
Designing Performance Testing Software for Cloud Based Enterprise Applications

Pranshu Mishra

pranshu188@gmail.com

Surbhi Agarwal

surbhiagarwal975@gmail.com
(Dated: February 26, 2024 )

The paper presents the design and implementation of performance testing software designed for
cloud-based enterprise applications. With the increasing adoption of cloud computing in enterprise
environments, ensuring the performance and scalability of these cloud-based applications is crucial.
Traditional performance testing tools may not fully address the unique challenges posed by cloud
environments as these tools are, generally speaking, usually designed as load generators. Therefore,
we propose a comprehensive approach to designing performance testing software specifically for cloud-
based enterprise applications in which load generation is one component of it’s architecture.

I. INTRODUCTION

Contemporary performance testing tools predomi-
nantly prioritize load generation, often sidelining the
broader scope of performance engineering duties. From
a performance engineering perspective, load generation
represents merely one facet of a multifaceted responsi-
bility. A holistic approach necessitates thorough post-
load analysis. This paper advocates for a paradigm shift
towards a “performance-first” ethos, fostering a culture
of iterative refinement grounded in data-driven analytic.
Our aim is to explicate the foundational tenets guiding
the development of a framework conducive to good per-
formance testing practices. By integrating elements such
as a rigorous post-load scrutiny, a streamlined reporting
and notification mechanism, our endeavour is to culti-
vate a robust performance testing paradigm tailored to
cloud-based enterprise applications.

II. ASSUMPTIONS

A. Target Application

Since we are designing a performance testing tool that
generates load, it’s essential we clearly define who the
target is. We’ll be designing our software keeping in mind
these assumptions:

• The target is a cloud based application with multi-
ple domains/modules.

• It is a multi-tenant multi-user system or even a
multi-user system with no tenancy.

• The target is implemented as microservices archi-
tecturally.

• The target’s components are deployed as contain-
ers, using a container orchestrator tool like Kuber-
netes.

• The different domains/modules within the applica-
tion have dedicated team(s) per module.

• The teams can deploy their changes independently
of each other.

• The deployments first happen in dev/staging envi-
ronments first before going into production.

• Just like production and dev/staging environments,
there is a separate testing environment available
that matches production’s deployment. This envi-
ronment will be the actual target for our perfor-
mance tests.

B. Our hypothetical performance testing software

We will designing our performance testing software
keeping in mind these assumptions:

• The performance tool will not be used more than
once a day. This ensures we have a single com-
plete run for all the performance test cases and
leave enough time for result analysis.

• Performance tests will be executed everyday. A
daily report and a weekly/month summary report
will be produced by the tool.

• Teams will keep adding new/updating existing
performance tests whenever they plan to release
changes into production.

III. SYSTEM DESIGN

A. Components

These are the logical components that make up the
proposed performance testing tool:
Test suite repository: This component holds the

tests that need to be executed by the performance testing
tool. This can be implemented either as a monorepo or
separate repos each owned by a team/module.
Orchestrator: This component loads the test suite

and processes it for execution. It generates a test plan

mailto:pranshu188@gmail.com
mailto:surbhiagarwal975@gmail.com


2

and forwards it to the load generator to put load on the
target system.

Load generator: This component is the only part
of the performance testing tool that interacts with the
target. It receives instructions from the orchestrator and
executes upon them.

Reporting: This component generates a report that
the user can view to understand the target system’s be-

havior.
Notifications: This component sends out

alerts/messages via specified channels regarding
important events or actions. Examples include test plan
execution start, test plan execution end, faulty tests,
SLA violations, failure limit violations, etc.
Database: This component is used to persist test plan

execution data. This can include derived metrics.

FIG. 1: Component Interaction

B. Implementation

For the implementation, the orchestrator, reporting and notification components are all housed in a single binary
(referred in the diagram as ‘core’) while there are multiple instances of the load-generator that’s deployed on separate
hosts.

FIG. 2: Host deployment



3

C. Test Plan Execution

The performance testing software’s core operation can
be broadly categorized into 3 phases: Initialization, Ex-
ecution and Reporting.

1. Initialization Phase

Target Setup
Since we are going to conduct a performance test, it

is important to match the target’s setup with produc-
tion. The data kept in our target’s databases doesn’t
have to be real data from production, but a close enough
representation is a very good point to start from. As
part of the setup, we want to scale the target to match
production, i.e., this would include scaling the number
of hosts and/or containers within the target. Since the
performance tests that would be executed may produce
additional data in the target storage system, it’s a good
time to reset the target’s data from a safe backup now.

Session Generation
Enterprise multi-tenant applications typically require

their users to authenticate & create a session. If the
session is long lasting in the production environment, it
makes sense to mimic the same behaviour during the
testplan execution as well. The performance tool can
log in to the target beforehand so as to create & per-
sist session(s). These session IDs/tokens/strings/etc can
be shared with the load generator for usage during the
execution phase.

Test Data Pre-Caching
Some tests may target certain APIs (typically HTTP

GET) that require some data to be given to them, for
example, GET /api/info/v1/users?id=123. In this ex-
ample, the user with ID 123 must exist in the target
system else the API returns an error message. A typical
test would be written to call a different API endpoint
to fetch all user IDs and then use those IDs to generate
load, but doing this in-between the testplan execution
is not ideal as it introduces side-effects by making extra
calls to the target system. A good way to deal with the
problem is to fetch this static data beforehand & persist
it. The persisted data can then be later on used during
the testplan execution phase, thereby removing the need
to make extra API calls.

Testplan Generation

This is the stage where the performance testing tool
will determine what tests will be executed by the load-
generators. An execution testplan is generated which
contains step-by-step instructions on what the load-
generators are supposed to target & when, as defined by
the test authors. This execution testplan is then handed-
off to the load-generators.

2. Execution Phase

In this phase, the load-generators get the testplan and
begin the execution of it. If deployed as a distributed
configuration, the load-generators clocks must be in-sync
before the test starts so that all the load-generators can
start the testplan execution at the same time.

3. Reporting Phase

Clean up: While we have considered database reset-
ting before testplan execution for our target, however,
not all parts of the target system’s persisted data maybe
be backed-up or reset given the design of the target. If the
target permits to revert the state that the performance
tests have changed, those APIs must be used. The test-
ing environment must also be scaled back / destroyed as
it won’t be used until the next testplan execution.

Report generation: Our tool will now generate a
report for us to see & let us know how the testplan exe-
cution went. The tool will also fetch infrastructure level
metrics from the target’s observability system.

Notifications: The tool will now send out notifica-
tions via specified notification channels (like email) re-
garding certain events like SLA violations, failure limit
violations, faulty test executions, and high level testplan
execution summary (like executed tests and module-wise
breakdown).

RCA ticket creation: If configured, the tool may
create automated follow-up RCA tickets in the com-
pany’s internal ticketing system (like Atlassian JIRA) for
events like faulty test executions or SLA violations.



4

FIG. 3: Test Plan

IV. OPERATIONAL OVERVIEW: USING THE
PROPOSED SOFTWARE

With all of the points implemented above, this is what
a typical routine operational workflow of a user of the
proposed system would look like:

1. Teams add new performance tests

2. Daily test triggers

(a) Environment is scaled to match production

(b) Relevant databases are reset and restored
from backups

3. Test plan is executed

(a) All performance tests are triggered one by one
as dictated in the testplan

4. Post test plan execution, report is generated

(a) Environment is scaled back / destroyed

5. Based on the report, notifications are sent to rele-
vant test authors / owners

(a) Notifications on faulty test executions

(b) Notifications on Service Level Agreement limit
violations

(c) Notifications on failure limit violations

6. Report data is persisted in database

7. Automated RCA support tickets are generated in
case of faulty test executions & tagged to relevant
test author

(a) Test authors fix defective tests

(b) Test authors close RCA ticket

8. Daily test executions are conducted for a week /
month

9. Summary report is generated for the past week /
month using report data in database

10. Automated RCA support tickets are generated in
case of SLA violations, failure limit violations

11. Test authors use relevant observability systems to
analyze test results & tweak the SLA/failure limits

12. Test authors close the RCA support ticket

V. CONCLUSION

The workflow proposed herein transcends the tradi-
tional role of a load generator. It serves as a pivotal
workflow enforcement mechanism, instilling a practice
of prioritizing application performance throughout the
software development life cycle. Its inherent capability
to retain historical test results and target configurations
enables users to identify areas of system degradation ef-
fectively.

VI. FUTHER IMPROVEMENTS

1. Introduce chaos engineering by causing container /
host outages mid-way during testplan executions

2. Introduce machine learning to predict performance
trends and understand what changes in the target
system cause changes in trend-line

VII. ACKNOWLEDGEMENTS

1. Kleppmann, M. (2017). Designing data-intensive
applications: The big ideas behind reliable, scal-
able, and maintainable systems. O’Reilly Media.

2. Gregg, B. (2020). Systems performance. Prentice
Hall.


	Designing Performance Testing Software for Cloud Based Enterprise Applications
	Abstract
	Introduction
	Assumptions
	Target Application
	Our hypothetical performance testing software

	System Design
	Components
	Implementation
	Test Plan Execution
	Initialization Phase
	Execution Phase
	Reporting Phase


	Operational Overview: Using the Proposed Software
	Conclusion
	Futher Improvements
	Acknowledgements


