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Abstract

The successful development of a mathemati-
cal theory of quantum gravity remains an elu-
sive goal despite decades of intense research.
The mathematics involved with string theory
is far out of reach for most scientists but per-
haps an intuitive theory of quantum gravity
could grant them an understanding of the phe-
nomenon. This article moves in that direction
and approaches quantum gravity from the an-
gle of an easy-to-understand theory of rela-
tivistic quantum spacetime. In the process, a
new theory of mass is discovered and several
suggestions are made for further development
of an intuitive model.
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The Second Relativization

Since Einstein’s general theory of relativity thor-
oughly explains gravity as being a result of the curva-
ture of spacetime and that its curvature is an effect
of mass, our first step towards obtaining an intuitive
understanding of quantum gravity is to devise an
easily understandable way to conceptualize quan-
tum spacetime. Here we will consider a new type of
relativity, one that is produced by the interactions of
subatomic particles with a quantum field, specifically
a field of virtual gravitons, and in so doing we shall
obtain an intuitive idea of relativistic quantum space-
time. Just as the quantization of the other types of
fields is referred to as the second quantization, the
process of obtaining such a model of spacetime can
be called the second relativization. The mathematics
involved in the second relativization is simple, but
the concepts described are deep. Our reasoning shall
proceed as in (1). Let’s get started.

Our toy model shall be a system composed of a single
proton p+ and electron e−. Now suppose the proton
and electron are isotropic radiators of a current of
unobservable virtual gravitons, as allowed by the
Heisenberg uncertainty principle, and further sup-
pose these virtual particles possess a certain amount
of power. If the power of a transmitter, call it Tx, is
denoted by PT and if isotropic radiators (transmit-
ters which radiate energy uniformly in all directions)
are assumed, then the power density at a distance
R from the transmitter Tx is equal to the radiated
power divided by the surface area 4πR2 of an imag-
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inary sphere of radius R, i.e., the power density at
range R from an isotropic radiator is

= PT/4πR
2 Watt/m2. (1)

In what follows we shall be considering the exchange
of virtual graviton particles, back and forth, between
a proton and an electron. For purposes of clarity, let
Tx stand for the "original transmitter", and since we
are exchanging particles back and forth the original
transmitter eventually becomes the receiver (T 7→ R)
let Rx stand for "receiver", and let tx stand for "target".

When Tx emits a current of virtual particles the tar-
get tx intercepts a portion of the incident energy and
re-radiates it in all directions. It is only the power
density re-radiated in the direction of the original
transmitter Tx (echo) that is of interest. The sig-
nal cross-section of the target determines the power
density returned to the original transmitter for a par-
ticular power density incident on the target. It is
denoted by σ. The reradiated power density return-
ing back at the original transmitter (now the receiver)
is (2):

PRx

σRx

=
PTx
4πR2

·
σty

4πR2
. (2)

Simple algebraic rearrangement of Eqn. 2 leads to:

R = 4

√
PTx
PRx

·
σtyσRx

(4π)2
. (3)
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In particular we have

Rp+→e− = 4

√
PTp+

PRp+

·
σte−σRp+

(4π)2
(4)

and

Re−→p+ = 4

√
PTe−
PRe−

·
σtp+σRe−

(4π)2
(5)

Now it is well known fact that the cross-section of a
proton is far greater than that of an electron which,
according to Eqns. 4 and 5 (and making the as-
sumption PTp+/PTe− = 1), leads us to the chain of
implications

σp+ > σe− ⇒ PRp+
> PRe−

⇒ Re−→p+ > Rp+→e− . (6)

So we have arrived at our first mind-boggling result:
that if we could shrink down to the size of subatomic
particles and measure the distance between two par-
ticles of different types, we would get different results
depending on whether we measured from particle A
to particle B or from particle B to particle A! We call
this property of relativistic quantum spacetime non-
reflexive distance and it is instrumental in coming
to an understanding of relative masses. We shall
only deal with mass ratios as they are dimensionless
and are the only designation of a quantity of mass
that has any real meaning. For example, if the mass
of everything in the universe suddenly doubled, all
of the laws of physics would remain the same and
nothing would change.
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Figure 1: Nonreflexive distance generated as a result
of the relativistic quantization of spacetime. The
smaller filled circle repesents an electron while the
larger filled circle represents a proton. The double
squiggly lines with arrowheads represent graviton
exchange.

The discrepancy in distance generated by relativistic
quantum spacetime means that the motion of a pro-
ton along some arc length s and equivalent amount of
motion of an electron along some similar arc length
s′, where |s| = |s′|, would result in the traversal of
different central angles thus an apparent difference
in the relative inertia observed by the other particle
even though the two particles may be moving the
same distance and speed along s (proton) and s′. The
situation is illustrated in Figure 1 above.

From Figure 1 and the relation θ = s/R we can make
one more implication, that

Re−→p+ > Rp+→e− ⇒ θ′ > θ. (7)

This property of relativistic quantum spacetime is
responsible for relative mass.
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At this point it is helpful to introduce a new con-
stant B, which we’ll call Bonnar’s constant, with the
meaning

4
√
B =

Rp+→e−

Re−→p+
= 4

√
PTp+PRe−

PRp+
PTe−

= 4

√
PRe−

PRp+

= 4

√
σp+

σe−
(8)

Now for an ansatz. Let’s make the assertion that

4
√
B =

Rp+→e−

Re−→p+
= 4

√
σp+

σe−
= β (9)

Now we can entertain getting a better understanding
of the proton-electron mass ratio β. Experimentally,
the approximate value of β is 1836.15267343(11) (3). So
for that reason it is proposed that B is a more funda-
mental constant of nature than β and has the value
B = 11, 366, 719, 876, 399 which has the same number
of digits that the experimental value of β has (though
the last two are uncertain). Let’s see if this value of
B gives us a reasonable value for the radius of an
electron. The experimental radius of an electron is
found to have an upper limit of about 10−22m (4).

The accepted value for the radius of a proton is
rp = 8.4 × 10−16 m, giving us a cross section σp =
πr2p = 2.2167× 10−30 m2 for the proton.

So we have

2.2167× 10−30 m2

σe
= 11, 366, 719, 876, 399.
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This gives

σe = πr2e = 1.9501668× 10−43 m2

and we have

re = 2.49× 10−22 m

in good agreement with experiment. So the main
theoretical finding is that if we adopt a relativistic
quantum version of spacetime we can deduce from
it that

β =
4
√
B =

Rp+→e−

Re−→p+
= 4

√
σp+

σe−
. (10)

It is not difficult to imagine that this principle is uni-
versal and can be generalized to any two subatomic
particles. For this reason we shall state the principle
like this:

mx

my

= 4

√
σx
σy
. (11)

Eqn. 11 results from the relativistic quantization of
spacetime and it is proposed that a current of vir-
tual gravitons are actually creating spacetime (thus
spacetime is quantized) and, in conjunction with any
two particles’ cross-sections, relative mass. Much
can be inferred from Eqn. 11. Most importantly,
that mass is not an intrinsic property of subatomic
particles. This fact was proven a second way by the
author in (5). Rather, particle mass is a function
of the particle’s cross-section and the nonreflexive
nature of relativistic spacetime, i.e., mass results
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from an interaction of the particle’s cross-section
with a quantum field. The only intrinsic property of a
particle that contributes to mass is the cross-section.
Particles such as electrons and protons that are con-
ventionally considered to have mass have a nonin-
finitesimal cross section. But all particles that exist
have a nonzero cross-section and therefore all parti-
cles have mass. Particles such as photons, gluons
and gravitons, that are conventionally considered to
have zero mass, are point-like and therefore have
infinitesimal cross-sections (not zero), otherwise they
would not exist, and interact with the quantum field
to an infinitesimal extent thus have infinitesimal
mass. The only type of "object" that actually has zero
mass is any portion of the classical vacuum.

It may be helpful to consider a Feynman diagram
illustrating the fundamental interaction responsible
for nonreflexive distance. Refer to Figure 2 on the
next page. In the figure, part (a), an electron emits a
virtual graviton which is absorbed by a proton which
in turn re-emits the graviton and sends it back to
the electron. A certain spacetime distance is created.
In part (b), a proton emits a virtual graviton which
is subsequently absorbed by an electron, which in
turn re-radiates it in the direction of the proton. A
much shorter relative distance is created (1/β times
as much) in this case because σp+ � σe−.
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e− e−

p+p+

p+ p+

e−e−

Figure 2: Feynman diagrams illustrating the funda-
mental interaction giving rise to nonreflexive distance
and thus the origin of relative mass.

Infinities and the Infinitesimals

Until the end of the 1800s no mathematician had
managed to describe the infinite, except for the intu-
itive idea that it is an absolutely unattainable value.
Georg Cantor was the first to address it, and he did
it by developing set theory, which led him to the
mind-blowing conclusion that there are infinities of
different sizes. Faced with the rejection of his ideas,
Cantor went mad and ended up dying in an insane
asylum. But today, mathematics cannot be under-
stood without his revolutionary insights.

For Cantor, sets are collections of objects that can
have finite or infinite elements (6). He established
the concept of cardinal as the number of elements
that a set has. The cardinal of the set of fingers of
one hand is 5, while the cardinal of the set of natural
numbers N = {1, 2, 3, . . .} has infinite elements and
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we denote the cardinality of that infinity ℵ0, which
happens to be the smallest infinity. Notice that we
are able to count (i.e., write down) the consecutive
elements of that set if it is ordered. The next biggest
set is the set of real numbers R. In that case, we
cannot write down the consecutive elements of the
ordered set. R is an uncountable set, we denote its
cardinality by ℵ1, which is a larger infinity than ℵ0.
Cantor proved that it was impossible to establish a
bijective function between the set of natural numbers
and the reals. He thus came to the conclusion that
the cardinal of the set of real numbers was greater
than that of natural numbers: they were infinities
of different sizes. Cantor proposed that there are an
infinite number of infinities of increasing cardinality.

Cantor proposed the continuum hypothesis which
is a hypothesis about the possible sizes of infinite
sets. It states that "there is no set whose cardinality
is strictly between that of the integers and the real
numbers" or equivalently, that "any subset of the
real numbers is finite, is countably infinite, or has
the same cardinality as the real numbers."

Now by an infinitesimal it is meant a number that
is infinitely small in magnitude. Just as there are
infinities of different sizes, there are infinitesimals of
different degrees of smallness. We shall define our in-
finitesimal quantities ε as the reciprocals of infinities.
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In particular we have,

ε0 =
1

ℵ0
and ε1 =

1

ℵ1
(12)

ε0 and ε1 are both infinitesimal but ε1 < ε0.

Point Particles Such as Photons, Gluons
and Gravitons Have Nonzero Infinitesi-
mal Cross Sections

It was argued elsewhere that point particles have
nonzero cross sections otherwise they simply wouldn’t
exist. It was further argued that, through interac-
tion with a quantum field that creates nonreflexive
relativistic quantum spacetime, mass is conferred
on any particle having a cross section. But since
particles (which are conventionally considered to
have no mass) are points, their cross sections are
infinitesimal and they therefore behave as if they
have infinitesimal mass since they interact with the
quantum field to an infinitesimal extent.

It remains to determine the actual magnitude of the
infinitesimal cross sections and masses. Quantum
spacetime is a tricky concept that befuddles the hu-
man mind. We can imagine the spacetime coming in
discrete chunks of a certain size, but for one there
are no "spaces between the spaces", which is why
Stephen Hawking said he saw no reason to abandon
the conventional continuum conception of spacetime.
Furthermore, the discrete chunks of spacetime are
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themselves infinitesimal (we might try to imagine
that the current of virtual particles that generates
relativistic quantum spacetime being described by
infinitely compact Feynman diagrams).

Since the current of virtual particles that generates
relativistic quantum spacetime is infinitely compact,
therefore uncountable, I propose that the correct
infinitesimal to assign these particle cross sections
and masses is ε1. So it can be stated

mγ = mg = mG = ε1 (13)

and

σγ = σg = σG = πε21 (14)

The main consequence of having an infinitesimal
cross section, thus having an existence, is that the
particle will have an infinitesimal mass due to the
effects of the nonreflexive character of relativistic
quantum spacetime generated by the current of vir-
tual gravitons. All particles with infinitesimal mass
travel at the speed of light c. All particles with in-
finitesimal mass interact with a gravitational field
an infinitesimal amount. Particles cannot exist with-
out possessing a cross section that is at least in-
finitesimal. The existence of γ, g and G is thereby
established.
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Using Nodal Incidence Matrices to Describe
Feynman Diagrams That Precede Space-
time

Given that relativistic quantum spacetime is created
by a current of virtual particles, we need to have
a way to designate a Feynman diagram that lives
outside of spacetime, i.e., it is only the connectiv-
ity of the diagram that matters. It is assumed that
the Feynman diagram representing this current of
virtual particles is infinitely compact and the num-
ber of nodes and branches are uncountably infinite.
Describing Feynman diagrams with nodal incidence
matrices fills this gap. Since the curvature of space-
time is completely accounted for by Einstein’s gen-
eral theory of relativity, relativistic quantum space-
time, which has the property of nonreflexive distance
(thereby accounting for relative masses), points the
way towards an actual theory of quantum gravity.

To reiterate, since it is postulated that a current of
virtual particles produces relativistic quantum space-
time, we need a way to describe a Feynman diagram
that exists outside of spacetime. We cannot possibly
do this with a graphical depiction of the diagram. For
a Feynman diagram preceding spacetime, the posi-
tion of the nodes and the lengths of the branches is
irrelevent; all we need to do is state the connectivity
and directionality of the events and the composition
of the branches. Doing so captures the essence of
the interaction and it represents all of the possible
conformations of the Feynman diagram.
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Nodal Incidence matrices can be used to describe
networks composed of nodes and branches (which
connect the nodes). Typically the branches possess
directionality. Nodal incidence matrices can be used
to describe the configuration of one-way and two-way
streets in a city, electrical networks and many other
types of networks (9). In our case, we are going to
use nodal incidence matrices to describe Feynman
diagrams.

Using nodal incidence matrices to describe Feynman
diagrams is a useful concept and though not as expe-
dient to understand as a graphical diagram, nodal in-
cidence matrices generalize the diagram. One might
imagine stretching and/or shrinking some or all of
the branches and/or moving the nodes around in
spacetime. A nodal incidence matrix captures all of
these configurations because as far as the matrix
is concerned, all that matters is the connectivity of
the diagram, the directionality of the branches and
the composition of the branches (i.e., a branch rep-
resents a certain type of particle).

Constructing a nodal incidence matrix for a Feyn-
man diagram is straightforward. Since our nodal in-
cidence matrix represents a Feynman diagram, let’s
denote it F. We shall define the elements of the nodal
incidence matrix F = [pnfjk]. Each type of particle
is represented by a unique positive integer pn that
we are allowed to arbitrarily choose. In our example,
the Feynman diagram, or interaction, involves an
electron, proton and a graviton. We shall arbitrarily
choose pe− = 1, pp+ = 2 and pG = 3.
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Next we define fjk which is dependent upon whether
the branch leaves, enters, enters or leaves, or neither
enters or leaves, a node. It is defined as follows:

fjk =


+1 if branch k leaves node j
−1 if branch k enters node j
i if branch k enters or leaves node j
0 if branch k does not touch node j

(15)

1 2

3 4

1 2 3

4 5 6

7 8

Figure 3: Enumerating a feynman diagram

So given these definitions and by referring to Figure
3, it is trivial to construct the corresponding nodal in-
cidence matrix. In the diagram, the circled numbers
represent nodes, whereas the uncircled numbers
represent branches. The numbering is arbitrary.
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The resulting nodal incidence matrix is

F =


branch→ 1 2 3 4 5 6 7 8

node 1→ −2 2 0 0 0 0 3 0
node 2→ 0 −2 2 0 0 0 0 −3
node 3→ 0 0 0 −1 1 0 −3 0
node 4→ 0 0 0 0 −1 1 0 3


The elements of F tells us what is where and what
happens where. For example, given our definitions,
f1,1 = −2 tells us that a proton enters node 1, f2,3 = 2
tells us that a proton leaves node 2, f4,5 − 1 tells us
that any electron enters node 5, f3,7 = −3 tells us
that a graviton enters node 3 and f3,6 = 0 tells us
node 3 is not touched by branch 6, etc.

The process of constructing a nodal incidence matrix
F is not canonical since the nodes and branches
of the diagram are numbered arbitrarily. However,
if the numbering scheme is designated along with
the nodal incidence matrix, everyone would draw an
equivalent Feynman diagram upon deciphering it.
The interchange of any rows (columns) merely rep-
resents a different arbitrary numbering of the nodes
(branches), which lead to equivalent diagrams.

We now have a way, to not only generalize conven-
tional Feynman diagrams that live within spacetime,
but also to designate Feynman diagrams that live
outside or precede spacetime. This development will
be very important in the development of a theory of
quantum gravity since such a theory will ultimately
rest upon the quantization of spacetime.
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