The Riemann hypothesis assumes that the first counterexample is

located near $s=0.383+(1.578 * 10 \wedge 16) i$

Zhiyang Zhang
438951211@qq.com

abstract

We already know the distribution of non trivial zeros in the Riemann hypothesis, and there is a formula for calculating counterexamples. The first counterexample can be obtained using a computer, and its value is $s=0.383+15786867949799975 i$
Firstly, we need to predict the position of the counterexample until $s=0.5+10 \wedge 28 i$, before the first negative value appears

$$
\begin{array}{r}
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}} \\
=0.256408507834
\end{array}
$$

```
t=1

\(t=10\)
\[
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
\]
\[
=62.2446119609
\]
\[
t=100
\]
\(\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}\)
\[
=707.889111094
\]
\[
\begin{aligned}
& t=1000 \\
& -10
\end{aligned}
\]
\(\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}\)
\[
=252.760436155
\]
\[
t=10000
\]
\[
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
\]
\[
=1051.48981217
\]
\[
t=100000
\]
\[
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
\]

\section*{\(t=1000000\)}
\(\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}\)
\[
=1006.43596511
\]

\section*{\(t=10000000\)}
\(\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}\)

\section*{\(t=100000000\)}
\(\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}\)
\[
=61.2900907837
\]

\section*{\(t=1000000000\)}
\[
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
\]

\section*{\(t=10000000000\)}
\[
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
\]
```

t=100000000000
-10

$$
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
$$

$$
=238.257468591
$$

$t=1000000000000$

$$
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
$$

$$
=632.115698693
$$

$t=10000000000000$

$$
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
$$

$t=100000000000000$

$$
\begin{aligned}
& t=1000000000000000 \\
& -10
\end{aligned}
$$

$$
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
$$

```
                                    =210.725575078
```

```
                                    =210.725575078
```

```
                                    =210.725575078
```


$t=10000000000000000$

$$
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
$$

$$
=737.111365437
$$

$t=100000000000000000$

$\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}$

```
                                    = 285.407089678
```


$t=1000000000000000000$

$\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}$

$t=10000000000000000000$

$$
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
$$

$$
=1916.69929281
$$

$t=100000000000000000000$

$$
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
$$

$t=1000000000000000000000$

$$
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
$$

```
t=10000000000000000000000
-10
\[
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
\]
```

t=100000000000000000000000
-10

```
\(\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}\) \(=694.390455931\)

\section*{\(t=1000000000000000000000000\)}
\(\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}\) \(=611.133538345\)

\section*{\(t=10000000000000000000000000\)}
\[
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
\]
\[
=1361.36038802
\]

\section*{\(t=100000000000000000000000000\)}
```

-10 - 1*1026

```

```

t=1000000000000000000000000000
-10 \bullet 1\times1027

```
\(\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}\)
\(=-279.438703007\)

\section*{\(t=10000000000000000000000000000\)}

Fortunately, we don't need such a large value and can still obtain zero. Through my continuous attempts, I have found at least 5 counterexamples of non trivial zeros between \(s=0.5+10 \wedge 16 i\) and \(s=0.5+10 \wedge 28 i\). But between \(s=0.5+10 \wedge 2 i\) and \(s=0.5+10^{\wedge} 16 \mathrm{i}\), no matter how hard I tried hundreds of times, I couldn't find it. Among all the counterexamples found, the smallest one is the following one
\[
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
\]
\[
=-398.401528098
\]

\section*{\(t=15786867949799975\)}
\[
\sum_{n=1}^{1000} \sum_{m=1}^{1000} \frac{(-1)^{n+m} \ln (n) \ln (m) \ln (m) \cos ((\ln n-\ln m) t)}{\sqrt{m n}}
\]
\[
=251.697239151
\]

\section*{\(t=15786867949799974\)}


That is to say, the first counterexample of the Riemann hypothesis is between \(s=0.5+157868679499974 i\) and \(s=0.5+157868679499975 i\)
So, we can calculate the exact value of the counterexample, which is \(\mathrm{s}=0.383+15786867949799975 i\)


\section*{References}
1. viXra:2005.0284 The Riemann Hypothesis Proof Authors: Isaac Mor
2. viXra:2401.0064 An Efficient Method to Prove that the Riemann Hypothesis Is Not Valid Authors: Zhiyang Zhang
3.viXra:2401.0104 The Riemann hypothesis has no counterexamples when imaginary part below one million billion Authors: Zhiyang Zhang
4.]viXra:2402.0002 A mathematical criterion for the validity of the Riemann hypothesis Authors: Zhiyang Zhang
5.https:/www.desmos.com/```

