RIEMANN HYPOTHESIS IS PROVEN ON ONE PAGE

DMITRI MARTILA
INDEPENDENT RESEARCHER
J. V. JANNSENI 6-7, PÄRNU 80032, ESTONIA

Abstract. A short research about the Riemann Hypothesis. MSC Class: $11 \mathrm{M} 26,11 \mathrm{M} 06$.

There is a vivid interest in the Riemann Hypothesis, and there are no reasons to doubt Riemann Hypothesis. [1] Still, despite many attempts to prove the long-standing Millennium Prize problem, those have yet to be published in a reputable journal. Zeta function is $\zeta=\zeta(x+i y)$. The critical strip is $0<x<1$, the critical line is $x=1 / 2$.

The number $N(T)=\Omega(T)+S(T)$ of zeroes of zeta function has jumps only when $S(T)$ has a jump $\Delta S(T)=S(T+\delta T)-S(T)=1$ if $\delta T \rightarrow 0$, see Ref. [2, 3, 4], where $0<x<1,0<y \leq T+\delta T$ area was studied. Therefore, $\Delta N(T)=N(T+\delta T)-N(T)=1$. However, there are at least two counter-examples at a given $y_{0}: x_{0}+i y_{0}$ and $1-x_{0}+i y_{0}$ due to Riemann's original paper. But $\Delta N(T)=1<2$. From this contradiction, there cannot be counter-examples.

Why the $S(T)$ has $\Delta S(T)=1$ jump? Because $S(T)$ is defined (see Refs. $[2,4])$ on the critical line, and only one zero per $y=y_{0}$ can be on the critical line.

Why $\Omega(T)$ does not have a jump at $y=y_{0}$? Because it is expressed via $[3,4]$

$$
\begin{equation*}
\Omega(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+O(1 / T), \tag{1}
\end{equation*}
$$

which can not have jumps $\Delta \Omega(T)>0.1$ because $O(1 / T) \ll 1$.

References

[1] David W. Farmer, "Currently there are no reasons to doubt the Riemann Hypothesis," arXiv:2211.11671 [math.NT], 2022AD.
[2] Timothy S. Trudgian, "An improved upper bound for the argument of the Riemann zeta function on the critical line II." J. Number Theory, 134: 280-292 (2014).
https://doi.org/10.1016/j.jnt.2013.07.017
eestidima@gmail.com.
[3] A. Selberg, Contributions to the theory of the Riemann zeta function, Arch. Moth. Naturuid. 48:5 (1946), 89-155.
[4] E. C. Titchmarsh, The theory of the Riemann zeta function, Clarendon Press, Oxford 1986; Aleksandar Ivic, The Riemann Zeta-Function: Theory and Applications (Dover Books on Mathematics), 2003. Pages of interest: 252-265.

