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Nonlinear Maxwell equations

Sergey Y. Kotkovsky

Based on the analysis of biquaternion quadratic forms of �eld, it is shown

that Maxwell equations arise as a consequence of the principle of conservation

of the energy-momentum �ow of �eld in space-time. It turns out that this

principle presupposes the existence more general nonlinear �eld equations.

Classical linear Maxwell equations are embedded in a special way into new

nonlinear equations and are their special case. It is shown that in a number of

important cases nonlinear equations, in contrast to linear ones, allow solutions

that have a swirling energy �ow. Solutions of the equations we obtained make

it possible to give wave description of charged particles, common for quantum

mechanics, within the framework of nonlinear classical electrodynamics. Special

attention in the work is paid to the problem of dividing the �eld into "own"

�eld of a charged particle and a �eld "external" to it. From the nonlinear

�eld equations follow both the classical Maxwell equations themselves and the

equations of charges moving under the Lorentz force. In this way, the problem

of �nding nonlinear �eld equations that include interaction is solved. In our

approach, the particle charge is electromagnetic (complex-valued), passing

through periodically changing linear combinations of electric and magnetic

charges - from purely electric to purely magnetic. In real processes, it is not

the particle charge itself that plays a role, but its phase relationship with

other charges and �elds.

Keywords: electromagnetic �eld, nonlinear electrodynamics, nonlinear Maxwell equations,

Riemann-Silberstein vector, energy-momentum tensor, singularities, biquaternions, regular currents,

Coulomb wave, electromagnetic charge.
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1. Introduction

Maxwell equations rightfully occupy one of the central places in classical and modern

physics. However, until now they have remained in the status of a postulate generalizing

experimental data on the phenomena of electromagnetism. No derivation of these equations

from more fundamental principles was given. The goal facing us here is the axiomatic

derivation of the electromagnetic �eld equations based on the basic principle of conservation

of energy-momentum �eld �ow in space and time.

Classical, and after it quantum electrodynamics, consider elementary charges (electrons

and positrons) and the electromagnetic �eld (hereinafter �eld) as two interacting but

separate entities. The study of the behavior of interacting charged particles and �elds

is conducted by joint consideration of Maxwell equations for the �eld generated by

charges and the Lagrangian interaction of charged particles and �eld. At the same

time, many authors have long proposed to consider charges as singularities �elds rather

than as separate objects (e.g. [1]). We also base our approach on the assumption that

charged particles represent �eld singularities, Moreover, the initial requirement is that

only through these singularities can the �eld lose or gain energy-momentum.

To describe the �eld and its Lorentz structure, we use the mathematical apparatus of

biquaternions. Biquaternions describe Lorentz transformations in a simple and convenient

form of bilinear operators [2]. The electromagnetic �eld is represented as a three-dimensional

complex-valued vector which is sometimes called Riemann-Silberstein vector.

The greatest success, in our opinion, in applying biquaternion analysis to the description

of the electromagnetic �eld was achieved by K. Imaeda, who gave a new formulation

of electrodynamics based on the biquaternion analyticity introduced by him [5]. The

conceptual step taken by this researcher was to a�rm the unity of the electromagnetic

�eld and Minkowski space-time. Maxwell equations are represented not as an independent

postulate, but are a consequence of the Lorentz structure of �eld. In his work, Imaeda
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examines the functional of the quadratic form formed by the biquaternion �eld function

and the associated functional derivative. The conditions for the regularity of the �eld

function give simultaneously both Maxwell equations and the equation for the Lorentz

force acting on a charge in this �eld. In the present study, we follow Imaeda's method of

studying hypersurface integrals of the quadratic form of the �eld, but at the same time

we are based on other initial principles and arrive at intrinsically new results.

The absence of interaction of charges in the composition of Maxwell equations themselves,

their not closeness, is one of the main challenges for the search for nonlinear equations

of the electromagnetic �eld [3],[4]. Indeed, the linearity of the equations assumes the

independence of each of its solutions, since the sum of the solutions automatically

becomes a new solution. Each of the solutions does not a�ect the other; in other words,

linear �eld equations do not describe interaction of �elds. Usually the interaction is

introduced separately and comes up as Coulomb interaction or Lorentz force. To solve

this dilemma, A.A. Chernitsky proposed to use the nonlinear Born-Infeld model [3]. In

this direction, he obtained a number of interesting solutions, such as �eld solitons. We

consider the Born-Infeld equations as the �rst attempt at a nonlinear generalization of

Maxwell equations.

In our approach, we follow the same ideology of a uni�ed nonlinear �eld, in which

charged particles are special singular con�gurations of this �eld, but we do not resort to

a model, but derive equations from universal principles. We start from the fundamental

physical principle of conservation of energy-momentum, according to which as much

of it �ows into a given 4-volume, so much should �ow out [6]. We are looking for a

description of the movement of this "river" of energy-momentum in Lorentz-covariant

�eld structures in their biquaternion representation. Obtaining nonlinear equations on

this way happened to be a pleasant surprise. At the same time, the beauty of Maxwell

classical linear equations is not lost - they turn out to be embedded in the new nonlinear

equations.

Section 2 brie�y introduces the reader to the mathematical apparatus and the basics

of the approach. Sections 3-10 are dedicated to derivation and analysis of nonlinear

free �eld equations. In section 5 we present the derivation of these equations in the more

conventional tensor form. In sections 12-13 particle nonlinear �elds and their interactions

are studied.

2. Biquaternionic Lorentz transformations

Space-time is represented by a real biquaternion space1 Z = (t, r). Basic operations

with biquaternions are given in Appendix 1 (also see [8]). General Lorentz transformations

of space-time, including boosts and rotations, have the form of a biquaternion product

[2]:

Z ′ = U∗ZU, (2.1)

where U is some unitary biquaternion: |U |2 = 1. U is represented as:

U = eθ = ch θ +
θ

θ
sh θ, (2.2)

1We use a system of units in which the speed of light is equal to one: c = 1.
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where θ is an arbitrary three-dimensional complex vector of nonzero value θ (θ2 ̸= 0).
Real θ de�ne special Lorentz transformations (boosts), while imaginary θ de�ne spatial

rotations.

In particular, boost at a speed of V, i.e. the transition to a reference frame moving

at a speed of (−V) has the form of a biquaternion:

U = (

√
γ + 1

2
,
V

V

√
γ − 1

2
), (2.3)

where the standard denotation is γ = 1√
1−V 2

. The θ parameter is related to the boost

speed by the relation: V = th 2θ = θ
θ th 2θ.

Let's consider the motion of a particle of some mass. Its energy-momentum P = (ϵ,p)
is transformed similarly to Z, i.e. is a 4-vector :

P ′ = U∗PU (2.4)

Over Z you can introduce a complex vector �eld that describes the electromagnetic

�eld (Riemann-Silberstein vector) [9] (p. 8-9):

F = F(Z) = E+ iH, (2.5)

whose components E and H are the electric and magnetic �eld strengths, respectively.2

Lorentz transformations of the �eld F have the form:

F′ = UFU, (2.6)

where U denotes the biquaternion conjugate to the biquaternion U . For U = (s,u):
U = (s,−u).

The above statements about the Lorentz structure of �eld and particles, together with

the central principle - the law of conservation of energy-momentum in space-time, as well

as the requirement that energy be quadratic over the �eld, constitute the axiomatics of

our approach.

Let us brie�y describe our method. First, based on the complex vector �eld F(Z),

we �nd the form of a real biquaternion quadratic form, which behaves under Lorentz

transformations like energy-momentum. Such a structure is de�ned at each point in

space-time and is expressed as the di�erential of some biquaternion function Σ(Z), which

has the meaning of the energy-momentum �ow of the �eld. In the tensor representation

of the function Σ(Z) it corresponds the �eld energy-momentum tensor.

Then, we formulate the principle of conservation of Σ(Z) in space-time, which is

expressed in the equality to zero of the integral from dΣ along any closed hypersurface of

four-dimensional pseudo-Euclidean space. Using the biquaternion version of the Ostrogradsky-Gauss

formula, the last integral is replaced with the integral over the space-time region surrounded

by a given hypersurface. As a result, we obtain di�erential �eld equations, which

represent a nonlinear generalization of Maxwell equations.

2Here and below, any function of the variable Z includes a dependence on both Z and
Z, in other words means a function of the variables t and r.
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3. Nonlinear equations of free �eld

Singularities of the �eld are its parts which turn to in�nity inside a �nite space-time

volume. In this section we will derive the equations of free �eld (or �elds in "emptiness"),

i.e. a �eld that does not have singularities in a given region of space-time. Let us clarify

that our de�nition of a free �eld is not the same as the de�nition of a free �eld in classical

linear electrodynamics, where a free �eld means a �eld that is not associated with any

source.

The energy-momentum of a free �eld must be completely conserved in space-

-time, which means it should not transform into other types of energy, as is the case

in the presence of singularities that play the role of channels for the exchange of energy

between di�erent types of motion.

Let us consider some space-time hypersurface (three-dimensional manifold) S3. For

any element of this hypersurface one can de�ne a biquaternion dZ orthogonal to it, the

magnitude of which is equal to the 3-volume of the hypersurface element3.

For the �eld F on an arbitrary section of the hypersurface, we can de�ne a real-valued

quadratic form that behaves under Lorentz transformations similar to the energy-momentum

of a particle (2.4)4:

dΣ =
1

2
F∗dZF (3.1)

Indeed, in accordance with (2.1), dZ is transformed as

dZ ′ = U∗dZU (3.2)

and taking into account (2.6) the value dΣ is transformed as

dΣ′ =
1

2
U∗F∗U∗U∗dZUUFU = U∗ 1

2
F∗dZFU (3.3)

or

dΣ′ = U∗dΣU, (3.4)

which coincides in form with the Lorentz energy-momentum transformation (2.4).

You can directly verify that, apart from (3.1), there are no other real-valued quadratic

forms of the �eld that transform like energy-momentum5. For example, a form dΣ =
1
2FF

∗dZ does not have this property.

The value Σ has the meaning of the energy-momentum �ux of the �eld, which includes

both the spatial densities of energy and momentum of the �eld, and their �uxes in space.

For brevity, we will also call Σ energy �ow of the �eld. The formula (3.1) connects

three fundamental quantities: energy, �eld and space-time. According to (3.1) energy is

factorized by the �eld, thereby providing space-time �lling. The structure of the energy

�ow dΣ is considered in more detail in the Appendix 6.

3External di�erential forms of quaternions are studied in detail in the work [14]. A
generalization to the case of real biquaternions is given in the work [5].

4The factor 1
2 is introduced here to be consistent with the generally accepted de�nition

of the Umov-Poynting vector (see below (4.4)).
5see. Appendix6
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We require the continuity (conservation) of the Σ �ow in space-time. This will mean

that the total �ow Σ through any closed space-time hypersurface S3 is equal to zero:∮
S3

dΣ =
1

2

∮
S3

F∗dZF = 0 (3.5)

According to the Ostrogradsky-Gauss formula, under the condition of continuous

coordinate di�erentiability of the components of the function F, the integral on the

left side of the equation (3.5) is represented as an integral over the four-dimensional

space-time volume V4, surrounded by the hypersurface S3 (see Appendix 2):∮
S3

F∗dZF =

∫
V4

(F∗DF)dV4 (3.6)

where (F∗DF) denotes the quadratic form:

(F∗DF) = 2Re{F∗(DF)} = F∗(DF) + (F∗D)F, (3.7)

a D = (∂t,∇) is a biquaternion gradient, the action of which on some biquaternion (s,u)
on the left and right is expressed according to the rules of biquaternion product (14.24)

as:

D(s,u) = (∂t,∇)(s,u) = (∂ts+∇ · u, ∂tu+∇s+ i∇× u) (3.8)

(s,u)D = (s,u)(∂t,∇) = (∂ts+∇ · u, ∂tu+∇s− i∇× u) (3.9)

respectively. The equation (3.5) will be written as:∫
V4

(F∗DF)dV4 = 0 (3.10)

Since this condition must be satis�ed for any closed 4-volume V4, then at any point in

space-time we have:

(F∗DF) = 0 (3.11)

or

Re{F∗(DF)} = 0 (3.12)

We can write the last equation in the form:{
Re{(∂tF) · F∗ − i[∇F] · F∗} = 0

Re{(∇F)F∗ + i(∂tF)× F∗ + [∇F]× F∗} = 0
(3.13)

or in more detail:{
E · (∂tE−∇×H) +H · (∂tH+∇×E) = 0 E(∇ ·E) +H(∇ ·H) = E× (∂tH+∇×E)−H× (∂tE−∇×H)

(3.14)

The equations (3.14) are Maxwell nonlinear equations for a free �eld. By virtue of their

construction, these equations are Lorentz-covariant: they are preserved when moving to

any other reference system. Each of the equations (or systems of equations) (3.11),(3.12),(3.13)

is equivalent to the equations (3.14), thereby being alternative formulations of Maxwell

nonlinear equations.
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4. Energy representation

The equations (3.14) can also be represented as:{
1
2∂t(E

2 +H2) +∇ · (E×H) = 0

∂t(E×H) = (E · ∇)E+ (H · ∇)H
(4.1)

The last equations involve spatial energy density of the �eldW and its �ux S (momentum

density, or Umov-Poynting vector), together forming a biquaternion of energy-momentum

density:

P = (W,S) =
1

2
FF∗ (4.2){

W = 1
2F · F∗ = 1

2 (E
2 +H2)

S = i
2F× F∗ = E×H

(4.3)

Using W,S (4.1) are represented in energy form:{
∂tW +∇ · S = 0

∂tS+∇W = Q,
(4.4)

where indicated:

Q =
(
(∇ ·E) +E · ∇

)
E+

(
(∇ ·H) +H · ∇

)
H (4.5)

The �rst of the equations (4.4) is the equation of conservation (continuity) of the

�eld energy density, and the second is the equation of its momentum density. As shown

in the next section, these equations are equivalent to the energy-momentum continuity

equations following from the classical �eld energy-momentum tensor.

Note that for ordinary linear Maxwell equations there is no energy representation

similar to (4.4). The presence of the latter is, therefore, an exclusive property of nonlinear

equations�eld de�nition.

5. Derivation of nonlinear equations from the energy-momentum tensor

According to Sommerfeld, the �eld energy-momentum tensor has a more direct relationship

to physical reality than the �eld quantities themselves, and the equations associated with

this tensor are more fundamental in nature than Maxwell equations [12] (p. 64).

The �eld energy-momentum tensor T ik has �ve independent components, while the

�eld itself has six, which indirectly indicates about the presence of one more degree of

freedom. This allows you to enter the so-called dual rotations [12], which come down

to the multiplication of all electromagnetic �elds by some constant phase factor, the

same everywhere and for all �elds. Dual rotations lead to the appearance in the theory

of magnetic charges along with existing electric ones. As it turns out, such a theory

describes the same observed interaction e�ects of �elds and charged particles, as in the

theory, which operates only with electric charge.

In section 14 we will �nd out that the dual rotation does not have to be global -

constant throughout space-time and for all particles. In the case of two particles we

study below, in order for the theory to correspond to the existing observed e�ects, only



8 S.Y. KOTKOVSKY

a certain coordination of the dual rotations of the �elds of these particles is su�cient.

Using dual rotations, both the well-known global ones and the local ones introduced in

this paper below, we will see that the classical �eld energy-momentum tensor allows a

wider class of interacting �elds than is generally accepted.

We will show now the equivalence of the biquaternion energy-momentum �ow Σ,
introduced by us in the section 3, to the classical energy-momentum tensor T ik. To

do this, we present another derivation of the nonlinear �eld equations (3.14) - from the

classical energy-momentum tensor. Unlike the main part of the article, in this section

we follow the tensor representation of the �eld and terminology [10]6.

The �eld energy-momentum tensor has the form [10](32.15):

T ik =


W Sx Sy Sy

Sx −σxx −σxy −σxy

Sy −σyx −σyy −σyz

Sz −σzx −σzy −σzz

 (5.1)

where W and S are the energy and momentum densities of the �eld, de�ned above in

(4.3), and σαβ is the Maxwell stress tensor [10](33.3):

σαβ = EαEβ +HαHβ − 1

2
δαβ(E

2 +H2) (5.2)

In the equations (5.1),(5.2), the Latin indices are spatiotemporal and range from 0 to 3,

while the Greek indices are purely spatial and range from 1 to 3.

The energy-momentum continuity equations are obtained by applying the divergence

operation to the tensor T ik [10](32.4):

∂T k
i

∂xk
= 0 (5.3)

Dividing this equation into spatial and temporal components instead, we obtain two

other equations ([10] (32.12)):

∂T 00

∂t
+

∂T 0α

∂xα
= 0 (5.4)

∂Tα0

∂t
+

∂Tαβ

∂xβ
= 0 (5.5)

According to the values of the components of the tensor T ik in (5.1), the equation

(5.4) takes the form:

∂tW +∇ · S = 0 (5.6)

which coincides with the �rst of our equations (4.4).

Now we can move on to the second of the continuity equations - the equation (5.5).

Take for example this equation for the x coordinate:

∂Sx

∂t
−∇ · χ = 0, (5.7)

6Our units of measurement of �eld quantities di�er from those adopted in [10] by a
factor of 1

4π , as well as in our system of units speed of light c = 1.
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where χ is the following vector:

χ =

σxx

σxy

σxz

 =

 1
2 (E

2
x − E2

y − E2
z +H2

x −H2
y −H2

z )

ExEy +HxHy

ExEz +HxHz

 (5.8)

Further,

∇ · χ = Ex(∂xEx + ∂yEy + ∂zEz) + Ey(∂yEx − ∂xEy) + Ez(∂zEx − ∂xEz)+

+Hx(∂xHx + ∂yHy + ∂zHz) +Hy(∂yHx − ∂xHy) +Hz(∂zHx − ∂xHz) (5.9)

The equation (5.7) becomes:

∂Sx

∂t
= Ex(∂xEx + ∂yEy + ∂zEz) + Ey(∂yEx − ∂xEy) + Ez(∂zEx − ∂xEz)+

+Hx(∂xHx + ∂yHy + ∂zHz) +Hy(∂yHx − ∂xHy) +Hz(∂zHx − ∂xHz) (5.10)

Let's make sure that this equation coincides with the second of our equations (4.4) for

the x-component. Indeed:

(∇W )x = Ex∂xEx + Ey∂xEy + Ez∂xEz + Ex∂xEx + Ey∂xEy + Ez∂xEz (5.11)

Qx = (∂xEx + ∂yEy + ∂zEz + Ex∂x + Ey∂y + Ez∂z)Ex+

+(∂xEx + ∂yEy + ∂zEz + Ex∂x + Ey∂y + Ez∂z)Ex (5.12)

which directly implies the coincidence of the second of the equations (4.4) and the

equation (5.10) for the x-components. It is obvious that these equations coincide for

both y and z components, and, therefore, coincide in general. We have veri�ed that

the second of the tensor continuity equations (5.5) is equivalent to the second of the

equations (4.4):

∂tS+∇W = Q (5.13)

So, we have shown that the energy equations (4.4) are equivalent to the energy-momentum

continuity equations (5.4), (5.5) associated with the classical energy-momentum tensor.

But this means the equivalence of Maxwell nonlinear equations (3.14) to the tensor

energy-momentum continuity equation (5.3), which is what we wanted to prove.

6. Structure of energy �ow. Opposite direction

in time of particle and �eld energy �ows.

The structure of the �eld energy-momentum �ow is studied in detail, based on di�erential

forms, in the book [6] (p. 174-181). Here we will give a simple diagram that gives a

basic understanding of this structure. The energy �ow dΣ passing through the oriented

three-dimensional space-time hypersurface dS3 is given by the formula (3.1):

dΣ =
1

2
F∗dZF (6.1)

The "platform" dS3 is expressed by the biquaternion dZ. By de�nition, the scalar part

dΣ is equal to the energy �ow, and the vector part is equal to the momentum �ow. Figure
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6 conventionally depicts two special cases of �ow dΣ, which will be discussed below. The

abscissa is space (schematically three spatial dimensions are combined into one), and the

ordinate is time.

In the �rst case, the area dZV is a certain three-dimensional volume "oriented" forward

in time, and dΣT is a timelike �ow.

dΣT =
1

2
F∗dZV F = (Wdt,−Sdt) (6.2)

The hyperplatform dZT , expressed in terms of the directional time element dt, is orthogonal
to all spatial dimensions. Continuity of energy �ow in this case means conservation of

energy and momentum over time. The "area" of the hyperplatform dZT (denoted by the

value dt!) is equal to the three-dimensional volume dV through which the �ow passes.

This con�rms that the quantities W and −S express the spatial densities of energy and

momentum of the �eld.

dΣT is a "vertical" energy-momentum �ow reversed in time, which is expressed by

the minus sign in front of the Umov-Poynting vector S. The time-reverse nature of the

�eld pulse-energy is due to the type of energy �ow di�erential (3.1). As the energy �ow

di�erential, one could choose the conjugate value (3.1): dΣS = dΣ = 1
2FdZF∗. Such a

�ow of �eld energy would be directed along time, and not back to it. However, dΣS is

transformed not as a 4-momentum energy-momentum, but as its conjugate biquaternion7.

This means that such a choice is invalid if we want the total energy-momentum value

of the �eld and particle to retain the properties of a Lorentz 4-vector. An important

conclusion follows from this: the energy of the particleâ's �eld �ows in the direction of

time opposite to that in which the energy of the particle itself �ows. Otherwise it can be

said that time "�ows"in di�erent directions in kinematic and �eld planes. This points to

existence of di�erent than usually accepted physiclal type of causality - happening events

may depend not only on past con�guration but also on future one.

In the second case, the hyperplatform dZS has as "edges" a time interval dt and a

section of an oriented two-dimensional spatial surface (vector dr). The energy-momentum

�ow dΣS is timelike.

dΣS = (Wdt+ (Sdr),−Sdt+E(Edr) +H(Hdr)−Wdr) (6.3)

The terms Wdt and −Sdt have the same meaning of �ows in time as in the �rst case.

The quantity (Sdr) determines the change in energy due to its transfer in the spatial

dimension. This corresponds to the well-known fact that the Umov-Poynting vector is

the energy �ux density in space. The quantity E(Edr)+H(Hdr)−Wdr gives the transfer
of momentum in space. It corresponds to the Maxwell stress tensor.

7. Regular currents

In the nonlinear �eld equations we derived, a special role is played by the biquaternion

value of the 4-current of a given �eld:

J ≡ DF = (∇ · F, ∂tF+ i∇× F) (7.1)

7Biquaternion conjugate corresponds to the transition from covariant to contravariant
4-vectors in the tensor representation.
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Ðèñ. 1. Structure of the �eld energy �ow.

For a free �eld, the 4-current, like the �eld itself, is regular (not singular) function of the

space-time coordinate Z. We will call such a non-singular current regular current. J is

some regular function of Z de�ned by the �eld F itself.

The 4-current is decomposed as the sum of complex charge and current:

J = (e0 + ig0,J0 + iI0) (7.2)

e0 and J0 are regular electric charge and current, g0 and I0 are regular magnetic charge

and current, de�ned as: 
e0 = ∇ ·E
g0 = ∇ ·H
J0 = ∂tE−∇×H

I0 = ∂tH+∇×E

(7.3)

In terms of the regular 4-current, the nonlinear equations (3.11) will be written as:

Re{F∗J } = 0, (7.4)

or in expanded form: {
J0 ·E+ I0 ·H = 0

e0E+ g0H− J0 ×H+ I0 ×E = 0
(7.5)

Note that our de�nitions (7.3) coincide in form with the classical Maxwell equations

with the right side in symmetric electrodynamics, allowing charges and currents of both

electric and magnetic types [12]. In addition, it is easy to verify that the continuity

condition is satis�ed for regular charges and currents:{
∂e0
∂t +∇ · J0 = 0
∂g0
∂t −∇ · I0 = 0

(7.6)

Ordinary (point) charges and currents have singular character and therefore are fundamentally

di�erent from regular charges and currents. However, using the similarity of regular and
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ordinary charges and currents, one can see in the equations (7.5) the fact that the free

�eld does not apply work to its regular currents (the �rst equation), and that the total

force applied from the �eld to its regular charges and currents is equal to zero (second

equation). This is a natural consequence of the original principle of conservation of �eld

energy. Nonlinear �eld equations (3.14) are recursive in the sense that the sources of a

free �eld can be its own nonsingular structures - regular currents with which this �eld

interacts without doing work on them.

It is important not to confuse the regular charges and currents we introduced with the

spatial density of charges and currents of macroscopic electrodynamics[11], despite their

apparent closeness. In the electrodynamics of continuous media we deal with distributed

point charges and currents averaged over a spatial region, while regular charges and

currents are not the result of averaging. Further (in the Conclusions section) it is

indicated that regular currents can serve as a classical analogue of vacuum currents

of quantum �eld theory.

8. Classical Maxwell equations as a linear limit

Based on general considerations, if there are some nonlinear equations of the electromagnetic

�eld, then the classical Maxwell equations should be their linear approximation [4] (p.6).

Also linear equations stop working at su�ciently high �eld strengths. In our case, this is

exactly what happens within our aproach: the classical Maxwell equations in emptiness

are a special case of nonlinear ones (3.12) with zero regular 4-currents:

DF = 0 (8.1)

Indeed, using the de�nition (3.9), it is easy to verify that the expanded equation (8.1)

looks like: 
∂tE−∇×H = 0

∂tH+∇×E = 0

∇ ·E = 0

∇ ·H = 0

(8.2)

Nonlinear equations (3.14) always hold when classical Maxwell equations (8.2) are

satis�ed, but the reverse is not true. Examples of nonlinear �elds, for which nonlinear

equations are satis�ed, but the usual Maxwell equations are not satis�ed, are given below

in section 9.

Now we will go along how the linear approximation of our equations stops working at

high �eld strengths. Nonlinear equations (3.12) are linearized at su�ciently small values

of the total current:

|DF| < δ (8.3)

where δ is some small value determined by the accuracy of a particular observation;

module assessment refers to both the scalar and vector components of the current. The

equations (3.14) are approximately satis�ed at such �eld values at which:

|F∗(DF)| ≪ 1 ⇔ |F| ≪ 1

δ
(8.4)

from which it follows that for �eld strength values |F| > 1
δ linear approximation ceases

to be valid.
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9. Associated �elds

We will call the solutions to nonlinear equations (3.14), which in the general case are

not solutions to linear equations (8.2), nonlinear �elds. In most cases, the sum of two or

more nonlinear �elds is no longer solving �eld equations (3.14).

Let F0 be some solution of linear equations (8.2), and (ω1,k1) some 4-vector. By

using the latter, you can construct a scalar function:

f(t, r) = ei(ω1t−k1·r) (9.1)

Then

F = F0f(t, r) = F0e
i(ω1t−k1·r) (9.2)

there is a solution to nonlinear equations (3.14). Thus, nonlinear �elds can be obtained

from linear ones by multiplying the latter to the Lorentz-invariant phase wave factor

f(t, r). We will call the nonlinear �eld F constructed in this way associated the linear

�eld F0. Inside the wave phase in (9.2), you can also take the "plus" sign, but the e�ects

associated with this will be important only later - when considering �elds of singularities,

so here for simplicity we limit ourselves to the "minus" sign. Note that there is a more

general form of solutions of the associated type than (9.2): F = F0e
iΦ(t,r), where Φ(t, r)

is some Lorentz invariant.

The �eld F0 satis�es the linear Maxwell equations (8.1): DF0 = 0. After simple

calculations we get:

DF = (F0 · ∇f, F0 ∂tf − iF0 ×∇f), (9.3)

where we learned. that ∂tf = iωf , ∇f = −ifk, ff∗ = 1. Nonlinear equations for the

�eld F in the form (3.13) give:{
Re{iω1(F0F

∗
0) + [F0F

∗
0] · k1} = 0

Re{ik(F0F
∗
0) + ω[F0F

∗
0]− i(F0k1)F

∗
0 − i(F∗

0k1)F0} = 0
(9.4)

Taking into account the real value character of the quantities 1
2F · F∗, i

2F × F∗ and

(F0k1)F
∗
0 + (F∗

0k1)F0 both of these equations are obviously satis�ed.

From (9.3) it follows DF ̸= 0 . This means that the �eld F (9.2) in general case does

not satisfy the usual Maxwell equations (8.1) and, therefore, is a nonlinear �eld.

Based on (9.3) the 4-current of associated �eld has the form:

J = DF = f
(
− i(F0k1), iω1F0 + [F0k1]

)
= ifF0K1 (9.5)

10. Nonlinear plane wave

We take as the initial classical �eld F0 in (9.2) a linear plane wave circularly polarized

F0 = Aei(ω0t−k0·r), A2 = 0, A = const (10.1)

The wave 4-vector of a linear wave (10.1) (ω0,k0) is isotropic: ω
2
0 = k2

0, and this wave is

transverse: k0 ⊥ A. An associated solution (10.1) with phase factor f = ei(ω1t−k1·r) has

the form:

F = fF0 = Aei(ωt−k·r) (10.2)



14 S.Y. KOTKOVSKY

Where {
ω = ω0 + ω1

k = k0 + k1

(10.3)

The wave 4-vector of the nonlinear wave (ω,k) must also be isotropic, which is required

by the equality of the phase speed of the wave of the speed of light (1 in our units):

ω2 = k2. If k1 is parallel to k0, then as F we again obtain an ordinary transverse linear

wave. If the vectors k1 and k0 are not parallel, then k will no longer be transverse to A.

Therefore, unlike the classical case of linear plane waves, a nonlinear plane wave (10.2)

may not be transverse.

Let's de�ne a 4-current nonlinear wave (10.2). According to (9.5):

J = DF =
(
− i(Fk1), iω1F+ [Fk1]

)
(10.4)

From this it can be seen that the wave transverse criterion (10.2) k1||k2 is the absence

of current: J = 0.
So, we see that nonlinear equations allow for the existence of longitudinal electromagnetic

waves, but only in the presence of regular currents. The direction of propagation of a

plane wave in such solutions may not coincide with the direction of energy transfer

determined by the Umov-Poynting vector.

11. Twisting energy �ow

Twist of the energy �ow, in our terminology, is the rotor of Umov-Poynting vector S,

de�ned according to (4.3):

Ω = ∇× S = ∇× [EH] =
(
(∇ ·H) +H · ∇

)
E−

(
(∇ ·E) +E · ∇

)
H (11.1)

Below we will show that for a certain, fairly wide class of free �elds, the twisting of the

energy �ow is impossible for linear Maxwell equations, but possible for nonlinear ones.

As such a class of �elds we will consider �at normal �elds. Normal �eld is free �eld

whose (electric and magnetic) components are equal in magnitude and perpendicular to

each other: E = H,E ⊥ H. In the biquaternion representation, the normal �eld F is a

null-vector �eld: F2 = 0. For important reasons, primarily the requirement of zero mass,

To describe light waves, it is normal �elds that are required. Flat �eld we call a �eld

that always remains in some �xed plane P: E,H ∈ P ⇔ F ∈ P. An example of linear

plane �elds is a classical plane electromagnetic waves. A nonlinear example of a normal

plane �eld was considered in the previous section.

A �at normal �eld is generally represented as:{
E = (acosφ+ bsinφ)f

H = (asinφ− bcosφ)f,
(11.2)

where a and b are two �xed real-valued mutually perpendicular unit vectors lying in the

plane P, and f and φ are some scalar di�erentiable functions t and r. Another way

(11.2) can be written as:

F = (aeiφ + be−iφ)f (11.3)
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Based on the de�nition (11.1), we can obtain an expression for the �eld twist (11.2):

Ω = 2f(bfx − afy), (11.4)

where fx = ∂f
∂x and fy = ∂f

∂y .

It is not di�cult to verify that if a normal plane �eld satis�es Maxwell linear equations

(8.2), then it has no twist: Ω = 0. At the same time, nonlinear equations (3.14) admit

solutions of the form (11.2), for which Ω ̸= 0. Such solutions have the form of the

wave for which f = f1(t± z)f2(x, y), which is easy to verify by directly substituting this

solution into the equations.

The conclusion of this section is that in a number of important cases nonlinear

equations, as opposed to linear ones, allow solutions that have a twisting energy �ow.

Nonlinearity here manifests itself as the ability to form vortex structures of energy-momentum

�ow. Since this �ow is largely determined by the Umov-Poynting vector (see Appendix

6) - we de�ned the twist in the form of a rotor of this vector. The analysis presented here

serves only to demonstrate, using speci�c examples, the fundamental di�erence between

the solutions of nonlinear equations from solutions of linear equations in terms of the

possibility of the existence of vortex structures of a free �eld.

12. Central-symmetric �eld. Electromagnetic charge.

We derived nonlinear equations (3.13) for a free �eld, i.e. �eld without singularities.

However, by virtue of their derivation, they also work in any 4-region lying outside the

singularities (although in the presence of singularities such a �eld can no longer be called

free). Now proceed with the search for a centrally symmetrical (in some reference frame)

solutions to these equations.

F = f(t, r) r (12.1)

where f(t, r) is some complex-valued function di�erentiable with respect to both arguments.

As will be seen from what follows, at the central point r = 0 such a �eld turns to in�nity.

Therefore, we will look for a solution (12.1) in the region outside the center-singularity.

For the �eld (12.1) at r ̸= 0 the following relations hold:

g ≡ ∇f = fr
r

r

∂tF = ftr

(∇F) = 3f + (gr)

[∇F] = [gr] (12.2)

When substituting (12.1) into (3.13) after simple calculations we get:{
Re{f∗ft} = 0

Re{f∗(3f + frr)} = 0
(12.3)

The second of these equations is reduced to the form:

Re{f∗fr} = −3|f |2

r
(12.4)
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Representing the function f as:

f(t, r) = seiφ, s(t, r) ∈ R, φ(t, r) ∈ R (12.5)

Let's transform the equation (12.4) to the form:

Re{sr
s

+
3

r
} = iφr (12.6)

The last equation is satis�ed only when both its sides are equal to 0, which follows:

φr = 0 ⇒ φ = φ(t) (12.7)

sr
s

= −3

r
⇒ s =

α

r3
, α = const ∈ R (12.8)

f =
α

r3
eiφ(t) (12.9)

It is easy to check that for f in (12.9) the �rst of the equations (12.3) is always satis�ed

as well.

Thus, the general centrally symmetric solution (3.13) has the form of an ordinary

Coulomb �eld with a phase factor eiφ(t):

F =
αr

r3
eiφ(t) (12.10)

Since we found the solution (12.10) in a certain frame of reference, it is necessary to give

its Lorentz-covariant form. This is:

F = F0e
iΦ (12.11)

where F0 is the usual Coulomb �eld transformed to a given reference frame according to

(2.6), and Φ is some Lorentz invariant. If we assume that the singularity at the center

of the �eld (12.11) is associated with some real 4-vector K = (ω,k), then the Lorentz

invariant has the form: Φ = ωt ± k · r, and nonlinear Coulomb �eld (12.11) has a wave

character:

F = F0e
i(ωt±k·r) (12.12)

It is noteworthy that this is a solution associated the usual Coulomb �eld in the sense

we de�ned above in (9.2).

The resulting �eld is associated with some singularity, i.e. with some charged particle.

Determine how the 4-momentum of this Coulomb particle P and the wave 4-vector K
relate to each other. In the particle's rest frame of reference, all directions are the

same. Therefore, it contains k1 = 0, and the �eld has the form: F = F0e
iωt = αr

r3 e
iωt

When transitioning to a reference frame moving with speed V, F0 is transformed into a

Coulomb �eld charge moving at a speed of v = −V. The 4-vector K is then transformed

so that k = ωv. The latter means:

K = λP (12.13)

where λ is a real-valued constant de�ned for a given particle.

The nonlinear Coulomb �eld (12.10) can be interpreted as the Coulomb �eld of the

complex charge q:

F =
qr

r3
, (12.14)
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The complex-valued charge q has the meaning of an electromagnetic charge, variably

combining electric and magnetic charges:

q = αeiφ(t) (12.15)

With a linearly varying phase, the complex charge periodically passes through all complex

values of a given modulus. For real values, q becomes an electric charge, and for imaginary

values, a magnetic charge. However, as it turns out, when interacting with other charges,

it is not the phase of the charge itself that is important, but how the phases of di�erent

charges relate to each other. As will be shown below (Section 14), the simplest matching

of the �elds of two charges leads to matching their phases, resulting in e�ectively electrical

interaction between them.

In the next section, using the appropriate generalized functions, we will extend the

resulting solution outside the singularity to the singularity itself.

13. Equations with one singularity.

In section 3 we derived the �eld equations in "vacuum i.e. in a space-time region

that does not contain �eld singularities. Let's assume now that in the region under

consideration there is one point (centrally symmetric) singularity. In the presence of

a singularity, the �eld energy in the region containing this singularity is no longer

conserved. The following visual model of energy exchange between two types, or planes

of movement: �eld and kinematic is useful. The �eld singularity plays the role of a

channel through which energy can �ow from the �eld plane to the kinematic plane and

back. Kinematically the singularity of the �eld is represented by a particle8. We assume,

and this is largely con�rmed by experience, that apart from singularities there are no

other channels of energy exchange between the �eld and kinematic planes. Therefore,

energy cannot �ow out of the �eld through regular currents.

As we saw in the previous section, outside the point singularity the �eld is Coulomb

with a phase factor (12.12). As a four-dimensional region containing the singularity line,

we take a certain hypercylinder V4 of "height" (in a certain reference frame) ∆t = t2−t1,

limited "above and below" by two time slices, i.e. spatial volumes S
(1)
3 and S

(2)
3 (Fig.2).

The rate of energy-momentum �ow from a �eld to a particle or from a particle to a

�eld in a 4-volume V4 is de�ned as dP
dt ∆t, where P = (ϵ,p) is the 4-momentum of the

particle. For the energy balance, instead of (3.5) we get:

1

2

∮
S3

F∗dZF =
dP

dt
∆t (13.1)

where S3 is the complete hypersurface bounding V4.

The Ostrogradsky-Gauss biquaternion formula (14.36), formulated for continuously

di�erentiable functions, can be transferred to the case of singular functions using the

apparatus of generalized functions. Considering the function F(Z) in (13.1) as a generalized

one, we can rewrite the integral over the hypersurface S3 as an integral over the 4-volume,

8Hereinafter, a particle is understood as a point-like charged particle.
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Ðèñ. 2. Region with singularity

as we did above in (3.6) for a regular function:∮
S3

F∗dZF =

∫
V4

(F∗DF)dV4 (13.2)

Assuming that the time interval ∆t is small enough to neglect the change in (F∗dZF)

on it, the integral (13.2) can be expressed as the product integral over spatial volume

V3 = S
(1)
3 = S

(2)
3 for time:∫

V4

(F∗DF)dV4 = ∆t

∫
V3

(F∗DF)dV3 (13.3)

Then (13.1) is transformed to the form:∫
V3

(F∗DF)dV3 =
dP

dt
(13.4)

In a given 4-domain (not containing other singularities), at all points outside the

trajectory of the singularity r1(t) the function (F∗DF) turns to 0. This allows us to

replace the indeterminate at the center a regular function (F∗DF) to a generalized

δ-function:

(F∗DF) = A(t) δ(r− r1(t)) (13.5)

where A(t) is some regular function of time. Substituting (13.5) into (13.4), we �nd this

function: A(t) = dP
dt , and as a result from (13.4) we get :

(F∗DF) =
dP

dt
δ(r− r1(t)) (13.6)

This is Maxwell nonlinear equation with the right side, which serves as an analogue of

the equation (3.11) in the presence of a singularity.

Note, in the equation (13.6), the �eld F is united or common - there is no division

into the particle �eld and the external �eld. Such a conditional division can be carried
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out in the quasilinear case, when the common �eld can be represented as the sum of the

�elds of the particle F1 and the external �eld Fe:

F = F1 + Fe (13.7)

so that each of them separately satis�es the nonlinear equation in emptiness (3.11),{
(F∗

1DF1) = 0

(F∗
eDFe) = 0

(13.8)

and the total �eld F satis�es a nonlinear equation with singularity (13.6).

Note that in order to obtain the charge's own �eld F1, satisfying the �rst of the

equations (13.8), it is su�cient to supplement the centrally symmetric solution (12.12)

zero value at the center of the singularity: F1(t, r1(t)) = 0. The last condition means

absence of self-interaction. Then, energy exchange through the singularity, described by

the equation (13.4), will be reduced to an equation containing only �eld interaction:

1

2
(F∗

1DFe) + (F∗
eDF1) =

dP

dt
δ(r− r1(t)) (13.9)

or

Re{F∗
eJ1 + F∗

1Je} =
dP

dt
δ(r− r1(t)) (13.10)

where J1 = DF1 is the particle current (which for nonlinear solutions contains both

singular and regular parts), Je = DFe is the regular external �eld current. Each of the

terms of the form F∗J in (13.10) is an expression of the work (per unit time) of the

corresponding �eld applied to the "counterpart" current.

One can represent the current J1 as the sum of singular and regular currents:

J1 = J1sng + J1reg (13.11)

and according to this, we divide the equation (13.10) into singular and regular parts:{
Re{F∗

eJ1sng} = dP
dt δ(r− r1(t))

Re{F∗
eJ1reg + F∗

1Je} = 0
(13.12)

The meaning of the �rst of the equations (13.12) is ordinary: it expresses the fact that

the transfer of energy to a charged particle is equal to the work of the external �eld on the

charge. The second of these equations has a purely nonlinear nature and means mutual

compensation of the work of the particle �eld and the external �eld on "counterpart"

regular current.

We can see how the equations (13.12) in the special case yield the usual equations of

motion of a charged particle in an external �eld. To do this, we need to take a linear

external �eld: Je = 0, and a purely electric current of the singularity: ImJ1 = 0.
Under these conditions, the second equation (13.12) is satis�ed trivially, and from the

�rst equation (13.12) and Lorentz covariance considerations for the 4-singularity current

we obtain:

J1sng = eγ(1,v)δ(r− r1(t)) (13.13)
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The �rst of the equations (13.12) takes on the known form of the Lorentz force and

its work per unit time on an electric charge of magnitude e from the external �eld

Fe = Ee + iHe: {
ev ·Ee = dϵ

dt

eEe + ev ×He = dp
dt

(13.14)

where v = dr1
dt is the velocity of the singularity, γ = 1/

√
1− v2, and e is some real-valued

constant.

Recall that the singularity �eld has a centrally symmetric form (12.10). From the

identity9

∇ · r

r3
= 4πδ(r) (13.15)

it follows that the current for the �eld (12.10), extended to the central point, in the rest

frame is equal to:

J1sng = DF = ∇ · αr
r3

= 4παδ(r) (13.16)

Comparing the latter with (13.13), we get:

e = 4πα (13.17)

The constant α in (12.10) coincides with the charge e in (13.13) (up to a factor of 4π,
which is due to our choice of system of units). This means that the magnitude of the

particle charge as a �eld source coincides with the value of its "test" charge in the external

�eld.

We need to make sure that the velocity of the singularity v coincides with the velocity

of the particle p
ϵ . From the constancy of the particle mass ϵ2 − p2 = m2 the following

relation follows:

ϵ
dϵ

dt
= p · dp

dt
(13.18)

Multiplying the �rst of the equations (13.14) by ϵ, and the second scalar by p and

applying (13.18), we arrive at the following equation:

Ee · (ϵv − p) = p · [vHe] (13.19)

This relation must hold for any external �eld Ee,He, which is only possible for v = p
ϵ .

So, we are convinced that in the linear approximation the transition from nonlinear

equations to ordinary equations for charge in an external �eld is carried out. With this

transition, instead of one nonlinear equation, one comes up with two separate equations:

the classical Maxwell equation with the right-hand side (which in our case is the de�nition

of current) and energy balance equation or Lorentz force.

14. Coherent �elds. Electromagnetic charge

We can apply the same reasoning that we used in the previous section when deriving

the formula (13.6) to the case when in the region under consideration there are n

9This identity is proven similarly to the more famous identity ∆ 1
r = −4πδ(r)
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singularities described by trajectories ri(t). As a result, we obtain the Lorentz-covariant

equation:

1

2
(F∗DF) =

n∑
i=1

dPi

dt
δ(r− ri(t)) (14.1)

where Pi are the 4-momenta of each of the particles corresponding to these singularities.

Now we consider the quasilinear case of two identical particles. Wherein we will

proceed from the assumption that the general �eld F can be obtained as the sum of the

�elds F1 and F2 from each singularity separately:

F = F1 + F2 (14.2)

Let us consider some 4-region lying outside the trajectories of both singularities. As the

individual �elds of each of the singularities, we take their wave Coulomb �elds (12.12):{
F1 = f1F10 , f1 = eiφ1 = F10e

i(ω1t±k1·r) F2 = f2F20 , f2 = eiφ2 = F20e
i(ω2t±k2·r)

(14.3)

where F10 and F20 are the usual Coulomb �elds of each particle in the reference frame

under consideration. The plus or minus sign within the wave phases for each of the �elds

will be determined below.

By analogy with the second equation (13.12), the nonlinear interaction of �elds (outside

singularities) will be written as:

Re{F∗
1J2 + F∗

2J1} = 0 (14.4)

where J1 = DF1 and J2 = DF2 are the regular currents of each particle. Based on

(9.5) and (14.3) for the current J1 we obtain:

J1 = if1F10K1 (14.5)

where K1 = K1(t) = (ω1,k1). A similar expression is obtained for the current J2. The

equation (14.4) is rewritten as:

Im{fA+ f∗B} = 0 (14.6)

where f = f2f
∗
1 and {

A = F20K2F
∗
10

B = F10K1F
∗
20

(14.7)

Denote ∆K = K2 −K1. Then A can be represented as:

A = F20(K1 +∆K)F∗
10 = B∗ + F20∆KF∗

10 (14.8)

The result (14.6) will be expressed as:

Im{fB∗ + f∗B + fF20∆KF∗
10} = 0 (14.9)

or

Im{fF20∆KF∗
10} = 0 (14.10)
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Ðèñ. 3. Two charges

Consider the movement of particles in the system of their center of mass. Since the

particles are assumed to be identical, then the 4-momentum and 4-wave vector of each of

them are related by the equation (12.13) to the same λ. Hence, k1 = −k2 = k, ω1 = ω2,

∆K = −2k.

fF20∆KF∗
10 = −2f

(
i[F∗

10F20 ] · k, (F20k)F
∗
10 + F20(F

∗
10k)− k(F∗

10F20)
)

(14.11)

The �elds of moving charges in the center of mass system F10 ,F20 are obtained from

the �elds of stationary charges F1r ,F2r using two suitable boosts of opposite speeds V
and −V (2.6): {

F10 = ch 2θF1r − 2 sh2 θ(F1rn)n+ i sh 2θ[F1rn]

F20 = ch 2θF2r − 2 sh2 θ(F2rn)n− i sh 2θ[F2rn]
(14.12)

where the boost parameters n and θ are related to its speed by the relation V = n th 2θ.
Obviously, k ∥ n.

F1r and F2r are the usual (real-valued) Coulomb �elds of each particle, each taken in

the rest frame of its particle, in which they are directed along their radius vectors. The

latter can be expressed by using the Lorentz transformation (2.1) through the coordinates

of the point under consideration (t, r). Thus, the relative radius vector R′
1 for F1r =

αR′
1

R′
1
3

is equal to

R′
1 = r′ − r′1 = R1 − n(t sh 2θ − 2(R1n) sh

2 θ) (14.13)

where R1 = r− r1 is the radius vector in the center of mass system. We have a similar

expression for R′
2 - the radius vector de�ning F2r . Important, that the vectors F1r and

F2r lie in the plane of the vectors r and n shown in Fig.3. This is quite obvious from

the fact that these vectors are directed along the corresponding radius vectors R′
1 and

R′
2 in their rest frames, and the radius vector, when transformed into a center of mass

reference frame, does not acquire component transverse to n. From this, according to

(14.12), it follows: {
[F∗

10F20 ] · k = 0

Im{(F∗
10F20)} = 0

(14.14)
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Then, taking into account (14.11), condition (14.10) reduces to the reality of the function

f :

Imf = 0 (14.15)

Because

f = ei(φ2(t,r)−φ1(t,r)) (14.16)

then the condition (14.15) means phase matching of the wave �elds of singularities for

any values of t and r:

φ1(t, r) = φ2(t, r) (14.17)

As can be seen from what follows, an additional non-zero phase shift 2πn is impossible.

Now we can turn to the question of which sign ("plus" or "minus") should be chosen

for the phases of each of the particles in their wave functions (14.3). Let's take the minus

sign for the �rst particle:

φ1 = ω1t− k1 · r (14.18)

From here, from (14.17) in the center of mass system for the second particle we obtain:

φ2 = φ1 = ω2t+ k2 · r (14.19)

Then in its phase the plus sign must be selected. We come to the important conclusion

that in order to coordinate the �elds of particles, their wave phases must be conjugate:

the minus sign of the �rst particle corresponds to the plus sign of the second, and vice

versa - the plus sign for the �rst particle corresponds to the minus sign for the second

particle. The �rst of these options is written as:{
F1 = F10e

i(ω1t−k1·r)

F2 = F20e
i(ω2t+k2·r)

(14.20)

From the above analysis it follows that phase matching or coherence of �elds is required

for a quasi-linear representation of the total �eld in the form of a sum of the �elds of each

particle (14.2). If the �elds are not coherent, then such a representation is impossible,

which e�ectively requires introduction of a third �eld in total. The latter �eld should

be the �eld of radiation. The work to compensate for this �eld can be assessed as the

left side (14.4), which therefore plays the role of nonlinear interaction of incoherrent

�elds. Based on the above, it can be assumed that Coherrent �elds minimize nonlinear

interaction, while �elds incoherrence leads to radiation.

The minus and plus signs within the wave phase obviously describe waves traveling in

the direction of the particle's velocity and in the opposite direction, respectively. When

the phases of particles moving towards each other are coordinated, their waves turn out

to be traveling in the same direction.

Above we studied the joint �eld of two identical particles in the quasilinear case in the

region outside singularities. Let's see what happens now on the singularities themselves.

From the �rst equation (13.12) applied to the �rst of the singularities, we get the following

equation of motion of its particle:

Re{F∗
2J1sng} =

dP1

dt
δ(r− r1(t)) (14.21)
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But since the phases J1sng and F2 for matched �elds cancel each other, we arrive at the

equations of motion of one charged particle under the in�uence of the electric Coulomb

�eld of another charged particle, which take place in ordinary electrodynamics.

Quasilinear �eld matching "hides" nonlinear e�ects in observing the motion of charged

particles, and instead of interaction of electromagnetic charges, in this case we obtain

the interaction of ordinary electric charges, as stated above at the end of Section 12.

However more complex nonlinear cases of interaction of charges are possible, in which

their electromagnetic nature can manifest itself. In this work we do not go with such

cases, leaving their study for the future.

Conclusions

The main original goal of this work was to show that Maxwell equations are a consequence

of the principle of conservation of �eld energy �ow. However, by solving this problem,

we obtained broader nonlinear equations. In general form, including equations (3.11) for

a free �eld and equations (14.1) for a �eld with n singularities, these equations have the

form:

1

2
(F∗DF) =

n∑
i=1

dPi

dt
δ(r− ri(t)), n > 0 (14.22)

It is important that in these equations F there is a single �eld, not divided into free �elds

and �elds of individual particles.

Maxwell classical linear equations turn out to be embedded in these nonlinear equations

in a special way and are their limiting case. The physical meaning of the free �eld

equations we obtained is that this �eld can be created by its own source structures, on

which it does not perform work. We de�ned this relationship between the �eld and its

own sources as recursive.

It is well known that light is an essentially spatiotemporal phenomenon in which it

is impossible to separate spatial and temporal components from each other. But in the

classical Maxwell equations for a �eld in emptiness (8.2), the di�erentiation operators

with respect to the spatial coordinate and time are linearly separated (come additively).

At the same time, corresponding nonlinear equations (3.14) are characterized by the

inseparability of these operators, since they enter the equations in a more complex form

than a simple sum. This suggests that nonlinear equations are more appropriate than

linear equations for describing real light.

We called �eld own sources regular charges and currents - in contrast to ordinary

singular charges and currents. Classical electrodynamics deals either with singular sources

or with a complete absence of sources. Our study examines the theoretical possibility of

the existence of non-singular (regular) �eld sources.

Nonlinear free �eld equations admit among their solutions plane waves having a

longitudinal component, i.e. which ones are not completely transverse. The criterion for

the existence of such solutions is the presence of a non-zero regular current. Otherwise,

we have an ordinary transverse wave. The presence of a longitudinal component in light

waves can explain in classic way the fact that light has its own angular momentum, which

is impossible in the case of purely transverse waves.
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In section 11 it was found that if we limit the consideration to �at normal �elds, then

nonlinear equations, unlike linear ones allow solutions that have a twisting energy �ow.

Nonlinearity here manifests itself as the ability to form vortex structures of energy-momentum

�ow, which is largely determined by the Umov-Poynting vector - we de�ne the twist in

the form of a rotor of this vector. Speci�c examples show the fundamental di�erence

between solutions of nonlinear equations from solutions of linear equations in terms of

the possibility of the existence of vortex structures of a free �eld.

Particular attention in the work is paid to the problem of dividing the �eld into the

"intrinsic" �eld of a charged particle and a �eld "external" to it. From the nonlinear

�eld equations follow both the classical Maxwell equations themselves and the equations

of charge moving under the action of Lorentz force. Thus, we have given a solution to

the problem posed in the introduction - to �nd nonlinear �eld equations that include

interaction. Unlike in classical electrodynamics, our equations clearly show why the

"test"charge of a particle and its charge as a �eld source coincide. Another important

consequence of the inclusion of interaction in the fundamental equations of �eld is

unnecessity to use Lagrangian formalism.

The simplest, nevertheless important, class of nonlinear �elds are associated solutions

of the form (9.2). These are ordinary Maxwell �elds endowed with a wave factor. The

existence of such solutions shows, at least for the case of two particles we studied, that

the known global dual transformations have a generalization in the form of local phase

transformations.

The appearance of �eld solutions of the form of a Coulomb wave (12.12), combining

the �eld of a point charge and a wave, brings together classical electrodynamics and

quantum mechanics and indicates the possibility of an electromagnetic description of de

Broglie wave of the electron. This allows us to talk about a di�erent view of wave-particle

duality. The concept of an electromagnetic wave in nonlinear electrodynamics is thus is

not limited to light, but also applies to particle �elds. Moreover, the waves describing

these two fundamental types of �eld structures fundamentally di�erent.

In the works [9],[13] it was shown that the �eld of electromagnetic wave itself, in a

certain sense, plays a role quantum mechanical wave function of a photon: the square

of its modulus determines the mathematical expectation of the energy density at a

given point in space. The nonlinear solution we obtained (12.12) indicates that for a

charged particle, a similar "energy" wave function can be speci�ed by its complex-valued

electromagnetic �eld.

Table 1 provides a summary of the main di�erences of nonlinear electrodynamics

resulting from equations (14.22), from classical linear electrodynamics10.

In addition to describing a particle as an electromagnetic wave, nonlinear electrodynamics

based on equation (14.22) exhibits a number of other similarities with quantum �eld

theory. Thus, phase coherence of two identical charged particles is a classical analogue

of the Pauli principle: the �elds of these particles are consistent when their phases are

conjugate.

Phase matching leads to the existence, along with the usual Coulomb interaction, of

phase interaction, similar to quantum spin interaction (also called "exchange"interaction).

In both cases, the interaction is determined by the overlap of the corresponding wave

10The curl or twist of the energy �ow is understood as the rotor of the Umov-Poynting
vector, and possible solutions are limited to the class of normal plane �elds.
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Òàáëèöà 1

Linear ED Nonlinear ED

Basic principles eq. Maxwell + interaction conservation of energy

Energy representation no exists

Space and time operators separate inseparable

Description of particles and �elds separate united

Light transverse waves + longitudinal waves

Twisting energy �ow no exists

Charged particle point singularity + wave

Charges and currents singular + regular

Charges electric electromagnetic

Charge interaction Coulomb + phase

functions. The sign "±" inside the wave phase expresses a discrete degree of freedom,

similar to spin 1/2.

The complexity of the charge and the presence of its phase is perhaps the most striking

consequence of the nonlinearity of the �eld equations we obtained. In our approach,

the charge of the particle is electromagnetic, periodically passing through various linear

combinations of electric and magnetic charges from purely electric to purely magnetic.

In real processes of interaction of charged particles with each other and the �eld, it is not

the charge of the particle itself that plays a role, but its phase relationship with other

charges and �elds. In this way, the old riddle of the "absence" of magnetic charges in

nature (while they are present in theory) is resolved.

Within our approach, there are neither purely electric nor purely magnetic charges.

The usual interaction of charged particles, due to the requirements of energy e�ciency,

is reduced to an interaction similar to the Coulomb interaction of electric charges. In

other words, electromagnetic charges "in ordinary life" look like electric ones. With all

this, we can expect the observation of new physical e�ects of nonlinear interaction, in

which the electromagnetic nature of the charges will manifest itself - an interaction in

which the phases of the particles do not have time to adjust to each other.

According to quantum �eld theory, strong electromagnetic �elds polarize the vacuum,

which in turn leads to the appearance of corrections in the Maxwell Lagrangian of these

�elds [17]. Taking into account the e�ects of vacuum polarization can be interpreted

as nonlinearity of electrodynamics. "Quantum e�ects create a non-zero right-hand side

(current) even in the absence of charged particles in the initial state"[18]. This allows us

to correlate our regular currents with vacuum currents. Both types of current have an

additional e�ect compared to ordinary "external" currents.

Anyhow, there is a fundamental di�erence between these two approaches. In our case,

continuous currents exist initially in Maxwell nonlinear equations, while in quantum �eld

theory, Maxwell linear equations are supplemented by currents built on the summation

of the set discrete events of the birth of particle-antiparticle pairs.

In this article, we studied singularities of the point-centric symmetric type, which

describe point-charge particles. For complete picture it requires the study of an axis-centric

symmetric solution of nonlinear equations which would describe magnetic moment of the
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particle. In the same scope lie questions about the connection between the nonlinear

equations we obtained and the angular momentum of the electromagnetic �eld including

its spin. Also, a perspective direction of research should become a nonlinear description

of radiation processes. Discovering these and other questions will help reveal deeper

connections between classical nonlinear electrodynamics and quantum �eld theory and

take full advantage of the capabilities of Maxwell equations and their generalizations.

The author thanks A.V. Goryunov for discussion and useful advice.
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Appendices

1. Algebra of biquaternions. As in our previous work [15] (p. 160) we use

scalar-vector representation of biquaternions, in which the biquaternion B is a bundle of

complex number s and three-dimensional complex vector u:

B = (s,u) ≡ s+ u, s ∈ C,u ∈ C3 (14.23)

The product of two biquaternions B1 = (s1,u1) and B2 = (s2,u2) is de�ned as:

B1B2 = (s1s2 + (u1 · u2), s1u2 + s2u2 + i(u1 × u2)), (14.24)

where (u1 ·u2) and (u1 ×u2) - scalar and vector the products of u1 and u2 respectively.

In this representation, quaternions, as a special case of biquaternions, have the form:

Q = (α, ia), α ∈ R,a ∈ R3 (14.25)

It is important to distinguish quaternions from real biquaternions, which have the form:

B = (α,a), α ∈ R,a ∈ R3 (14.26)

Real biquaternions play a special role in our approach since the space-time coordinate Z
and energy-momentum K are just such quantities.

The space of biquaternions has a basis [5](p.141) en, n = 0, 1, 2, 3: e0 = 1 and for

k > 0: {
e2k = 1

eiej = −ejei = iek,
(14.27)

where i, j, k are cyclically permutable indices 1,2,3. The basis biquaternions en are real.

An arbitrary biquaternion B is expanded over this basis:

B =

3∑
n=0

enbn, bn ∈ C (14.28)

Thus, for a real-valued space-time coordinate Z we have:

Z = (t, r) =

3∑
n=0

enxn, (14.29)

where x0 = t, (x1, x2, x3) = r.
A biquaternion whose measure is 1 is called unitary.

The operations of conjugation and complex conjugation applied to the product of

biquaternions change the order of the factors:

B1B2 = B2 B1 (14.30)

(B1B2)
∗ = B∗

2 B∗
1 (14.31)

Two biquaternions B1 and B2 are orthogonal if Sc(B1B2) = 0.
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2. Ostrogradsky-Gauss biquaternionic formulas. For quaternion functions f(Q)
of the quaternion argument11 Q = (t, r), continuously di�erentiable with respect to each

of the coordinates t, x, y, z inside some region V4 of pseudo-Euclidean space and on its

boundary S3 = ∂V4 , formulas of the Ostrogradsky-Gauss type [7],[14] hold:∮
S3

f dQ =

∫
V4

fD̂ dV4 (14.32)

∮
S3

dQ f =

∫
V4

D̂f dV4 (14.33)

where D̂ = ∂
∂t + i ∂

∂x + j ∂
∂y +k ∂

∂z , i, j,k - basis quaternios, Q = t+ ix+ jy+kz. In (14.32)

the operator D̂ acts to the left of itself, and in (14.33) - to the right.

In [5] it is proven that similar formulas hold for biquaternion functions F of a real

biquaternion argument Z: ∮
S3

F dZ =

∫
V4

(FD) dV4 (14.34)∮
S3

dZ F =

∫
V4

(DF ) dV4 (14.35)

Here D denotes the biquaternion gradient12: D = (∂t,∇)

Let us show that there is an extension of these formulas to the case of two functions

F (Z), G(Z) of a real biquaternion argument Z.∮
S3

FdZG =

∫
V4

(FDG)dV4 (14.36)

Where

(FDG) = (FD)G+ F (DG) (14.37)

The operator D is expanded in a biquaternion basis (14.27) as: D =
3∑

k=0

ek∂k, and

the coordinate di�erential as: dZ =
3∑

i=0

eidxi. The left side of the formula (14.35) will

be expressed as:∮
S3

dZ F =

∮
S3

(
3∑

i=0

eidxi) F =

∮
S3

3∑
i=0

(eiF )dxi =

∮
S3

3∑
i=0

Fidxi (14.38)

where de�ned: Fi = eiF . For the right side of (14.35) we get:

∫
V4

(DF ) dV4 =

∫
V4

(
3∑

k=0

ek∂k)F dV4 =

∫
V4

3∑
k=0

∂k(ekF ) dV4 =

∫
V4

3∑
k=0

∂kFk dV4 (14.39)

11Here we use the quaternion representation, which di�ers from (14.25) by the absence
of the factor i in front of the vector part.

12Our de�nition is di�erent from the de�nition used in the [5] paper, where D denotes
(∂t,−∇).
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Thus (14.35) can be expressed in the form standard for vector analysis:∮
S3

3∑
i=0

Fidxi =

∫
V4

3∑
k=0

∂kFk dV4 (14.40)

It is important to note that the coe�cients Fi = (si,Fi) are themselves biquaternions.

In this case, generally speaking, the existence of the biquaternionic function F is not

required: Fi = eiF , and it is su�cient only for each of the four functions Fi to be

continuously di�erentiable with respect to each of the coordinates. Indeed, let's consider

formula (14.40) in particular for scalar components si:∮
S3

3∑
i=0

sidxi =

∫
V4

3∑
k=0

∂ksk dV4 (14.41)

This is the Ostrogradsky-Gauss formula in 4-dimensional Euclidean space for a vector

function having components si. In a similar way, the formula (14.40) is satis�ed for each

of the vector components Fi.

Let's use the same basis expansion technique to prove the formula (14.36). Its left

side: ∮
S3

FdZG =

∮
S3

F (
3∑

i=0

eidxi)G =

∮
S3

3∑
i=0

(FeiG)dxi =

∮
S3

3∑
i=0

Akdxi, (14.42)

where Ak = FeiG is denoted. The formula (14.40) is applicable to the last integral:∮
S3

3∑
i=0

Akdxi =

∫
V4

3∑
k=0

∂kAk dV4 =

∫
V4

(FDG) dV4, (14.43)

where we took into account that:

3∑
k=0

∂kAk =
3∑

k=0

∂

∂xk
(FekG) =

3∑
k=0

(
∂F

∂xk
ekG+ Fek

∂G

∂xk
) =

= (
3∑

k=0

∂F

∂xk
ek)G+ F (

3∑
k=0

ek
∂G

∂xk
) = (FDG) (14.44)

Thus, the formula (14.36) is proven.

As is known from the theory of di�erential forms, the Ostrogradsky-Gauss and Stokes

formulas are a consequence of the general theorem on the external derivative [16] (p.

154). A remarkable circumstance is that the biquaternion formula (14.34), applied to

vector functions in three-dimensional space, gives both of these formulas simultaneously.

If we take F = F(r) in (14.34), then integration over the time coordinate is reduced

to multiplication by the corresponding time interval ∆t, and we obtain the following

formula:

∆t

∮
S2

(F · dr, iF× dr) = ∆t

∫
V3

(∇ · F,−i∇× F) dV3, (14.45)

which splits into scalar and vector parts:
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S2

F · ds =
∫
V3

(∇ · F) dV3 (14.46)

∮
S2

ds× F =

∫
V3

(∇× F) dV3, (14.47)

In the formula (14.46) we replaced dr with ds, because here dr has the usual for vector

analysis meaning of the oriented area of the two-dimensional surface S2: ds = nds,

where n is the normal to this surface. (14.46) is the classical Ostrogradsky-Gauss

formula. (14.47) is a generalized Stokes formula for three-dimensional volume, which can

be shown to be equivalent the usual Stokes formula for circulation along the boundary

of a two-dimensional surface.
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