PROOF OF STRONG GOLBACH CONJECTURE

DMITRI MARTILA
INDEPENDENT RESEARCHER
J. V. JANNSENI 6-7, PÄRNU 80032, ESTONIA
Abstract. Proof of Strong Golbach Conjecture. MSC Class:

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than $\kappa=4.10 \cdot 10^{18}[1]$ but remains unproven despite considerable effort.

To cite [2], the Goldbach's conjecture is that every even $N>4$ can be written as a sum of two prime numbers. Linnik proved that there exists a finite K such that, for all sufficiently large even N, one may write

$$
\begin{equation*}
N=p+q+2^{\nu_{1}}+2^{\nu_{2}}+\ldots+2^{\nu_{r}}, \tag{1}
\end{equation*}
$$

where p and q are primes, the ν_{i} are positive integers, and where $r \leq K$.
To cite [3], $N \geq N_{0}(K)$.

1. My idea

I have not seen the explicit expression of $N_{0}(K)$ in the paper [3], but by selecting $\nu_{1}=\nu_{2}=\nu_{3}=\nu_{4}=\nu_{5}=\nu_{6}=\nu_{7}=\nu_{8}=1$, the condition $\kappa>N_{0}(K=8)$ can be arranged bacause N_{0} is presented in Ref. [3] as the K function only.

Then any even number $N \geq 12$ is $N=p+q+8$, where p, q are primes. This means that any even number $M \geq 4$ is $M=P+Q$, where P, Q are primes.

References

[1] https://sweet.ua.pt/tos/goldbach.html
[2] Dave Platt, Tim Trudgian, Linnik's approximation to Goldbach's conjecture, and other problems, J. Number Theory 153, 54-62 (2015).
eestidima@gmail.com.
[3] Pintz, J., Ruzsa, I.Z. On Linnik's approximation to Goldbach's problem. II. Acta Math. Hungar. 161, 569-582 (2020). https://doi.org/10.1007/s10474-020-01077-8

