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Abstract

This research paper introduces the Adaptive Polynomial Factorization
(APF) Method, an enhanced factorization technique based on the Mod-
ified Pollard Rho Algorithm. The method incorporates adaptive poly-
nomial evaluation, providing efficiency in factorization tasks. The paper
presents a mathematical representation, performance analysis, and exam-
ples showcasing the APF Method’s versatility and superiority over the
original Pollard Rho algorithm.

1 Introduction

The Adaptive Polynomial Factorization (APF) Method is presented as an en-
hanced version of the classical Pollard Rho algorithm, renowned for its effective-
ness in factorizing composite numbers. The APF Method incorporates dynamic
polynomial evaluation, providing adaptability to different input characteristics.

2 Mathematical Representation

2.1 Initialization

• Choose a starting value x0.

• Set x = x0 and y = x0.

2.2 Iteration

For each iteration, compute:

xi+1 = FX(xi) mod n

yi+1 = FX(FX(yi)) mod n
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2.3 Factor Detection

Compute the GCD of |xi − yi| and n:

GCD(|xi − yi|, n) = d

2.4 Factor Check

If d is not equal to 1 or n, then d is a non-trivial factor of n, and the algorithm
terminates.

3 The APF Method

The APF Method stands out as a powerful tool for factorization tasks, offering
superior performance compared to the original Pollard Rho algorithm. The
adaptive polynomial evaluation, as described in Section 2, provides versatility,
making it well-suited for a broad spectrum of input characteristics.

4 Example of Chosen Polynomials

To illustrate the APF Method’s functionality, consider the following example of
polynomials:

FX(x) = 3x2 + 4x+ 5

F (x) = (x+ 1)3 − x+ 1

These polynomials showcase the adaptability of the APF Method. The algo-
rithm dynamically evaluates these polynomials during each iteration, efficiently
detecting non-trivial factors.

5 Performance Analysis

5.1 Comparative Examples

5.1.1 Example 1

• Number: n = 91731937193719371931739173913713131313

• Iterations: APF Method (97) vs Original (253)

• Time Complexity: APF Method (0.000544s) vs Original (0.001583s)

• Factors: APF Method (137) vs Original (137)
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5.1.2 Example 2

• Number: n = 91371937132376347856234571229812938129381291

• Iterations: APF Method (1) vs Original (4)

• Time Complexity: APF Method (0.000021s) vs Original (0.000043s)

• Factors: APF Method (391) vs Original (391)

5.1.3 Example 3

• Number: n = 917391371892731289371298371391731937139173193719319371931

• Iterations: APF Method (6) vs Original (16)

• Time Complexity: APF Method (0.000082s) vs Original (0.000281s)

• Factors: APF Method (107) vs Original (107)

5.1.4 Example 4

• Number: n = 18903319970865481017014572363990541186998283921816242838703219424279

• Iterations: APF Method (888) vs Original (3847)

• Time Complexity: APF Method (0.015450s) vs Original (0.098103s)

• Factors: APF Method (17303159) vs Original (17303159)

6 New Example

• Enter the value of n: 97391731937193719371999988888777771111

• Modified Pollard Rho:

– Factors: 8210651

– Number of Iterations: 1173

– Time taken: 0.007245 seconds

• Original Pollard Rho:

– Factors: 8210651

– Number of Iterations: 2983

– Time taken: 0.021525 seconds

7 Uniqueness of the APF Method

The APF Method’s uniqueness lies in its dynamic polynomial evaluation, allow-
ing it to adapt to various input characteristics. This adaptability, showcased in
the chosen polynomial example, makes the APF Method a powerful and efficient
factorization algorithm.
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