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Abstract

It is a long standing question whether there exists an odd perfect number.
This article establishes a complete theory in order to prove that if an odd
perfect number n exists then n = pm2 with p prime and p ≡ 1 (mod 4), and
gcd (p,m) = 1.

1 Introduction

A perfect number is a positive integer that is equal to the sum of its pos-
itive divisors excluding itself. All presently known perfect numbers are even
[2].

Whether there exists an odd perfect number is one of the oldest open
problems in mathematics.

Perfect numbers [6][3][4][7] have continued to be of interest for thousands
of years because they have been studied by some of the brightest mathemati-
cians in history, but have yet to reveal the entirety of their nature. Around
330 B.C, the great mathematician Euclid was instrumental in the advances
made in the study of perfect numbers. The result of Euclid’s studies of per-
fect numbers is Euclid’s Perfect Number Theorem.
Euclid’s Theorem [5] is widely considered to be the first step mankind took
to understanding the nature of perfect numbers.

Euclid’s Perfect Number Theorem states that
If 2p − 1 is a prime number, then (2p−1)(2p − 1) is a perfect number.

Naturally, the question that arises after proving Euclid’s Perfect Number
Theorem is whether it describes all perfect numbers.
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That is to say, are all perfect numbers of the form (2p−1)(2p − 1)?
The next significant step in the answering of this question and the under-
standing of perfect numbers was made two thousand years after Euclid’s
results by Swiss mathematician Leonhard Euler. Euler proved that Euclid’s
formula for perfect numbers holds true for all even perfect numbers.

Euler’s Perfect Number Theorem [6] states that
if n is an even perfect number, then it is of the form n = (2p−1)(2p−1) where
p is some prime and 2p − 1 is a Mersenne prime.

Not only did Euler provide us with a useful theorem for even perfect
numbers, he also provided us with an

equally impactful theorem that allowed us to study the form of odd per-
fect numbers.
Euler’s Odd Perfect Number Theorem [5] states that
Any odd perfect number n (if it exists) must be of the form n = pβm2 with
p prime and p ≡ β ≡ 1(mod 4), and gcd (p,m) = 1.

One observation can be found in [1] where Touchard determined the pat-
tern of an odd perfect number( assuming it’s existence).
Touchard’s Theorem states that any odd perfect number(if it exists) must
have the form 12m+ 1 or 36m+ 9.

The next section in this article gives a detailed explanation to conclude
that if odd perfect number exists then β must be 1.

2 On the existence of Odd perfect Number

By Euler’s perfect number theorem we know that if n is an odd perfect
number then n = pβm2 where p is prime, m is odd, p ≡ β ≡ 1(mod 4) and
gcd(p,m) = 1.

Our aim is to prove that β = 1. On the contrary, suppose that an odd
perfect number n = pβm2 exists where β > 1 i.e., β ≥ 5.
With this assumption we begin this section. At first, we note that σ(m2) is
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an odd natural for every odd natural m. In fact, if m1,m2, .....,mi are all
distinct proper ( 6= 1) odd factors of m2 where mj < m, for all j = 1, 2...., i
then there are odd factors k1, k2, ....., ki, where kj > m for all j = 1, 2...i and
m1.k1 = m2.k2 = ..... = m2. Then the sum S = (m1 +k1)+(m2 +k2)+ .....+
(mi + ki) is an even natural and consequently, σ(m2) = S + 1 + m + m2 is
odd.
At the end of the article we shall conclude that such m and p cannot exist.

Before this conclusion let us establish the following results :

Theorem 1.

(i) σ(m2) < 2m2

(ii) 2p−1
p
m2 < σ(m2).

Proof. We have
σ(pβm2) = 2pβm2. Then σ(pβ)σ(m2) = 2pβm2.
Now σ(pβ) = 1 + p+ p2 + ....+ pβ > pβ and hence σ(m2) < 2m2. Thus (i) is
proved.
Now σ(pβ) = pβ+1−1

p−1
< pβ+1

p−1
.

Again σ(pβ)σ(m2) = 2p
β+1

p−1
p−1
p
m2. Hence it follows that 2p−1

p
m2 < σ(m2).

Thus (ii) is proved.

Theorem 2. The inequality p > 2m2 cannot be true.

Proof. If possible, let p > 2m2.
By theorem 1, we have
σ(m2) < 2m2 and
(p−1

p
)2m2 < σ(m2) (1)

But 2m2

p
< 1(by assumption). Therefore, 2m2 − 2m2

p
> 2m2 − 1 ≥ σ(m2),

(note that both 2m2 and σ(m2) are naturals). Hence, (p−1
p

)2m2 > σ(m2), a

contradiction to (1).

Theorem 3. m2 < p < 2m2 cannot be true.

Proof. If possible, let m2 < p < 2m2. We shall first prove
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Lemma 1. If p < 2m2 and then σ(m2) + 1 < 2m2.

Proof of lemma 1. By Theorem 1 (i) we have
σ(m2) < 2m2. If possible, let σ(m2) + 1 = 2m2. Now,
σ(pβ)σ(m2) = 2pβm2 = pβ(σ(m2) + 1)
⇒ σ(m2)(σ(pβ)− pβ) = pβ.
⇒ σ(m2)σ(pβ−1) = pβ

⇒ σ(m2) = pβ

1+p+p2+....+pβ−1

⇒ σ(m2) < p.
⇒ σ(m2) + 1 < p.(because, both σ(m2) and p are odd naturals).

But we have p < 2m2 = σ(m2) + 1. There arises a contradiction. Hence
the Lemma is proved.
Now we proceed to prove the Theorem. By Theorem 1 (ii),
we have 2m2 − 2m2

p
< σ(m2) (2)

Since m2 < p, therefore, 2m2

p
< 2. By the lemma we have σ(m2) + 1 < 2m2.

Then σ(m2) + 2 < 2m2 (since both σ(m2) + 1 and 2m2 are even). So,
2m2 − 2m2

p
> 2m2 − 2 > σ(m2), which contradicts (2). This completes the

proof.

Theorem 4. p < m2 < 3p
2

cannot be true.

Proof. If possible, let p < m2 < 3p
2

. We prove the following

Lemma 2. If p < m2 then σ(m2) + 2 < 2m2.

Proof of lemma 2. Since p < m2 < 2m2, by Lemma 1, we have
σ(m2) + 1 < 2m2. But σ(m2) + 1 is even (since σ(m2) is odd) and hence
σ(m2) + 2 < 2m2. Hence the Lemma is proved.
We shall now prove the Theorem. By Theorem 1 (ii),
we have 2m2 − 2m2

p
< σ(m2) (3)

Since 2m2 < 3p. Therefore, 2m2

p
< 3. By lemma 2 we have σ(m2) + 2 < 2m2

i.e., σ(m2) < 2m2 − 2 . So,
2m2 − 2m2

p
> 2m2 − 3 ≥ σ(m2), which contradicts (3). This completes the

proof.
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Theorem 5. 3p
2
< m2 < 2p cannot be true.

Proof. If possible, let 3p
2
< m2 < 2p. We first prove

Lemma 3. If 3p
2
< m2 then σ(m2) + 3 < 2m2.

Proof of lemma 3. Since p < m2, by Lemma 2, we have
σ(m2) + 2 < 2m2.

If possible, let σ(m2) + 3 = 2m2.
Now, 3p

2
< m2 ⇒ 3p < 2m2 ⇒ 3p+ 1 ≤ 2m2. Applying Theorem 1(ii) we

get (p− 1)2m2 < pσ(m2)
⇒ (p− 1)(3p+ 1) < pσ(m2)
⇒ (p− 1)(3p+ 1) + 1 ≤ pσ(m2)
⇒ 3p− 2 ≤ σ(m2) (4)
Now,
σ(pβ)σ(m2) = 2pβm2 = pβ(σ(m2) + 3)
⇒ σ(m2)(σ(pβ)− pβ) = 3pβ.
⇒ σ(m2)σ(pβ−1) = 3pβ

⇒ (3p− 2)σ(pβ−1) ≤ 3pβ (by (4))
⇒ (3p − 2)(1 + p+ p2 + ....+ pβ−1) ≤ 3pβ, which is false (since β ≥ 5).
Hence the lemma is proved.
Now let us prove the Theorem. By Theorem 1 (ii),
we have 2m2 − 2m2

p
< σ(m2) (5)

We have assumed that 2m2 < 4p. Therefore, 2m2

p
< 4. By lemma 3 we have

σ(m2) + 3 < 2m2 i.e., σ(m2) + 4 < 2m2(since σ(m2) + 3 and 2m2 are both
even). So,
2m2 − 2m2

p
> 2m2 − 4 > σ(m2), which contradicts (5). This completes the

proof.

Theorem 6. 2p < m2 < 5p
2

cannot be true.

Proof. If possible, let 2p < m2 < 5p
2

. Let us prove

Lemma 4. If 2p < m2 then σ(m2) + 4 < 2m2.

Proof of lemma 4. By Lemma 3, we have
σ(m2) + 3 < 2m2. But σ(m2) + 3 is even (since σ(m2) is odd) and hence
σ(m2) + 4 < 2m2. Hence the Lemma is proved.
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Now we move to prove the Theorem. By Theorem 1 (ii),
we have 2m2 − 2m2

p
< σ(m2) (6)

Since 2m2 < 5p. Therefore, 2m2

p
< 5. By lemma 4 we have σ(m2) + 4 < 2m2

i.e., σ(m2) + 5 ≤ 2m2 . So,
2m2 − 2m2

p
> 2m2 − 5 ≥ σ(m2), which contradicts (6). This completes the

proof.

Theorem 7. 5p
2
< m2 < 3p cannot be true.

Proof. If possible, let 5p
2
< m2 < 3p. First we prove

Lemma 5. If 5p
2
< m2 then σ(m2) + 5 < 2m2.

Proof of lemma 5. By Lemma 4, we have
σ(m2) + 4 < 2m2.

If possible, let σ(m2) + 5 = 2m2.
Now, 5p

2
< m2 ⇒ 5p < 2m2 ⇒ 5p+ 1 ≤ 2m2. Applying Theorem 1(ii) we

get (p− 1)2m2 < pσ(m2)
⇒ (p− 1)(5p+ 1) < pσ(m2)
⇒ (p− 1)(5p+ 1) + 1 ≤ pσ(m2)
⇒ 5p− 4 ≤ σ(m2) (7)
Now,
σ(pβ)σ(m2) = 2pβm2 = pβ(σ(m2) + 5)
⇒ σ(m2)(σ(pβ)− pβ) = 5pβ.
⇒ σ(m2)σ(pβ−1) = 5pβ

⇒ (5p− 4)σ(pβ−1) ≤ 5pβ (by (7))
⇒ (5p− 4)(1 + p+ p2 + ....+ pβ−1) ≤ 5pβ, which is false. Hence the lemma
is proved.
Now let us prove the Theorem. By Theorem 1 (ii),
we have 2m2 − 2m2

p
< σ(m2) (8)

We have assumed that 2m2 < 6p. Therefore, 2m2

p
< 6. By lemma 5, we have

σ(m2) + 5 < 2m2 i.e., σ(m2) + 6 < 2m2(since σ(m2) + 5 and 2m2 are both
even). So,
2m2 − 2m2

p
> 2m2 − 6 > σ(m2), which contradicts (8). This completes the

proof.

Theorem 8. 3p < m2 < 7p
2

cannot be true.
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Proof. If possible, let 3p < m2 < 7p
2

. Let us prove

Lemma 6. If 3p < m2 then σ(m2) + 6 < 2m2.

Proof of lemma 6. By Lemma 5, we have
σ(m2) + 5 < 2m2. But σ(m2) + 5 is even (since σ(m2) is odd) and hence
σ(m2) + 6 < 2m2. Hence the Lemma is proved.
Now we move to prove the Theorem. By Theorem 1 (ii),
we have 2m2 − 2m2

p
< σ(m2) (9)

Since 2m2 < 7p. Therefore, 2m2

p
< 7. By lemma 6 we have σ(m2) + 6 < 2m2

i.e., σ(m2) + 7 ≤ 2m2 . So,
2m2 − 2m2

p
> 2m2 − 7 ≥ σ(m2), which contradicts (9). This completes the

proof.

Theorem 9. 7p
2
< m2 < 4p cannot be true.

Proof. If possible, let 7p
2
< m2 < 4p. We now prove

Lemma 7. If 7p
2
< m2 then σ(m2) + 7 < 2m2.

Proof of lemma 7. By Lemma 6, we have
σ(m2) + 6 < 2m2.

If possible, let σ(m2) + 7 = 2m2.
Now, 7p

2
< m2 ⇒ 7p < 2m2 ⇒ 7p+ 1 ≤ 2m2. Applying Theorem 1(ii) we

get (p− 1)2m2 < pσ(m2)
⇒ (p− 1)(7p+ 1) < pσ(m2)
⇒ (p− 1)(7p+ 1) + 1 ≤ pσ(m2)
⇒ 7p− 6 ≤ σ(m2) (10)
Now,
σ(pβ)σ(m2) = 2pβm2 = pβ(σ(m2) + 7)
⇒ σ(m2)(σ(pβ)− pβ) = 7pβ.
⇒ σ(m2)σ(pβ−1) = 7pβ

⇒ (7p− 6)σ(pβ−1) ≤ 7pβ (by (10))
⇒ (7p− 6)(1 + p+ p2 + ....+ pβ−1) ≤ 7pβ, which is false. Hence the lemma
is proved.
Now let us prove the Theorem. By Theorem 1 (ii),
we have 2m2 − 2m2

p
< σ(m2) (11)
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We have assumed that 2m2 < 8p. Therefore, 2m2

p
< 8. By lemma 7, we have

σ(m2) + 7 < 2m2 i.e., σ(m2) + 8 < 2m2(since σ(m2) + 7 and 2m2 are both
even). So,
2m2 − 2m2

p
> 2m2 − 8 > σ(m2), which contradicts (11). This completes the

proof.

Now after proving the following two results we shall use Mathematical
Induction:

Result A If (2k−1)p
2

< m2 ⇒ σ(m2) + (2k − 1) < 2m2 for some k, then
kp < m2 ⇒ σ(m2) + 2k < 2m2.

Result B If kp < m2 ⇒ σ(m2) + 2k < 2m2 for some k, then
(2k+1)p

2
< m2 ⇒ σ(m2) + (2k + 1) < 2m2.

Proof of Result A. Suppose that (2k−1)p
2

< m2 ⇒ σ(m2)+(2k−1) < 2m2

for some k. Now let kp < m2. Then (2k−1)p
2

< m2 and hence by as-
sumption σ(m2) + (2k − 1) < 2m2. But σ(m2) + (2k − 1) is even. So,
σ(m2)+(2k−1)+1 < 2m2 i.e., σ(m2)+2k < 2m2. Thus Result A is proved.

Proof of Result B. Suppose that kp < m2 ⇒ σ(m2) + 2k < 2m2 for

some k. Now let (2k+1)p
2

< m2. Then kp < m2 and hence by assumption
σ(m2) + 2k < 2m2. We shall prove that σ(m2) + (2k+ 1) < 2m2. If possible,

let σ(m2) + (2k + 1) = 2m2. Now (2k+1)p
2

< m2 ⇒ (2k + 1)p < 2m2 ⇒
(2k + 1)p+ 1 ≤ 2m2. Applying Theorem 1(ii) we get (p− 1)2m2 < pσ(m2)
⇒ (p− 1)((2k + 1)p+ 1) < pσ(m2)
⇒ (p− 1)((2k + 1)p+ 1) + 1 ≤ pσ(m2)
⇒ (2k+ 1)p− 2k ≤ σ(m2) (12)
Now,
σ(pβ)σ(m2) = 2pβm2 = pβ(σ(m2) + (2k + 1))
⇒ σ(m2)(σ(pβ)− pβ) = (2k + 1)pβ.
⇒ σ(m2)σ(pβ−1) = (2k + 1)pβ

⇒ ((2k + 1)p− 2k)σ(pβ−1) ≤ (2k + 1)pβ (by (12))
⇒ ((2k+1)p−2k)(1 + p+ p2 + ....+ pβ−1) ≤ (2k+1)pβ, which is false. Thus
Result B is proved.

Hence by Mathematical Induction we now have proved the following
Lemma :

8



Lemma for Odd Perfect Number

(i) For every natural k, kp < m2 ⇒ σ(m2) + 2k < 2m2.

(ii) For every natural k, (2k+1)p
2

< m2 ⇒ σ(m2) + (2k + 1) < 2m2.

Now We can prove

Theorem 10.

(i) kp < m2 < (2k+1)p
2

cannot be true for any natural k.

(ii) (2k+1)p
2

< m2 < (k + 1)p cannot be true for any natural k.

Proof of (i). if possible, let kp < m2 < (2k+1)p
2

hold for some natural k.
By Theorem 1 (ii),
we have 2m2 − 2m2

p
< σ(m2) (13)

Since 2m2 < (2k + 1)p. Therefore, 2m2

p
< 2k + 1. By lemma (i) for Odd

Perfect Number we have σ(m2) + 2k < 2m2 i.e., σ(m2) + (2k + 1) ≤ 2m2 .
So,
2m2− 2m2

p
> 2m2−(2k+1) ≥ σ(m2), which contradicts (13). This completes

the proof of (i).

Proof of (ii). If possible, let (2k+1)p
2

< m2 < (k+1)p hold for some natural
k. By Theorem 1 (ii),
we have 2m2 − 2m2

p
< σ(m2) (14)

We have assumed that 2m2 < (2k + 2)p. Therefore, 2m2

p
< 2k + 2. By

lemma (ii) for Odd Perfect Number we have σ(m2) + (2k + 1) < 2m2 i.e.,
σ(m2) + (2k+ 2) < 2m2 (since σ(m2) + (2k+ 1) and 2m2 are both even). So,
2m2− 2m2

p
> 2m2−(2k+2) > σ(m2), which contradicts (14). This completes

the proof.

Thus from all the above theorems we have the general result as follows:

Theorem 11.
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If an Euler’s odd perfect number n = pβm2 exists (where β > 1) then the
following results hold.

(i) p > 2m2 cannot be true.

(ii) m2 < p < 2m2 cannot be true.

(iii) For any natural n, np < m2 < (2n+1)p
2

cannot be true.

(iv) For any natural n, (2n+1)p
2

< m2 < (n+ 1)p cannot be true.

But m and p are naturals. So, at least one of the four inequalities as
mentioned in Theorem 11 must hold. This can be justified as follows.
If p < m2 then we must have a greatest natural, say, n∗ such that n∗p < m2

(note that gcd(p,m) = 1, hence, equality cannot occur,i.e., m2 6= n∗p). Then
it follows that
either n∗p < m2 < (2n∗+1)p

2
or (2n∗+1)p

2
< m2 < (n∗ + 1)p must hold (since

gcd(p,m) = 1, equality never occurs).

Thus it is clearly justified that if m and p exist then at least one inequality
must hold. This observation contradicts Theorem 11. Hence m and p cannot
exist.

Now we definitely have the following

CONCLUSION : If an odd perfect number exists then β must
be 1 .
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