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Abstract
The article presents generalized vectorial Lorentz transformation formulas applicable to spacetimes of arbitrary
dimensions within the framework of special relativity. It introduces a novel notation to differentiate between
temporal coordinates and proper time, and assumes the speed of light as dimensionless and set to 1. This
approach results in a homogeneous metric space, termed U-space, facilitating the extension of Lorentz
transformations beyond the conventional four-dimensional spacetime to spaces with any number of dimensions.
The transformations are derived and detailed for velocities, accelerations, and other vectors in U-space,
highlighting their universality and ease of application compared to traditional methods.

In the framework of special relativity, we encounter a concept of time

that is attributed to two distinct notions:

1. Time as one of the coordinates of spacetime, holding a unique
significance. In this context, time as a coordinate possesses spatial pro-
perties and is relative, as the Lorentz transformation alters the temporal
coordinate values of individual points, just as it does the spatial coordi-
nate values. The time axis in spacetime is typically denoted by the capital
letter T

2. Time as the proper time parameter of material points moving
through spacetime (denoted by the lowercase letter ¢). The parameter
t lacks spatial properties, is a scalar that continuously increases, and

remains invariant under Lorentz transformations.

Given these differences between the two approaches, I propose to
denote the time axis with the capital letter U. Hence, the temporal coor-
dinate of points in spacetime will be indicated by the lowercase letter w,
while the proper time of material points will continue to be denoted by
the letter t.

Subsequently, for simplification, we assume that the speed of light
is set to 1 and is dimensionless. Therefore, the velocity of massive point
objects (vector ¥) is also dimensionless, and its absolute value is constra-
ined to the right-open interval (0, 1). In this scenario, the time axis U
must possess a spatial dimension, similar to the other axes. This appro-

ach results in a homogeneous metric space, which, to distinguish it from



spacetime, we shall refer to as U-space.

Note: In diagrams depicting two-dimensional and three-dimensional
spacetimes, it 1s customary to represent the time axis as vertical. Ho-
wever, in all charts illustrating processes occurring over time, the time
axis 18 always horizontal. Therefore, it appears that representing the

time axis as horizontal 1s more natural and intuitive.

In the context of special relativity, two-dimensional, three-dimensional,
and four-dimensional spacetimes (U-spaces) are typically considered, due
to the widely accepted view that we live in a four-dimensional spaceti-
me. However, from a formal standpoint, there is nothing that precludes
the use of this theory to explore spaces with more dimensions than four.
(These dimensions could even number in the millions and beyond). The-
refore, let us define an n + 1-dimensional U-space, where n is any natural

number.

The n + 1-dimensional U-space is a flat, Fuclidean, homogeneous,
metric space with an imposed Cartesian coordinate system with axes
U, X1, X3,..., , X,,. The position of points in this space will be denoted

by the pair (u, ), where: ¥ = (X1, T2y .eey , Tp).
The world line of a point object is defined by the vector function:
m(u) = [z1(uw), z2(u), ..., Tn(u)] (1)

The velocity U and acceleration @ of this object are also vector func-

tions:
L, dr(u)  [dzi(u) dza(u) dx,(u)
o) = du [ du = du ' du ] 2)
(u) = do(u)  d*F(u) [d2a:1(u) d*zo(u) dzwn(u)]
 du du? | du?  du? ' du?

(3)

The velocity vector ¥ = (v1, V2, ...y, Uy) is subject to a constraint

on its magnitude || < 1, meaning;:




Therefore, the velocity vector space is nonlinear, confined to the in-
terior of an m-dimensional sphere with radius 1, where the composition

of two velocities is governed by a nonlinear formula:
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where Uy is the velocity of an object in the reference frame of another

U=

object, whose velocity is V. The dot denotes the scalar product of two
vectors. The above formula results from the Lorentz transformation and

applies to U-space of any number of dimensions.

Note! Formula (5) was derived in the appendiz at the end of the
article as formula (A.40). The above formula is more commonly known

in the version pertaining to two-dimensional U-space:
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In turn, the proper time of a massive point object is determined by

the formula:

t(u) = /:\/1 — |F(w)|? du (7)

ug is the location where the world line of a point object begins.
We observe that the proper time of a point object is a positive function
that continuously increases, indicating that the object’s time is its scalar
parameter greater than or equal to zero. This formula is a result of the
Special Theory of Relativity (STR). The proper time of point objects
in U-space still measures distance. The object’s time literally defines the
length of its world line measured in its reference frame. Physically, time
always has a non-negative value and continually increases for individual
massive physical points moving in U-space. A second is simply a measure
of distance with the conversion factor ¢ = 299792 458 [m/s]. It is with

this speed that we move along the U-axis in U-space.



In the concept of U-space, the time axis T in spacetime, which is
scaled in seconds with the scale factor ¢, has been replaced by the U-
axis, which has the same measure as the other axes. We have obtained
a homogeneous, flat, metric space with an imposed Cartesian coordinate
system. Therefore, we must adapt the Lorentz transformation to these

new notations.

To begin, let us define the Lorentz transformation vector. The non-
zero Lorentz transformation vector will be denoted by the symbol 4. This
vector specifies the velocity of an object for which we wish to rotate the
axis U such that, after the transformation, the object moving at such
velocity in U-space would have its world line (or tangent to the world line
in cases where the line is not straight) parallel to the axis U. Simply put,
by using the Lorentz transformation, we aim to transition into the rest

frame of reference of the object moving at the velocity w.

However, we cannot accomplish this through a mere isometric rota-
tion of U-space, because, after the transformation, light must still travel
at speed 1 (the light ray must still form a 45° angle with respect to the axis
U). After the transformation, within the "field of view" (in the light cone
directed towards the past) of each observer, all objects that were visible
before the transformation must remain visible. However, the coordinates
u and 7 of points’ positions in U-space, the velocity vectors ¥, and the
acceleration vectors @ of all massive point objects on their world lines
will undergo changes. The total energies E. of massive objects as well as
the kinetic energies of light rays will also change. The wavelength of light
rays (photon) will be denoted by A. Meanwhile, the vector connecting
the observed object in the light cone to the observer will be denoted as s.
The unit vector 8§ will indicate the direction of the light ray sent by the

observed object.

The aforementioned elements, after transformation, will be denoted
with a prime symbol (). To begin, we will present the Lorentz transforma-
tion formulas for two-dimensional U-space, which are significantly simpler
than those for spaces of higher dimensions. In two-dimensional U-space,

all mentioned vectors are one-dimensional, hence the vector notation is



omitted. For two-dimensional U-space, the Lorentz transformation is de-
scribed by the formulas:
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For U-space with more dimensions than two, the Lorentz transfor-

mation formulas are somewhat more complex:

u — 7-W
u = (16)
1— @]
YRX T} Uu
7= @ (17)
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Based on the Lorentz transformation formulas, it can be readily ve-
rified that the proper time of an object is an invariant of the Lorentz
transformation. If we calculate the integral (7) for any two points located
on the same world line, the value of this integral in all reference frames
remains the same. Therefore, the time of massive physical objects is not
relative; it is an objective category, though it is distinct for each physical
point. The time of a point object precisely determines its position on the

world line.



Appendix

The general Lorentz transformation formulas from (16) to (21), as
presented above, are not found anywhere in the scientific literature, hence
the necessity to provide derivations. These formulas will first be derived
for three-dimensional U-space. Subsequently, they will be generalized to

pertain to U-space of any number of dimensions.
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Figure 1

Above in Figure 1, a plane with a Cartesian coordinate system with
axes X, Y imposed on it is depicted. This plane is a section of the U-

space at the point w and is perpendicular to the U-axis. On this plane



lie vectors @ and 7, where vector 06 is a Lorentz transformation vector
representing the velocity of the object for which we want to determine the
"rest" frame of reference. Any point on this plane is marked as vector 7.
Figure 1 also shows a nonlinear velocity vector space, which is bounded

within a circle of radius 1.

We will begin by deriving the formula for the Lorentz transformation
using the vector @ for the coordinate u and the vector 7. To this end, we
will rotate the axes X, Y around the axis U by an angle &. The axes in
this new position will be denoted X5, Y;. The relationships between the
coordinates (x,y) of vectors in the original coordinate system and the

coordinates (a1, y1) of vectors in the new axis system are as follows:

x1 =xcos& +ysin& (A.1)
Y1 =ycos& — rsin& (A.2)
where:
. Wy Wy
sin & = ) cos & = 7 (AB)
|| ||

Based on the above formulas, we obtain:

Wy, = |W|, wy,, =0 (A.4)
7w Yyw, — TW

L1 =S Y= : = z (A5)
|| ||

where the expression with a dot denotes the scalar product of vectors.

Now, based on formula (8), we will calculate u':

, U — Wy,
U = ———
V1 —|w]?

By substituting the expressions from (A.4) and (A.5), we obtain:

u— T W

u=— (A.6)

V1 —|w]?
Then, based on formula (9), we will calculate x:

T1 — UW,,

/
Iy



Similarly to before, we substitute the expressions from (A.4) and

(A.5):
N A
rA = ——— .
SRV TTE

The value of the coordinate y, after transformation will not change,

because the axis Y7 is perpendicular to the transformation vector .

Yr = Y1 = (A.8)

||

To return to the coordinate system with axes X, Y, we must rotate

the axes X7, Y7 around O by an angle —&.
' = xjcos& — y)sin& (A.9)
y' = x| sin & + yj cos & (A.10)

When we substitute the expressions from (A.7) and (A.8) as well as
from (A.3) into (A.9) and (A.10), we obtain:

716 — u|d|? W, — TW

= |J2ww—y t T, (A.11)
|W|%/1— || ||

, 7w — u|w)? TWy — Yw,

Y = Wy — — w A.12
RV e T
Formulas (A.11) and (A.12), which are symmetric with respect to

the coordinates « and y, need to be brought into a form that allows them

to be expressed by a single vector equation (17).
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Due to the symmetry between the coordinates x, y, the transfor-

mation of formula (A.12) will look analogous. Therefore, we can state

without performing the calculations:

—

’ T - W u
Yy =y+ - — |wy,  (A.14)
V1= [@|? 1+\/1—|w|2) V1—[@[?
Formulas (A.13) and (A.14) for three-dimensional U-space are the
decomposition into coordinates of the vector ¥/ of the general vector
formula (17):

-/ — F.u_j u —
=7+ — w (A.15)

VIZTGE (14+yI-[aR)  VIZTar

It should be noted that if we apply the reverse Lorentz transforma-

tion vector — to the coordinates (u’, x’,y’), after the transformation

10



of some point, by using formulas (A.6) and (A.15), we will obtain the
original coordinates (u,x,y) of that point. It is easy to verify that the
general formulas (A.6) and (A.15) apply to U-space of any number of

dimensions.

To derive formula (18) for the transformation of the velocity vector,
we will use formulas (A.6) and (A.15), which were derived above. We
assume that an inertial point with velocity ¥ starts from the origin of the
coordinate system of U-space, of any number of dimensions. Adopting this
assumption will significantly simplify the calculations, as the origin of the
U-space coordinate system does not change its position when applying
the Lorentz transformation. The position 7 of this point as a function of
u is defined by the formula: ¥ = uwv. Meanwhile, after transformation

with the vector @, we have the formula: ¥/ = 4/¥,’, which means:

7 =7 (A.16)

Let us substitute into the above formula the expressions from (A.6)

and (A.15):

., \/1—|117|2q_|_ V1—|w|? 7+ W0 u .
U — 7w u— 7w /1_|13|2 (1_|_ /1—|u7|2> V1— |2

For the sake of simplifying the calculations, we assume the value
u = 1, then ¥ = ¥ and we can write:

1 — 7w 1— 7w 1— @2 (1+ /1—|'LU|2> /1— |52

Vv 1—|w|? U-w 1
v = —l» —|»"7‘|' ——==|®
1 — -1 (1—7-10) (1_|_ 1— ,J;|2) 1— -0

V1—|w)? v —1—/1—|w|?
6’:#6—{— el w (A.17)

— =

1 — & (1-5-@) (14/1—[@])

Thus, we have obtained the general formula (18). This formula is

applicable to U-space of any number of dimensions. Also, by transforming

11



¥’ with the reverse vector —, we will retrieve the original velocity vector
.

To derive formula (19) for the transformation of the acceleration
vector @, we will use formulas (A.1) and (A.2) for the rotation of axes X,
Y in order to align the Lorentz transformation vector @ with axis X;.

After the rotation, we obtain the following vectors:

Wy, = ||, wy, =0 (A.18)
v-w VyWyp — VW

Ve, = 757 Uy, = — - — (A19)
|| ||
a-w Ay, Wy — ApW

Ar, = 7T Ay, = — — — (A20)
|0 ||

From the generally known Lorentz transformation formulas for a two-

dimensional acceleration vector, we have:

= <—V1‘W ) - (A21)

o 1-— |’ll7|'Um1

|- |2 ( o
a, = a,, + ———>—a,, A .22
n =1 a0 T T (o, (A-22)

Upon substituting the expressions from formulas (A.19) and (A.20):

"Wl (1 - §-w)
1— |2 (v, Wy — Vew,) @-W
! AyWy — ApWy + ~— Y
. le(l—ﬁ“)zly v 1— 7%
o = 1—|a|? {(aywm_awwy)(l_'wam_vywy)+(vywm_vwwy)(amwm+aywy)}
" | (1- 7By 1—4-
o — 1— |w)|? [ayww—awwy + (amvy—ava)hmz]
) (1—T-w) 1— -0
1— |2 -
a, = Ay W, — AWy + (AzVy —ayvy)|W]?]  (A.24)
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To return to the previous coordinate system X, Y, we will apply
formulas (A.9) and (A.10) along with (A.3):

’r Wy ’ wy
a, — awlﬁ — Cl,yllg (A25)
’UJy W,
CL; = awlﬁ —|— y1 | _’l (A26)

After substituting expressions from (A.23) and (A.24) into (A.25)
and (A.26), we obtain:

3
w, (@) (VI=TBP) + w, (1= [@]?) [a,w, — ayw, + (a,0. — azv,) 5P

e [GR(L — 5-)?
(A.27)
3
wy (@®) (V=) + w, (1= |]*)[a,w, — a,w,+ (a,v,— ayv,) | GF]
Ty = |BR(1 — 7-5)°
(A.28)

Now, formulas (A.27) and (A.28) need to be transformed in such a
way that they can be written in the form of a single, general formula
(19).

o = AN Jw, @B)1-[E] + w,(aw,—ayw.) %@Wr%%1

(1—-7-®)* | |@|2(1 — T-D) 1— 7@

1—|@]? [ (awl+ayw,w,)\/1—[B[? + a,w? — ayw,w, + Wy (ay v — ayvy)

|

(1—7-%) |@|2(1 — T-0) 1— 7%
o 1—|@)? a,w?\/1—|w|? + a,ywmwy(\/l—|1b’|2_1)—|— am’w; N wy (ayv, — azv,)
* (1-7-w) |@|2(1 — T-0) 1—o-%
r 1— I’lE|2
T (1 - 7-w)®
a,w?\/1—|%? +a,w,w, <\/ 1— IQE|2_1> +a, w2+ (a,wi —a,w?) +wy(ay'vz—am'uy)
|B|2(1 — T-%) 1— 5w
P S (C1
’ ﬂ 7- @)’
aw'wm<\/ — |u‘;’|2_1> +ayw,w, <\/1— |u‘)’|2_1> + am(wz + w?) N wy(a,v, — a,v,)
|B|2(1 — -10) 1— 5%
. 1—|@)? (a¢w§+1wu&um)(x/l—wﬂﬂz—J)-%amhﬁP_Fz%xava—thmy)
a. —=
*T (1—7-0) |%|2(1 — ) 1— §-%
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(1—7-®)P |1—-7-@F |B|2(1 — -10) 1— 5@

, 1_|,u—)’|2 [ a, wm(amUJm+aywy) (1—\/ 1—|'lB|2) a,ywyvm—agc’wy’vy]
. +

x
(1—7-@) |1—-7-3 |@|2(1 — T-@) 1—3-@

1—|w|? [ a Wg (@ 0) (1_\/1—|w|2) + aywyvm—amwyvy—l-(awwwvw—amwmvm)]

Note: 1=¥ L-w® _ 1
' | |2 1++/1— |52
;1| ! a, w, (@-15) v, (@-18) —aw(ﬁ'%ﬁ)]

T (A=F®) |[1-TF (1 F.40) (1+ /71_|u~,|2) 1 — 5@

1— |2 a-w a-w
a;::—_’ 2 am—l—T’vm— W,
(1—7- ) 1—%-@ (1—F-B) (1+ 1— zﬁ|2)
(A.29)
Analogously to (A.27), we transform formula (A.28):
, 1—|@|? a-w a-w
Ay = oo (W T T sV T S —w
(1—7-) — ¥ (1—'v-w)(1—|—«/1—|w|2>
(A.30)

Formulas (A.29) and (A.30) represent the decomposition into co-

ordinates aj and aj, of the general formula (19) for three-dimensional

U-space:
-, 1— w2 | a-w a-w .
=~ o |0t TS U~ w
(1—&-@) 1—% (1 F.5) (1+\/1—|w|2>
(A.31)

Formula (A.31) applies to U-space of any dimension. When we apply
formula (A.31) to the vector @’ with the inverse Lorentz transformation

vector —, we obtain the original acceleration vector a.

We will derive formula (20) for the transformation of vector § im-
mediately for U-space of any dimension (similarly to what we did for the

velocity vector). We assume that the vector § = #p — 74, where point
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A is located in the light cone of observer B, so |§| = up — ua. For
simplicity of calculations, we assume that point A is located at the origin

of the coordinate system O, then:
’IT"B = §, up = |§| (A32)

With this assumption, we can employ formula (A.15) for the trans-

formation of vector &, substituting the values from (A.32) into it:

8- W El .

=5+ — w (A.33)

W( +yI=f@P)  Vi-laP
7](3-@ ( +W)

=/

3 =5+ (A.34)
i o
o 5(1—gw+wh-¢mﬂ_*
_F_ (A.35)

VI (14 T-TaP)

Thus, we obtained formula (20). Formula (21) for the unit vector §’
is derived by dividing the right side of equation (A.35) by the length of
vector |§”|. From (A.32) and the assumptions made during the deriva-
tion of (A.35), it follows that up = |§| and consequently uz = |57|.
Therefore, from (A.6) we have:

up — rg-w
13| = uly = ——-2 (A.36)

BT I aP

Upon substituting the expressions from ( .32), we obtain:

|5] = 5w

|57 = =
1— le2

(A.37)
— §-w
V1—|d|?
To obtain equation (21) for &', we divide (A.35) by (A.38):

L VTR . iR BI(1-sd+ VI-TaP)
S = w
(1—5@)5]" (1—3) quwP@+JL4ﬂﬂ
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|57 = |§’| (A.38)




VI—[d[? 1— 8% + /1 — [d]2
el L PO + ] (A.39)
L=8d@ (1 5.) (141 [@])

The derived formulas (16) - (21) of Lorentz transformation appear

to be more universal and easier to apply than the methods previously
used. So far, to perform the Lorentz transformation, the coordinate sys-
tem was rotated to align the transformation vector, denoted here as 0,
with one of the axes of the rotated coordinate system. (Typically, this
was the X axis). Therefore, each coordinate had to be treated separately,
and consequently, general transformations for spacetime of any dimensio-
nality could not be conducted. (For example, four-vectors only applied to
four-dimensional spacetime). It is essential to emphasize this: the Special
Theory of Relativity imposes no restrictions on the number of dimensions

of spacetime (U-space).

It remains to show where the nonlinear formula (5) for adding two
velocities came from. It provides, in a given reference frame, the velocity
¥ of an object that, in the reference frame of another object moving
with velocity V', has velocity @. Formula (5) directly arises from formula
(A.17), where we must subject the vector ¥p to Lorentz transformation

by the vector w0 = —V:

VIHIVE o (—V) =1 — /1= |V2

V= ———5 %+ - —(—V)
1= (=V) {1—6’0-(—V)}(1—|—\/1—|V|2>
\/1—|V |2 To-V4+144/1=|V|2

6:—""0 ° vE 5 (A.40)

el ¥
14+ 0,V

(1+ 60.17) <1 + m>
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