice 
that Einstein’s idea continues to not be properly understood, for it is referring to the structure of the Planck’s 
quantum in matter, and such a view is, as we said, not recognized as necessary in physics today. This is what we 
are going to (partially) document in this final chapter of our work. 
 To start with, the book of Cornelius Lanczos which first appeared in 1949, during those ‘40 years of neglect’, 
contains the Chapter VIII that seems to be written exclusively under the spell of the old Einstein’s work. Some 
of Lanczos’ conclusions are particularly illuminating regarding Einstein’s tasks, which the original 1917 article 
may have obscured due to yet unsettled concepts at that time. So, in the hope of being more clear when it comes 
to those concepts, we are quoting from Lanczos: 

… Einstein (in the year 1917) gave an astonishingly imaginative new interpretation of the 
Sommerfeld-Wilson quantum conditions by abandoning the stream lines of the qk, pk planes and 
operating with the S-function itself. Notice that the “phase-integrals” 

  (6.1.1) 

can be replaced by  DSk – i.e. the change of Sk in a complete revolution – on account of the relation 

 
 

(6.1.2) 

Hence the quantum conditions enunciate something about the multiple-valued nature of Sk. 
Einstein now took the sum of all the quantum conditions: 

  (6.1.3) 
where n = Snk is again an integer. This one equation cannot replace, of course, the original set of 
equations. But Einstein handled this equation as a principle (original emphasis here, a/n) rather 
than an equation, by requiring that the multiple-valuedness of S shall be such that for any (original 
emphasis here, a/n) closed curve of the configuration space the change in S for a complete 
revolution shall be a multiple of h. Taking these curves to be qk = const. in the case of separable 
systems, the quantum condition 

Jk = pk dqk!∫

pk =
∂S
∂qk

Jk∑ = ΔSk∑ = ΔS = nh,
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  (6.1.4) 
are immediate consequences of Einstein’s principle. Einstein’s invariant formulation of the 
quantum condition led de Broglie (in 1924) to his fundamental discovery of matter waves 
[(Lanczos, 1970); adapted from the original’s Chapter VIII, end of §4, by inserting the equations 
in text, instead of their original captions; our emphasis except as indicated, a/n] 

A few explanations are here in order, just to settle the ideas. First of all, in order to respect the Lanczos’ notation, 
on this unique occasion in our present work, h denotes the Planck’s original constant, for which we regularly used 
the rationalized value, usually symbolized ℏ. As to the main idea of Einstein, we think that it foreshadows the 
modern concept of Yang’s construction of the Yang-Mills fields. 
 Einstein’s observation was directed toward the fact that everything in the procedure of quantization in matter 
depends on the accident that the action S is separable or not: 

  (6.1.5) 

i.e. if it is a sum of terms, each one depending on a single coordinate in the phase space. This may be the reason 
why he was so fond of the Hamilton-Jacobi equation, after all: this equation admits a solution by separation, as 
above, always for the free particle in Euclidean environment, anyway. In this case, by (6.1.2) the components of 
momentum give a tangent vector to the component curve in the respective phase plane of the phase space. If this 
does not happen, the definition (6.1.2) for momentum involves values of the other coordinates and the 
quantization condition is complicated or even inexistent. 
 Einstein imagined that the solution depends on the existence of the cycles transversal to the lines of current in 
the phase space, and this is an essential point. What specifically drew our attention on it, is identity of the problem 
presented by Einstein with the problem of definition of the Yang-Mills fields in C.-N. Yang’s take. This identity 
goes to details: one just has to follow the similitude of the Figure 2 of Einstein and the Figure 1 of (Gu & Yang, 
1977) which illustrates the C.-N. Yang’s definition of the Yang-Mills fields. Having in mind that Einstein 
discussed everything in terms of a fluid, and that the general relativity has, in fact, a proper moment of 
interpretation, as we have shown in the present work, – the Klein interpretation, during Einstein-de Sitter debate 
(see the introduction to Chapter 3) – it was tempting to identify the two apparently different problems and 
solutions. To wit: the lines A1A2 and B1B2 from Einstein’s Figure 2, as well as the lines AE and EA of Gu & Yang’s 
Figure 1, belong to paths within the Maxwell fish-eye medium in which the fluid particles exist and move. The 
issue is even better illustrated in the Figure 2 of (Wu & Yang, 1975), where an idea of posssible flux of connections 
between the two portions of surface is also suggested. And this medium can be described only in the general 
relativistic manner of Ernst (see §4.1) as follows. 
 According to Hertz’s natural philosophy, one can talk of a position in space only after the incident that the 
position was defined: tht is, indicated by a certain material particle. The two positions of a dipole’s charges are 
indicated by the particles moving instantaneously along the geodesics of the Maxwell fish-eye optical medium. 
The two-blade Kasner geometrical description of the vacuum, allows us a mathematical portrayal of the state of 
field. Indeed, the state of the medium, as a whole, at a certain instant is given by analogy with the definition of 
an instanton. Namely, the region of space between the two charges can be described by the three variables giving 
the state of field as in §5.5, z, z* and k, say. The instantaneity, if we may, is then generically described by an 

Jk = nk ⋅h

S(q1,q2 ,...,qn ) = Sk (qk )∑ ≡ S1(q1)+ S2(q2 )+ ...+ Sn(qn )
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‘instanton philosophy’, as we do it typically; that is, by finding an ensemble of states (z, z*, k) solutions of the 
system of differential equations obtained by differentiation from equation (5.5.1): 

 
 

(6.1.6) 

This system is algebraically compatible and, moreover, has unique solution for the three differentials w k: the 
action (5.5.1) is a simply transitive one. The three 1-forms are then found simply by solving the system (6.1.6). 
They are: 

 
 

(6.1.7) 

This is, again, a sl(2,R) coframe, whose corresponding frame is given in equation (5.5.2). To prove this statement 
we proceed as in §4.5 but in order to avoid tiresome calculation it is better to use real variables (u, v, f), defined 
by z = u + iv, k = eif. Then the 1-forms (6.1.7) are: 

 
 

(6.1.8) 

and satisfy the structural conditions (1.4.16). The structure constants are those from equation (1.4.17), so these 
structural relations are characteristic to a sl(2,R) type algebra. The coframe from equation (6.1.8) just describes a 
Riemannian threefold having the metric (5.4.21). To be more precise, using the differentials (6.1.8) we have the 
quadratic metric 

 
 

(6.1.9) 

Now, we are in position to be able to calculate the corresponding frame for the cofrane (6.1.8) by the procedure 
that we have already explained in the §5.2 above, to wit: the equations (5.2.5), (5.2.6) and (5.2.7). First, using the 
quadratic differential (6.1.9) as Lagrangian, we calculate the differential 1-forms of the momentum for this case. 
The result is: 

 
 

(6.1.10) 

and used in equation (6.1.8) results in 

 
 

(6.1.11) 

Then, changing the momenta into derivatives on corresponding variables, and using the metric (6.1.9) to transform 
the differential forms thus obtained into operators, we get the associated frame for (6.1.8) as: 

 
 

(6.1.12) 

The notation here is intentional: these are exactly the operators from equation (5.5.2), only written in real form, 
with z = u + iv. 
 Let us stop for a little while, in order to better assess these results in terms of the concept of instanton. Within 
the framework of the old Schwarzschild’s observation regarding the Einsteinian natural philosophy, they simply 
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describe the field content of an instanton, indeed. The instantaneity in this field can be described by a simultaneity 
represented as a Riemannian threefold having the metric (6.1.9). According to the results from the previous §5.4, 
this threefold can be seen as a family of surfaces of negative curvature, connected with each other by Bäcklund 
transformations. Globally, the threefold is described by three Killing vectors (5.5.2), or equivalently (6.1.12), 
whose conserved quantities are the rates (6.1.7), or equivalently (6.1.8), with respect to the affine parameter of 
the geodesics of threefold. These geodesics are cycles on a constant negative curvature surface! Before 
continuing on with this physical image of an instanton, let us show how we understand this statement, simply by 
calculating the equations of geodesics. 
 The metric (6.1.9) is quite simple and should not ask for involved calculation when exhibiting its geodesics. 
However such calculation are usually longer, and we do not want to get lost in symbols, but just need some 
guiding results. So, we take the metric as a Lagrangian, and consider the arclength as the ‘time’ of problem of 
extremum for this Lagrangian. The Lagrange equations for f and u are easily obtained, showing that the respective 
rates are conserved: 

 
 

(6.1.13) 

Here a dot over symbol means derivative on ‘time’ t, as usual, while a and b are two constants in which we 
recognize the rates corresponding to the components pf and pu of the momentum, according to the equations 
(6.1.10): these components are constants along the geodesics. 
 However, the component pv is not constant, for the Lagrangian depends on v explicitly, and the third Lagrange 
equation of the geodesics can, after calculations, be reduced to the form: 

 
 

(6.1.14) 

Using the second of (6.1.13) to eliminate the rate of f, this equation of the v-component of geodesics simplifies, 
and can be integrated right away: 

 
 

(6.1.15) 

where c is a new integration constant. On the other hand, using again (6.1.13), and eliminating the rate of f, we 
get the equation: 

 
 

(6.1.16) 

With the first of (6.1.13), (6.1.15) and (6.1.16) we can construct the projection equation of the geodesics of this 
threefold onto surface of negative curvature of the threefold. Indeed, along the geodesics the Lagrangian maintains 
a constant value, E say, and we can write, for instance: 

 
 

(6.1.17) 

So, in view of the last of (6.1.15) and (6.1.16), the equation of this projection of the geodesics in question is 
  (6.1.18) 
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which represents circles of center (u0,v0) and radius R, where these new parameters are defined in terms of the old 
parameters of integration via formulas: 

 
 

(6.1.19) 

These are the cycles on our negative curvature surface. Let us expound a little the situation. 
 The third coordinate of the threefold can be determined with respect to ‘time’ from the second equation 
(6.1.13), along the following line of reasoning. Use only the constant b from (6.1.13), in order to eliminate the 
‘time’ in favor of the phase f as independent variable. We get the following system of differential equations: 

 
 

(6.1.20) 

Now, eliminate the ‘time’ using the phase f as independent variable, according to the following scheme of 
differentiation: 

   

where f is any function of f(t), and an accent means derivative with respect to f. The system (6.1.20) becomes 

  (6.1.21) 

which means that, as functions of the phase f, the two components u and v are just two solutions of the universal 
equation (4.5.11) for the intensity: 

  (6.1.22) 
which is characteristic to a Maxwell fish-eye optical medium [see equation (1.2.11)]. Thus, u(f) and v(f) are 
necessarily of the form 

  (6.1.23) 

where f0 is an arbitrary phase, and u0, v0, R are the parameters from equation (6.1.18). The connection we are 
searching for, between the ‘time’ t and the ‘Bäcklund phase’ f is then given by the last equation from (6.1.13): 

 
 

(6.1.24) 

Here, however, we have omitted the arbitrary phase f0 as irrelevant for the present argument, and denoted the 
new integration variable x º tan(f/2). Now, the integration necessary for the construction of connection between 
time and phase can proceed routinely, but there are a few distinct cases. 
 Let us consider first the case of negative discriminant of the quadratic from the denominator of (6.1.24). This 
condition means 

  (6.1.25) 

where we used the equation (6.1.19). This therefore happens when the ‘energy constant E is positive, but always 
finite. In this case the connection between the ‘Bäcklund phase’ and the time of geodesics is given by the 
trigonometric equation: 

 
 

(6.1.26) 
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The opposite case of (6.1.25) is given by 

 
 

(6.1.27) 

and the connection between phase and time is given, for any negative value of the constant E, either by formula 

 
 

(6.1.28) 

or by formula 

 
 

(6.1.29) 

depending on the relative sign of quadratic from equation (6.1.24) with respect to the sign of v0: different or the 
same sign, respectively. 
 Enough, for now, about the mathematics of the surfaces of negative curvatures per se. Concluding on our 
intuitive image of the Kasner’s two-blade cosmological solution, we must say that it is the best fit for the needs 
of the Yang-Mills fields theory, if we understand this theory in the Chen-Ning Yang’s take (see §4.4 above). The 
instantaneity in such a universe, in general, can be expressed, indeed, by a two-blade: according to Einstein’s and 
Yang’s concepts the blades are overlapping each other, thus requiring a connection between them. While in the 
two original works we now have in view – of Einstein’s from 1917, and of Yang’s from 1974 – the connection is 
just imagined, we go a little further, on tying up this imagination with a logical fact: the two blades are connected 
by the physical structure of the universe. Imagine, indeed, two families of cycles (6.1.18), one for each blade. 
They constitute a typical dipole structure ‘submerged’, as it were, in a Maxwell fish-eye medium. The geodesics 
of this medium passing through the centers of the two families of cycles are the field lines of the dipole. 
 Nothing assures us that this figure can be a space figure: that is, nothing else than the fact that the two surfaces 
playing the parts of blades are different. But we have an indication: according to Poincaré, the motion of a charge 
in this configuration cannot be but helical mimicking a motion in magnetic field (Poincaré, 1896). In general, 
though, it appears that the condition of definition of holography by coherence can provide such a demonstration: 
every phase of a given frequency contains cycles. Let us show how. 

 6.2 Holography: the Phases and the Cycles 

 The critical problem occurring in an Einsteinian approach of the concept of phase, should be identification of 
the classical action S with a phase. In the view promoted here, this involves explicitly the idea of holography in 
the construction of the theory. Then, if referred to a physical meaning at all, in view of the property of coherence 
leading to holography, the relation between the phases can only be described by a homography (see §4.5). Such 
a homography will be written here in the form once used by Élie Cartan in detailing a suggestive example for his 
theory of moving coframes [see (Cartan, 1951), the examples to §§102, 108, 112, 161, 214]: 

 
 

(6.2.1) 

where q and f are two phases corresponding to the same frequency, and S, u, and v are the three parameters 
describing the homography. A possible reading, probably the right one, of this equation can be done as follows: 
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q is the phase in matter, while f is due exclusively to the field according to Schwarzschild’s observation (Yang-
Mills y or z, or both; in general, Ernst’s z, or Barbilian’s (z, k). S is the phase involving just particles from the 
interpretative constitution of the matter: it is the only one containing a genuine time, and that cannot appear but 
in a classical way, as an action! 
 In the interest of further analysis of this relation, let us notice the corresponding ‘full homography’, as it were, 
for which we have previously written the formulas of calculating the Cartan’s coframe: 

 
 

(6.2.2) 

One can notice right away that the phase q reduces to a classic phase that can be identified with the action S in 
the cases where f = 0. Therefore, for the cases where the phase can be taken as time, we have unconditionally an 
identity between phase and action, like in Madelung’s take for instance (Madelung, 1927): 

  (6.2.3) 
On the other hand if the time goes to infinity, we have, again, a known interpretation of the situation: 

  (6.2.4) 
The parameter u is, therefore, itself a phase. If this phase is zero, we have a linear relationship between phases: 

  (6.2.5) 
in which case v can be, incidentally, a period. 
 Assume that the phase q is constant – locked, as the physicists like to characterize this situation – and is taken 
for reference, as in the case of the definition of the holographic phenomenon. Disregarding, for now, the 
description of a way in which this reference phase enters the expression of the other phases coherent with it, we 
want to find the circumstances in which this requirement is satisfied in general. In order to do this we have for 
the time a Riccati differential equation like (4.5.16), expressing the fact that the phase is constant 

  (6.2.6) 
Here ω1,2,3 are the following differential 1-forms, obtained by using the equation (6.2.2) for the phase q: 

 
 

(6.2.7) 

Therefore the circumstances in which the phase q is locked are given, in general, by an ensemble of phases that 
are solutions of equation (6.2.6). This is a three-dimensional ensemble, whereby each one of the phases is located 
by the three values (S, u, v). 
 We are able to say something about this ensemble, if we can describe the time moments as the values of some 
continuous function, which needs to be even differentially continuous, in view of the equation (6.2.6). According 
to a classical definition of such a function, this description comes down to associating a continuous parameter to 
phases, in order to transform the equation (6.2.6) into a system of ordinary differential equations. This, in turn, 
can be done if, and only if, the differential forms (6.2.7) are exact differentials proportional to the differential of 
that parameter, i.e. if we can write: 
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where a1,2,3 are constants, and j is the parameter in question. In this case the equation (6.2.6) becomes an ordinary 
differential equation of Riccati type, offering, by its solutions, the phases f as the values of a function of the 
continuous parameter j: 

 
 

(6.2.9) 

There are three possibilities for the solutions of this equation, according to the sign of the discriminant of quadratic 
from its right hand side. The first of these is, by the way of example, the most interesting one, from a physical 
point of view, and we choose it for a meaningful illustration inasmuch as it is, geometrically speaking, the most 
suggestive one. Namely, in that case we have: 

 
 

(6.2.10) 

with j0 a constant; this constant is, however, not entirely arbitrary with respect to the parameters of our problem. 
But, let us see the consequences of (6.2.10) in order to draw the right conclusions. 
 In the case given by (6.2.10), we shall also have a corresponding solution for the differential system (6.2.8). 
This shows how the equation dq = 0 needs to be interpreted in general. Specifically, the system can be solved to 
give the parameters as functions of the phase j: 

 

 

(6.2.11) 

where A is a new constant of integration. The situation has now a statistical interpretation: we have an ensemble 
of phases of mean f given by (6.2.10), having a distribution function with quadratic variance given by 

 
 

(6.2.12) 

in terms of the ensemble mean (Morris, 1982). This is actually a one-parameter family of such distributions, 
indexed by parameter j. The function [v(j)]–1 from (6.2.11) measures the variance of this ensemble. 
 The parameters u, v from equation (6.2.11) can be transcribed independently of the parameter S, for instance 
as in the system: 

 
 

(6.2.13) 

This transcription is intended to make the fact obvious, that the parameters u and v are defined on some cycles, 
which, in the parameters (u, v) are, in fact, ellipses. To see this, notice that we can eliminate the parameter j from 
(6.2.13), in order to get the parabolas: 

 
 

(6.2.14) 

where x0 and z0 are the constants from equation (6.2.13). Then, the implicit equation of the original cycles in 
parameters (u,v) can be obtained by coming back to these variables, which gives: 
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thus proving our statement: this equation represents a quadratic form whose matrix has the eigenvalues of the 
same sign. Therefore, in the case the conic it represents is real, it cannot be but an ellipse. But this means that the 
parameters u0 and v0 are values that can be measured in contemporaneity. Let us show how this statement can be 
understood, by using ideas touching the fundamental analogy of our knowledge (see §2.5). 
 Assume the earthly situation of a vessel moving uniformly on the surface of a quiet sea. The dynamical state 
of this boat is decided by a certain intermingling of its two obvious properties: on one hand it dwells on the surface 
of Earth, while, on the other hand, it also dwells in the physical universe. The first of these aspects can be 
dynamically addressed using the closest source of gravitational force, which is the Earth, more precisely its center 
of force, while the second dynamical aspect can be addressed using the idea of remote material sources of the 
field. In other words, if the gravitational field is universal, it is universal in a ‘double take’, as it were: once as 
Earth’s field and once as a field created by the remote bodies. Or, perhaps, a better idea would be that the field in 
question is not universal at all. Be it as it may, the truth of the matter is that the local state of our boat assumes a 
twofold mathematical description, just like the Yang-Mills fields in C.-N. Yang’s take (see §4.4 above): first, 
through an approximately parallel field of forces, acting ‘vertically’ as it were, and generated by the closest center 
of force that can be rationally taken as such with respect to the boat, and, secondly, by the action of an ensemble 
of many remote bodies, acting ‘in all directions in space’, at least in the cases of a real sea, anyway. It is this 
combined action that can be deemed, indeed, as universal. One can imagine that the center of Earth and a fictitious 
remote point in space are forming a dipole of the kind naturally existing in a Maxwell fish-eye medium. As a 
matter of fact, the ‘center of Earth’ here is, practically speaking, just as fictitious as that ‘fictitious remote’ point 
in space, from the point of view of our experience: we cannot but imagine them both. This general situation can 
also be declared as existent in an Einstein elevator, thus allowing us a comparison between this mind invention 
and the Wien-Lummer enclosure from the case of light. The bottom line is that the principle of equivalence in 
Einstein’s first take reveals a typical example of Yang-Mills fields (Yang, 1977). The theory from the previous 
section allows us to conclude that between the two states of gravitation – the one created by local matter, and the 
one created by global matter – there is a transformation, and that transformation has been discovered long ago by 
Paul Appell. 
 Indeed, the second kind of action – incidentally, the proper action at a distance – is the one chiefly addressed 
by the classical dynamics, and the main point of experience leading to its description is the Kepler’s second law. 
We have expressed this law in the form given in equation (4.5.8), which was used as an incentive for deducing 
equation facilitating the definition of frequency based on the phenomenon of holography, as initially conceived 
by Dennis Gabor. In terms of the geometrical parameters, (u,v) say, in a plane through the axis of the ‘gravitational 
dipole’ imagined as above, this law can be written in the form: 

  (6.2.16) 
where ȧ is the area constant as usual, and dt is an appropriate differential of the time parameter in terms of which 
the area rate is calculated. This means that the ratio (u/v) represents a uniform motion on the plane, in terms of a 
special time: 

 
 

(6.2.17) 
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In the framework of Newtonian definition of the forces, the equation (6.2.16) is a consequence of the following 
equations of motion on the surface: 

 
 

(6.2.18) 

where f is the magnitude of the local action of the forces upon boat, assumed to depend only on the coordinates 
of the boat on surface. Thus the quantity (u/v) can be taken as a coordinate on our surface, which represents a 
uniform motion in a given direction on the surface, in the time defined by equation (6.2.14). By the same token, 
using the second of equations (6.2.14), we find right away 

 
 

(6.2.19) 

Therefore, the coordinates (x, z) defined in equation (6.2.13) are what we would like to call the Appell coordinates 
in order to honor the memory of their illustrious promoter (Appell, 1891). They have the property that made the 
Galilean relativity possible, namely: 

 
 

(6.2.20) 

that is, in an arbitrary vertical plane on Earth, a horizontal uniform motion, and a vertical accelerated motion. The 
equations (6.2.20) suggest then that the corresponding conics in (x,z) coordinates are the well known Galilean 
parabolas, which further implies that Z(u,v) = g, a constant. The construction, therefore, is not possible without 
an Einstein elevator! 

 6.3 The Reverse Interpretation: Charges in a Coll Universal Deformation 

 An idea must be explored by the way of conclusion, which has, according to the principles of the first 
quantization, a high significance in describing ‘qualitatively’, so to speak, the fundamental physical unit of a 
Maxwell fish-eye, with surprising results. Namely, the idea that the fundamental material unit in the universe 
must be a dipole: inasmuch as the physical and geometrical contents of a model of this fundamental material unit 
can be quite complicated, we might be tempted to think of it in a global way, so to speak. And it is here the place 
to meet an old expedient of the classical electrodynamics ‘in new clothes’, as it were. The content and the results 
of this kind of reasoning constitute the object of the following last lines of this work. 
 In the three-dimensional case Bartolomé Coll’s universal deformation (Coll, 1999) is always expressed via 
matrices that we would like to call as ‘equivalent to a vector field’. We understand this equivalence in the 
following, quite explicit way: having a vector field |vñ, we can construct the following matrix using two arbitrary 
scalar functions a and b: 

  (6.3.1) 
Now, it is clear that, because vk are the components of a vector, and supposing α and β scalars, gives vij as the 
components of a tensor. In the case of Coll’s definition, this tensor represents a universal deformation ‘generated 
by the vector |vñ’, we might say. Incidentally, we use here the ket notation for vectors, insofar as these vectors are 
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understood to be defined by components only, as it should be the case with the charge vectors (Zwanziger, 1968), 
with no reference to a space reference frame whatsoever. The bold face notation is then reserved for the 
corresponding matrices. One of the eigenvalues of the matrix v, namely α, is double. The other eigenvalue, 
different from α, is given by 

  (6.3.2) 
Notice some interesting features of this kind of matrix. First of all, if either β or vk is null, v is a purely spherical 
tensor. Thus, barring a scaling factor Ö(b), the vector |vñ determines the deformation of v with respect to its 
spherical state. Secondly, if we calculate the eigenvector of the tensor v, corresponding to the eigenvalue (6.3.2), 
we find out that this eigenvector is just the vector |vñ, up to a normalization factor. This property is independent 
of the parameter α, and this is what we mean by the above mentioned equivalence: given the vector |vñ we can 
directly construct the tensor v as a family of two-parameters tensor matrices having it as an eigenvector. One can 
say that v represents a kind of action that points in the general direction of |vñ, as it were, however, not exactly in 
that direction. This property allows us to consider the tensor v as representative of the dipole, along the following 
guiding lines borrowed from classical electrodynamics. 
 The eigenvalue (6.3.2) may represent either a distance or a length, depending on the charge content of the 
dipole. Indeed, according to Katz’s natural philosophy of charge, if the dipole is electric, then its charges are 
joined together by a piece of vacuum, therefore the eigenvalue (6.3.2) must be a distance. On the other hand, if 
the dipole is magnetic, the same natural philosophy says that its charges must be joined together by a piece of 
matter, therefore the eigenvalue (6.3.2) must be a length. The possibility cannot be a priori excluded that the 
dipole could have mixed poles, one electric and one magnetic: such a structure is known in physics as a dyon, but 
in the present context it should await for some further specifications. Anyway, excluding for the moment this 
‘mixed’ case of dipole, the physical representative of it – vacuum or matter – connects two charges of the same 
kind, and no matter what it represents, it is established instantaneously at the scale of time allowed by the 
holographic principle based on the coherence property. This means that the propagation of signals already finds 
it established inside a Wien-Lummer cavity or an Einstein elevator, as it is normal with any preexisting physical 
construction perceived by humans. Our experience, in this respect, knows of what appear to be physical structures 
existing forever, i.e. given, as they say. However, as we have learned historically, the ‘given’ itself may have a 
limited life span: it just ‘lives’ at another time scale. And this time scale should be represented in the physical 
theory by some phases analogous to the advanced phases of the classical action at a distance. 
 One way to get the ‘dipole characterization’ of the ether inside a Wien-Lummer cavity is by simply entering 
into play pairs of dipoles, i.e. by admitting that the ether is described not by one tensor of the general type (6.3.1) 
but by two, with two characteristic vectors, |uñ and |vñ say. Assuming that a fundamental ephemeral structure that 
describes this ether can be represented by a linear combination of dipoles, the complete tensor describing a 
structure of connected with the pairs of poles would then have entries depending on three parameters: 

  (6.3.3) 
The calculations are ‘more symmetric’, if we may, in case we write this definition more… conveniently, namely 
in the form of a Maxwell stress tensor as in the case of classical electromagnetic fields [see (Stratton, 1941) for 
pertinent details of this construction]: 

′α =α + βv2

wij =αδ ij + βuiu j + γ vivj
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(6.3.4) 

where λ and µ are two real parameters, describing the properties of connection, with the matrices u and v defined 
as the tensors 

 
 

(6.3.5) 

Incidentally we have here the same boldface notation for the tensors and the vectors generating them, but hope 
for no confusion at all. The tensor (6.3.4) contains nine measurable quantities: λ, µ, and the two intrinsic vectors, 
and the definition (6.3.3) also contains nine arbitrary parameters. Written at length, the entries of this tensor 
(6.3.4) are of the form 

 
 

(6.3.6) 

where 1 in the second equality is the identity matrix as usual, and we shall use from now the following notations: 

 
 

(6.3.7) 

It is easy to see that the tensor (6.3.6) has three real eigenvalues, in general manifestly distinct. Indeed, its 
orthogonal invariants (the coefficients of the secular equation) are: 

  (6.3.8) 

so that the eigenvalues of tensor w can then be calculated as the roots of the corresponding characteristic equation 
– the cubic having the invariants (6.3.8) as coefficients – and they are 

 
 

(6.3.9) 

It turns out that the pair from equation (6.3.7) gives an eigenvalue of w and its corresponding eigenvector. The 
other two eigenvectors of w are orthogonal, and located in the plane of the vectors |uñ and |vñ. 
 Before going any further, at this juncture it is better to discuss the place of the ‘mixed dipole structure’ in this 
construction, which we purposively postponed before. It should be connected with the condition of 
‘ephemerality’, if we may say so, of a physical structure determined by a Wien-Lummer cavity containing ether. 
To be more precise, two charges of different nature – electric and magnetic – can be connected instantaneously 
with each other in a Maxwell fish-eye medium, by a special type of Lorentz transformation: Fowles or Cook (see 
Chapter 2, §2.3 for the discussion of such transformations). Not only the resulting structure is instantaneous in 
time, but it should be also located in space: it is a material particle of Hertz’s type, having gravitational mass, 
electric charge and magnetic charge. In other words, the fundamental particle serving for interpretation is a dipole 
of this special type: having mixed charges, i.e. a modern dyon. Mathematically, such a particle can be described 
as an instanton represented as a dipole of null vector of Coll universal deformation. 
 Just for the sake of offering an image of what this representation may mean, let us assume an Euclidean Coll 
deformation vector: its length can be expressed as a sum of squares. A null sum of squares – a null deformation 
vector – represents analytically the spin of particles (Yamamoto, 1952). Therefore the Hertz’s material particle 
defined by the three physical magnitude in a static interpretative ensemble, is characterized by spin half in its 
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most general acceptance; and this spin is generated by the charges. The idea is then aroused, that the spin is a 
purely relativistic effect, indeed, as occasionally discussed and stressed in the modern theoretical physics. We 
shall need to return to this topic on some other occasion. 
 Coming back to our streak of discussion, according to this theory, the eigenvalues of tensor w defined in 
equation (6.3.6), and given explicitly in equation (6.3.9) are already statistical expressions of measured quantities. 
They are based on the Novozhilov’s averages, which are estimates over the orientations of the planes in space, 
assumed uniformly distributed, which describe any physical tensorial quantity characterizing a matter continuum 
(Mazilu, Agop, & Mercheș, 2021): 

 
 

(6.3.10) 

Let us calculate these averages by using here the eigenvalues (6.3.9). To wit: we can construct the following two 
measurable statistical components of the tensor w which turn out to be 

 

 

(6.3.11) 

The second one of these vectors is located on one of the octahedral planes of a reference frame at the position 
where the measurement is performed, while the first one is normal to that octahedral plane, whose normal is 
supposed to be |nñ. As long as only the values (6.3.10) are accessible to measurement for a tensorial quantity in a 
continuum, the orientation of the second vector from (6.3.11), in his octahedral plane of residence, always remains 
undecided. This orientation is out of our control per se, but it can be measured anyway, provided a gauging exists. 
Indeed, it can be accounted for by an angle easy to measure in case we have a reference direction in the octahedral 
plane at our disposal, and this angle turns out to be just the arbitrary phase f from §§5.4 and 5.5 above. Assume 
that we have such a reference, as given by a particular tensor of the form given in equation (6.3.5) with the 
characteristic vector |xñ say. Then, for this tensor we have, with obvious notations: 

 

 

(6.3.12) 

If the vector |xñ is perpendicular on both |uñ and |vñ then the tensors w and ξ commute. Thus they have a common 
reference frame and it can be arranged that their octahedral planes coincide. In this case the direction of the vector 
from equation (6.3.12), which is fixed, can be appropriately chosen as a reference direction in the octahedral 
plane. Then the angle f of the vector (6.3.11) with respect to this fixed direction in the common octahedral plane 
can be calculated from a well-known geometrical formula, which here amounts to: 

 
 

(6.3.13) 

This shows that, under specified conditions, the angle f is independent of the reference vector. With a proper 
choice of sign for the square root, the origin f = 0(mod2p) of this angle occurs only for the cases where e = g. 
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This condition means, in turn, that the angle, q say, between the vectors |uñ and |vñ, calculated on the basis of the 
quantities from equation (6.3.7), is given by equation 

 
 

(6.3.14) 

As the quantity from the right hand side here is always greater than or equal to 1, the real angle between vectors 
|uñ and |vñ cannot be but 90°. Thus, the initial condition for the characteristic angle of tensor w in the octahedral 
plane takes place when the vector |uñ is perpendicular to |vñ and their plane is perpendicular to vector |xñ. 
 Regarding the problem of measurement, let us notice once again that a measurement here can actually produce 
just two quantities (6.3.10) and an angle f: as long as tensorial quantities are to be considered, anything else seems 
to be inference from these three quantities. In a word, in the case of measurement of tensors, there should be 
minimum three redundant theoretical quantities. The redundancy is due, as always in physics, to our geometrical 
models of reality: vectors and tensors. Mention should be made, however, of the important fact that the 
perpendicularity of the vectors |uñ and |vñ is not a purely geometrical property but, in the case of a material 
continuum, must be a consequence of some preexistent statistics. These statistics are usually associated with the 
different concepts of hidden parameters. 
 The tensor from equation (6.3.6) is, as already mentioned, a classical Maxwell stress tensor, if for the vectors 
|uñ and |vñ we take the classical electromagnetic fields |eñ and respectively |bñ. Then the parameters l and µ can 
be taken to represent some measures which would indicate how much of this medium is space and how much is 
matter. This seems to be the conclusion of an exhaustive analysis of the electromagnetic quantities (Fessenden, 
1900), showing that at least one of these two parameters has to be taken as a density. In a word, classically 
speaking, the equation (6.3.6) represents, indeed, a Maxwell fish-eye medium. However, this representation 
means more along the idea of properly understanding the old constructions related to the theory of light, which 
seems to be accepted, easier than any other mind constructions at that, as part of an Aristotelian environment in 
matters of education. 
 Indeed, according to equation (6.3.12) we have what properly can be termed as ‘three quarks’ which offer just 
a reference direction in the octahedral plane, serving for the construction of a Maxwell stress tensor. There are a 
total of eight possibilities of such a construction, incidentally depending on which octahedral plane that happen 
to be realized momentarily for the measurement purposes. This is plainly an eightfold way! In order to give it 
some classical meaning, recall the Fresnel’s fundamental principle of the physics of light, which we reproduce 
here, just for the sake of transparency, expressed by the illustrious Henri Poincaré. After explaining at length the 
Fresnel’s theory of light, Poincaré concludes: 

 This is, in a nutshell, the theory of Fresnel. It is in every respect in conformity with the 
experimental laws; but we notice that it rests upon two hypotheses demanding a closer 
examination. These two hypotheses can be enunciated as: 
 1° The elastic force aroused by the motion of a plane wave is independent of the direction of 
the plane of wave, it depends only on the direction of vibrations of the molecules, and is 
proportional to the force developed by an isolated molecule, the other molecules from the plane 
of the wave remaining at rest. 
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2
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 2° The only effectual component of the elastic force is the component parallel to the wave 
plane. 
 The first of these hypotheses, which Fresnel vainly tried to justify, is entirely arbitrary, but 
nothing precludes its acceptance … [(Poincaré, 1889), §151, pp. 229 – 230; our translation and 
emphasis, n/a] 

In hindsight, this summary of the Fresnel’s theory shows that it actually contains all the details Planck needed in 
developing his theory of quantization, plus something that it missed. That something banned, during the latter 
history, the quarks out of the ‘Aristotelian environment’, where the light – their ancestor along the line of physical 
optics – would have secured them a natural place. A short analysis of some details of the Poincaré’s excerpt above 
will elucidate our statement. 
 Let us start with the general observation that a wave ‘arouses a force’ in an optical medium – a medium 
through which the light can pass: after all, we are talking here of the light waves! – and this wave is a ‘plane 
wave’, since Poincaré and, no doubt, Fresnel himself, would make reference to the ‘direction of the plane of 
wave’, as a first incentive in establishing a ‘local topology’, as it were. Now, while locally imposed as a concept 
– perhaps here it is the case to be more precise, by saying that it was established at an infrafinite scale of space – 
the idea of plane wave was, and still is, actually, even today, used ad libitum, so to speak, more to the point, at a 
finite and even a transfinite scale, with no restriction whatsoever: the physics has not, as yet, a concept of judging 
things in connection with an idea of space scale, simply because it lives under the illusion that its concepts should 
always refer to a reality of the kind revealed to man by senses. The present case in point is important in making 
this statement more comprehensible. 
 The concept of a plane wave was established in connection with the idea of a light ray, whose physical image 
was always close to the Louis de Broglie’s model: a kind of capillary tube (de Broglie, 1926b,c). Thus, a physical 
ray would cut in any conceivable wave surface – ‘conceivable’ should be taken, of course, in the sense of the 
description of old Huygens for the concept of wave – a portion that can be reckoned as infinitesimal. Now, ever 
since the inception ideas of differential geometry got in the open, an infinitesimal portion of a continuous surface 
started being assimilated with a plane portion. And, of course, a plane cannot be conceived otherwise than its 
concept shows it. To wit: the wave origin has been forgotten here, because, obviously, it cannot be a predicate for 
the geometrical concept of plane. On the contrary, the ‘plane’ became a predicate for the concept of wave, so that, 
when the case occurred with Fresnel’s theory of light, people have started to speak freely of the… plane waves. 
And this concept also became one of the main theme of the Planck’s physics, inescapable, as it were. 
 In this respect, the observation can safely be made to the effect that the universal function exacted by the 
Wien’s displacement law (1.1.1) must be established based on two levels of statistics: one of them which is 
dictated by the ultimate element of the ensemble representing the blackbody radiation, while the second is dictated 
by the density of this element within its ensemble. If not an observation per se, the way we usually understand it 
today, this dichotomy had nonetheless at least singular consequences, one of which, no matter how singular, has 
become quite remarkable. That one observation led Lord Rayleigh to the idea of using, on one hand, the classical 
theorem of the equipartition of energy in order to physically characterize the element of the ensemble representing 
the equilibrium radiation, while using, on the other hand, the uniform probability distribution regarding the 
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number (i.e. cardinal in the previous parlance of the present work) density of that element within the ensemble 
(Rayleigh, 1900), which is plainly a probability density. 
 Importantly enough, the element of the ensemble characterizing the equilibrium radiation here is the plane 
wave we are just talking about. Again, notice the predicate: it is not the ‘wave’ for the ‘plane’, as it should have 
been by historical reference to the concept of ray; it is rather ‘plane’ for the ‘wave’, according to the idea that the 
geometry (sic!) is universal, not the physics. And universal, here, basically meant, according to existing human 
experience: liable to offer predicates for any of the concepts we create. Thus physics deals with ‘plane waves’, a 
wave plane being a plane like any other geometrical plane! Notice further that, when speaking of an ensemble of 
waves, we cannot mean an interpretation per se: the classical material point, or even the Hertz’s material particle 
for that matter, is missing from the picture. However, it is ‘implicitly’ present, as it were, and this presence is to 
be recognized in the fact that, with the Fresnel’s physical theory of light, the plane wave is regarded as a harmonic 
oscillator. This is a mathematically sound approach of the idea of interpretation in the natural philosophy, 
inasmuch as the harmonic oscillator is a free particle ‘in the making’, so to speak, just pending an Arnold 
transformation (see in the §4.5 above, the discussion and comments regarding the Arnold’s theorem). Fact is that 
for an oscillator the equipartition of (½)kT per degree of freedom is only natural, where k is, this time, the 
Boltzmann’s constant. Using this result and the equation provided by physics: 

   
whereby E must be taken as the average energy of an oscillator over the ensemble of oscillators of frequency n, 
we have the universal function g(…) from equation (1.1.1) in the form: 

  (6.3.15) 

leaving an explanation open for the presence of a quadratic term in frequency responsible for having the correct 
spectral density. For this explanation, everything comes down to a second part of statistics, involving the 
calculation of the number of the possible oscillators from an infinitesimal range of frequency, in order to calculate 
dn(ν) from an equation giving the differential of energy over the ensemble of oscillators: 

  (6.3.16) 
In order to do this, Jeans used an ingenious argument based on the concept of plane wave (Jeans, 1905), improved, 
just about the same time, by Rayleigh himself (Rayleigh, 1905) who took in consideration the polarization of the 
waves, which in this case was naturally described considering the electromagnetic nature of the plane waves 
representing the equilibrium radiation. The procedure of calculation rests upon the general idea that the frequency 
should be taken as a space vector when calculating its density. 
 In order to simplify the argument, while delivering the essential message unaltered, one usually admits that 
the Wien-Lummer enclosure containing the radiation in equilibrium is a classical cube – the everlasting 
geometrical shape of a reference frame since the times of Descartes – having the edge L say. The enclosed 
equilibrium radiation is thereby physically represented by stationary plane waves, with the normals of the plane 
chaotically oriented inside the enclosure. This chaos is assumed to be characterized by an uniform distribution in 
volume. Let αx, αy, αz be the direction cosines of the propagation direction of such a stationary wave. Without 
violating the generality of our argument and its conclusion, we can accept that the geometrical reference frame 
has the axes oriented along the edges of the enclosure containing the radiation. Therefore between the wavelength 

E = ν ⋅ g(ν T )

g(x) = k ⋅ x−1 where x ≡ ν T

dUν = dn(ν) ⋅E



 220 

of the stationary vibration and its component along the x-axis, for instance, we must have the following 
relationship: 

   
On the other hand, the optical condition of existence of stationary vibrations gives 

 
 

 

where nx is an integer. The very same equations can, of course, be written for each and every one of the three 
edges of the cube representing the enclosure, so that finally we have the following three expressions for the 
direction cosines of the plane normal of a stationary plane wave in the enclosure: 

 
 

 

Now, the sum of squares of these cosines must be, naturally, 1. On the other hand, the relation between wavelength 
and frequency of the light waves amounts to: l×n = c, where c is the universal constant representing the speed of 
propagation of the electromagnetic waves, among which the light can be counted, according to the precepts of 
the electromagnetic theory of light. Therefore, we shall have: 

 
 

(6.3.17) 

This is the equation of a sphere of radius R in the space of integer numbers. One can read on it that to every triplet 
of integers (nx, ny, nz) there corresponds a frequency to be calculated according to equation: 

 
 

 

This correspondence is one-to-one, and helps us in calculating the number of stationary waves from the enclosure. 
Indeed, a wave has just a frequency, and for this frequency we have a single triplet of integers representing 
coordinates of the wave in a three-dimensional space of frequencies. The total volume occupied by these points 
representing the frequencies between 0 and ν, is just one eighth from the whole volume of the sphere of radius R, 
and by equation (6.3.17) it is given as: 

 
 

 

We can thus calculate the number of frequencies in the infinitesimal range (ν, ν + dν). This is simply the volume 
of a spherical shell of thickness dν taken twice, in view of the fact that an electromagnetic wave, appropriated as 
oscillator, has two different polarizations: it counts as two oscillators, not just one. Therefore, we can write: 

 
 

(6.3.18) 

where V º L3 is the volume of the enclosure of equilibrium radiation. 
 Now, in view of the equation (6.3.15), we can give a precise theoretical form to the infinitesimal energy from 
equation (6.3.16). We have 

 
 

 

so that the spectral density satisfying the Wien’s displacement law (1.1.1) will be exactly: 
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(6.3.19) 

which is the algebraical form of the Rayleigh-Jeans radiation law. 
 This algebraical expression is the theoretical apogee, we might say, of the classical statistical mechanics in 
matters regarding the blackbody radiation. However, it seems to be somehow incomplete, insofar as it does not 
offer a finite total density for the radiation at a given temperature, to say nothing of the fact that, even if we do 
not extend the frequency indefinitely, it cannot possibly satisfy the Stefan-Boltzman law of proportionality with 
the fourth power of temperature. In spite of this important fact, it was nevertheless determined that the formula 
(6.3.19) should be considered good enough at low frequencies and/or relatively high temperatures. Since, in broad 
lines, its inference involves steps in accordance to the classical prescriptions, both physical and geometrical, it 
would be therefore to be expected that these prescriptions are incomplete when it comes to the blackbody 
radiation. This was the attitude of choice at the beginning of the last century, and one can say that it shaped the 
whole modern theoretical physics. Mention should be made that, while it does not touch the classical geometrical 
prescriptions – which, by the way, remained in their full power, as shown above – that attitude of choice was fully 
bent on changing the theoretical physics indeed. The changes, however, meant – at least in hindsight, as it were – 
just deepening the branches of theoretical physics into ones with apparently no chance of bridging between them. 
 Among the many attempts to fit the experimental data on equilibrium radiation, that of Wily Wien, dating 
from 1896 (Wien, 1896) [see also Wien’s report on the problem of blackbody radiation at the Congress of the 
Physicists in Paris (Wien, 1900)], can also be explained by the previous philosophy. It retained the attention of 
theorists as a limit case too, for the laws of radiation, regarding the conditions of frequency and temperature, 
however, exactly opposite to those conditions where the Rayleigh-Jeans radiation law is valid. This is why it has 
often been tried to see if Wien’s purely heuristic argument could not have a physical basis, the way this is 
understood within the limits of the classical mechanics and of classical statistical mechanics. Such attempts 
culminated with Einstein’s work that laid the basis of the modern second quantization doctrine (Einstein, 1905b). 
There is an objective reason for this path of our knowledge, and we think it can be jotted down as follows. 
 To start with, the Wien’s argument, extending the one leading to the Wien’s displacement law, does contain 
an explicit hypothesis bearing resemblance to quantization. This hypothesis was well specified by Wien himself 
in a work that appeared long after the quantization in the old form of Planck was established [(Wien, 1915); see 
also §1.1 of the present work]. It is our opinion that this work of Wien’s foreshadows, almost explicitly we should 
say, the connection wave-particle of de Broglie, which occurred within a decade from the work just cited, based 
pretty much on the same kind of arguments (De Broglie, 1922, 1923). 
 More importantly, though, Wien went directly for the statistical analogy between the electromagnetic waves 
and the molecules of a gas with which the blackbody radiation might be in thermal equilibrium (see §1.1). Today 
we are able to say that the fact is a mathematical consequence of the Arnold’s theorem (see §4.5), but the fact 
remains that there is a formal identity between the physical idea of equilibrium and the statistical theory of 
ensembles liable to allow treating the frequency as a statisical variable. The impasse would then be overcome, of 
the definition of temperature as a statistic connected to translational degrees of freedom, just by noticing that there 
is a genuine statistic – the frequency – connected to the idea of phase. The Wien’s idea was kind of structural, in 

uν (T ) =
8π k
c3
ν3 ν

T
⎛
⎝⎜

⎞
⎠⎟
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the sense of connecting physically two conceptually disjunctive structures: classical material points and waves. 
More to the point, he assumed that the thermal equilibrium is manifested in such a way that the probability density 
of the molecular velocities of a Maxwellian gas, given, as known, by the Maxwell density function: 

 
 

(6.3.20) 

with C a constant, must be somehow ‘mirrored’ by the spectral density of radiation. Indeed, the molecules of a 
gas can be conceived as bodies inside the enclosure containing thermal equilibrium radiation. Therefore, one can 
figure out that they absorb, emit, or reflect radiation just like any other body from Kirchhoff’s phenomenological 
argument; we can even grant them the designation ‘black’. In this case, at thermal equilibrium the Maxwellian 
probability density from equation (6.3.20) must be somehow expressed as a probability density characterizing a 
certain frequency from the spectrum of radiation at a given temperature. And, apparently aware of the fact that 
the frequency of light needs a statistics, just like the temperature in the case of molecules of a gas, Wien went 
directly for the transformation of the Maxwellian probability. The exponent from the right hand side of the 
equation (6.3.20) already contains the ratio between the kinetic energy of a molecule of gas and the temperature. 
If one assumes that the kinetic energy of the molecule is, in the conditions of thermal equilibrium, completely 
transmitted to the emitted radiation of frequency ν then, in order to satisfy the displacement law, the exponent 
from equation (6.3.20) should be proportional to (ν/T). Therefore the kinetic energy of a gas molecule must be 
proportional to the frequency of the equilibrium radiation, so that the probability of radiation mirroring the 
Maxwellian one given by equation (6.3.20) should be 

   

which is exactly the physical form of the energy of the average energy of an oscillator over the ensemble, only 
with an exponential form of the function g(…). In view of the fact that the density of these oscillators in a 
frequency interval is given by equation (6.3.18), which we have so far no reasons to reject, it follows that the 
spectral density of radiation, considered as a probability density, must be something of the form: 

  (6.3.21) 

This is the radiation law proposed by Wien based just on the displacement law. The heuristic argument leading 
to it, as well as the conclusion that the spectral density of the blackbody radiation must be considered as a 
probability density of the frequency at a given temperature, or of the temperature at a given frequency, as it turned 
out later on, must have had some truth in them. Indeed, as we already mentioned, the formula (6.3.21) proved to 
be valid in conditions complementary to those where the Rayleigh-Jeans radiation law is valid. Specifically, the 
Wien’s radiation law is valid at high frequencies and/or low temperatures. Practically speaking, Max Planck just 
interpolated between the two cases. However, the problem of deciding if the law of radiation can be considered a 
law of probability remained open: as a matter of fact this issue is not settled even today, simply because it does 
not even exist in physics. Based on the modern existing data on light – the NASA COBE FIRAS measurements 
on the cosmic background radiation – we are, however, inclined to think that this is, indeed, a case to be taken in 
consideration as such [(Priest, 1919); see our arguments in §1.1 of the first chapter of this work and the works 
cited by us there]. 
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 Wien’s case shows the necessity of interpretation, involving the frequency as a statistic. That this is physically 
necessary was shown by Einstein himself in the work acknowledged in physics as a first example of the second 
quantization procedure (Einstein, 1905b), discussed by us in the §4.5 above. Wien himself, however, could not 
relate but to the statistical theories of Maxwell and Boltzmann, whereby the interpretation is implicit by the 
classical concept of material point: the molecule. The field is absent here, and could not be seen but through that 
into ‘the only effectual component of the force’, for which the reference is the ‘wave plane’. As it turns out such 
a plane cannot be used in interpretation but only through the idea of particle, and this needs a reformulation of 
the fundamental principles of Fresnel at least in one respect, to the effect that ‘the only effectual component of the 
force arisen by the motion is the component parallel to a local octahedral plane’. The Fresnel theory of light is 
part of the eightfold way in the universe, and this should be considered as a physical fact. The important point 
here, is that the eightfold way is just a natural thing, actually continuing the classical natural philosophy initiated 
by James Clerk Maxwell, which turns out to continue the Augustin Fresnel’s physical theory of light, which turns 
out to continue in a Newtonian manner the old Hooke’s physical theory of light and colors... The queer quarks, 
entering the theoretical physics out of a dream, are not so strange after all: considered as mind creations they are 
just as another mind creation that seems to appear as natural, namely the Fresnel’s theory of light… in a Maxwell 
take, as it were. This is a lesson that can be learned only from a proper reading of the Planck’s ideas leading to 
the first quantization. There is, however, another lesson, more important, that we need to learn along this line, 
from the Coll’s concept of universal deformation. 

 6.4 The Fundamental Le Roux-Loedel-Amar Representation 

 Assuming, therefore, an interpretation by static ensembles made possible as ensembles of equilibrium with 
static Newtonian force fields, but considering, nevertheless, the precepts of Einsteinian general relativity (see the 
Israel & Wilson’s observations quoted in §4.1), the suggestion presents itself that the motion of matter through 
ether brings a rotation acting upon these force fields. In §2.2 we pushed this suggestion even further, indicating 
that the charges would be the physical generators of such rotations [see equation (2.2.4)]. It is now the time to put 
the Lorentz’s hypothesis itself – the one that introduced the Lorentz’s transformation to the knowledge (see §2.2 
above) – on a firmer basis. If the matter remains the same in its motion through vacuum, and we imagine that the 
rotation ‘by charges’ is due to the motion, we can describe this phenomenon by constraints on the tensor (6.3.6), 
which is a representative of both the matter and the vacuum. The problem then occur as to uniqueness of that 
tensor, for the question can be aroused: are the charges generating exclusively rotations of forces in all conditions? 
For instance, in vacuum the charges are obliterated, and only the electromagnetic field exists, while only in matter 
we can say that they are existent and generate rotations. 
 We can reformulate this problem by generalizing the first of the Fresnel’s hypotheses in the following way: 
what is the most general linear transformation of the vector fields |eñ and |bñ, representing the ‘elastic forces 
aroused’ by matter in its motion? A direct answer to this question is mathematically provided by a general 
homogeneous linear transformation of the vector fields in their plane: 

  (6.4.1) ′e =α e + β b , ′b = γ e +δ b
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which preserves the Maxwell stress tensor representing the vacuum. This is, again, a suggestion coming from the 
methods of optics in the physical description of the propagation in layered optical mediums (De Micheli, Scorza, 
& Viano, 2006). And the rezultant transformation plainly generalizes the idea of rotation by charges, which thus 
appears as a special case of it. Then our problem would be just to characterize this transformation knowing only 
is limiting case of rotation. Rewriting the tensor of Maxwell stresses in this case, we have, as in equation (6.3.4) 
and (6.3.5): 

 
 

(6.4.2) 

Any kind of invariance of this tensor would necessarily lead to a connection between the parameters λ, µ and the 
entries of the matrix from equation (6.4.1), which allows us a concrete description – and a closed solution, 
hopefully – of the modern problems, like that of vacuum tunneling (Jackiw & Rebbi, 1976), for instance: the 
fields are changed by the presence of matter in space, in order to adapt themselves to the different local properties 
represented by the parameters λ and µ. 
 What remains to be decided is how do we define the invariance of the tensor (6.4.2), and a proposal presents 
itself just naturally. Namely, if the light carries the information within the universe we inhabit, then this 
information should be the same everywhere, in places where the light is. One of the most obvious way to express 
this is that the entries of the matrix t have to remain unchanged. Then, a fortiori, all of the invariants of this tensor 
remain the same and, therefore, what is measured or recorded out of it has the same value for the whole coordinate 
space of definition for this tensor. This proposal, apparently just like its classical counterpart (Gabor, 1961), 
comes out from the belief that what we are locally measuring is what has been happening far away in space and, 
therefore, our conclusions regarding the structure of the physical universe, based on this recording, are the right 
ones. So, if by the transformation (6.4.1) the fields (e¢, b¢) are in an environment described by (l¢, µ¢), then the 
conservation: tij = t¢ij can be transcribed as: 

 
 

(6.4.3) 

In order to learn how to use this equation, let us just find some particular solutions of this system. 
 The handiest case is that of homogeneity of the vacuum whereby the parameters l and µ are the same in the 
whole space covered by light, so that we have: λ = l¢, µ = µ¢. The first of the equations (6.4.3) then shows that the 
2´2 matrix giving the transformation (6.4.1) is a matrix of unit determinant. From an algebraic point of view, the 
last three remaining equations then form a separate homogeneous system, and thus the system (6.4.3) is equivalent 
to the following equations: 

 
 

 

The last of these equations shows that we can express the two entries a and g trigonometrically, either in the usual 
trigonometry or in the hyperbolic trigonometry, by an arbitrary phase parameter, f say: 
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In this case, the transformation that does not change the Maxwell stress tensor is described by the matrix of unit 
determinant: 

 

 

(6.4.4) 

Thus, we can say that the motion of matter, if described according to equations (6.4.1) for the fields of electric 
nature, generates more than a rotation for the particle used for its interpretation. Let us insist for a while with 
some geometrical details on the first of these special cases of this matrix. 
 Using the transformation of parameters 

 
 

(6.4.5) 

the first matrix from equation (6.4.4) can be cast into the form 

 
 

(6.4.6) 

and this matrix indicates that the parameters u and v defined by the equation (6.4.5) can be taken as coordinates 
on a certain surface in space, as we discussed in the §2.3, on the occasion of generalizations of the Fowles’ and 
Cook’s type of Lorentz transformations. Let us speculate around these results, using the same symbolics as in the 
§2.3. Notice first that the parameter v from equation (6.4.5) can be taken as the coordinate of a uniform motion 
in the time defined by cotf, according to Arnold’s theorem, if x counts as charge (see §4.5). On the other hand, 
by comparison with the results of Jean-Marie Le Roux, described by us in the §2.3, the two parameters (u,v) of 
the optical medium offer the Loedel-Amar parametrization of the matrix (6.4.4) making a veritable Lorentz matrix 
out of it. That is to say that the Loedel-Amar parametrization thereby gains a fundamental significance: it is not 
just a representation of a spacetime transformation, but a clear indication of the fact that the universe can be 
treated as a Maxwell fish-eye optical medium. In other words, the Loedel-Amar parameterization is of essence 
for the theory of special relativity, showing that Lorentz’s hypothesis of ‘invariance of matter’, as it were, with 
respect to its motion through the world, cannot be described but electrodynamically, indeed, even with no 
reference to the shrinking of lengths, or lengthening of times or anything like that. 
 Finally, let us play with the mathematical results just gotten. First, we should have to notice the factorization 
relation: 

 
 

(6.4.7) 

In other words, the matrix m thus constructed is the product of the involution J from the general reference frame 
(2.5.1), associated with a surface, and the involution K0 from the Shchepetilov reference frame (2.4.4) associated 
with the geometry of charges. This indicates a kind of mixed local action involving both the charges per se and a 
surface ‘steadfastly attached to matter’ as in the Lorentz’s theory of electric matter. Any linear combination of 
the two involutions associated with the matrix m is also an involution. Indeed, we have 
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  (6.4.8) 
where, in calculating the inverses, we have used the multiplication table from equation (2.4.11). We can further 
calculate the square of the ‘mixed Cook matrix’ [see equation (2.3.12)]: 

 
 

(6.4.9) 

where, again, for calculations involved in reaching the last result, we have used the multiplication table from 
equation (2.4.11) for both types of matrices, for this multiplication table is the same in both cases. We find such 
an equation quite remarkable to the point that we need to show why, even if in just a few words. 
 The main point of this exercise is that the mixed Cook matrix C combines the location in space (the presence 
of K0), with the location on a surface (the presence of J in the linear combination). The matrix in round parantheses 
from the last expression of equation (6.4.9) is -(m-1+m), on account of equations (6.4.7) and (6.4.8), and in order 
to calculate it we can use the Hamilton-Cayley equation for the matrix m, which can be written right away using 
equation (6.4.6). Thus we have 

 
 

 

and, with this last result, the square of matrix C from equation (6.4.9) becomes 

 
 

 

This relation proves the involution property of the matrix C. The coefficient of identity matrix in this equation is 
a quite suggestive quadratic form. Indeed, using the parameters u and v as defined in equation (6.4.5) it can be 
written as: 

   
Therefore, assuming now that (a, b) are differential elements associated with the surface, this quadratic form 
defines a kind of Chebyshev net on the surface, of characteristic angle f. Importantly enough, this net is simply 
determined by the fact that ‘the position in space is located on a surface’, if it is to characterize the situation in 
geometrical terms. This seems quite natural in view of the problem defined here: in its description according to 
Lorentz theory, the charge induces nets on a surface of equilibrium, like, for instance, a wave surface. It would 
seem that the light phenomenon has this general effect on the matter, which can explain the idea of quantization. 
 Continuing, however, with just the mathematics of the differential geometry involved here, the matrix m-1×dm 
is an involution. Indeed, using (6.4.7), we get: 

 

 

 

Consequently, the metric properties are decided by the determinant of this matrix. It is 

 
 

(6.4.10) 
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It is worth mentioning that getting back the original parameters x and f via equations (6.4.5), the metric (6.4.10) 
can be cast into the notable form 

 
 

(6.4.11) 

Most certainly the action of motion on matter is connected with the charge: therefore the phase here, may be taken 
as the phase of charge, while the parameter x is connected with the magnitude of charges, as reflected by the 
parameters l and µ of the optical medium. In this kind of motion we can therefore have solitons, which are 
described via Ernst-type harmonic mapping of the metric given by equation (6.4.11). Probably the solitons also 
involving only the mass are simply static solitons. 
 These speculations encourage us to assume that in general we may accept a more relaxed condition for a kind 
of ‘Lorentz vacuum’, as it were, equivalent in a way with the fact that the ‘refraction index’ is constant. Such a 
condition amounts to 

 
 

 

It means matter nonhomogeneity in regards to physical properties, although when the physics is referred to the 
index of refraction n, the matter is in fact homogeneous. In this case, the matrix of transformation in equation 
(6.4.1), is given by 

 
 

(6.4.12) 

where f is, again, an arbitrary phase. Therefore the differential geometry above does not change. However, a 
problem occurs since the matrix (6.4.12), or even (6.4.4) for that matter, cannot count as a pure rotation matrix: 
if we can cope with the prefactor Ö(m), say by a rescaling of coordinates, the problem remains that the matrix is 
not orthogonal. So one can rightfully ask: what is the connection of such a general transformation with a rotation? 
 As the previous development shows, the ‘rotation power’ in matter, as defined by equation (6.4.1) under 
constraints (6.4.3), canot be described by a matrix of pure rotation, as suggested taking guidance from the classical 
theory of charges (see §2.2) but by a matrix, Q(n,f) say, which being of unit determinant, is nevertheless not 
orthogonal: 

 
 

(6.4.13) 

According to the precepts of the matrix optics [see (Abe & Sheridan, 1994), equation (32)], this matrix represents, 
indeed, a rotation of angle f, but ‘sandwiched’, so to speak, between a magnification of amplitude lnÖn and a 
reduction of –lnÖn, or vice versa, depending on the definition of magnification: 

 
 

(6.4.14) 

A magnification is given in optics by the matrix exponential: 
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(6.4.15) 

where K0 is the corresponding matrix from §2.4; obviously, a reduction would have the parameter –x. Likewise, 
a rotation is also represented in optics by a matrix exponential: 

 
 

(6.4.16) 

There is no optical lens action or free-space propagation involved in the structure of the matrix Q(n,f). In the 
language of matrix optics [(Abe & Sheridan, 1994), equations (4 – 7)] these actions would pe expressed by special 
lower triangular, respectively upper triangular 2´2 matrices like the matrix R involved in the construction of the 
Yang’s R-gauge. One can say that Yang’s gauge is manifested by a magnification followed by a lens action, as 
equation (4.4.13) shows. However, the matrix Q(n,f) has the important property of being unimodular, and this 
means that it can beneficiate of an Iwasawa decomposition that might be able to help in finding its optical 
structure. Let us elaborate a little on this aspect of the problem, as a final touch of our work. 

 6.5 Gravitation: a Moral of Yang’s Concept of Field 

 Hopefully, no trouble will arise, in using the symbol K for a 2´2 rotation matrix, having, however, nothing to 
do with the matrix denoted by the same letter from the triad (2.5.1): we need to retain this notation here though, 
for historical reasons, connected to the so called Iwasawa decomposition, or the KAN representation of the 2´2 
matrices, as they often call this decomposition. Just to make sure of no confusion, we will attach the angle of 
rotation in expressing the rotation: say K(j). In a formulation pertinent to the description of propagation along 
the optical beams (Simon & Mukunda, 1993), the theorem of decomposition is: a general SL(2,R) matrix, like 
the one realizing the transformation (6.4.1), can assume an Iwasawa decomposition in the form of the product of 
matrices: 

 
 

(6.5.1) 

involving the following three matrices: 

 
 

(6.5.2) 

The order of matrices in the product (6.5.1) can conveniently vary: it depends on the task one follows with 
decomposition. And this task, as the optical applications plainly show, derives from the action of the optical 
medium on light: the matrix a represents this medium in its relation to light. Its action is complex and can be 
decomposed in three simpler actions – rotation, magnification and lens action – effected in a certain order 
indicated by the product of the three matrices. In the decomposition (6.5.1) we have a rotation first, followed by 
a magnification, after which the medium acts like a lens. And we chose this order primarily because it is quite 
instructive on the manner to calculate the parameters (x, y, j), in terms of the entries of the matrix a, to be 
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represented by the product. Case in point: the lines of the matrices are the components of two Euclidean vectors 
that can serve for quantifying charges in the sense of Katz [see (Mazilu, 2020), §4.4]. To wit, in the order from 
equation (6.5.1) we have: 

 
 

(6.5.3) 

where the condition of unit determinant of the matrix group is used. Therefore, the decomposition (6.5.1) 
describes the propagation of light along a beam, as we just said, by three simple operations in sequence: a rotation 
of angle j, followed by a magnification of factor y, and then by a lens action of power x. [see also (Gerrard & 
Burch, 1994), especially Chapter II, for appropriate explanations; (Simon & Mukunda, 1998) can be consulted 
for further mathematical details on beam propagation]. 
 Let us notice a tell of equation (6.5.3), on the manner of realization of the action of a general unimodular 
matrix (6.4.1) along the beam: it is saying that the Euclidean vector having as components the entries of first line 
of the matrix (6.5.1) dominates the construction of the Iwasawa decomposition in this case. To wit: for once, the 
orientation of this vector provides the angle of rotation of the fields in the beam propagation, while its length 
gives the magnification factor. On the other hand, the projection of the vector given by the entries of the second 
line of matrix along the direction of the vector given by the first line, offers the parameter of the lens action of 
the medium in propagation. The vector given by the entries of the second line of the matrix seems to play here 
only a secondary role, which may appear as unnatural: we would expect that all the entries of the matrix should 
play ‘equal parts’ in this construction. Fact is that there is also a situation where the second line of the matrix 
dominates, while the first line is ‘auxilliary’, but in that situation the Iwasawa decomposition does not involve a 
‘lens’. We can say that it is rather referring to a wave or a particle, once it involves a displacement, that can even 
be a propagation. Let us briefly tell this story too. 
 If instead of the matrices (6.5.2) we use the matrices of decomposition of a as: 

 
 

(6.5.4) 

we get the following parameters of decomposition as functions of the entries of the matrix: 

 
 

(6.5.5) 

Obviously, this time the second line of the matrix a ‘prevails’, and we did not change but the matrix N, 
representing the ‘lens’ action, into one representing a free propagation. In the language of the geometrical optics, 
this matrix now represents a displacement of magnitude x through the medium, asking therefore either for the 
propagation of a wave, or for the motion of a particle, as we said. In this setup, the parameters of magnification 
and rotation are decided by the vector having as components the entries of the second line of the matrix. 
 Besides its algebraical interest in showing how an Iwasawa decomposition works, the previous developments 
are mainly intended to show how the physics may work in the case of an optical medium. In the specific Maxwell 
fish-eye medium, the characteristic matrix can be reduced to the form (6.4.4) or (6.4.12), and their Iwasawa 
decomposition reveals the important parts played by the lines of the matrix in deciding the physical magnitudes 
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describing either the propagation, or the motion through the medium. Mention should be made in this respect, 
just for the sake of incidental comparison, that in determining the Iwasawa decomposition, mathematicians 
usually take the columns of the matrix as vectors, not the lines as we did here. We also need to keep in mind that 
the previous conclusions are expression of an invariance law for the six components of the Maxwell tensor 
representing pairs of dipoles. A dipole imposes association of charges of the same kind: that is the theory is either 
valid only for light – involving purely electric dipoles – or only for matter – involving purely magnetic dipoles. 
Apparently, the case of mixed poles in the composition of a dipole – the dyons, as they call such a dipole – cannot 
be represented via this invariance law. In order to represent it we seem to need expressly a reference of the vacuum 
to matter and vice versa, which, however does not change the nature of the geometry involved in the description 
of the physical situation. Taking heed of the Iwasawa decomposition illustrated above, let us work on an 
alternative idea, closer, in fact, to the spirit of matrix optics. 
 As we have shown in the previous section, the ‘initial conditions’ for the two vector fields in one of the 
octahedral planes of a reference frame, are provided by fields perpendicular to one another [see equation (6.3.14) 
and discussion around it]. The fields perpendicular to each other must, therefore, provide a reference by 
themselves, and the classical Maxwellian electrodynamics indicates that these reference fields should be 
characteristic to vacuum. The problem of vacuum acquires thereby an important significance, and we propose 
here the following solution for introducing the gravitation within the Einsteinian concept (Einstein, 1919). This 
solution is suggested by the old de Broglie’s treatment of the ‘application of field on charges’ [(de Broglie, 1935); 
see also (Mazilu, 2020), §2.4]. It is, perhaps, the case to frame the idea of de Broglie, in a natural philosophical 
line of concepts, started by the Fresnel’s physical theory of light. 
 We take de Broglie’s concept ‘in duality’, so to speak, whereby it reads: ‘the application of the field on 
charges, and of charges on the field’. The second part of this duality statement involves an instantaneous 
kinematics of the charge over the Riemannian space of an instanton, i.e. a kinematics involving an infrafinite 
scale of time. Along this idea, and helped by the grand analogy, let us present a case of reverse interpretation, 
whereby the charge is ‘engaged’, as it were, by gravitation into forming a continuum of instanton type. The 
algebraical structure of such an instanton will be judged as a Riemannian space of the type presented by us in the 
§6.1, which can be used in order to illustrate the Schwarzschild statement on the essence of Einsteinian natural 
philosophy (see §§3.3 and 5.5). 
 The analogy basis is that with the atmosphere electricity: a kind of behavior of charges in gravitational field. 
The phenomenon of lightning can be thought as an instantaneous annihilation of charges, and we are entitled to 
think, in the case of vacuum, of a reverse effect: the creation of charges from vacuum into electric dipoles. In the 
real case of atmospheric electricity, the whirls of atmosphere can be assumed to only help building the electric 
dipoles, but in vacuum only the gravitation can be suspected of doing this job. This idea can even be extended for 
the matter, in which case the magnetic charges enter the stage, along the Katz’s natural philosophy. In other 
words, the matter is thought as vacuum, the difference being in charges: the matter is a vacuum with magnetic 
charges in its characteristic dipoles along the rays. A vacuum with electric charges organized into dipoles in order 
to make a Planck medium, must obviously be taken as ether. The motion can then be judged as a transition 
between matter and ether. The de Sitter continuum comprises both kinds of vacua, in the geometrical form of 
Kasner’s blades (see Chapter 5, especially §§5.3 and 5.4). 
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 Assume, now, that the charges are seen as two statistical vectors, say e1 and e2 which make up a reference 
frame in matter, however, not in a standard Euclidean position and magnitude. However, with the Katz’s type 
geometry at our disposal we can describe their relative position and magnitudes by equations of the form 

  (6.5.6 

where 𝜖 and µ are the ‘measured’ magnetic charges of the dipoles in matter, as Katz defines them (Katz, 1965), 
that is, each one of them having in turn two components: electric and magnetic. The ether, though, is characterized 
in an Euclidean manner, with the aid of a local orthonormal vector frame (see §6.2): 

  (6.5.7) 

where ê1,2 are assumed, for the moment at least, to be unit vectors with no significant loss of generality in helping 
to make up our mind. 
 Assume, further, that the transition between ether and matter is modeled by a transformation between the two 
bases as given by a nonsingular matrix, where the motion must somehow enter the stage: 

 
 

(6.5.8) 

Now, the entries (A, B) of the first line of the matrix M are the components of an Euclidean vector proper, just as 
the entries (C, D) of the second line of the matrix. If the matrix is normalized so as to have its determinant unity, 
it becomes prone to be represented by an Iwasawa decomposition. The four entries of M satisfy some constraints 
required by the equations (6.5.6), (6.5.7) and (6.5.8), which imply: 

  (6.5.9) 

In the spirit of the previous construction of the Iwasawa decomposition, we intend to give a physical meaning to 
these symbols: thus, just by their relationship 𝜖 appears as the magnetic charge according to Katz, having the 
components A and B, while µ is the ‘associated’ magnetic charge of the dipole, having the components C and D. 
The relations (6.5.9) determine the matrix a up to an arbitrary phase. Indeed, it is quite obvious in these relations, 
that we can choose 

  (6.5.10) 

so that the two phases, f and f¢, are given by the angles of split for the two kinds of charges, electric and magnetic, 
necessarily existing, according to our philosophy, in any process of interpretation. The area supported by the two 
vectors e1 and e2 is 

  (6.5.11) 

So, if we choose the electric split angle and the phase lag to describe the matrix M, by setting f¢ = θ + f, modulo 
2p, of course, we get the following matrix M: 
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On the other hand, if we choose the magnetic split angle and the phase lag between the two charges to describe 
it, by setting f¢ - θ = f, the matrix M will appear as 
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(6.5.13) 

The geometric results that follow are independent of the description we choose for these two matrices, so that, in 
order to settle our ideas, we choose whichever may come in handy. 
 The idea here is that a matrix like (6.5.12) or (6.5.13) is fit to represent a Kasner blade and thus we have two 
blades, as required by the general relativity with cosmological term, just naturally, as it were. Our contention is 
that the two Kasner blades represent the stochastic processes of charge creation from the vacuum, according to 
Bartolomé Coll’s concept of universal deformation, which can be proved just by exhibiting the Riemannian metric 
structure. Indeed, we already have learned that a Cayley-Klein metric can be presented as a metric ‘universally 
deformed’, as it were, in the Coll’s manner, starting from a Maxwell fish-eye metric (see the discussion in §§3.4 
and 3.5). On the other hand, the ensemble of matrices (6.5.12) or (6.5.13) can assume a Cayley-Klein metric with 
respect to an absolute representing the set of singular matrices (see §4.3 for the idea of construction of this 
geometry). In order to show that this geometry represents an instanton, according to our holographic definition 
by coherence (see §4.5 above), let us calculate the sl(2,R) coframe for the matrix (6.5.13), according to equation 
(4.3.18), after performing the transformation: 

 
 

(6.5.14) 

In this case the matrix M from equation (6.5.13) can be written in the form 

 
 

(6.5.15) 

and the coframe (4.3.18) can be calculated to give: 

 

 

(6.5.16) 

As one can see right away, this coframe depends on just three variables 
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The same calculations can be done on the form (6.5.12) of the matrices, and the result is the same. The absolute 
metric of this expression of the coframe (see §§4.5 and 6.1) is given by the quadratic differential form: 
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which, up to sign and a redefinition of phase, is the metric (6.1.9), and can be taken as a universal Coll deformation 
of the Maxwell fish-eye metric, given by the Beltrami-Poincaré metric of the Lobachevsky plane. Therefore, one 
can, indeed, say that the matrix (6.5.15) and, implicitly, its counterpart deriving from (6.5.13), characterize the 
Maxwell fish-eye optical medium, more precisely a Kasner blade of it, which, among other functions, has to 
accomplish the important one of the correspondence between fields in vacuum and the charges from the de Sitter 
continuum. 
 Assume now that the transition from vacuum to matter or vice versa, in an Einsteinian natural-philosophical 
stand, involves a Weiss molecular field proper, as suggested by de Broglie, representing the gravitation, according 
to Boltyanskii’s view (see §4.3 above), where the intervention of the motion is explicit. A Boltyanskii case can 
be made for the ‘radial motion’, which, in cases where the interpretation is involved, can be taken as that ‘fall 
towards a center of force’ of Newton. The interpretation is realized by instantaneous ensembles of particles in 
their ‘fall to a center of force’. The pertinent result of Vladimir Boltyanskii, to be used here, is the one from 
equation (4.3.4), which can be written in matrix form, where the space coordinate represents a generic radial 
coordinate with respect to a center. Assume that we have an ensemble of such situations over the space of 
instanton represented by the Riemannian metric (6.5.18), so that we can write: 

 

 

(6.5.19) 

The matrix B, which we would like to call the Boltyanskii’s matrix, must be assumed universal for the construction 
we have in mind. It has its entries defined by the two fundamental quantities representing an invariant velocity 
and the Boltyanskii’s gravitation level, respectively 

 
 

(6.5.20) 

with a self-obvious notation. The universality means here ‘independent of motion’: the only specific parameter 
regarding the motion is the velocity of particles starting from rest, and it does not enter in any of the entries of B. 
In terms of these invariants, we can exhibit a matrix R analogous to that of Yang from the case of Yang-Mills 
fields (§4.4). It can be written as 

 
 

(6.5.21) 

Here c is a fundamental velocity of the kind Clerk Maxwell once introduced from electromagnetic considerations. 
It is supposed to reduce to that Maxwell constant, in the case of zero Boltyanskii gravitational level, so that we 
maintained this suggestive notation here, in the hope of uncovering a possible connection between gravity and 
electromagnetism. The working principle in achieving such a result is based on the idea of Iwasawa 
decomposition, as delineated above [see equations (6.5.1 – 5)]. This being said, we proceed on to solve an 
important problem of the human knowledge: that of the construction of a Weiss field. Let us explain its terms and 
incentives, as we go on presenting the solution. 
 Suppose a Hertz material particle located in an ether described by a Maxwell stress tensor, as above. In each 
and every one of its points, this ether is described by a matrix acting on the two electromagnetic fields, in such a 
way that the entries of the Maxwell stress tensor are preserved, as described in §6.4 above, assuming, of course, 
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that those results apply. We need to describe the situation of existence of our Hertz particle in the vacuum thus 
portrayed. This situation means motion, rest in particular, of the particle and all the vacuum phenomena it entails. 
A modern natural-philosophical reasoning tells us that the internal structure of the particle is also influenced by 
the vacuum in which it exists, so, naturally, one can assume that the situation of the particle in vacuum can be 
described by the mathematical connection of their two structures. Unfortunately, there is no structure for the 
particle as there seems to be for the ether, incarnated into the Maxwell stress tensor. Fortunately, on the other 
hand, we have the possibility of further hypotheses, and ‘the hypotheses are nets: only those who cast them can 
catch the fish we call ideas’, says an utterance attributed to the eternal young Novalis. And, continuing with this 
romantic streak of language, we can say that ‘standing on the shoulders of giants like Einstein, de Sitter, and Mie 
– to say nothing of a few others – we are able to formulate a sound hypothesis as to the internal structure of the 
particle (see §5.1 above): it is Einstein electromagnetic structure in the Mie’s take, as Einstein himself would 
certainly be entitled to deem it. 
 Thus, we can assume that the structure of the particle is described in the Mie’s fashion by a Maxwellian tensor 
built of the two vectors from equation (6.5.6), in a general position in the instanton space of the particle’s structure. 
This structure cannot be more than an interpretation structure, based on charges from a de Sitter background, 
attached to different positions inside the instanton, in a Feynman-type interpretation (see §5.1). However, in this 
case we can say more about this Einstein-Maxwell field: it is a field of the nature of the Weiss molecular field, 
once defined by Pierre Weiss to help describe the property of ferromagnetism [(Weiss, 1907); see §2.2 above]. 
The reason of the existence of this field seems quite clear: a Hertz particle cannot exist in matter but only in the 
structure of a Hertz material point, as Hertz himself defined it. The whole ensemble of material particles from the 
interpretative structure of the material point, exert influence upon each and every one of its component particles, 
and we claim that Weiss, with his molecular field, has defined just such a physical situation. One might even say, 
above and beyond the Hertz’s definition, as it were, that this field is the very condition of existence of a Hertz 
material point: it is a material point composed of an ensemble of material particles having ‘the same Weiss field’. 
This is, after all, the usual image of the matter in the case of the study of phase transition, anyway [(Kadanoff, 
1976), Figures 1.3 and 1.4 of this fundamental work on the theory of scale transitions, are edifying in illustrating 
our standpoint on what we like to call Weiss fields]. 
 Regarding this way of understanding the physical issues, it may help to observe that we place the general 
Weiss field as ranking equal to the Fresnel field of light, as defined by Poincaré (see §6.3 above): for once, the 
two fields are defined by the local action of the nonlocal fields. Significantly enough, the Thomson field is such 
a Maxwellian case as we have shown in the §2.2 [see equation (2.2.11) and the discussion around it]. We can 
even say that Thomson’s theory is one of the most instructive examples of interpretation. But the defining instance 
of such a field is given by a matrix that we choose in the form (6.5.13), which represents the general situation of 
a Weiss field: this turns out to be described by two averages not just by one, as in the original case of Weiss. 
These are the Novozhilov averages of a tensorial field, given by us in equation (6.3.10) for the case of Maxwellian 
tensor: the first of them can count, indeed, as a pressure satisfying Einstein’s original idea in eliminating the 
cosmological constant (see introduction to §5.1). However, the second average is just as important in the 
definition of a complete Weiss field, and if it could be neglected in the case of pure charges, it certainly becomes 
significant in the case of action at distance of those charges: that is just the Fresnel’s case of light, which thus 
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explains the Fresnel hypotheses. Therefore, the correct definition of a Weiss field appears to involve more than 
one average for the local action of matter. We shall need to insist on this point, but with another occasion. 
 Now, the situation of a particle in vacuum can be seen as a permanent transformation of the vacuum fields 
into matter fields and vice versa. So we can construct a generic field based on the Yang’s scheme (4.4.13), where 
instead of Yang’s R, we use the matrix (6.5.21), together with the structural rotation matrix from equation (2.2.4). 
This matrix is intended to represent the continuous field generated by particles in their ‘moments of rotation’, 
according to Newton’s view. The manner of construction is a ‘polarly decomposed matrix’, having the factors: 

 
 

(6.5.22) 

whereby the transition between matter and vacuum, or vice versa is given by the matrix having the structure of 
the complex numbers in terms of modulus and phase: 

 
 

(6.5.23) 

wherein Boltyanskii’s gravitation level plays an explicit part. According to equation (6.5.3) this represents an 
already Iwasawa decomposed matrix: its factors are those from equation (6.5.2), having, up to sign, the following 
parameters: 
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In terms of the parameters thus discovered, the Yang’s R-gauge matrix from equation (4.4.13) would be given by 
the product: 
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This makes out of the parameter R of C.-N. Yang a Boltyanskii gravitation level, but also tells us something about 
the parameter n from the equation (6.4.13), representing the matrix of a de Sitter background: it turns out to be 
the logarithmic potential generating the Yang-Mills fields [see equation (4.4.10)]. With such a refurbishment of 
the Yang-Mills fields, we are able to turn back to Maxwell, for a reevaluation. These Yang-Mills fields have more 
to do with the constitutive constants of the Maxwellian fields, rather than electromagnetic forces! 
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Conclusion: a Profession of Faith 

In order to close this work on the note we opened it, let us just say that it certifies an important fact: there are 
solutions of the scientific problems out of the reach of human experience. And as far as the Aristotelian 
environment is concerned, only that experience can be part of it. In which case the quarks have no place in an 
Aristotelian atmosphere, to come back to the example of Paul de Haas from the beginning of this work. In such 
cases the solutions sought for only have to satisfy just some logical requirements, and their reality is not 
experiential, but ideal, conceptual at best. The case of interpretation is epitome here: there cannot exist, in the 
reality of our experience, ensembles of classical material points interpreting the continua, but we can think of 
them logically. The two Einsteinian relativities are enough proof for this statement. However, they are not a 
singular case, for the history is full of such examples. 
 Speaking of the Aristotelian environment, it seems that the man, even in his manifestation as a social man, 
was much closer to the Creator in the old times of the dawn of civilizations, when the gods were able to spur him 
on to a right judgments just by affecting his defining existential structure. Those were the times when the word 
would not have progressed yet into serving the social purpose of misleading. To wit: we can think especially of 
the quintessential episode of Delos plague, sent to Delians by the god Apollo in order to temper some of their 
social verve. This social verve, the turba of old Seneca, was the generator, just like today for that matter, of rude 
but rather vain passions, estranging the man from himself. The Delian episode simply shows that there is 
something beyond experience to be necessarily accepted. This episode is an epitome for the actual situation of 
the theoretical physics with one big difference: while in the Delian plague case there was no hope whatsoever, in 
the case of modern physics there is plenty of hope for straightening the things, given enough time! So let us 
expound a little that old story… 
 The tale, like any tale, is shrouded in legend, and varies from an author to another, since the existing physical 
data is scarce, to say the least, and as such mostly unreliable. To some, it is not even about plague; to others, it is 
indeed about plague, but to the Athenians not Delians. Fact is that plagues are documented archaeologically to 
Athens, – to Attica in general, due, of course, to its maritime opening which facilitated the presence of germs 
coming from afar – the most violent of these being the one from the times of the Peloponnesian War (431 BC – 
404 BC), waged between the city-states of the Delian League led by Athens, and those of the Peloponnesian 
League led by Sparta. Pericles, the Olympian, is known to have died during that plague, thus causing, implicitly 
of course, an end of the Athenian hegemony among Greeks. Still another fact is that the island of Delos, which 
hosted one of the Apollo’s temples of high mark, and even sheltered the Delian League’s treasury for a while – 
according to the existing legend Apollo was born on the island – was by then under the control of Athens. It 
seems, however, that at the historical times we are talking about here, the temple of Apollo from Delos, no matter 
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how significant, was not quite as high in the consideration of Greeks, especially in the matters of supplying 
oracles, at least not as high as it was the temple of Apollo from Delphi. 
 No matter what the case may have been in reality, though, it is not worth attaching to it here an exaggerated 
importance regarding the details. For, what interests us in the present argument seems to be certain: plagues 
infested Attica just about the times we are talking about. So it does not disarrange unfolding our argument if we 
admit – just for settling the ideas illustrated by that argument – that they also infested the Delians, compelling 
them into soliciting the oracle of Apollo of Delphi, not that of Apollo from Delos, say just in order to make sure 
the oracle they get was a reliable one, indeed! What stands out from this legend, as a truth beyond those physical 
facts, is that in those times the man had the firm belief that he can address the Creator directly, and that this one 
even had the duty, as it were, to answer to these requests, if they were to be answered orderly, by oracles: the 
Creator belonged to the defining existential structure of man. That is, the Creator was subordinated to the process 
of realization and completion of that structure, just as He is considered today, for that matter, by the overwhelming 
majority of people. 
 So it comes that a Delian mission sent to Delphi in order to bring the oracle regarding an end of the plague 
crisis, brought back an apparently very clear answer of the God: the altar of Delos temple must be doubled! The 
Delians set immediately on to work, rejoicing over such a simple remedy: the altar being a cubic shape stone, 
they simply made another identical stone and set it on the top of the existing one, or sideways, does not really 
matter, for the oracle did not specify the situation of such a ‘double’. The result was that the plague grew fiercer! 
The community judgment probably corrected immediately the first move: wait a minute! The altar must remain 
still an… altar, therefore a cubic shape! As a matter of fact, this would explain the missing specification of the 
position of ‘doubling’ from the oracle: it was unnecessary by the very definition of the ‘altar’! Therefore the 
Delians built a cubic solid having a double edge, but Apollo still has not relented, so that people would continue 
to die wholesale. 
 A new mission sent to Delphi, probably bearing gifts commensurate with the fear and panic inherent to the 
situation, brought an oracle apparently untranslatable, but especially baffled by a laconism which, we have to 
admit, had nothing to do with Sparta, the moment’s enemy of Delians: “Learn geometry!” Only later on, and 
consulting many sages – Plato himself was allegedly approached, who at that time would just come back from a 
visit in Egypt, and happened to be somewhere close by – would the Delians understand that the problem of 
duplication of the cube was wrongly solved, thus naturally offending their patron god. The first time they would 
make a lucky strike with doubling, but not for an altar proper, while the second time they would luckily hit the 
idea of altar, but unfortunately did nothing of a duplication: the new altar was eight times the initial one. In fact, 
they needed to have a cube of the volume twice the initial one! 
 “Learn geometry!” A subtle commandment, showing first and foremost that the gods never forgive, since the 
request made to Apollo was hopeless: the Delians were convicted with no appeal, but the hateful god did not even 
bother himself into telling them. This is a fact that we have only learned along centuries, even milennia: the 
problem that allegedly generated the crisis has no solution that would be accessible from a social point of view, 
i.e. technologically. For once, perhaps the gods got smarter, after the hoax of Mecone, where Prometheus proved 
that, although in the heights of Olympus, the gods are still among men, for the mountains themselves are from 
the world of men. So, they may have reached the conclusion that making it too easy for man, does not bring over 
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their creation the welfare anticipated by the creator. Or, perhaps, knowing that a plague cannot be stopped at all, 
the gods would have wished to give the man something to think about for a few milennia, in order to reach later 
on, when he would become more appreciative, the status of… appreciating that a plague cannot be stopped but 
by the structure that hosts it: the mankind! No matter how we take it, fact is that the laconic commandment took 
the anticipated effect: – beginning with the Greeks the geometry started being eagerly cultivated – and the problem 
of duplication of the cube bears today witness for the necessity of an elaborated mathematics to control a right 
thinking. Unfortunately – perhaps as a revenge of old gods! – it does not witness at all for a simple thinking, 
commensurate with the Laconian… laconism of the old commandment! 
 The history of the dualism wave-particle illustrates the old legend in the contemporary actuality: the physics 
is not exclusively a technological matter, and perhaps it would be worth, but mostly instructive for us, to place it, 
in the conclusions of the present work, along the lines of construction of a thinking emanating from that old 
legend. So much the more as we were in fact forced, so to speak, to conceive this work the way we presented it, 
according to an observation springing, as if quite naturally, from the studies necessary for its elaboration. Namely, 
nothing from the old cogitation has been lost through the milennia! This fact is fully illustrated by the mathematics 
associated with the natural philosophy of the last three or four centuries of thinking, that got through to us along 
socially recorded pathways. 
 Historically speaking, the wave-particle dualism started in the old times with the idea of wave: if this idea 
would not exist, we would not have the Fermat’s principle whose gnoseological role is most aptly illustrated by 
the concept of ray of the physical optics (see §1.2). Then, the Huygens’ principle must have taken existence, that 
should have sanctioned, more geometrico just like in the old legend, the concept of material particle associated 
with the Fermat’s kinematical principle. In geometrical formulation the Huygens’ principle relates to a global 
wave surface, as the envelope of local wave surfaces. In this form, the idea is appropriate even for matter: the 
matter in revolution, of the Kepler classical problem, is representable by a family of centered closed surfaces, 
whose envelope is, in this case not a sphere or an ellipsoid, but a canal surface of the most general species one 
can imagine. Therefore, the geometrical idea of canal surfaces actually represents a Huygens’ principle for the 
matter, provided, obviously, we accept some natural facts, as in the old legend: the matter has space expansion. 
From this point of view, the wave-particle dualism is as natural as it gets: both the corpuscle and the wave are 
just two particular aspects of the same physical property, namely that of space expansion. This dualism came to 
being in the form stated by Louis de Broglie (Mazilu, 2020), who brought the physical idea of capillary tube 
‘forestage’, as it were, in order to generalize the Huygens’ principle along the concept of optical ray (de Broglie, 
1926). The canal surface generated by the limit of the matter of the body in revolution in the classical Kepler 
problem is, in fact, such a capillary tube! Then everything in physics can be arranged in a logical order, starting 
from this geometrical idea (see §5.1). 
 However, the physics cannot be restricted to just geometry: it goes always further on, to causes. So it comes 
that, initially, the Huygens’ principle had to be interpreted in that the light acts upon space (producing the sources 
of light in any position in space). From a natural-philosophical point of view, in the latter times this action is 
explained by the fact that the light, being electromagnetic by its nature, acts upon ether, which, in this instance is 
just space. Thus, the electromagnetism allows us to dispense with – if only to a certain extent, in fact – the idea 
of materiality of the ether. At a definite historical moment, the existence of ether was even denied, based on the 
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reason that the special relativity would warrant us to dispense even with ether per se, not just its substantiality. 
Soon enough, though, one took notice of the fact that our way to see the world through physics does not give us 
the right to such a view: the ether must be maintained in the image of man for the world he inhabits! Our 
conclusion is that the ether is an expression of the limit of materiality of our world: the matter per se is not directly 
accessible to us, but only ponderably, through inertia, and the human experience just proves that the ether cannot 
be cogitated but only as matter of null density. Therefore, taking the density as a measure of ponderability of 
matter within a physical structure, the ether is only a particular matter. Thus we can relegate the description of 
the action of light to the inherent matter ‘kneading’, by declaring that, really, the light acts only on the structured 
matter in general – which is, we have to admit, an observation of current experience. 
 However, at this stage, the structured matter can not be a physical structure yet. The old plague’s legend also 
contains an usually disparaged teaching: in the construction of an independent world, the man cannot involve the 
Creator! The communication with the Creator is always mediated: the Creator belongs to a structure that can only 
be imagined but never effectively reached, like would be, for instance, the top of Olympus. Exactly like the altar 
of the god Apollo, which cannot be but cogitated, along with the cubic root of the number 2 staying at the basis 
of its technological realization! Like in the old legend, a structure in matter cannot be a physical structure yet, but 
only a defining existential structure, as we have called it before. It is ‘defining’, mostly because it ‘levies’, as it 
were, the physical structure, through its rational definition in the exterior of matter. This ‘exterior’ is the place 
and the manner in which the matter lends itself to be penetrated by space, or reciprocally: the space lends itself to 
be penetrated by matter, no importance. This is why, along the whole present work, when we talked of the matter 
per se, we attached only the determinative ‘structure’, having none other at our disposal, but we have stopped to 
only this word, not qualifying further by ‘physical’, for it is not the case: the matter cannot have a physical 
structure. It is only its knowledge that is mediated by a physical structure, and this knowledge is by no means 
reduced to our senses! That is why we think that the fundamental law of this world is that of quantization: it is 
imposed on us by the necessity of scale transition! 
 The fact that the analogy, as a fundamental way of knowledge, must explain away rather the details of the 
standard concept first, should be law and guide in thinking: the standard of an analogy is actually the only one 
among the physical structures directly accessible to human senses. Momentarily, however, as always in fact, the 
natural philosophy is almost exclusively tributary to that old materiality concept that makes a law out of the 
technology, so that it cannot see the celestial but only as a physical structure, exactly like in the old plague tale. 
It might be perhaps the case to recount again Plato, who is said to have been elaborating much on the meaning of 
the short message of the god Apollo to the Delians, showing that it would represent actually the general urge to 
cultivate the arts leading to happiness, not the art of war leading to destruction. 
 It is even plausible that the contingency would have served to the great sage in order to illustrate a lesson in 
the open, as it were: with the destruction, the nature itself is occcupied, according to the laws of eternal change; 
the duty of society is to promote the idea of Man as individual, not that of war, which is actually the demolisher 
of the physical structure within which that very idea is coming to fruition. It is, indeed, plausible! It goes with the 
personality of Plato, as a matter of fact. For, in his Republic, often cited as a source on the role of the geometry, 
mostly in connection with the Delian problem, Plato records the following dialog involving Socrates, his great 
teacher, the one who has had presented to Athens the right measure of the word through the idea of Man: 
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 Well then, on one point at any rate we shall encounter no opposition from those who are even 
slightly acquainted with geometry, when we assert that this science holds a position which flatly 
contradicts the language employed by those who handle it. 
 How so? 
 They talk, I believe, in a very ridiculous and poverty stricken style. For they speak invariably 
of squaring, and producing, and adding, and so on, as if they were engaged in some business, and 
as if all their propositions had a practical end in view: whereas in reality I conceive that the science 
is pursued wholly for the sake of knowledge. 
 Assuredly it is. 
 There is still a point about which we must be agreed, is there not? 
 What is it? 
 That the science is pursued for the sake of the knowledge of what eternally exists, and not of 
what comes for a moment into existence, and then perishes. 
 We shall soon be agreed about that. Geometry, no doubt, is a knowledge of what eternally 
exists. 
 If that be so, my excellent friend, geometry must tend to draw the soul towards truth, and to 
give the finishing stroke to the philosophic spirit, thus contributing to raise up what, at present, we 
so wrongly keep down. (Plato, Republic, Book VII, 527; our Italics) 

To all appearances, the stimulus contained – at all levels! – in the Plato’s dialogue was of no avail. As a matter 
of fact, it is for such ideas that the city of Athens forced Socrates to drink hemlock! Fact is that the incentive still 
remained to no avail over centuries and in our times, when the society at large is referring, more often by the day, 
to the wisdom of … warriors and politicians, if we may be allowed for such a paradoxical expression. The society, 
especially as we have it today, with democracy and all it brings along, is precisely antagonistic to any wisdom 
(Le Bon, 1906). There is no conscience in it; we cannot see how a society might be able take heed of the 
observation of Constantin Noica from his ‘accommodating word’ to the Romanian version of the Republic of 
Plato: 

 … we all became accustomed to read faultily this dialog. And we continue to do so in our time, 
when harsh words fell upon the political and aesthetic vision of Plato. Only, a society which grants 
too much to the politics, abiding by the ridiculous words of Napoleon to Goethe: «Le destin c’est 
la politique», and which, at the same time, grants too little to the art, stimulating it into being quite 
often sheer pleasure, and sometimes even regular imposture, would do better to tend to its own 
sorrows. Not daring to read Plato’s Republic if it is not able to read it right, but leave it to other 
times that would not settle into judging the great masterpieces by their own desolation (our 
translation; original Italics) 

We take the liberty to correct the great philosopher in two essential points of this quote, if for nothing else, just 
in order to update it: today we do not deal anymore with ‘too much’ but rather with ‘all of it’, and surely we do 
not have to deal with ‘too little’, but with a flat ‘nothing’. This much we need to realize, at any level, especially 
scientific! 
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 The scientific world makes a point of honor from searching for figments of imagination in the details of 
experimental data. However, the search remains vain if a positive conclusion is sought for, as long as we do not 
accept that a mystery exists, that is: a thing that is not accessible but only for acknowledgment and acceptance. 
And, maybe, it would be more appropriate for science to frankly admit the concept of mystery, as represented by 
the untouchable. Without this, it seems that we cannot have a unitary idea of the universe: it appears to be the true 
data-binding agent! In physics this can be already acknowledged: we call it matter per se and, as we have shown 
in the present work, it serves only for interpretation. However, when it comes to its acceptance as such, the case 
is harder: physics has always strived to offer an explanation to interpretation in terms of physical structures, 
therefore accessible to our senses. The present work submits the essentials of this endeavor, insofar as the physics 
of relativity is involved. The explanation it suggests remains, obviously, tributary to the old legendary manner of 
existence: not only it must be done – otherwise the plague is getting worse… – but it must be done exclusively 
more geometrico in order to be in line with our very existence! 
 It is only through the lack of such an explanation that we can… explain, for instance, how come that after an 
otherwise extremely penetrant analysis, however based exclusively on apparently logical combinations of 
experimental conclusions, Malcolm Mac Gregor – may he rest in peace! – was compelled, we must admit, into 
concluding that … 

… if the electron is truly large, and if it always operates in such a way as to cancel out its finite 
size, then we may legitimately inquire if there is any point in paying attention to its size. If the 
electron is always contained inside an inscrutable black box, we may as well work with just the 
properties of the box. Hopefully, the Creator has not been that unkind to us, and has given us an 
electron we can eventually understand. [(Mac Gregor, 1992); our Italics] 

The present work shows that, according to physics, such a statement ignores the fundamental fact that, in a black 
box, the ‘legal’ fundamental matter structure is a dipole. The existing conception, taken from experience, that the 
elementary particles must have a physical structure, just proves this statement. 
 However, if it is to involve a Creator at any rate, we dare take the above quote from the specific angle it 
suggests, that is, by placing ourselves within a kind of religious ambient: we must confess being Christian. In this 
capacity we need to acknowledge especially the kindness of the Creator we recognize, a benevolence extended so 
far as to show us how to explain the world He provided for us: only through a mediation! In this respect there is 
no room for doubt, for the conclusion is quite clearly established for the mankind, even historically and especially 
religiously. 
 Indeed, it is highly significant for us that the Creator we acknowledge even sent His Son, embodied in the 
physical structure of Man, to live among us, in order to make us understand, once and for all, that great sin – 
maybe even the so much discussed original sin! – is the one of trying to… understand the world exclusively by 
the intermediation of the concept of a physical structure. We have to give up that exclusive attempt of 
understanding the world, in spite of the fact that the earthly life insistently enforces it upon us… perhaps just in 
order to deceive us, indeed! Nevertheless, taking a positive view, that enforcement might have a good reason after 
all: perhaps it was intended to clue us into a right thinking, like in the old legend of the Delian plague. For, being 



 242 

humans, it seems that only deceived can we go along a way, be it even the right way. In this respect, we are to 
consider ourselves lucky enough that the ways in which the ideas stream into eternity, defying any logical 
explanation, still remain a mystery for us! Ending our tale with the words of Steven Weinberg, may he rest in 
peace! ... let us not retreat from this accomplishment! 
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