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Abstract—This research paper introduces novel strategies to enhance the performance and efficiency of neural 

language models, addressing challenges in resource-limited settings and scalability. This research presents multi-

linear attention with Block-Term Tensor Decomposition (BTD), a self-attention model leveraging tensor 

decomposition and parameters sharing. This approach achieves significant parameter compression while 

demonstrating improved performance on language modeling tasks. Comparative evaluations against traditional 

Transformer models underscore the effectiveness of multi-linear attention. TensorCoder employs a dimension-wise 

attention mechanism to address the quadratic complexity of the scaled dot-product attention in Transformers, 

making it suitable for long sequence tasks. The proposed approach is validated on masked language modeling and 

neural machine translation tasks, showcasing a substantial reduction in computational complexity while maintaining 

or surpassing performance compared to the original Transformer. This research also optimizes pre-trained language 

models (PLMs) through fine-tuning. To overcome computational challenges associated with large PLMs, the paper 

introduces a matrix product operator for over-parameterization during fine-tuning. Efficient decomposition methods 

factorize parameter matrices into higher-dimensional tensors, enabling the selection of important parameter matrices 

through static and dynamic strategies. Extensive experiments demonstrate that this approach significantly enhances 

the fine-tuning performance of small PLMs, enabling them to outperform larger counterparts with three times the 

parameters. This research opens avenues for efficiently scaling language models without compromising inference 

latency, showcasing the potential of over-parameterization in enhancing the applicability of large PLMs in real-world 

systems. 

Keywords—Tensorized Transformer, Over-Parameterization, Language Model Optimization, Tensor Decomposition, 

Multi-linear Attention, Parameter Compression, Inference Latency 

I. INTRODUCTION 

In the realm of Natural Language Processing (NLP), leveraging neural language model pre-training has proven 

highly effective across various tasks. One prominent architecture, the Transformer, relies exclusively on 

attention mechanisms, diverging from traditional recurrent and convolutional networks. This approach has 

garnered considerable attention and serves as a cornerstone in numerous neural language models like BERT, 

GPT, and Universal Transformer. Nonetheless, the Transformer's abundance of parameters presents challenges 

for training and deploying in resource-constrained environments, necessitating the compression of these large 

pre-trained models. Within the Transformer architecture, the multi-head attention mechanism stands as a pivotal 

component, characterized by a substantial parameter count. To address this, Tucker decomposition is proposed, 

initializing a low-rank core tensor, to reconstruct a more compact attention representation. Here, the matrices Q, 

K, and V can be viewed as factor matrices. The method for constructing the multi-head mechanism and 

compressing the model involves Block-Term Tensor Decomposition (BTD), a fusion of CP decomposition and 

Tucker decomposition. Notably, in BTD, the three-factor matrices Q, K, and V are shared when constructing 

each 3-order block tensor, resulting in significant parameter reduction while maintaining model performance. 

This paper introduces several significant contributions: 1) The investigation establishes that the output of scaled 

dot-product attention, when viewed as a function, can be accurately represented through a set of orthonormal 

base vectors, thus elucidating a fundamental aspect of attention mechanisms. 2) A novel self-attention technique, 

termed multi-linear attention, is introduced. This method amalgamates two innovative compression strategies, 

namely parameter sharing and low-rank approximation. By leveraging these techniques, multi-linear attention 

offers a more efficient representation while maintaining performance. 3) Multi-linear attention establishes a 

robust relationship between three-factor matrices, encapsulating queries, keys, and values, respectively. This 

interconnection enhances the model's capacity to capture comprehensive attention information, thereby 



improving overall performance. Additionally, it is demonstrated that our model successfully reconstructs scaled 

dot-product attention within the original Transformer architecture. 

To assess the efficacy of our model, we conduct experiments on two prominent NLP tasks: language modeling 

and neural machine translation. In these experiments, we substitute the traditional multi-head attention 

mechanism with our proposed model, termed multi-linear attention. Our findings indicate that the standard 

multi-head attention can be significantly compressed when utilizing the multi-linear attention approach, 

particularly evident when testing on the One-Billion dataset. Consequently, our results demonstrate that multi-

linear attention not only achieves a substantial reduction in parameter count but also delivers promising 

performance across various experiments, particularly in language modeling tasks. 

 

Fig. 1 The representation of Block-Term tensor decomposition for a 3-order tensor. 

The Block-Term tensor decomposition offers a representation for a three-order tensor, denoted as A ∈ 

R^d1×d2×d3. This decomposition approximates the tensor A using a Tucker decomposition framework. Here, P 

represents the CP rank, which signifies the number of components in the CP decomposition, while R1, R2, and 

R3 denote the Tucker ranks among the three dimensions of the tensor. In this context, we assume that R = R1 = 

R2 = R3, implying that the Tucker ranks are equal across all dimensions. This assumption simplifies the 

decomposition process and facilitates a more uniform representation of the tensor. By employing this 

assumption, we aim to achieve a more cohesive and manageable decomposition, enabling a clearer 

understanding of the underlying structure and characteristics of the tensor data. 

II. RELATED WORK 

In recent years, the field of language modeling has seen significant advancements, particularly with the 

emergence of Transformer-based architectures and their various adaptations. Unlike traditional approaches such 

as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), Transformers, and their 

derivatives have demonstrated remarkable performance in language processing tasks. One notable strength of 

Transformer networks is their ability to capture long-range dependencies, although they face challenges with 

fixed-length context in language modeling scenarios [1]. Vaswani et al. introduced innovations to address this 

limitation by incorporating segment-level recurrence mechanisms and novel positional encoding schemes [2]. 

BERT, another significant development, focuses on bidirectional encoder representations from transformers, 

achieving state-of-the-art results across multiple NLP tasks [3]. However, the proliferation of parameters in 

these models presents challenges for training in resource-constrained environments. Despite their successes, 

Transformers have struggled to generalize effectively in certain tasks like string copying and logical inference 

[4]. To mitigate this issue, Universal Transformers proposes a self-attentive recurrent sequence model that 

enhances training speed and balances model expressivity through weight sharing inspired by CNNs and RNNs 

[5]. Nonetheless, this approach also entails a substantial parameter overhead.  

Hence, it's crucial to address the challenge of reducing memory usage and computational demands in neural 

network models. Model compression methods typically fall into categories such as parameter pruning and 

sharing [10], low-rank approximation [11], knowledge transfer [12], and transferred convolutional filters [13]. 

Tensor decomposition methods play a vital role in decomposing high-order tensors, enabling the derivation of 

diverse neural network language model structures [14]. Particularly, leveraging low-rank approximation within 

tensor decomposition has proven effective for compressing neural networks. For instance, researchers [15] have 

successfully applied tensor decomposition techniques to minimize the reconstruction error of original 

parameters, notably in convolutional neural networks (CNNs). However, sequential compression of multiple 

layers in these approaches often leads to error accumulation and significant deviations in output feature maps 

from their original values. To mitigate this, our compression method integrates parameter sharing during the 



construction of attention layers, ensuring that the output size remains consistent with that of the self-attention 

mechanism in the Transformer model, thereby addressing these issues. Furthermore, Tensorizing Neural 

Networks [16] involves reshaping weights of fully connected layers into high-dimensional tensors, represented 

in Tensor Train format [17]. This methodology has been extended to convolutional [18] and recurrent neural 

networks [19], providing a comprehensive compression solution. Recent advancements in compression 

techniques include efficient methods for compressing embedding and softmax layers based on structured low-

rank matrix approximation [20]. While TT-embedding [21] focuses on compressing larger embedding layers in 

Transformer-XL [9], Sparse Transformer adopts sparse techniques to reduce attention matrix parameters. Our 

method differs from these approaches by combining low-rank approximation and parameter sharing to construct 

a tensorized Transformer, offering a novel approach to model compression in NLP tasks [22]. 

Pre-trained language models (PLMs) have emerged as leading solutions in natural language processing (NLP), 

showcasing state-of-the-art performance across various tasks [27]. Notably, BERT, built upon the Transformer 

architecture, introduced the "pre-training + fine-tuning" paradigm, significantly enhancing NLP benchmarks 

such as GLUE [28] [29] [30]. Subsequent models like T5 and RoBERTa further augmented performance by 

leveraging increased data, parameters, and pre-training steps [31] [32]. Furthermore, advancements in model 

scaling, as demonstrated by GPT-3, have shown substantial improvements in few-shot performance [33]. In our 

approach, we enhance PLM performance solely through model scaling during fine-tuning, without incurring 

additional inference latency. This strategy offers a streamlined approach to improving PLM performance while 

maintaining efficiency. Recent studies have demonstrated the benefits of over-parameterization in various 

aspects of model training. Over-parameterization has been found to contribute to better model initialization, 

leading to improved model convergence and generalization [34] [35] [36]. Following the introduction of the 

lottery theory hypothesis, which suggests that over-parameterization can enhance training efficiency [37], 

numerous works have highlighted its potential to improve model performance [38] [39]. 

III. RESEARCH METHODOLOGY 

Block-Term Tensor Decomposition (BTD) is a amalgamation of CP decomposition [7] & Tucker decomposition 

[8]. Given a 𝑛-order tensor 𝒜 ∈  ℝ𝑑1×…..𝑑𝑛 . A high-order tensor can be decomposed into 𝑃 block standings 

by the technique named ‘BTD’.  

 z is denoted as the tenor-tensor product on the z-th order [19] & 𝑧 ∈  {1, . . . , 𝑑}.  

 z between a core tensor 𝐺𝑖 ∈  ℝ𝑅1…𝑅𝑑 & d; factor matrices 𝑋𝑖
(𝑘)

∈  ℝ𝑑𝑘×𝑅𝑘 , where 𝑖 ∈  [1, 𝑃] & 

𝑘 ∈  [1, 𝑑]. The devising of BTD decomposition is as follows:  

𝒜 = ∑ 𝐺𝑖
𝑃
𝑖=1 ……………….. (1) 

where 𝑃 is the CP rank, & 𝑑 is the Core-order. In this research work, the tensor is 3-order. Figure 1 validates the 

instance of how a 3-order tensor 𝒜 can be disintegrated into 𝑃 block terms.  

 

Fig. 2 The proposed architecture 



The proposed architecture includes multi-linear attention based on Block-Term tensor decomposition then 

feature extraction using convolution, then an over-parameter framework (OPF) in fine-tuning PLMs is 

incorporated. IW denotes the estimated important score of parameter matrices. This presents an illustrative 

example of how a parameter matrix W is selected for over-parameterization and is decomposed into a set of 

high-order tensors {T (k)} m k=1. 

To establish the multi-head mechanism and compress parameters across multiple mapping groups, a set of linear 

projections is employed, sharing their output. Illustrated in Figure 2, the learned linear projection effectively 

maps queries, keys, and values to matrices comprising basis vectors. Subsequently, Block-Term tensor 

decomposition is utilized to construct the multi-head mechanism. The proposed model, termed multi-linear 

attention, is defined as follows: 

𝑀𝑢𝑙𝑡𝑖𝐿𝑖𝑛𝑒𝑎𝑟(𝐺; 𝑄′, 𝐾′, 𝑉′) =  𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑛𝑐𝑎𝑡 ( 
1

ℎ
 ∗  (𝑇1 + . . . + 𝑇ℎ)) 𝑊0 … … … … … . (2) 

The function SplitConcat(·) facilitates concatenation following tensor splitting for a 3-order tensor. Figure 2 

illustrates the fundamental concept behind multi-linear attention. The parameter matrix WO corresponds to the 

output of multi-linear attention and functions as a fully connected layer. AttenTD(·) represents the Single-block 

attention function, a component of multi-linear attention. Parameters matrices Wq, Wk, and Wv are shared in 

constructing multi-linear attention. 

The time complexity of the attention function outlined in Eq. 2 is O(N^2d), where N represents the sequence 

length and d signifies the representation dimension. In the context of multi-linear attention, we can reorganize 

computations to achieve a model complexity of O(N^3), with N still representing the sequence length. Notably, 

the minimum number of sequential operations in multi-linear attention for various layers approximates that of 

self-attention in the Transformer model. 

Scaled Dot-Product Attention (Token-Wise Attention) uses a particular self-attention, called Scaled Dot-Product 

Attention. The input of attention consists of queries matrix Q, keys matrix K, and values matrix V. The attention 

can be written as follows:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸, 𝑲, 𝑽) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑸𝑲𝑇

√𝑑𝑘
)𝑉………………… (3) 

where matrices 𝑸, 𝑲, 𝑽 ∈  ℝ𝑁×𝑑  , and d is the dimensionality of head. The token-wise attention computes the 

dot products of the query with all keys, where the time complexity is quadratic in the sequence length. It focuses 

on the weights between tokens and then applies a softmax function to obtain the weights on the values. 

Multi-Head Attention Transformer uses multi-head attention to allow the model to jointly attend to information 

from a different representation: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑸, 𝑲, 𝑽) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … . , ℎ𝑒𝑎𝑑𝑘)𝑊𝑂 …………  (4) 

where matrices 𝑊𝑂 ∈ ℝℎ𝑑×𝑑𝑚𝑜𝑑𝑒𝑙, h is the number of heads, and 𝑑𝑚𝑜𝑑𝑒𝑙 = ℎ × 𝑑 is the dimensionality of 

model.  

Algorithm: Fine-tuning a Language Model 

Input: Parameters matrices set of a PLM {W}. 

1: Divide {W} into several groups by module.  

2: if is Static Strategy then  

3: Fine-tuning the PLM until converged.  

4: Compute IW for {W} using Eq. (2).  

5: Sort {W} in each group according to IW.  

6: Perform MPO on the top-N matrices.  

7: Train the other PLM until converged.  

8: else  

9: Define S = {}  

10: while Len(S) < N do  

11: Train the PLM for t steps.  



12: Compute IW for {W} using Eq. (4).  

13: Sort {W} in each group according to IW.  

14: Add top-n matrices into S, and perform MPO.  

15: end while  

16: Continually train the PLM until converged.  

17: end if 

 

While the MPO method offers efficiency and flexibility, its extensive utilization for over-parameterizing all 

parameter matrices in small PLMs remains costly. To harness the advantages of over-parameterization 

effectively, we focus on selecting the most crucial parameter matrices from PLMs for decomposition. This 

selection process involves two strategies: a static selection strategy and a dynamic selection strategy. The static 

strategy pre-selects important parameter matrices, while the dynamic strategy dynamically chooses them during 

fine-tuning. These approaches enable the concentration of over-parameterization benefits on key parameters, 

optimizing resource utilization in small PLMs.  

IV. RESULTS & DISCUSSION 

Masked language modeling (MLM) tasks involve randomly masking a certain percentage of input tokens and 

predicting only those masked tokens [23]. Often referred to as a Cloze task in literature [24], MLM differs from 

standard conditional language models as it can be trained bidirectionally. Like BERT [25], our experiments 

involve masking 15% of all tokens randomly in each sequence. Furthermore, we adopt varying processing 

methods for masked words: 80% are replaced with the [MASK] token, 10% with a random word, and 10% are 

kept unchanged. These methods bias the model towards accurately predicting the observed word. For our 

experiments, we utilize two datasets: PTB and WikiText-103. The PTB dataset comprises 929k training tokens, 

73k validation words, and 82k test words, making it a widely used dataset for language model learning. On the 

other hand, the WikiText-103 dataset contains 267,735 unique tokens and features 103M training tokens 

extracted from 28.5k articles. This dataset is suitable for models capable of capturing long-term dependencies 

and retains the original case, punctuation, and numbers. No additional processing is required other than 

replacing newlines with tokens. Models undergo evaluation based on Negative Log-Likelihood Loss (NLL), 

also known as multi-class cross entropy. Lower loss values indicate better model performance. In addition to 

loss metrics, model complexity is assessed in terms of the number of floating-point operations (FLOPs) [26], 

which primarily involves counting the sum of multiplication and addition operations. In the context of the 

Masked Language Modeling (MLM) task, only the encoder structure of the Transformer is utilized. To 

streamline the model, we replace multi-head attention in each encoder layer with dimension-wise attention, 

while keeping other components unchanged. This adjustment helps maintain efficiency while focusing on the 

essential aspects of the MLM task. 

 

Fig. 3: Loss of TensorCoder vs Transformer on PTB and Wiki-103 dataset. 

ANALYSIS OF COMPLEXITY: 



N is the length of a sequence, and d is the dimension of token embedding. The complexity analysis of our model 

is introduced from two aspects: first, in the encoder part of TensorCoder, the time complexity of dimension-wise 

attention matrix (in Eq. 4), tensor representation by KR product (in Eq. 1), and feature extraction (in Eq. 3) all 

are 𝑂(𝑁𝑑2). Therefore, the time complexity of TensorCoder’s encoder part is 𝑂 (𝑁𝑑2). In some tasks (i.e., 

Masked language modeling), they only use the encoder part, TensorCoder has a great advantage compared with 

Transformer; Second, in the decoder of TensorCoder, the complexity of dimension-wise attention tensor S (in 

Eq. 2) is 𝑂 (𝑁2𝑑2), the complexity of third-order tensor construction process (in Eq. 1) and final feature 

extraction both are 𝑂 (𝑁𝑑2). Therefore, the complexity of TensorCoder is 𝑂 (𝑁𝑑2 + 𝑁2𝑑2) in the decoder part. 

 

Fig. 4: Time Complexity Analysis of TensorCoder Model 

Performance Comparison w.r.t. Parameter Increasing Rate. During fine-tuning, our approach can increase the 

number of model parameters for improving the over-parameterization of PLMs. As our approach is a general 

and flexible way to increase the model parameters into arbitrary scales, here we investigate how the 

performance changes w.r.t. a different number of increased model parameters.  

 

Fig. 5: Comparison of different scale factors of parameter number after over-parameterizing BERT-medium and BERT-base 

in STS-B and CoLA tasks. 

Table 1: Comparison of different learning rates on RTE, CoLA and STS-B tasks using proposed approach.  

Learning 

Rate  

5e-6 1e-5 3e-5 5e-5 1e-4 

RTE 72.09  72.42  72.22 72.41 70.34 

CoLA  59.96  60.74  60.84  60.81 59.41 

STS-B  88.52 88.69 89.51 88.35  88.54 

 



 

Fig. 6: Comparison of different learning rates on RTE, CoLA, STS-B Tasks 

Hyperparameter Tuning: In the Orthogonal Parameterization Framework (OPF) employing the dynamic 

strategy, the values of two crucial hyperparameters - the total number of selected parameter matrices (𝑁) and the 

selection number at one time (𝑛) within each parameter matrix group - significantly impact model performance. 

A larger 𝑁 implies more parameter matrices are selected and over-parameterized, while a larger n indicates that 

more matrices are over-parameterized simultaneously. To assess the impact of these values on model 

performance, experiments were conducted on the CoLA task using BERT-base as the backbone. As depicted in 

Figure 6, a steady improvement in performance is observed with increasing values of 𝑁, eventually reaching a 

plateau. This trend suggests that over-parameterizing too few matrices fails to sufficiently enhance the 

performance of the pre-trained language model (PLM). Conversely, excessively large values of n tend to 

degrade performance. This deterioration may arise from over-parameterizing too many matrices simultaneously, 

leading the dynamic strategy to resemble the static one. Nevertheless, the approach consistently outperforms the 

baseline method across different values of N and n. This indicates that the approach exhibits robustness to 

variations in these hyperparameters, underscoring its effectiveness and stability in practical applications. 

V. CONCLUSION 

In conclusion, the novel self-attention encoder layer, multi-linear attention, introduced in this study, offers a 

compressed alternative to the original multi-head attention, thereby presenting a new encoding scheme. Central 

to the contribution is the Tensorized Transformer structure based on Block-Term tensor decomposition, which 

integrates a series of 3-order tensors while leveraging low-rank approximation and parameter-sharing concepts. 

Notably, the model achieves superior compression ratios and demonstrates enhanced performance, particularly 

in language modeling tasks, compared to existing Transformer-based methods. These findings suggest 

promising prospects for the broader applicability of the approach across various natural language processing 

tasks, especially in resource-constrained environments. Furthermore, the proposal of TensorCoder, an encoder-

decoder language model, substitutes token-wise attention with dimension-wise attention, thereby reducing 

complexity to 𝑂(𝑁𝑑^2). This linear increase in complexity concerning N contrasts with the quadratic 

complexity of token-wise attention, making TensorCoder well-suited for long-sequence tasks while enhancing 

the efficiency of pre-trained language models. Moreover, the Over-Parameterization Framework (OPF) offers a 

novel strategy to enhance the performance of small pre-trained language models (PLMs) by scaling up the 

number of parameters exclusively during fine-tuning. By incorporating the matrix product operator method and 

devising static and dynamic selection strategies for over-parameterization, OPF significantly boosts the 

performance of small PLMs, even surpassing larger counterparts. Future research directions will focus on 

exploring more efficient tensor decomposition methods for PLM over-parameterization and extending the 

application of OPF to other critical backbone models across computer vision and multimodal domains. 
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