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ABSTRACT

Methods beyond neural scaling laws for beating power scaling laws in machine learning have
become topical for high-performance machine learning models. Nearest Prototype Classifiers (NPCs)
introduce a category of machine learning models known for their interpretability. However, the
performance of NPCs is frequently impacted by large datasets that scale to high dimensions. We
surmount the performance hurdle by employing self-supervised prototype-based learning metrics to
intelligently prune datasets of varying sizes, encompassing low and high dimensions. This process
aims to enhance the robustification and certification of NPCs within the framework of the Learning
Vector Quantization (LVQ) family of algorithms, utilizing Crammer normalization for arbitrary
semi-norms (semi-metrics). The numerical evaluation of outcomes reveals that NPCs trained with
pruned datasets demonstrate sustained or enhanced performance compared to instances where training
is conducted with full datasets. The self-supervised prototype-based metric (SSL) and the Perceptual-
SSL (P-SSL) utilized in this study remain unaffected by the intricacies of optimal hyperparameter
selection. Consequently, data pruning metrics can be seamlessly integrated with triplet loss training
to assess the empirical and guaranteed robustness of Lp-NPCs and Perceptual-NPCs (P-NPCs),
facilitating the curation of datasets that contribute to research in applied machine learning.

Keywords Learning vector quantization · Prototype-based data pruning · Adversarial robustness · Guaranteed
robustness certification

1 Introduction

Adversarial robustness has emerged as a focal point of concern for most applications in machine learning algorithms.
[1, 2]. It is not a surprise that much research has been dedicated to discovering mathematically precise methods that can
be used to harden learners, verify by complete methods their robustness [3, 4], and provide guarantees regarding their
robustness by certification [4, 5]. Amongst the most interpretable machine learning models of interest are the Nearest
Prototype Classifiers (NPCs) [6, 7]. Following the introduction of margin analysis by Crammer et al. [8], empirical
evidence in favor of the adversarial robustness of Generalised Learning Vector Quantization (GLVQ) [9] was introduced
[10] and later Saralajew et al.[11] presented a mathematical formulation that proved that GLVQ is robust against
adversarial attacks using arbitrarily semi-norms. A similar conclusion derived by [11] regarding the robustness of NPCs
is shown in [12] using the semi-metric. Hence, the interpretability and proven adversarial robustness guaranteed by the
certification of NPCs are perfectly matched for their utilization and adoption in deep learning applications[11].



NPCs that optimize the hypothesis margin generalize well with guaranteed robustness certification[8, 10]. However,
employing datasets with a substantial number of instances featuring predominantly higher dimensions doesn’t necessarily
guarantee enhanced performance of NPCs, as LVQs are specifically designed to be prototypically sparse models[13].
The application of a self-supervised prototype-based metric to beat power scaling laws has been investigated and
introduced by [14]. Applied neural scaling laws that stipulate and confirm the fall of learner errors based on the
power of the size of training data, size of the model, or a combination of both exist in practice for deep learning
models [15, 16, 17].The case for error reduction relating to scaling the training dataset is not empirically true for
NPCs, especially for high-dimensional datasets. However, generalization error reduction in NPCs regarding scaling the
model size has been confirmed but fails for the same reason when dealing with robustness error against adversarial
attacks[8, 10].

The practice of intelligent gathering of more limited quantities of thoughtfully chosen data, potentially resulting in
the collection and distribution of foundational datasets[18] fit well for NPCs. Moreover, gathering large datasets for
deep learning remains inefficient for most NPCs. Hence, the trade-off favoring adversarial robustness training and
certification for NPCs will entail applying the best fairly sizeable dataset. This work seeks to look beyond neural scaling
laws by investigating an optimal data pruning strategy inspired by prototype-based learning as a data preparation step
[14] prior to the robustification and certification of NPCs with a focus on the LVQ family of advanced classifiers[9, 19].

2 Nearest Prototype Classifiers

Building Nearest Prototype Classifiers (NPCs) entail defining a dissimilarity measure along with a well-defined set
of prototypes W chosen from the input space of S = {s1, s2, s3, .., sn} ⊆ Rm where each prototype w ∈ W
is assigned a unique class c (w) ∈ C = {1, 2, . . . , C} . Given an instance s ∈ S , the distance d between s and
w ∈ W is computed and the classification of s is based on equation (1).

f (s) = argmin
k

d (s,wk) , 1 ≤ k ≤M (1)

where the cardinality of the prototype set W is indicated byM . The prototypes used in NPCs can be learned alongside
the dissimilarity measure, leading to good generalization ability and robustness[11]. Regarding learning vector
quantization, a subset of NPCs [20], correct classification can only be attained when d (s,w∗) < d (s,w∗) where w∗

and w∗ are the prototypes that best correctly assign and incorrectly assign a class c to s respectively[21, 22].

Definition 2.1 A mapping S×S → R is a semi-metric if the following properties are satisfied ∀ s, s̃, s̄ ∈ S: d(s, s̃) ≥ 0
(non-negativity); d(s, s̃) = d(̃s, s) (symmetry); d(s, s̃) ≤ d(s, s̄ + d(̄s, s̃) (triangle inequality). A semi-metric with
additional property that d(s, s̃) = 0 =⇒ s = s̃ is a metric.

Definition 2.2 A mapping S× S → R is a semi-norm if the following properties are satisfied ∀ s, s̃ ∈ S : ∥s∥ ≥ 0
(non-negativity); ∥αs∥ =| α | ∥s∥ (absolute homogeneity); ∥s+ s̃∥ ≤ ∥s∥ + ∥s̃∥ (triangle inequality). A semi-norm
with additional property that ∥s∥ = 0 =⇒ s = 0 is a norm.

3 Prototypical Metric for Data Pruning

Data pruning remains a relevant step for data preprocessing when dealing with large datasets, especially in areas where
the only room for optimization of learner performance relies heavily on the size of the training set. A considerable
number of data pruning metrics used in deep learning do not only come with a high computational burden but also
necessitate a full input space along with its corresponding target space. A more efficient strategy is to employ an
interpretable, comprehensible and scalable data pruning metric that significantly reduces computational demands, as
proposed by Wong in 2018 [5]. Hence, the data pruning metric that satisfies the aforementioned conditions will be a
self-supervised prototype-based metric (SSL) that can effectively prune the input space into easy and hard instances
with or without any target space[14]. In this regard, we opt for a prototypical metric that avoids heuristics by utilizing a
unity hyper-parameter for optimization. Given an input set S = {s1, s2, s3, .., sn} ⊆ Rm, let the objective function
JSSL :Mc × Rcm → R+ for the self-supervised prototype-based metric be defined as

JSSL (U,v) =

n∑
k=1

c∑
i=1

(ui (sk)) ∥ sk − vi ∥2 (2)

together with a Hard c-partition space for S given by (3) where Hcn is the set of real c× n matrices[23],
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Mc =

{
U ∈ Hcn

∣∣∣ ui (sk) ∈ {0, 1} ∀ i, k ;
c∑

i=1

ui (sk) = 1 ∀ k ; 0 <
n∑

k=1

ui (sk) < n ∀ i
}

(3)

We stipulate that ui (sk) = 1 ⇐⇒ sk ∈ ui and hence JSSL in (2) reduces to the simplified form,

JSSL (U,v) =

c∑
i=1

( ∑
sk∈uik

∥ sk − vi ∥2
)

(4)

JSSL (U,v) =

c∑
i=1

 ∑
sk∈uik

 m∑
j=1

(skj − vij)
2

 (5)

we minimize globally JSSL in (5) for the cluster prototypes vi and construct the distance space Dik from which we
determine the easy (6) and hard (7) instances based on the magnitude of closeness to the cluster prototypes [5, 23] with
regard to a specified prune ratio r.

easy = r

[
min

sk→vi

Dik

]
, Dik ∈ Rc×n 1 ≤ i ≤ c, 1 ≤ k ≤ n (6)

hard = (1− r)

[
max
sk→vi

Dik

]
, Dik ∈ Rc×n 1 ≤ i ≤ c, 1 ≤ k ≤ n (7)

When S is chosen as an image dataset, best practices entail using a fine-tuned or pre-trained model to embed the input
space features as an initial step before utilizing the SSL metric for the designated data pruning based on the embedded
space as inputs [24]. Hence considering the squared Euclidean distance regarding any two arbitrary images (x,y) ∈ S:

d2 (x,y) =

m∑
i=1

(xi − yi)
2 (8)

a perceptual metric is obtained by computing the Euclidean distance between normalized feature activations in a neural
network[12]. Given a fixed neural network ζ with I layers, let the i-th layer input specifications for the height, width
and number of channels be indicated as Hi, Bi, Ci respectively. Consider x(i),y(i) ∀ i ∈ I as output features of ζ,
the distance measure in (8) for the normalized by channel-level feature per hidden layer is given by:

d2 (x,y) =
∑
i∈I

∑
h,b

 x
(i)
h,b√∑Ci

j=1(x
(i)
h,b)

2

−
y
(i)
h,b√∑Ci

j=1(y
(i)
h,b)

2

2

(9)

with h ∈ Hi and b ∈ Bi. Considering the normalization by size of the i-th layer of (9) along with pi indicating the
learned weights from human perception data[12],

d2 (x,y) =
∑
i∈I

∑
h,b

1

HiBi

pi ⊙
 x

(i)
h,b√∑Ci

j=1(x
(i)
h,b)

2

−
y
(i)
h,b√∑Ci

j=1(y
(i)
h,b)

2

2

(10)

Hence for the Learned Perceptual Image Patch Similarity (LPIPS) distance [25, 26] we have the form:

d2 (x,y) =
∑
i∈I

∑
h,b

pi ⊙
 x

(i)
h,b√∑Ci

j=1(x
(i)
h,b)

2
√
HiBi

−
y
(i)
h,b√∑Ci

j=1(y
(i)
h,b)

2
√
HiBi

2

(11)

and for a given input x, the feature space embedding is normalized and flattened with regards to the mapping function ψ

ψ (x) =
x
(i)
h,b√∑

j(x
(i)
h,b)

2
√
HiBi

i ∈ I, 1 ≤ j ≤ Ci (12)
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hence when pi attains unity ∀ i ∈ I , (11) becomes (13)

d2 (x,y) = ∥ψ (x)− ψ (y) ∥22 , x,y ∈ [0, 1]
d
, (13)

realizing a distance that is a semi-metric[25]. We can now replace the squared Euclidean distance in (5) with the LPIPS
distance in (13) and obtain a Perceptual-SSL data pruning metric as:

JPSSL (U,v) =

c∑
i=1

 ∑
sk∈uik

 m∑
j=1

(ψ(skj)− ψ(vij))
2

 (14)

The global minimization of (14) along with (6-7) leads to intelligently selected instances for NPCs regarding complex
image datasets for which the LPIPS distance outperforms the distance measure induced by the L2-norm[27].

4 Robust Nearest Prototype Classifiers

We consider the robustification of the LVQ family of classifiers, [21, 22] and narrow our scope to the Generalized
LVQ [9] inspired learners. To this end, we define the training pair T = {sn, c (sn)}Nn=1 ∈ {Rm, C}N and a set of
vectors W = {w1,w2, . . . ,wM} ⊆ Rm referred to as prototypes, to which each class c ∈ C is assigned one or more
prototypes. The search for optimal learner performance involves minimizing (15) with respect to the prototypes W.

EGLVQ (s, tβ) =

N∑
i=1

tβ (µ (si)) =

N∑
i=1

tβ

(
d (si,w

+)− d (si,w
−)

d (si,w+) + d (si,w−)

)
(15)

The differentiable dissimilarity d+ (s) = d (s,w+) and d− (s) = d (s,w−) used in (15) and defined by (2.2) indicates
the correct and incorrect best matching distance respectively based on {w+,w−} ∈ W [9]. The activation function
tβ (k) , k ∈ R is conditioned to be monotonically increasing given an example as:

tβ (k) =
(
1 + e(−βk)

)−1

(16)

The classifier function µ (s) in (15) lies in the interval [−1, 1] where correct classification indicates d+ (s) < d− (s)
and vice-versa. Considering a minimal adversarial perturbation φ limited to a specified positive bound ϵ, an adversarial
example is defined by:

ŝ = s+ φ, 0 < φ ≤ ϵ, c (s) ̸= c
(
wf(ŝ)

)
(17)

for which φ is the upper bound of the sample margin, which in turn upper bounds the hypothesis margin [8, 11, 10].
Therefore the robustification lies in the fact that GLVQ-loss function is a normalized form of the triplet loss [8, 9] and
the minimization of (15) by the stochastic gradient descent optimization leads to the realization of a proven robust
leaner [10, 11]. Hence regarding the robust test error of an Lp-GLVQ against a given ϵ-limited Lq adversarial attack,
the upper bound is given by:

URTEq≤p =
1

|T |
· |{(s, c(s)) ∈ T | d− (s)− d+ (s) ≤ 2ϵ}| (18)

and for attack scenarios where q > p regarding the test and train norm, the size of minimal adversarial perturbation φ
has a bound determined by the Hölder’s inequality[11] and hence the upper bound in (18) becomes (19).

URTEq>p =
1

|T |
· |{(s, c(s)) ∈ T | m

1
q−

1
p
(
d− (s)− d+ (s)

)
≤ 2ϵ}| (19)

In some cases, examples denoted as s ∈ T may evade misclassification under a selected ϵ-limited adversarial attack.
This is because the search for the minimal adversarial perturbation φ in these attacks does not guarantee the discovery
of an adversary for every example under attack[11, 28]. Therefore, the absence of an adversary raises uncertainty about
whether there is genuinely no adversary or if the method has simply failed[28]. Consequently, the corresponding lower
bound on the robust test error is thus computed by:

LRTE =
1

|T |
· |{(s, c(s)) ∈ T | ŝ = s+ φ, 0 < φ ≤ ϵ, c (s) ̸= c

(
wf(ŝ)

)
}| (20)

The robustification and certification of GLVQ in (15) and (18-19) respectively involves the dissimilarity measure d∗ (s)
to be induced by a semi-norm[10, 11]. Consequently, when d∗ (s) is replaced with the LPIPS distance [25] from (13)
in Section (3), we attain a Perceptual-GLVQ (P-GLVQ) learner with the cost function given by:
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EPGLV Q (ψ(s), tβ) =

N∑
i=1

tβ (µ (ψ(si))) =

N∑
i=1

tβ

(
d (ψ(si) , ψ(w

+))− d (ψ(si), ψ(w
−))

d (ψ(si) , ψ(w+)) + d (ψ(si), ψ(w−))

)
(21)

Hence, regarding the minimization of (21), the robustification and certification of P-GLVQ involves using a semi-
metric[12] as the dissimilarity measure. The same realization applies to the Generalized Tangent Learning Vector
Quantization (GTLVQ), which is a GLVQ-loss-based classifier utilizing a tangent distance[10, 19]. Additional research
is deemed necessary for Perceptual-GTLVQ (P-GTLVQ).

5 Experimentation

We utilized four datasets to examine the effect of optimal data pruning (utilizing prototype-based metrics), on the
robustification and certification of GLVQ-loss-based learners. The datasets include two multi-class image datasets:
MNIST handwritten data [29] and CIFAR-10 [30], along with two tabular binary class datasets: WDBC [31] and
COD-RNA [32].

The results of GLVQ and GTLVQ models herein referred to as robust NPCs trained with Lp-Norms against Lq-threat
models based on unpruned and pruned training datasets is presented in Tables (1,2,3). The ϵ-thresholds used by the
LRTE and URTE evaluation metrics in (20) and (18-19), respectively, were chosen to correspond with practical threat
models informed by the findings presented in ([11]) and ([12]). TheL1 and L∞-threat models were derived from the
Projected Gradient Descent attack [33], while the L2-threat model was based on the Carlini & Wagner attack [34].

Table 1: Certified robustness of Lp-NPCs againstLq-threat models.

Dataset Model PPC CTE L1 L2 L∞

LRTE URTE LRTE URTE LRTE URTE
WDBC L2-GLVQ 2 5.26 6.14 8.77 21.93 30.70 92.11 100.00
ϵ = 0.3 GTLVQ 2 8.77 14.91 19.30 53.51 89.47 99.12 100.00

COD-RNA L2-GLVQ 2 4.70 9.10 30.50 15.20 20.90 26.70 68.20
ϵ = 0.025 L∞-GLVQ 2 12.60 19.90 43.90 30.10 54.00 35.00 47.40

GTLVQ 1 4.00 8.60 44.90 17.10 36.80 30.10 86.00
MNIST L2-GLVQ 2 6.88 7.12 17.13 11.50 19.00 99.87 100.00
ϵ = 0.3 L∞-GLVQ 1 20.13 31.25 63.88 75.25 97.38 83.00 100.00

GTLVQ 1 5.00 5.00 28.38 9.13 44.37 100.00 100.00
CIFAR-10 L2-GLVQ 2 63.82 64.00 65.00 66.87 69.63 97.37 98.50
ϵ = 8/225 GTLVQ 1 62.38 62.37 70.87 63.00 72.88 90.62 98.25

In Table (1), we present the results for Lp-GLVQ and GTLVQ based on the full-training dataset regarding the
corresponding ϵ-limited Lq-adversarial attacks. The outcomes of L2-GLVQ for the WDBC and CIFAR-10 datasets
exhibit tight scores for both the LRTE and URTE, a pattern replicated in Table (3) when L2-GLVQ is trained with both
“easy” and “hard” instances of the training set, maintaining an 80% retention rate1 for both pruning scenarios.

Observably, training with a significantly reduced number of intelligently selected instances using the SSL data pruning
metric improves the evaluation results for clean test errors (CTE), with relatively minor discrepancies in the lower
(LRTE) and upper bounds (URTE) on the robust test errors. The results of GTLVQ for the WDBC dataset in Tables (1)
and (3) indicate enhanced evaluation performance when trained with pruned datasets. Similarly, the results of GTLVQ
for CIFAR-10 demonstrate consistent behavior over pruned and fully trained datasets. Therefore, concerning the CTE,
training with “easy” instances yields improved performance compared to training with “hard” instances. In contrast,
the performance remains sustained for both the LRTE and URTE evaluation metrics. From Tables (1) and (3),

1The decision to retain a constant pruning ratio set at 0.8 of the training data aligns with the findings of Sorscher et al.[14], a
correlation we verified through empirical experimentation involving various retention rates.
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Table 2: Certified robustness of Lp-NPCs againstLq-threat models for the MNIST and CIFAR-10 datasets, each pruned
utilizing the SSL metric, with the fixed pruning ratio set at 0.8.

Dataset Prune Mode Model PPC CTE L1 L2 L∞

LRTE URTE LRTE URTE LRTE URTE

easy
L2-GLVQ 2 7.25 7.37 15.00 12.13 18.50 99.12 100.00
L∞-GLVQ 2 21.88 31.00 58.63 72.12 97.50 83.00 100.00

MNIST GTLVQ 1 6.75 6.75 31.75 10.00 43.25 100.00 100.00
ϵ = 0.3

hard
L2-GLVQ 2 7.75 7.75 15.62 11.75 18.25 99.50 100.00
L∞-GLVQ 2 22.87 31.00 64.62 69.25 94.63 81.25 100.00

GTLVQ 1 6.88 7.00 29.00 10.50 42.75 99.75 100.00

easy L2-GLVQ 2 63.75 63.88 65.25 66.12 69.13 97.37 98.88
CIFAR-10 GTLVQ 1 60.87 60.87 72.12 62.75 72.88 94.00 100.00
ϵ = 8/255 hard L2-GLVQ 2 65.25 65.25 66.87 67.75 69.87 97.50 99.12

GTLVQ 1 61.38 61.37 72.12 62.63 73.25 91.00 100.00

the results for the COD-RNA and MNIST datasets with regards to the L2-GLVQ and L∞-GLVQ models indicate
sustained performance over the LRTE and URTE with fairly acceptable discrepancies for the CTE. Similarly, the GLVQ
model for COD-RNA and MNIST datasets also exhibits behavior consistent with that observed for the L2-GLVQ and
L∞-GLVQ models. Therefore, it is evident that the SSL metric employed for pruning the training set of COD-RNA
and MNIST datasets does not compromise the performance of the models in terms of the CTE, as well as the LRTE and
URTE. Thus, the employed SSL data pruning metric achieves a similar outcome as observed by Sorscher et al.[14].

Table 3: Certified robustness of Lp-NPCs againstLq-threat models for the WDBC and COD-RNA datasets, each pruned
utilizing the SSL metric, with the fixed pruning ratio set at 0.8.

Dataset Prune Mode Model PPC CTE L1 L2 L∞

LRTE URTE LRTE URTE LRTE URTE

easy L2-GLVQ 2 4.39 6.14 8.77 21.05 32.46 92.11 100.00
WDBC GTLVQ 2 7.02 14.04 16.67 55.26 84.21 100.00 100.00
ϵ = 0.3 hard L2-GLVQ 2 5.26 6.14 8.77 20.18 29.82 92.11 100.00

GTLVQ 2 10.53 13.16 16.67 66.67 71.05 100.00 100.00

easy
L2-GLVQ 2 5.10 8.70 32.20 16.20 20.70 26.00 67.20
L∞-GLVQ 2 13.40 20.80 33.30 31.70 51.60 38.00 48.60

COD-RNA GTLVQ 1 5.50 8.90 39.10 16.40 38.70 31.70 85.10
ϵ = 0.3

hard
L2-GLVQ 2 5.30 9.30 31.60 18.20 23.10 27.40 67.70
L∞-GLVQ 2 13.90 21.30 35.40 33.00 48.50 38.60 52.30

GTLVQ 1 5.00 9.20 39.60 15.70 37.30 28.40 69.70

From Table (4), the CIFAR-10 dataset results demonstrate enhanced performance scores for the CTE, LRTE and URTE
when utilizing the Perceptual-SSL (P-SSL) data pruning metric and the Perceptual-GLVQ (P-GLVQ) learner. The
observed improvement is evident when compared to the results obtained from pruning the CIFAR-10 dataset with the
SSL data pruning metric for Lp-GLVQ, as depicted in Tables (1-2).

Notably, the CTE and LRTE evaluation metric scores remain remarkably tight compared to those derived from learning
scenarios without perceptual-metric data pruning and perceptual-metric robustification. Additionally, the unpruned
dataset results of P-GLVQ for CIFAR-10 surpass those of Lp-GLVQ for the same dataset. Hence, the application
of optimal data pruning metrics (SSL and P-SSL) for the training and evaluation of robust NPCs has the potential
to improve the performance of the learners across generalization, empirical robustness and guaranteed robustness in
best-case scenarios and maintain the performance in the same regard in worst-case scenarios.

2It is crucial to note that, in the conducted experiments, all datasets were pruned based on the SSL data pruning metric.
Additionally, for CIFAR-10, the P-SSL data pruning metric was specifically applied. The Python implementation for the SSL
and P-SSL data pruning metrics, as well as the robustification and certification of NPCs discussed in this paper, can be found at
https://github.com/naotoo1/BNSFRNPC.
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Table 4: Certified robustness of P-GLVQ againstLq-threat models for CIFAR-10 dataset pruned utilizing the P-SSL
metric with a fixed pruning ratio set at 0.8. Dash “− ” indicates the dataset was not pruned.

Dataset Prune Mode ϵ PPC CTE L1 L2 L∞

LRTE URTE LRTE URTE LRTE URTE

− 2/255 2 41.50 41.62 46.00 42.75 47.25 84.00 100.00
8/255 2 41.50 41.75 46.37 48.25 62.62 100.00 100.00

CIFAR-10 easy 2/255 2 41.00 41.00 45.50 44.62 48.00 85.25 100.00
8/255 2 41.00 41.62 47.50 47.62 62.50 100.00 100.00

hard 2/255 2 40.62 40.62 47.75 42.12 46.37 85.50 100.00
8/255 2 40.62 40.62 48.00 48.12 62.62 100.00 100.00

6 Discussion

The experimental outcomes in this paper indicate that training and evaluation of robust NPCs can be much improved
when combined with optimal data pruning metrics spirited on self-supervised prototype-based models. The integration
of the SSL and P-SSL data pruning metrics effectively solves the challenges posed by power laws in the context of
NPCs. Furthermore, the optimal data pruning herein introduced is characterized by simplicity, comprehensibility,
and interpretability. Thus, applying data pruning metrics for NPCs reduces the amount of data used for training even
when the full set of training parameters are maintained. Consequently, reducing the amount of training time without
compromising performance. Therefore, the practical application of an effective prototypical data pruning metric
becomes valuable in training scenarios where practitioners face challenges in evaluating the performance of robust
NPCs, particularly when dealing with large datasets.

The data pruning metrics introduced in this paper aid in intelligently gathering data subsets, ultimately creating
foundational datasets for learning purposes. Additionally, the method described in this paper guarantees satisfactory
performance across all evaluation metrics (CTE, LRTE and URTE), even when training with NPCs of reduced model
complexity (few prototypes per class).

It is crucial to emphasize that the methodology detailed in this paper, relying on Lp-distances and Lq-threat models,
has limitations when applied to the training and robustness evaluation of image datasets like CIFAR-10, especially
in the presence of unforeseen threat models[35]. Interestingly, our demonstrated success with the Perceptual-GLVQ
(P-GLVQ) model underscores its effectiveness for image datasets such as CIFAR-10, surpassing the performance of
both Lp-GLVQ and GTLVQ models.

7 Conclusion

A novel data pruning metric, surpassing power-law approaches, has been introduced to enhance the robustification and
certification of NPCs trained withLp-norms and Perceptual-metrics. This work represents the first instance of employing
pioneering data pruning metrics (SSL and P-SSL) for hardening Lp-NPCs and Perceptual-metric NPCs within the LVQ
family of classifiers against Lq-threat models. Subsequent research will explore the use of class-level prototypical
optimal pruning metrics as a seamless transition to initializing terminal prototypes to enhance the robustification and
certification of NPCs. In pursuit of this goal, we aim to investigate more expansive and realistic non-Lq threat models
within the domain of image datasets, incorporating insights from neural perceptual threat models [26]. As a result, our
study will delve into strategies for perceptual robustification and certification tailored for robust Nearest Prototype
Classifiers (NPCs), specifically focusing on LVQs and placing significant emphasis on Perceptual-GTLVQ (P-GTLVQ).
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