The Time-Neutral Exterior Schwarzschild Metric in Polynomial Form

Kevin Loch ${ }^{\text {国 }}$
(Dated: 2024/02/27)

Abstract

The time-neutral metric is introduced and the time-neutral exterior Schwarzschild metric is converted to polynomial form in r and total mass M. The polynomials are found to be cubic with no constant term, which allows the two non-zero roots of each to be extracted from the reduced quadratic form.

Keywords: general relativity, time dilation, neutral metric, metric engineering, quantum gravity

THE TIME-NEUTRAL METRIC

A time-neutral metric is an exact solution to the Einstein field equations[T] multiplied by the inverse length scalar $1 / c^{2} d t^{2}$, and set equal to one. The time-neutral metric with signature $(+,-,-,-)$ is given by:

$$
\begin{equation*}
\frac{d s^{2}}{c^{2} d t^{2}}=\frac{d \tau^{2}}{d t^{2}}=1 \tag{1}
\end{equation*}
$$

Multiplying the line element by this scalar is a special coordinate transformation that also converts coordinate infinitessimals to dimensionless ratios ${ }^{\text {m }}$

Setting the transformed metric to one represents neutral time dilation $\left(\Delta t^{\prime}=\Delta t\right)$, as opposed to maximal time dilation of the zero-time metric $d \tau^{2} / d t^{2}=0$. That finite, real, solutions to time-neutral metrics exist with $M \neq 0$ may be surprising. It is especially counter-intuitive for the Schwarzschild metric[z], which does not have the opposite
 do exist mathematically.

Further transforming the time-neutral metric into polynomial form has the effect of replacing the divergence at $r=0$ in the standard form of the metric, with the constraint $v_{r}^{2} / c^{2} \neq 0$ in the polynomial form. Even if this is not physical it might be a useful tool for quantum gravity research.

The open-source software tool knsolver[5] can be used to generate plots of solutions to the time-neutral and zerotime metrics. It uses numerical methods on the standard form of the Kerr-Newman[6] metric which is flexible but slow, especially for precision results. Converting a time-neutral metric to polynomial form may allow for fast exact solutions, depending on the degree of the polynomial.

The time-neutral metric should not be confused with metrics of neutral signature[$-\mathbb{I}](+,+,-,-)$, which are often referred to as "neutral metrics" in mathematical literature.

POLYNOMIAL FORM

As shown in the proof below, the time-neutral exterior Schwarzschild metric in spherical coordinates (t, r, θ, φ), with test particle velocities converted to v^{2} / c^{2}, as a polynomial in r and total mass M are given by:

$$
\begin{gather*}
\left(\frac{v_{r}^{2}}{c^{2}}+\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r^{3}+\left(1-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}}^{2} r^{2}-r_{\mathrm{s}}^{3} r=0 \tag{2}\\
\frac{8 G^{3} r}{c^{6}} M^{3}-\left(1-\frac{v_{\Omega}^{2}}{c^{2}}\right) \frac{4 G^{2} r^{2}}{c^{4}} M^{2}-\left(\frac{v_{r}^{2}}{c^{2}}+\frac{v_{\Omega}^{2}}{c^{2}}\right) \frac{2 G r^{3}}{c^{2}} M=0 \tag{3}\\
r_{\mathrm{s}}=\frac{2 G M}{c^{2}}, \quad(r \geq R), \quad\left(v_{r}^{2} / c^{2} \neq 0\right) \tag{4}
\end{gather*}
$$

[^0]As both are cubic with no constant term, the two non-zero roots of each can be recovered from the reduced quadratic equations:

$$
\begin{gather*}
\left(\frac{v_{r}^{2}}{c^{2}}+\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r^{2}+\left(1-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}}^{2} r-r_{\mathrm{s}}^{3}=0 \tag{5}\\
\frac{8 G^{3} r}{c^{6}} M^{2}-\left(1-\frac{v_{\Omega}^{2}}{c^{2}}\right) \frac{4 G^{2} r^{2}}{c^{4}} M-\left(\frac{v_{r}^{2}}{c^{2}}+\frac{v_{\Omega}^{2}}{c^{2}}\right) \frac{2 G r^{3}}{c^{2}}=0 \tag{6}\\
r_{\mathrm{s}}=\frac{2 G M}{c^{2}}, \quad(r \geq R), \quad\left(v_{r}^{2} / c^{2} \neq 0\right) \tag{7}
\end{gather*}
$$

This agrees with the two non-zero roots for each implied by plots generated from knsolver[5] when electric charge Q and angular momentum J are set to zero.

PROOF

Deriving the polynomials involves basic algebraic manipulation but special care must be taken to not lose the degrees of freedom represented by the inverse sum $\left(1-\frac{r_{\mathrm{s}}}{r}\right)^{-1}$ in the $d r^{2}$ term. This proof also uses some substitutions that are not strictly necessary here but can be used to help manage the proliferation of length factors in the higher order metrics [6, [2, [3].

We begin with the exterior $(r \geq R)$ Schwarzschild metric[$[2]$ in spherical coordinates (t, r, θ, φ) and metric signature $(+,-,-,-)$:

$$
\begin{gather*}
d s^{2}=c^{2} d \tau^{2}=\left(1-\frac{r_{\mathrm{s}}}{r}\right) c^{2} d t^{2}-\left(1-\frac{r_{\mathrm{s}}}{r}\right)^{-1} d r^{2}-r^{2} d \Omega^{2}, \quad(r \geq R) \tag{8}\\
r_{\mathrm{s}}=\frac{2 G M}{c^{2}}, \quad d \Omega^{2}=d \theta^{2}+\sin \theta d \varphi^{2} \tag{9}
\end{gather*}
$$

Divide the metric by $c^{2} d t^{2}$ and set equal to one to obtain the time-neutral metric, also convert test particle velocities to v^{2} / c^{2}. This is the equation we will convert to polynomial form:

$$
\begin{gather*}
\frac{d \tau^{2}}{d t^{2}}=\left(1-\frac{r_{\mathrm{s}}}{r}\right)-\frac{v_{r}^{2}}{c^{2}}\left(1-\frac{r_{\mathrm{s}}}{r}\right)^{-1}-\frac{v_{\Omega}^{2}}{c^{2}}=1, \quad(r \geq R) \tag{10}\\
\frac{v_{r}^{2}}{c^{2}}=\frac{d r^{2}}{c^{2} d t^{2}}, \quad \frac{v_{\Omega}^{2}}{c^{2}}=\frac{r^{2} d \Omega^{2}}{c^{2} d t^{2}} \tag{11}
\end{gather*}
$$

Multiply the $d t^{2}$ and $d \Omega^{2}$ terms by $\left(1-\frac{r_{\mathrm{s}}}{r}\right) /\left(1-\frac{r_{\mathrm{s}}}{r}\right)$, then simplify the denominator by dividing both sides by r. At this point we must add the constraint $v_{r}^{2} / c^{2} d t^{2} \neq 0$ as we are combining the $d r^{2}$ term inverse length factor with the other terms in the denominator.

$$
\begin{gather*}
(r \geq R), \quad\left(v_{r}^{2} / c^{2} \neq 0\right) \tag{12}\\
\frac{\left(1-\frac{r_{\mathrm{s}}}{r}\right)\left(1-\frac{r_{\mathrm{s}}}{r}\right)-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\left(1-\frac{r_{\mathrm{s}}}{r}\right)}{1-\frac{r_{\mathrm{s}}}{r}}=1 \tag{13}\\
\frac{\left(1-\frac{r_{\mathrm{s}}}{r}\right)\left(1-\frac{r_{\mathrm{s}}}{r}\right)-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\left(1-\frac{r_{\mathrm{s}}}{r}\right)}{r-r_{\mathrm{s}}}=\frac{1}{r} \tag{14}
\end{gather*}
$$

Multiply out the $d t^{2}$ term product, then simplify the numerator by multiplying both sides by r^{2}, then group by terms of r being especially careful with signs of combined factors:

$$
\begin{equation*}
\frac{1-\frac{2 r_{\mathrm{s}}}{r}+\frac{r_{\mathrm{s}}^{2}}{r^{2}}-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\left(1-\frac{r_{\mathrm{s}}}{r}\right)}{r-r_{\mathrm{s}}}=\frac{1}{r} \tag{16}
\end{equation*}
$$

$$
\begin{gather*}
\frac{r^{2}-2 r_{\mathrm{s}} r+r_{\mathrm{s}}^{2}-\frac{v_{r}^{2}}{c^{2}} r^{2}-\frac{v_{\Omega}^{2}}{c^{2}}\left(r^{2}-r_{\mathrm{s}} r\right)}{r-r_{\mathrm{s}}}=r \tag{17}\\
\frac{\left(1-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\right) r^{2}-\left(2-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r+r_{\mathrm{s}}^{2}}{r-r_{\mathrm{s}}}=r \tag{18}
\end{gather*}
$$

At this point we introduce temporary variables X, Y, to help capture the extra degrees of freedom in the inverse sum. Let X be the numerator on the left side of equation $\mathbb{\| 8}$:

$$
\begin{gather*}
\frac{X}{r-r_{\mathrm{s}}}=r \tag{19}\\
X=\left(1-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\right) r^{2}-\left(2-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r+r_{\mathrm{s}}^{2} \tag{20}
\end{gather*}
$$

The denominator sum is now split between numerators X and Y :

$$
\begin{gather*}
\frac{X}{r-r_{\mathrm{s}}}=\frac{X}{r}+\frac{Y}{r_{\mathrm{s}}} \tag{21}\\
\frac{X}{r-r_{\mathrm{s}}}=\frac{X r_{\mathrm{s}}+Y r}{r_{\mathrm{s}} r} \tag{22}
\end{gather*}
$$

It is now safe to multiply both sides by $\left(r-r_{\mathrm{s}}\right) r_{\mathrm{s}} r$, then we group by terms of X and Y :

$$
\begin{gather*}
X r_{\mathrm{s}} r=\left(X r_{\mathrm{s}}+Y r\right)\left(r-r_{\mathrm{s}}\right) \tag{23}\\
X r_{\mathrm{s}} r=X r_{\mathrm{s}} r-X r_{\mathrm{s}}^{2}+Y r^{2}-Y r_{\mathrm{s}} r \tag{24}\\
X r_{\mathrm{s}}^{2}=Y\left(r^{2}-r_{\mathrm{s}} r\right) \tag{25}
\end{gather*}
$$

Substitute symbols X_{f}, Y_{f}, for length factors associated with X and Y, then solve for Y :

$$
\begin{gather*}
X X_{f}=Y Y_{f} \tag{26}\\
X_{f}=r_{\mathrm{s}}^{2}, \quad Y_{f}=r^{2}-r_{\mathrm{s}} r \tag{27}\\
Y=\frac{X X_{f}}{Y_{f}} \tag{28}
\end{gather*}
$$

With equations 19 and [22, multiply by $r_{\mathrm{s}} r$ and substitute for Y using equation 28]:

$$
\begin{gather*}
\frac{X r_{\mathrm{s}}+Y r}{r_{\mathrm{s}} r}=r, \tag{29}\\
X r_{\mathrm{s}}+\frac{X X_{f} r}{Y_{f}}=r_{\mathrm{s}} r^{2} . \tag{30}
\end{gather*}
$$

Multiply by Y_{f}, then group by terms of X :

$$
\begin{gather*}
X Y_{f} r_{\mathrm{s}}+X X_{f} r=Y_{f} r_{\mathrm{s}} r^{2} \tag{31}\\
X\left(Y_{f} r_{\mathrm{s}}+X_{f} r\right)-Y_{f} r_{\mathrm{s}} r^{2}=0 \tag{32}
\end{gather*}
$$

Substitute symbols F_{1}, F_{2}, F_{3}, for the combined length factors:

$$
\begin{gather*}
X\left(F_{1}+F_{2}\right)-F_{3}=0 \tag{33}\\
F_{1}=Y_{f} r_{\mathrm{s}}, \quad F_{2}=X_{f} r, \quad F_{3}=Y_{f} r_{\mathrm{s}} r^{2} \tag{34}
\end{gather*}
$$

With equations [27, and [34, solve $F_{1}+F_{2}$, and with equation [20, $X\left(F_{1}+F_{2}\right)$:

$$
\begin{gather*}
F_{1}=r_{\mathrm{s}} r^{2}-r_{\mathrm{s}}^{2} r, \quad F_{2}=r_{\mathrm{s}}^{2} r \tag{35}\\
F_{1}+F_{2}=r_{\mathrm{s}} r^{2} \tag{36}\\
X\left(F_{1}+F_{2}\right)=\left[\left(1-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\right) r^{2}-\left(2-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r+r_{\mathrm{s}}^{2}\right] r_{\mathrm{s}} r^{2} \tag{37}\\
X\left(F_{1}+F_{2}\right)=\left(1-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r^{4}-\left(2-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}}^{2} r^{3}+r_{\mathrm{s}}^{3} r^{2} \tag{38}
\end{gather*}
$$

Solve F_{3} and $X\left(F_{1}+F_{2}\right)-F_{3}$:

$$
\begin{gather*}
F_{3}=r_{\mathrm{s}} r^{4}-r_{\mathrm{s}}^{2} r^{3} \tag{39}\\
X\left(F_{1}+F_{2}\right)-F_{3}=\left(1-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r^{4}-\left(2-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}}^{2} r^{3}+r_{\mathrm{s}}^{3} r^{2}-r_{\mathrm{s}} r^{4}+r_{\mathrm{s}}^{2} r^{3} . \tag{40}
\end{gather*}
$$

With equations [3.3 and 40, divide by r as the smallest degree of r is 2 :

$$
\begin{align*}
& \left(1-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r^{4}-\left(2-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}}^{2} r^{3}+r_{\mathrm{s}}^{3} r^{2}-r_{\mathrm{s}} r^{4}+r_{\mathrm{s}}^{2} r^{3}=0 \tag{41}\\
& \left(1-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r^{3}-\left(2-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}}^{2} r^{2}+r_{\mathrm{s}}^{3} r-r_{\mathrm{s}} r^{3}+r_{\mathrm{s}}^{2} r^{2}=0 \tag{42}
\end{align*}
$$

Convert to standard polynomial form in r by grouping terms by r, then inverting the sign of each term, and applying the constraints from equation [2:

$$
\begin{gather*}
\left(-\frac{v_{r}^{2}}{c^{2}}-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r^{3}-\left(1-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}}^{2} r^{2}+r_{\mathrm{s}}^{3} r=0, \tag{43}\\
\left(\frac{v_{r}^{2}}{c^{2}}+\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}} r^{3}+\left(1-\frac{v_{\Omega}^{2}}{c^{2}}\right) r_{\mathrm{s}}^{2} r^{2}-r_{\mathrm{s}}^{3} r=0, \quad\left(r \geq R, \quad v_{r}^{2} / c^{2} \neq 0\right) \tag{44}
\end{gather*}
$$

Convert to standard polynomial form in M by substituting $r_{s}=\frac{2 G M}{c^{2}}$, then grouping terms by M and inverting signs again:

$$
\begin{gather*}
\left(\frac{v_{r}^{2}}{c^{2}}+\frac{v_{\Omega}^{2}}{c^{2}}\right) \frac{2 G M}{c^{2}} r^{3}+\left(1-\frac{v_{\Omega}^{2}}{c^{2}}\right) \frac{4 G^{2} M^{2}}{c^{4}} r^{2}-\frac{8 G^{3} M^{3}}{c^{6}} r=0, \tag{45}\\
\frac{8 G^{3} r}{c^{6}} M^{3}-\left(1-\frac{v_{\Omega}^{2}}{c^{2}}\right) \frac{4 G^{2} r^{2}}{c^{4}} M^{2}-\left(\frac{v_{r}^{2}}{c^{2}}+\frac{v_{\Omega}^{2}}{c^{2}}\right) \frac{2 G r^{3}}{c^{2}} M=0, \quad\left(r \geq R, \quad v_{r}^{2} / c^{2} \neq 0\right) \tag{46}
\end{gather*}
$$

[1] A. Einstein. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354(7):769-822, January 1916. doi:10.1002/andp. 19163540702 .
[2] Karl Schwarzschild. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der KGouml;niglich Preussischen Akademie der Wissenschaften, pages 189-196, January 1916.
[3] Harold E. Puthoff. Advanced space propulsion based on vacuum (spacetime metric) engineering, 2012. arxiv:1204.2184.
[4] Swadesh M. Mahajan, Asghar Qadir, and Prashant M. Valanju. Reintroducing the concept of 'force' into relativity theory. Il Nuovo Cimento, 65B:404-417, July 1979.
[5] K. Loch. knsolver. https://github.com/kevinloch/knsolver, 2024.
[6] E. T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence. Metric of a Rotating, Charged Mass. Journal of Mathematical Physics, 6(6):918-919, June 1965. doi:10.1063/1.1704351.
[7] Yana Aleksieva and Velichka Milousheva. Minimal lorentz surfaces in pseudo-euclidean 4-space with neutral metric. Journal of Geometry and Physics, 142:240=253, August 2019. doi:10.1016/j.geomphys.2019.04.008.
[8] D. Brooks, N. Muskoe, D. McNutt, and A. Coley. Mathematical properties of a class of four-dimensional neutral signature metrics. Journal of Geometry and Physics, 97:1-13, November 2015. doi:10.1016/j.geomphys.2015.06.003.
[9] Johann Davidov, Gueo Grantcharov, and Oleg Mushkarov. Geometry of neutral metrics in dimesnion four, 2008. arxiv: 0804.2132.
[10] Martha P. Dussan, Nikos Georgiou, and Martin Magid. Minimal surfaces in the product of two dimensional real space forms endowed with a neutral metric, 2016. arxiv:1603.03877.
[11] Nikos Georgiou and Brendan Guilfoyle. The causal topology of neutral 4-manifolds with null boundary, 2016. arxiv: $1605.095 / 6$.
[12] H. Reissner. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Annalen der Physik, 355(9):106-120, January 1916. doi:10.1002/andp. 19163550905.
[13] Roy P. Kerr. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett., 11(5):237-238, September 1963. doi:10.1103/PhysRevLett.11.237.

[^0]: * kevin@loch.me
 ${ }^{1}$ In metrics where angular momentum $J \neq 0$, an arbitrary finite non-zero value can be assigned to the remaining linear $d t$ factors without affecting the neutral metric. knsolver sets this to t_{P}, but other values such as 1 , or even -1 also work. The remaining linear $d \varphi$ factors must then be derived from $d \varphi=v_{\varphi} d t / r$.

