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Abstract In 1915 Einstein adopted a new coordinate condition for the Einstein equation, namely that the metric
tensor’s determinant keeps the value -1 it has in the Minkowskian case. In his landmark November 18, 1915 paper,
Einstein showed that applying his new coordinate condition to the approximate calculation of the metric of a static
point mass (the sun) produces agreement with the previously unaccounted-for part of Mercury’s perihelion shift,
and also doubles the deflection of light by the sun’s gravity from his previous calculation which didn’t use his new
coordinate condition; a 1919 solar-eclipse expedition verified his new result. In January, 1916 Schwarzschild published
the exact version of Einstein’s new static point-mass metric; as expected, it slightly lengthens circular-orbit periods.
In May 1916 Droste published a much simpler exact metric that fails to satisfy the Einstein equation at all empty-
space points and doesn’t lengthen circular-orbit periods. In 1922 Friedmann replaced Einstein’s coordinate condition
with setting the metric’s time-time component to unity; this eliminates gravitational time dilation and sends c to
infinity, causing the Einstein equation to yield purely Newtonian gravity. We revisit the Oppenheimer-Snyder model
using Einstein’s coordinate condition instead; the considerably different results reflect gravitational time dilation.

1. Detailed review of Einstein’s relativistic gravity and Friedmann’s Newtonian regression

The central entity of Einstein’s gravity theory is the dimensionless Riemann space-time metric tensor gµν(x),
whose physical role is that of a multicomponent gravitational potential which, via a stationary-action princi-
ple, determines a test-particle’s gravitational trajectory in that gravitational potential. The action involving
the metric tensor gµν(x) that is relevant to the determination of a test particle’s gravitational trajectory is,

−mc
∫
ds = −mc

∫ √
gµν(x) dxµ dxν , (1.1a)

where m is the test particle’s rest mass. The path of stationary action is also clearly the path of stationary
length

∫
ds, namely the geodesic of the Riemannian geometry. We take note of the fact that when gµν(x)

becomes the metric of special relativity ηµν , so that gravity is absent, the action −mc
∫
ds reduces to,

−mc
∫ √

ηµν dxµ dxν = −mc
∫ √

(c dt)2 − |dx|2 =
∫ (
−mc2

√
1− |ẋ/c|2

)
dt, (1.1b)

where we recognize that −mc2
√

1− |ẋ/c|2 is the Lagrangian of the relativistic free particle. When |ẋ| � c,
it reduces to −mc2 + 1

2m|ẋ|
2, where 1

2m|ẋ|
2 of course is the Lagrangian of the nonrelativistic free particle.

Riemannian geometry originally was concerned with interesting extensions of the concept of space (e.g.,
curved surfaces in various dimensions), whereas gravity’s arena of course is four-dimensional space-time. In
particular, when gµν(x) becomes special relativity’s ηµν and gravity is absent,

ds =
√
ηµν dxµ dxν =

√
(c dt)2 − |dx|2 = c

√
1− |ẋ/c|2 dt = c dτ , (1.2a)

where dτ =
(√

1− |ẋ/c|2 dt
)

is special relativity’s Lorentz-invariant differential time. When gravity is
present, we extend the Eq. (1.2a) relation ds = c dτ to accommodate the gravitational metric tensor gµν(x),

ds =
√
gµν(x) dxµ dxν = c dτ , so, c = ds/dτ =

√
gµν(x) (dxµ/dτ) (dxν/dτ), (1.2b)

and we in addition assume transformation properties of the metric tensor gµν(x) which are consistent with the
invariance of dτ under general transformations of the space-time coordinates xµ. We postpone presentation
of the details of such transformations until after we obtain a test particle’s gravitational equation of motion.

The equation of motion for a test particle’s gravitational trajectory which connects two fixed space-time
points (and likewise the equation for the geodesic of the Riemannian geometry which connects those two
points) is obtained by setting to zero the first-order variation of the length

∫
ds of that trajectory with

respect to an infinitesimal change δxλ of the trajectory xλ between those two fixed points. Thus,

0 = δ
∫
ds = δ

∫ √
gµν(x) dxµ dxν = δ

∫ (√
gµν(x) (dxµ/dτ) (dxν/dτ)

)
dτ =∫ (√

gµν(xλ + δxλ) (d(xµ + δxµ)/dτ) (d(xν + δxν/dτ)−
√
gµν(x) (dxµ/dτ) (dxν/dτ)

)
dτ . (1.3a)

Through first order in the infinitesimal change δxλ of the trajectory xλ between the two points we have that,
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gµν(xλ + δxλ) (d(xµ + δxµ)/dτ) (d(xν + δxν)/dτ) ' gµν(x) (dxµ/dτ) (dxν/dτ)+

(∂gµν/∂x
λ) (δxλ) (dxµ/dτ) (dxν/dτ) + gµν(x) (d(δxµ)/dτ) (dxν/dτ) + gµν(x) (dxµ/dτ) (d(δxν)/dτ). (1.3b)

In light of the result obtained in Eq. (1.3b), we see that the integrand of the last integral of Eq. (1.3a) is of
the form (

√
α+ ε−

√
α), where ε is infinitesimal. Evaluation of (

√
α+ ε−

√
α) to first order in ε yields,

(
√
α+ ε−

√
α) =

√
α(
√

1 + (ε/α)− 1) '
√
α(1 + 1

2 (ε/α)− 1) = 1
2ε/
√
α. (1.3c)

For the integrand of the last integral of Eq. (1.3a) we have, in the language of Eq. (1.3c), given Eq. (1.3b),

α = gµν(x) (dxµ/dτ) (dxν/dτ) and ε = (∂gµν/∂x
λ) (δxλ) (dxµ/dτ) (dxν/dτ)+

gµν(x) (d(δxµ)/dτ) (dxν/dτ) + gµν(x) (dxµ/dτ) (d(δxν)/dτ). (1.3d)

From Eq. (1.2b),
√
gµν(x) (dxµ/dτ) (dxν/dτ) = c, and from Eq. (1.3c), (

√
α+ ε−

√
α) = 1

2ε/
√
α. We next

combine these two facts with Eqs. (1.3d) and (1.3b) to present Eq. (1.3a) as,

0 = δ
∫
ds = 1

2 (1/c)
∫ (

(∂gµν/∂x
λ) (δxλ) (dxµ/dτ) (dxν/dτ)

+gλν(x) (d(δxλ)/dτ) (dxν/dτ) + gµλ(x) (dxµ/dτ) (d(δxλ)/dτ)
)
dτ . (1.3e)

Since the two endpoints of the trajectory are fixed, the infinitesimal change δxλ in the trajectory vanishes
at those two endpoints, which makes the needed integrations by parts in Eq. (1.3e) straightforward. Bearing
in mind that gµν(x) = gνµ(x), these integrations by parts cause Eq. (1.3e) to read,

0 = δ
∫
ds = 1

2 (1/c)
∫ (

(∂gµν/∂x
λ) (dxµ/dτ) (dxν/dτ)

−2gλµ(x) (d2xµ/dτ2)− 2(dgλµ(x)/dτ) (dxµ/dτ)
)
δxλdτ . (1.3f)

Since (dgλµ(x)/dτ) = (∂gλµ/∂x
ν) (dxν/dτ) Eq. (1.3f) becomes,

0 = δ
∫
ds = (1/c)

∫ ((
1
2 (∂gµν/∂x

λ)− (∂gλµ/∂x
ν)
)

(dxµ/dτ) (dxν/dτ)− gλµ(x) (d2xµ/dτ2)
)
δxλdτ . (1.3g)

Since, except from the two fixed endpoints of the trajectory, the trajectory’s infinitesimal change δxλ is
essentially arbitrary, we can conclude from Eq. (1.3g) that,

gλµ(x) (d2xµ/dτ2) + 1
2

(
(∂gλµ/∂x

ν) + (∂gλν/∂x
µ)− (∂gµν/∂x

λ)
)

(dxµ/dτ) (dxν/dτ) = 0. (1.3h)

If the metric tensor gλµ(x) happens to have a matrix inverse gκλ(x) at every space-time point x such that
gκλ(x) gλµ(x) = δκµ, then Eq. (1.3h) can be expressed in the form,

d2xκ/dτ2 + Γκµν (dxµ/dτ) (dxν/dτ) = 0, (1.3i)

where,

Γκµν
def
= 1

2g
κλ(x)

((
∂gλµ/∂x

ν
)

+
(
∂gλν/∂x

µ
)
−
(
∂gµν/∂x

λ
))

, (1.3j)

is called the affine connection. A critical difference between the Eq. (1.3h) test-particle gravitational equation
of motion versus the test-particle gravitational equation of motion of Eqs. (1.3i) and (1.3j) is that only the
latter adheres to the special-relativistic extension of Newton’s Second Law for that test particle, which is,

md2xκ/dτ2 = Fκ. (1.3k)

In the case that the metric tensor’s matrix inverse gκλ(x) exists everywhere in space-time, so that the
test-particle gravitational equation of motion is that given by Eqs. (1.3i) and (1.3j), we have that,

Fκ = −mΓκµν (dxµ/dτ) (dxν/dτ), (1.3l)

but if the metric tensor’s matrix inverse gκλ(x) fails to exist everywhere in space-time, so that only Eq. (1.3h)
holds for the test-particle’s motion, the Eq. (1.3k) precept of special relativity will be violated.

Einstein’s 1915 coordinate condition det(gµν(x)) = −1, which he used to calculate the previously
unaccounted-for part of Mercury’s perihelion shift, obviously guarantees the existence of the metric ten-
sor’s matrix inverse gκλ(x), but it has since been almost completely forgotten; it isn’t mentioned anywhere
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in Steven Weinberg’s 657-page 1972 tome Gravitation and Cosmology : Principles and Applications of the

General Theory of Relativity. Weinberg favors the harmonic coordinate equations gµνΓλµν = 0, which prima
facie assume the existence of the metric tensor’s inverse gµν(x) without guaranteeing it, whereas Einstein’s
coordinate condition det(gµν(x)) = −1 clearly does guarantee the existence of the metric’s inverse gµν(x).

The issue of the existence of the metric tensor’s inverse gκλ(x) goes far beyond whether the test-
particle gravitational equation of motion adheres to the special-relativistic extension of Newton’s Second
Law. The systematic construction of entities which keep their form under general transformations of space-

time coordinates relies on the affine connection Γκµν
def
= 1

2g
κλ(x)

((
∂gλµ/∂x

ν
)

+
(
∂gλν/∂x

µ
)
−
(
∂gµν/∂x

λ
))

of Eq. (1.3j) as a fundamental building block, and it is of course transparent that the existence of the affine
connection is completely dependent on the existence of the metric tensor’s inverse gκλ(x).

Before we turn to the details of general transformations of space-time coordinates, we point out the
conditions under which the test-particle gravitational equation of motion of Eqs. (1.3i) and (1.3j) is consistent
with Newtonian gravity, and, after that, we establish that two clocks at rest at two different points of a
gravitational field will usually tick at two different rates, which is called gravitational time dilation.

We now show that when the metric tensor gµν(x) is static (independent of time), has components which
differ by much less than unity from those of the special-relativistic metric tensor ηµν , and the test particle’s
speed is much less than c, then the test particle’s behavior is consistent with Newtonian gravity.

We note that (dxµ/dτ) = (dt/dτ)(dxµ/dt) = (dt/dτ)(c, ẋ) = c (dt/dτ)(1, (ẋ/c)), which when |ẋ| � c
is almost equal to c (dt/dτ)(1, 0) = c (dt/dτ)δµ0 . This approximate result for (dxµ/dτ) implies that when
|ẋ| � c, the Eq. (1.3i) dynamical equation for a test particle in a gravitational field, namely,

d2xκ/dτ2 + Γκµν(x) (dxµ/dτ) (dxν/dτ) = 0, (1.4a)

is well approximated by,

d2xκ/dτ2 + c2(dt/dτ)2 Γκ00(x) = 0. (1.4b)

We next insert into Γκ00, as it is given by Eq. (1.3j), the metric tensor gµν(x) = ηµν+hµν(x), where hµν(x)
is assumed to be static, and contributions to Γκ00 which are second-order or higher in hµν are discarded,

Γκ00(x) = 1
2g
κλ(x)

(
(∂hλ0/∂x

0) + (∂hλ0/∂x
0)− (∂h00/∂x

λ)
)
≈ − 1

2η
κλ(∂h00/∂x

λ), (1.4c)

which, upon insertion into Eq. (1.4b), yields,

d2xκ/dτ2 = 1
2 c

2 (dt/dτ)2ηκλ(∂h00/∂x
λ). (1.4d)

Since h00(x) is static, we call it h00(x), and since (∂h00/∂x
0) = 0, the κ = 0 component of Eq. (1.4d) is,

d2(ct)/dτ2 = 0, (1.4e)

which implies that,

dt/dτ is a constant. (1.4f)

The κ = 1, 2 and 3 components of Eq. (1.4d) yield the three-vector equation,

(d2x/dτ2)/(dt/dτ)2 = −∇x( 1
2 c

2 h00(x)), (1.4g)

which, because d2x/dτ2 = (d2x/dt2)(dt/dτ)2 + (dx/dt)(d2t/dτ2) and dt/dτ is a constant, implies that,

d2x/dt2 = −∇x( 1
2 c

2 h00(x)). (1.4h)

The corresponding Newtonian gravitational acceleration equation of course is,

d2x/dt2 = −∇x φ(x), (1.4i)

where a typical example of such a Newtonian-gravity potential φ(x) is −GM/|x|, which is produced by a
static point mass M at x = 0. Comparison of Eq. (1.4h) with Eq. (1.4i) shows that,

h00(x) = 2φ(x)/c2. (1.4j)

Thus, in the Newtonian limit, where |h00(x)| � 1, Eq. (1.4j) implies that,

g00(x) ≈ g00(x) = η00 + h00(x) = 1 + 2φ(x)/c2, where |φ(x)| � 1
2c

2. (1.4k)
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We next explore gravitational time dilation. The ratio of the invariant differential time dτ = ds/c =(√
gµν(x) dxµ dxν

)/
c to the differential time (dx0/c) recorded by a clock embedded in a test particle that is

moving arbitrarily in the gravitational field described by gµν(x) is,

(dτ)/(dx0/c) = (c dτ)/(dx0) =
√
gµν(x) (dxµ/dx0) (dxν/dx0) . (1.5a)

When the test particle with its embedded clock is at rest with respect to the observer,

(dxµ/dx0) = δµ0 , so Eq. (1.5a) reduces to (c dτ)/(dx0) =
√
g00(x) . (1.5b)

We now use Eq. (1.5b) to work out the ratio dx0
1/dx

0
2 of the two differential times dx0

1/c and dx0
2/c recorded

by two clocks at rest with respect to the observer present at two different space-time points x1 and x2,

(c dτ)/(dx0
1) =

√
g00(x1) and (c dτ)/(dx0

2) =
√
g00(x2) together yield,

dx0
1/dx

0
2 =

(
(c dτ)/(dx0

2)
)/(

(c dτ)/(dx0
1)
)

=
√
g00(x2)/g00(x1) . (1.5c)

Eq. (1.5c) implies that,[
(the tick rate of the clock at x2)/(the tick rate of the clock at x1)

]
=
√
g00(x2)/g00(x1) . (1.5d)

In the Newtonian limit, g00(x) is static and very close to unity, i.e., g00(x) = g00(x) ≈ 1 + 2φ(x)/c2 where
|φ(x)| � 1

2c
2 according to Eq. (1.4k). Therefore, in the Newtonian limit Eq. (1.5d) yields that,[

(the tick rate of the clock at x2)/(the tick rate of the clock at x1)
]
≈
√

(1 + 2φ(x2)/c2)/(1 + 2φ(x1)/c2)

≈
√

1−
(
2
(
φ(x1)− φ(x2)

)/
c2
)
≈
[
1−

((
φ(x1)− φ(x2)

)/
c2
)]

, (1.5e)

which has been verified using super-accurate atomic clocks by, for example, placing one clock 33 cm above
another on a wall for a day or so. Eq. (1.5e) gives that the tick rate of the clock below divided by that of the
clock above equals [1− (g(∆h)/c2)], where g = 9.8 m/s2, ∆h = 0.33 m and c = 3× 108 m/s, so the tick rate
of the clock below is slower by the factor (1− 3.6× 10−17) than that of the clock above, which implies that
the clock below loses about 3 picoseconds per 24-hour day relative to the clock above. In this experiment
the positions of the two atomic clocks are subsequently swapped as a check for systematic errors.

Since GPS satellites are vastly more than 33 cm above the earth’s surface, there is a far greater gravity-
caused difference between an atomic clock’s tick rate on the earth’s surface and its tick rate in a GPS satellite.
There is, however, also a special-relativistic speed effect on the tick rate of an atomic clock in a fast-moving
GPS satellite when that clock is viewed from the earth; GPS satellites aren’t geostationary.

Atomic clocks and satellites didn’t exist in 1922, the year that A. Friedmann decided to try fixing g00(x)
to unity everywhere in space-time, and was thrilled by how that made it feasible to analytically solve the
Einstein equation in some cases. In due course it was realized that the analytic solutions of the Einstein
equation in those cases exactly correspond to purely Newtonian gravity.

It is obvious from Eq. (1.5d) that fixing g00(x) everywhere to unity eliminates gravitational time dilation,
which in the present era of atomic clocks and satellites casts an extremely unfavorable light on the practice
of fixing g00(x) everywhere to unity that A. Friedmann so “successfully” initiated in 1922. The elimination
of gravitational time dilation that is the result of fixing g00(x) to unity everywhere supports the hypothesis
that fixing g00(x) to unity everywhere reduces relativistic gravity to its Newtonian counterpart. The fact
that all known analytic solutions of the Einstein equation which result from fixing g00(x) to unity everywhere
correspond exactly to purely Newtonian gravity further supports this hypothesis. Another clue to the effect of
fixing g00(x) to unity everywhere is the Eq. (1.4k) Newtonian-limit result that g00(x) ≈ 1 + 2φ(x)/c2, which
is only consistent with g00(x) = 1 everywhere when c → ∞, reducing relativistic gravity to its Newtonian
counterpart. We furthermore find in Steven Weinberg’s 1972 tome in Section 4.1 on pages 92-93 the following
statement that is motivated by a 1928 mathematical-journal article by K. O. Friedrichs, “In particular,
general covariance does not imply Lorentz invariance—there are generally covariant theories of gravitation
that allow the construction of inertial frames at any point in a gravitational field, but that satisfy Galilean
relativity rather than special relativity in these frames.” In this regard we note that fixing g00(x) to unity
everywhere isn’t compatible with Lorentz covariance of gµν(x), but is compatible with Galilean covariance of
gµν(x). Weinberg’s tome fails to point out that fixing g00(x) to unity everywhere eliminates gravitational
time dilation, despite its page-80 Eq. (3.5.3) being the same as Eq. (1.5d) above.
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It is also usually asserted that an energy-momentum source which is spatially maximally symmetric
(spherically symmetric and homogeneous) compels its associated metric to be of the Robertson-Walker form,

(ds)2 = (c dt)2 − (R(t))2
[(

1− kr2
)−1(dr)2 + r2

(
(dθ)2 + (sin θ dφ)2

)]
, (1.6a)

which prima facie is extremely implausible. Since any metric of this Robertson-Walker form has g00(x) equal
to unity everywhere, it describes purely Newtonian gravity. How can purely Newtonian gravity conceivably
be compelled by the spherical symmetry and homogeneity of its energy-momentum source?

In fact, at the beginning of Subsection (C) of Section 13.5 on page 403 of his tome, Steven Weinberg
only obtains from the spatially maximal symmetry of the source the more general metric form,

(ds)2 = (T (t))2(c dt)2 − (S(t))2
[(

1− kr2
)−1(dr)2 + r2

(
(dθ)2 + (sin θ dφ)2

)]
, (1.6b)

which doesn’t necessarily describe purely Newtonian gravity. But this Eq. (1.6b) metric form shown in
Weinberg’s tome doesn’t reflect the vast infinity of ways that its general coordinate transformations can differ
from itself. One mustn’t forget, as Weinberg unaccountably did, that every general coordinate transformation
of a metric solution of an Einstein equation is also a metric solution of that equation. Therefore the only
assertion which can be made concerning the metric form given by Eq. (1.6b) with regard to metric solutions
of Einstein equations whose energy-momentum source is spatially maximally symmetric is that there exist
metric solutions of Einstein equations whose energy-momentum source is spatially maximally symmetric
which have the metric form given by Eq. (1.6b), but it absolutely cannot be asserted that all metric solutions
of Einstein equations whose energy-momentum source is spatially maximally symmetric have the metric form
given by Eq. (1.6b). In fact, we next show that there exists a general coordinate transformation of the metric
form given by Eq. (1.6b) which satisfies Einstein’s coordinate condition det(gµν(x)) = −1.

To impose det(gµν(x)) = −1 on a general coordinate transformation of the Eq. (1.6b) metric form, we
put T (t) to (S(t))−3 and transform its radius variable from r to ρ, which transforms that metric form to,

(ds)2 = (S(t))−6(c dt)2− (S(t))2
[(

1−k(r(ρ))2
)−1(dr(ρ)/dρ)2(dρ)2 + (r(ρ)/ρ)2ρ2

(
(dθ)2 + (sin θ dφ)2

)]
. (1.6c)

Einstein’s coordinate condition det(gµν(x)) = −1 will be satisfied by the Eq. (1.6c) metric form if the factor(
1− k(r(ρ))2

)−1(dr(ρ)/dρ)2 in its second term is made equal to (r(ρ)/ρ)−4, which reduces Eq. (1.6c) to,

(ds)2 = (S(t))−6(c dt)2 − (S(t))2
[
(r(ρ)/ρ)−4(dρ)2 + (r(ρ)/ρ)2ρ2

(
(dθ)2 + (sin θ dφ)2

)]
, (1.6d)

which clearly satisfies Einstein’s coordinate condition det(gµν(x)) = −1.
To solve the differential equation

(
1 − k(r(ρ))2

)−1(dr(ρ)/dρ)2 = (r(ρ)/ρ)−4, we note that equating

the square roots of its two sides produces the differential equation
(
1 − kr2

)− 1
2 (dr/dρ) = (ρ2/r2). This

is equivalent to the integrable differential equality
(
1 − kr2

)− 1
2 r2 dr = ρ2 dρ, which, together with the

specification r(ρ = 0) = 0, yields
∫ r(ρ)

0

(
1− k(r′)2

)− 1
2 (r′)2 dr′ = ρ3/3.

We now define the following k-indexed functions of r : Vk(r)
def
=
∫ r

0

(
1 − k(r′)2

)− 1
2 (r′)2 dr′. Since, as

we see at the end of the foregoing paragraph, Vk(r(ρ)) = ρ3/3, it follows that r(ρ) = (Vk)−1
(
ρ3/3

)
, where

(Vk)−1 denotes the inverse function of the k-indexed function Vk which is defined in the foregoing sentence.
With the solution r(ρ) = (Vk)−1

(
ρ3/3

)
of the differential equation

(
1− k(r(ρ))2

)−1(dr(ρ)/dρ)2 = (r(ρ)/ρ)−4

thus in hand, we present the Eq. (1.6d) metric form as,

(ds)2 = (S(t))−6(c dt)2 − (S(t))2
[
(Uk(ρ))−4(dρ)2 + (Uk(ρ))2ρ2

(
(dθ)2 + (sin θ dφ)2

)]
, (1.6e)

where Uk(ρ) = (Vk)−1
(
ρ3/3

)/
ρ and Vk(r) =

∫ r
0

(
1 − k(r′)2

)− 1
2 (r′)2 dr′. The Eq. (1.6e) metric form satisfies

the Einstein coordinate condition det(gµν(x)) = −1, and for the appropriate function S(t) it also satisfies the
Einstein equation for a spatially maximally-symmetric source because it is a general coordinate transformation
of the Eq. (1.6b) metric form which satisfies the Einstein equation for a spatially maximally-symmetric source.

Inattention to the fact that every general coordinate transformation of a metric solution of an Einstein
equation is also a metric solution of that equation has resulted in physically-inappropriate clinging to the
purely Newtonian Eq. (1.6a) Robertson-Walker metric form that, in the throes of a Big Bang (or of gravi-
tational collapse), sends subsets of its maximally-symmetric zero-pressure perfect-fluid source to arbitrarily
high speeds in gross violation of relativity’s speed limit c. Relativistic upgrade of g00(x) = 1 purely Newtonian
Friedmann/Lemaitre/Tolman/Robertson-Walker/Oppenheimer-Snyder metrics is nearly a century overdue.
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It is important to realize that, in the most general case, Einstein’s coordinate condition det(gµν(x)) = −1
adds four further equations to the six independent equations which comprise the Einstein equation. These
four further equations are a bit similar to the four harmonic coordinate equations gµνΓλµν = 0 favored by
Weinberg, which have been briefly discussed in the next paragraph after Eq. (1.3l). However the four equations
which immediately follow from det(gµν(x)) = −1 are of course,

∂ det(gµν(x))/∂xλ = 0. (1.7a)

But for any matrix M(x) which shares the property of gµν(x) that det(M(x)) < 0 everywhere,

∂ det(M(x))/∂xλ = det(M(x)) Tr
(
M−1(x)

(
∂M(x)/∂xλ

))
. (1.7b)

To obtain the Eq. (1.7b) result, we first take note of the fact that,

∂ ln[−det(M(x))]/∂xλ =
(
∂(−det(M(x)))/∂xλ

)/
(−det(M(x))), so,

∂(det(M(x)))/∂xλ = det(M(x))
(
∂ ln[−det(M(x))]/∂xλ

)
. (1.7c)

With the Eq. (1.7c) result in hand, we alternatively work out ∂ ln[−det(M(x))]/∂xλ as an ε→ 0 limit,

∂ ln[−det(M(x))]/∂xλ
ε→0
= (1/ε)

{
ln
[
−det

(
M(x) + ε

(
∂M(x)/∂xλ

))]
− ln[−det(M(x))]

}
=

(1/ε) ln
[
det
(
M(x) + ε

(
∂M(x)/∂xλ

))/
det(M(x))

]
= (1/ε) ln

[
det
(
I + εM−1(x)

(
∂M(x)/∂xλ

))] ε→0
=

(1/ε) ln
[
1 + εTr

(
M−1(x)

(
∂M(x)/∂xλ

))] ε→0
= Tr

(
M−1(x)

(
∂M(x)/∂xλ

))
, (1.7d)

which inserted into Eq. (1.7c) yields Eq. (1.7b). Putting M(x) to gµν(x) in Eq. (1.7b) produces,

∂ det(gµν(x))/∂xλ = det(gµν(x))
(
gκα(x)

(
∂gακ/∂x

λ
))

. (1.7e)

Eq. (1.3j) tells us that, Γκµλ = 1
2g
κα(x)

((
∂gαµ/∂x

λ
)

+
(
∂gαλ/∂x

µ
)
−
(
∂gµλ/∂x

α
))

, which implies that,

Γκκλ = 1
2g
κα(x)

((
∂gακ/∂x

λ
)

+
(
∂gαλ/∂x

κ
)
−
(
∂gκλ/∂x

α
))

= 1
2

(
gκα(x)

(
∂gακ/∂x

λ
))

, (1.7f)

since 1
2g
κα(x)((∂gαλ/∂x

κ) − (∂gκλ/∂x
α)) = 0 because ((∂gαλ/∂x

κ) − (∂gκλ/∂x
α)) is antisymmetric and

1
2g
κα(x) is symmetric under interchange of α and κ. Eqs. (1.7a), (1.7e) and (1.7f) together imply that,

0 = ∂ det(gµν(x))/∂xλ = det(gµν(x))
(
gκα(x)

(
∂gακ/∂x

λ
))

= 2 det(gµν(x)) Γκκλ, (1.7g)

so Einstein’s coordinate condition det(gµν(x)) = −1 implies the four equations,

Γκκλ = 0, (1.7h)

which, as mentioned above Eq. (1.7a), are a bit similar to the four harmonic coordinate equations gµνΓλµν = 0.
We also noted above Eq. (1.7a) that, in the most general case, a bona fide coordinate condition must

add four further equations to the six independent equations which comprise the Einstein equation in order
to determine the ten independent components of the metric tensor. Both the four harmonic equations
gµνΓλµν = 0 and the four equations Γκκλ = 0 of Eq. (1.7h) that follow from Einstein’s coordinate condition
det(gµν(x)) = −1 fulfill that requirement, and both are compatible with Lorentz covariance of the metric
tensor gµν(x). However, as was noted in the next paragraph after Eq. (1.3l), Einstein’s coordinate condition
det(gµν(x)) = −1 guarantees the existence of the matrix inverse gµν(x) of the metric tensor gµν(x), which
isn’t the case for the four harmonic equations gµνΓλµν = 0, notwithstanding that their very definition requires
the existence of the metric’s matrix inverse. In Eqs. (1.3h) through (1.3l) we also saw that the existence of the
metric’s matrix inverse gµν(x) is crucial to the existence of the affine connection Γκµν , an entity which makes
the geodesic gravitational equation of motion for a test particle consistent with the relativistic extension of
Newton’s Second Law. Moreover, we will shortly see that the affine connection Γκµν is a fundamental building
block for the construction of equations which keep their form under general coordinate transformations. In a
nutshell, there would seem to be no simple alternative to Einstein’s coordinate condition det(gµν(x)) = −1
that fulfills two essential requirements of gravity theory: 1) four further Lorentz-covariant equations in the
most general case and 2) guaranteed existence of the metric tensor’s matrix inverse gµν(x). Certainly the
simplest way to fulfill these two requirements is to assert that det(gµν(x)) = k, where k is a nonzero constant;
the fact that k = −1 is then determined by the crucial special case gµν(x) = ηµν .
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We once again note here that the condition g00(x) = 1 is incompatible with Lorentz covariance of the
metric tensor gµν(x), but is compatible with Galilean covariance of that tensor, and that it totally eliminates
gravitational time dilation. Indeed the condition g00(x) = 1 effectively sends c to infinity and effectively
reduces the Einstein equation to its Newtonian counterpart. In the wake of A. Friedmann’s opening of the
g00(x) = 1 Pandora’s box in 1922, imposition of g00(x) = 1 on metrics was pursued or strongly advocated
over almost the next two decades by G. Lemaitre, R. C. Tolman, H. P. Robertson, A. G. Walker, J. R.
Oppenheimer and H. Snyder without comprehension of the fundamental fact that imposing g00(x) = 1
on the metric forces purely Newtonian gravity on the problem being treated—wholly technical matters
such as the Oppenheimer-Snyder use of the uniform density instead of the radius of their zero-pressure,
uniform-density spherical perfect-fluid energy-momentum source as the time-dependent variable, helped to
obscure the purely Newtonian nature of their results. In the absence of a pointless desire to pursue purely
Newtonian approximate gravitational calculations in the unnecessarily-involved context of a multicomponent
metric tensor, setting g00(x) to unity is to be shunned; instead, setting det(gµν(x)) to −1, as Einstein did
in November, 1915 to obtain the previously unexplained part of Mercury’s perihelion shift, is to be regarded
as absolutely mandatory in relativistic gravity theory because 1) it is the simplest possible way to guarantee
the existence of the metric tensor’s matrix inverse gµν(x) and affine connection Γκµλ, 2) it is compatible with
Lorentz covariance of the metric tensor gµν and 3) in the most general case it provides the four further
equations Γκκλ = 0 which complement the six independent equations that comprise the Einstein equation
to determine the ten components of the metric tensor gµν . In the case that the energy-momentum source
is spatially maximally symmetric, the Eq. (1.6e) metric form, which both satisfies Einstein’s coordinate
condition det(gµν(x)) = −1 and as well the Einstein equation for the metric tensor of such a source, applies,
with the proviso that its function S(t) is determined by the details of each such spatially maximally-symmetric
source; for example, if its energy-momentum source is a sphere of uniformly-dense perfect fluid of nonzero
pressure, S(t) depends on that perfect fluid’s equation of state which relates its pressure to its density. The
Eq. (1.6a) g00(x) = 1 Robertson-Walker metric form is to be shunned unless one pointlessly desires to carry
out a purely Newtonian approximate gravitational calculations in the unnecessarily-involved context of a
multicomponent metric tensor. When the energy-momentum source is a uniformly-dense sphere of perfect
fluid of zero pressure, application of the Birkhoff theorem offers a far simpler route to the solution than
does head-on application of the Eq. (1.6e) metric form, but it is absolutely crucial that the static point-mass
metric used to apply the Birkhoff theorem be precisely the one which actually satisfies Einstein’s coordinate
condition det(gµν(x)) = −1 everywhere except at the location of the static point mass itself, namely that the
static point-mass metric be the almost unknown one Schwarzschild himself published on January 13, 1916.

We now present basics of the construction of equations which keep their form under general coordinate
transformations. The interested reader can find a multitude of extremely worthwhile facts and derivations
which are omitted here in chapters 4 through 7 and chapter 12 of Steven Weinberg’s 1972 657-page tome
Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity.

General coordinate transformations map the four space-time coordinates xµ one-to-one and onto four
other space-time coordinates yα(x), the mapping yα(x) being multiply times continuously differentiable.
Consequences include the existence of the inverse mapping xµ(y) with the same properties, and, from the
chain rule of the calculus, the familiar basic partial-derivative matrix identities,

∂yα

∂xλ
∂xλ

∂yβ
= ∂yα

∂yβ
= δαβ and ∂xµ

∂yγ
∂yγ

∂xν = ∂xµ

∂xν = δµν . (1.8a)

Also from the calculus chain rule, general coordinate transformations from dxµ to dyα have the form,

dyα = ∂yα

∂xµ dx
µ, (1.8b)

a contravariant (upper index) vector transformation, as is its inverse transformation from dyα to dxν ,

dxν = ∂xν

∂yα dy
α. (1.8c)

To obtain Eq. (1.8c) we contract ∂xν

∂yα into both sides of Eq. (1.8b) and then apply Eq. (1.8a),

∂xν

∂yα dy
α = ∂xν

∂yα
∂yα

∂xµ dx
µ = δνµ dx

µ = dxν . (1.8d)

Below Eq. (1.2b) we noted that the general coordinate transformation properties of the metric tensor
gµν(x) must be consistent with the invariance of dτ(x) =

(√
gµν(x) dxµ dxν/c

)
. In light of Eq. (1.8c),
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(c dτ(x))2 = gµν(x) dxµ dxν = gµν(x) ∂x
µ

∂yα dy
α ∂xν

∂yβ
dyβ =

{
∂xµ

∂yα
∂xν

∂yβ
gµν(x)

}
dyα dyβ . (1.8e)

Therefore, provided that the general coordinate transformation of the metric tensor is taken to be,

gαβ(y) = ∂xµ

∂yα
∂xν

∂yβ
gµν(x), (1.8f)

then, from Eqs. (1.8f) and (1.8e),

(c dτ(x))2 = gµν(x) dxµ dxν = gαβ(y) dyα dyβ = (c dτ(y))2, (1.8g)

so dτ(x) = dτ(y), i.e., dτ is invariant under general coordinate transformations. Eq. (1.8f) shows that the
metric tensor transforms as a covariant (lower index) second-rank tensor, which is “upside down” from the

Eq. (1.8b) contravariant (upper index) transformation dyα = ∂yα

∂xµ dx
µ of the vector dxµ.

If the metric tensor gµν(x) has a matrix inverse (which it will if it satisfies Einstein’s coordinate condition
det(gµν(x)) = −1), then a coordinate transformation of this metric tensor’s matrix inverse is equal to the
matrix inverse of this metric tensor’s corresponding coordinate transformation. As a consequence, the matrix
inverse of a metric tensor transforms as a contravariant (upper index) second-rank tensor, which is “right
side up” relative to the Eq. (1.8b) contravariant (upper index) transformation of the vector dxµ.

In detail, if a metric tensor gµν(x) has the matrix inverse gνλ(x) (which it will if it satisfies Einstein’s
coordinate condition det(gµν(x)) = −1), then gµν(x)gνλ(x) = δλµ, a relation whose coordinate transformation

must correspondingly be gαβ(y)gβγ(y) = δγα. We next insert gαβ(y), as it is given by Eq. (1.8f) above, into
the equation gαβ(y)gβγ(y) = δγα to obtain,

∂xµ

∂yα
∂xν

∂yβ
gµν(x)gβγ(y) = δγα. (1.8h)

It is now more convenient to write Eq. (1.8h) as,

∂xµ

∂yα gµν(x) ∂x
ν

∂yβ
gβγ(y) = δγα.

We contract ∂yα

∂xλ
into both sides of the above equation and apply Eq. (1.8a), which produces,

gλν(x) ∂x
ν

∂yβ
gβγ(y) = ∂yγ

∂xλ
.

We next contract gµλ(x) into both sides of the above equation and apply gµλ(x)gλν(x) = δµν , which produces,

∂xµ

∂yβ
gβγ(y) = gµλ(x) ∂y

γ

∂xλ
.

We finally contract ∂yα

∂xµ into both sides of the above equation and apply Eq. (1.8a), which produces,

gαγ(y) = ∂yα

∂xµ g
µλ(x) ∂y

γ

∂xλ
,

which it is now more convenient to write as,

gαβ(y) = ∂yα

∂xµ
∂yβ

∂xν g
µν(x). (1.8i)

From Eqs. (1.8f) and (1.8i) we clearly see that under general coordinate transformations the metric tensor
gµν(x) transforms as a covariant second-rank tensor, whereas the matrix inverse gµν(x) of the metric tensor
transforms as a contravariant second-rank tensor. The contraction of the metric tensor gµν(x) with a
contravariant upper index of any tensor lowers that index to one which transforms covariantly under general
coordinate transformations. Likewise, the contraction of the matrix inverse gµν(x) of the metric tensor with
a covariant lower index of any tensor raises that index to one which transforms contravariantly.

We have so far considered upper and lower indexed entities whose upper indices transform contravariantly
under general coordinate transformations in the manner of dxµ in Eq. (1.8b) and of gµν(x) in Eq. (1.8i)), and
whose lower indices transform covariantly under those transformations in the manner of gµν(x) in Eq. (1.8f).
Such upper and lower indexed entities are termed tensors under general coordinate transformations, or are
simply termed tensors for short. However, partial derivatives of almost all tensors under general coordinate
transformations fail to transform as tensors under general coordinate transformations. The upper and lower
indexed affine connection Γκµν(x) of Eq. (1.3j), which involves partial derivatives of the metric tensor, fails
to transform as a tensor, but it is possible to merge partial differentiation with the affine connection in such
a way that the result of applying the merged operation to a tensor is itself a tensor.
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We next work out the general coordinate transformation of the non-tensor affine connection Γκµν(x) of
Eq. (1.3j), which is a lengthy exercise. We begin by working out the general coordinate transformation of
∂gµν(x)/∂xλ via the Eq. (1.8f) general coordinate transformation of the covariant tensor gµν(x),

∂gαβ(y)
∂yγ = ∂

∂yγ

[
∂xµ

∂yα
∂xν

∂yβ
gµν(x)

]
= ∂xµ

∂yα
∂xν

∂yβ
∂xλ

∂yγ
∂gµν(x)
∂xλ

+ gµν(x)
[

∂2xµ

∂yγ∂yα
∂xν

∂yβ
+ ∂xµ

∂yα
∂2xν

∂yγ∂yβ

]
, (1.8j)

which illustrates how partial differentiation can turn a covariant tensor into a non-tensor. If only the
first term of the final expression in Eq. (1.8j) were present, ∂gµν(x)/∂xλ would be a covariant third-rank
tensor. We next use Eq. (1.8j) to combine terms of the general coordinate transformation of the entity
(∂gλµ(x)/∂xν) + (∂gλν(x)/∂xµ

)
− (∂gµν(x)/∂xλ

)
,

∂gγα(y)
∂yβ

+
∂gγβ(y)
∂yα − ∂gαβ(y)

∂yγ = ∂xµ

∂yγ
∂xν

∂yα
∂xλ

∂yβ
∂gµν(x)
∂xλ

+ gµν(x)
[

∂2xµ

∂yβ∂yγ
∂xν

∂yα + ∂xµ

∂yγ
∂2xν

∂yβ∂yα

]
+∂xµ

∂yγ
∂xν

∂yβ
∂xλ

∂yα
∂gµν(x)
∂xλ

+ gµν(x)
[

∂2xµ

∂yα∂yγ
∂xν

∂yβ
+ ∂xµ

∂yγ
∂2xν

∂yα∂yβ

]
−∂x

µ

∂yα
∂xν

∂yβ
∂xλ

∂yγ
∂gµν(x)
∂xλ

− gµν(x)
[

∂2xµ

∂yγ∂yα
∂xν

∂yβ
+ ∂xµ

∂yα
∂2xν

∂yγ∂yβ

]
= ∂xµ

∂yα
∂xν

∂yβ
∂xλ

∂yγ

(
∂gλµ(x)
∂xν + ∂gλν(x)

∂xµ − ∂gµν(x)
∂xλ

)
+ 2 gµν(x)∂x

µ

∂yγ
∂2xν

∂yα∂yβ

= ∂xλ

∂yγ
∂xµ

∂yα
∂xν

∂yβ

(
∂gλµ(x)
∂xν + ∂gλν(x)

∂xµ − ∂gµν(x)
∂xλ

)
+ 2 ∂xµ

∂yγ gµν(x) ∂2xν

∂yα∂yβ
. (1.8k)

We are now in a position to obtain the general coordinate transformation of the Eq. (1.3j) affine connection
Γκµν(x) = 1

2g
κλ(x)

(
(∂gλµ(x)/∂xν) + (∂gλν(x)/∂xµ

)
− (∂gµν(x)/∂xλ

))
by combining the general coordinate

transformation result for (∂gλµ(x)/∂xν) + (∂gλν(x)/∂xµ
)
− (∂gµν(x)/∂xλ

)
given by Eq. (1.8k) with that for

gµν(x) given by Eq. (1.8i), which for this particular purpose it is much more convenient to restate as,

gσγ(y) = ∂yσ

∂xκ g
κυ(x) ∂y

γ

∂xυ . (1.8l)

Combining Eq. (1.8l) with the Eq. (1.8k) result yields for the general coordinate transformation of Γκµν(x),

Γσαβ(y) = 1
2g
σγ(y)

(
∂gγα(y)
∂yβ

+
∂gγβ(y)
∂yα − ∂gαβ(y)

∂yγ

)
=

1
2
∂yσ

∂xκ g
κυ(x) ∂y

γ

∂xυ
∂xλ

∂yγ
∂xµ

∂yα
∂xν

∂yβ

(
∂gλµ(x)
∂xν + ∂gλν(x)

∂xµ − ∂gµν(x)
∂xλ

)
+ ∂yσ

∂xκ g
κυ(x) ∂y

γ

∂xυ
∂xµ

∂yγ gµν(x) ∂2xν

∂yα∂yβ
=

1
2
∂yσ

∂xκ g
κλ(x)∂x

µ

∂yα
∂xν

∂yβ

(
∂gλµ(x)
∂xν + ∂gλν(x)

∂xµ − ∂gµν(x)
∂xλ

)
+ ∂yσ

∂xκ g
κµ(x)gµν(x) ∂2xν

∂yα∂yβ
=

∂yσ

∂xκ
∂xµ

∂yα
∂xν

∂yβ
1
2g
κλ(x)

(
∂gλµ(x)
∂xν + ∂gλν(x)

∂xµ − ∂gµν(x)
∂xλ

)
+ ∂yσ

∂xν
∂2xν

∂yα∂yβ
=

∂yσ

∂xκ
∂xµ

∂yα
∂xν

∂yβ
Γκµν(x) + ∂yσ

∂xν
∂2xν

∂yα∂yβ
, (1.8m)

where we used ∂yγ

∂xυ
∂xλ

∂yγ = δλυ as well as ∂yγ

∂xυ
∂xµ

∂yγ = δµυ , which are aspects of Eq. (1.8a), and we also used

gκµ(x)gµν(x) = δκν . If only the first term of the final expression in Eq. (1.8m) were present, the affine
connection Γκµν(x) would be a “mixed” contravariant/covariant third-rank tensor, but the presence of the

second term ∂yσ

∂xν
∂2xν

∂yα∂yβ
makes it a non-tensor. A slightly different (but equivalent) form of the general

coordinate transformation of the affine connection turns out to be important. Taking the partial derivative
with respect to yβ of the identity ∂yσ

∂xν
∂xν

∂yα = δσα produces the further identity,

∂yσ

∂xν
∂2xν

∂yα∂yβ
= − ∂xν

∂yα
∂xλ

∂yβ
∂2yσ

∂xν∂xλ
, (1.8n)

so a form equivalent to Eq. (1.8m) of the general coordinate transformation of the affine connection is,

Γσαβ(y) = ∂yσ

∂xκ
∂xµ

∂yα
∂xν

∂yβ
Γκµν(x)− ∂xν

∂yα
∂xλ

∂yβ
∂2yσ

∂xν∂xλ
. (1.8o)

Although the partial derivative
∂Vµ(x)
∂xν of a covariant vector Vµ(x) doesn’t transform as a covariant

second-rank tensor, we now show that that partial derivative minus the affine connection’s particular con-
traction Γλµν(x)Vλ(x) with that covariant vector Vµ(x) does transform as a covariant second-rank tensor. The

general coordinate transformation of the covariant vector Vµ(x) of course is Vα(y) = ∂xµ

∂yαVµ(x), so,
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∂Vα(y)
∂yβ

= ∂
∂yβ

[
∂xµ

∂yαVµ(x)
]

= ∂xµ

∂yα
∂xν

∂yβ
∂Vµ(x)
∂xν + ∂2xµ

∂yα∂yβ
Vµ(x) = ∂xµ

∂yα
∂xν

∂yβ
∂Vµ(x)
∂xν + ∂2xν

∂yα∂yβ
Vν(x). (1.8p)

The double-lower-index partial derivative
∂Vµ(x)
∂xν fails to transform as a covariant second-rank tensor due to

the bad term ∂2xν

∂yα∂yβ
Vν(x) in Eq. (1.8p). However we now use the Eq. (1.8m) transformation of the affine

connection Γλµν(x) to calculate the transformation of the µν double-lower-index contraction Γλµν(x)Vλ(x),

Γγαβ(y)Vγ(y) =
[
∂yγ

∂xλ
∂xµ

∂yα
∂xν

∂yβ
Γλµν(x) + ∂yγ

∂xν
∂2xν

∂yα∂yβ

] [
∂xκ

∂yγ Vκ(x)
]

=

∂xµ

∂yα
∂xν

∂yβ
Γλµν(x)

[
∂yγ

∂xλ
∂xκ

∂yγ Vκ(x)
]

+ ∂2xν

∂yα∂yβ

[
∂yγ

∂xν
∂xκ

∂yγ Vκ(x)
]

= ∂xµ

∂yα
∂xν

∂yβ
Γλµν(x)Vλ(x) + ∂2xν

∂yα∂yβ
Vν(x). (1.8q)

Upon equating the difference of the initial expressions in Eqs. (1.8p) and (1.8q) to the difference of their

final expressions, the bad terms ∂2xν

∂yα∂yβ
Vν(x) in each of their final expressions cancel, producing the result,

∂Vα(y)
∂yβ

− Γγαβ(y)Vγ(y) = ∂xµ

∂yα
∂xν

∂yβ
∂Vµ(x)
∂xν −

∂xµ

∂yα
∂xν

∂yβ
Γλµν(x)Vλ(x) = ∂xµ

∂yα
∂xν

∂yβ

[
∂Vµ(x)
∂xν − Γλµν(x)Vλ(x)

]
, (1.8r)

which shows that the entity Vµ;ν(x)
def
=
[∂Vµ(x)

∂xν −Γλµν(x)Vλ(x)
]

transforms as a covariant second-rank tensor

even though the partial derivative
∂Vµ(x)
∂xν doesn’t. The entity Vµ;ν(x) is called the covariant derivative with

respect to xν of the covariant vector Vµ(x), and, like ordinary differentiation, covariant differentiation of
Vµ(x) is a homogeneously linear operation on Vµ(x). When the metric tensor gµν(x) reduces to ηµν , the affine
connection Γλµν(x) reduces to zero, and covariant differentiation reduces to ordinary partial differentiation.
The extension of covariant differentiation to covariant tensors of higher rank is achieved by,

Tµ1···µn;ν(x)
def
=
[
∂Tµ1···µn (x)

∂xν −
∑n
k=1 Γλµkν(x)Tµ1···µk−1 λ µk+1···µn(x)

]
,

as is readily verified by calculations that are highly analogous to those of Eqs. (1.8p) through (1.8r).

The general coordinate transformation of a contravariant vector V µ(x) is V α(y) = ∂yα

∂xµV
µ(x), and its

partial derivative ∂V α(y)
∂yβ

has mixed index, so Eq. (1.8p) for the αβ double-lower-index ∂Vα(y)
∂yβ

is replaced by,

∂V α(y)
∂yβ

= ∂
∂yβ

[
∂yα

∂xµV
µ(x)

]
= ∂yα

∂xµ
∂xν

∂yβ
∂V µ(x)
∂xν + ∂2yα

∂xν∂xµ
∂xν

∂yβ
V µ(x) = ∂yα

∂xµ
∂xν

∂yβ
∂V µ(x)
∂xν + ∂xν

∂yβ
∂2yα

∂xν∂xλ
V λ(x).

∂V µ(y)
∂yν fails to transform as a mixed tensor due to the bad term ∂xν

∂yβ
∂2yα

∂xν∂xλ
V λ(x), which has three factors

instead of the two factors of the Eq. (1.8p) bad term. The contraction Γµνλ(x)V λ(x) has mixed index, and
the three factors of the above bad term suggests using Eq. (1.8o) for Γσαβ(y) in place of Eq. (1.8m),

Γαβγ(y)V γ(y) =
[
∂yα

∂xµ
∂xν

∂yβ
∂xλ

∂yγ Γµνλ(x)− ∂xν

∂yβ
∂xλ

∂yγ
∂2yα

∂xν∂xλ

] [
∂yγ

∂xκV
κ(x)

]
=

∂yα

∂xµ
∂xν

∂yβ
Γµνλ(x)

[
∂xλ

∂yγ
∂yγ

∂xκV
κ(x)

]
− ∂xν

∂yβ
∂2yα

∂xν∂xλ

[
∂xλ

∂yγ
∂yγ

∂xκV
κ(x)

]
= ∂yα

∂xµ
∂xν

∂yβ
Γµνλ(x)V λ(x)− ∂xν

∂yβ
∂2yα

∂xν∂xλ
V λ(x).

Upon equating the sum of the initial expressions of the two foregoing equality chains to the sum of their

final expressions, the bad terms ±∂x
ν

∂yβ
∂2yα

∂xν∂xλ
V λ(x) of their final expressions cancel, producing the result,

∂V α(y)
∂yβ

+ Γαβγ(y)V γ(y) = ∂yα

∂xµ
∂xν

∂yβ
∂V µ(x)
∂xν + ∂yα

∂xµ
∂xν

∂yβ
Γµνλ(x)V λ(x) = ∂yα

∂xµ
∂xν

∂yβ

[
∂V µ(x)
∂xν + Γµνλ(x)V λ(x)

]
,

which shows that the entity V µ;ν(x)
def
=
[∂V µ(x)

∂xν + Γµνλ(x)V λ(x)
]

transforms as a mixed second-rank tensor

even though the partial derivative ∂V µ(x)
∂xν doesn’t. The entity V µ;ν(x) is the covariant derivative with respect

to xν of the contravariant vector V µ(x). The extension of covariant differentiation to contravariant tensors
of higher rank is achieved by,

Tµ1···µn
;ν(x)

def
=
[
∂Tµ1···µn (x)

∂xν +
∑n
k=1 Γµkνλ(x)Tµ1···µk−1 λ µk+1···µn(x)

]
,

as is readily verified by calculations that are highly analogous to those of the three preceding equality chains.
The extension of covariant differentiation to mixed tensors is correspondingly achieved, e.g.,

Tµ1
µ2µ3

µ4

;ν(x)
def
=

∂Tµ1µ2µ3
µ4 (x)

∂xν

+Γµ1

νλ(x)Tλµ2µ3

µ4
(x)− Γλµ2ν(x)Tµ1

λµ3

µ4(x)− Γλµ3ν(x)Tµ1
µ2λ

µ4(x) + Γµ4

νλ(x)Tµ1
µ2µ3

λ(x).
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We next study the general coordinate transformation behavior of the geodesic equation for a test particle
moving under the influence of the metric tensor (multicomponent gravitational potential) gµν(x). The
Eq. (1.3h) form of the geodesic equation,

gλµ(x)d
2xµ

dτ2 + 1
2

(
∂gλµ
∂xν + ∂gλν

∂xµ −
∂gµν
∂xλ

)
dxµ

dτ
dxν

dτ = 0,

is of course equivalent to the functional-derivative equation,

δ
∫
ds
/
δxλ(τ) = 0,

from which it was obtained, where,

ds =
√
gµν(x) dxµ dxν =

(√
gµν(x(τ)) dx

µ

dτ
dxν

dτ

)
dτ ,

is clearly invariant under general coordinate transformations. Since δxλ(τ) transforms as a contravariant
vector under general coordinate transformations, the above Eq. (1.3h) representation of the geodesic equation
transforms as a covariant vector equation under general coordinate transformations. If the matrix inverse
gκλ(x) of the metric tensor exists everywhere (which is ensured by Einstein’s coordinate condition det(gµν) =
−1), contracting this contravariant second rank tensor gκλ(x) into the above Eq. (1.3h) covariant vector form
of the geodesic equation produces its Eq. (1.3i) standard contravariant vector form,

d2xκ

dτ2 + Γκµν(x)dx
µ

dτ
dxν

dτ = 0,

where,

Γκµν(x)
def
= 1

2g
κλ(x)

(
∂gλµ
∂xν + ∂gλν

∂xµ −
∂gµν
∂xλ

)
,

is the affine connection. (This Eq. (1.3i) standard form of the geodesic equation is compatible with the rela-
tivistic version of Newton’s Second Law.) The interesting point is that the characteristics of the variational
principle δ

∫
ds
/
δxλ(τ) = 0 from which the geodesic equation was obtained permit us to immediately grasp

its general coordinate transformation properties. However, we now as well give the tedious customary proof
that the above Eq. (1.3i) standard form of the geodesic equation is a contravariant vector equation,

d2yσ

dτ2 = d
dτ

[
∂yσ

∂xκ
dxκ

dτ

]
= ∂yσ

∂xκ
d2xκ

dτ2 + ∂2yσ

∂xκ∂xλ
dxκ

dτ
dxλ

dτ = ∂yσ

∂xκ
d2xκ

dτ2 + ∂2yσ

∂xν∂xλ
dxν

dτ
dxλ

dτ ,

so d2xκ

dτ2 isn’t a contravariant vector because of the bad term ∂2yσ

∂xν∂xλ
dxν

dτ
dxλ

dτ . We next apply Eq. (1.8o),

Γσαβ(y)dy
α

dτ
dyβ

dτ =
[
∂yσ

∂xκ
∂xµ

∂yα
∂xν

∂yβ
Γκµν(x)− ∂xν

∂yα
∂xλ

∂yβ
∂2yσ

∂xν∂xλ

] [
∂yα

∂xς
dxς

dτ

] [
∂yβ

∂xυ
dxυ

dτ

]
=

∂yσ

∂xκΓκµν(x)
[
∂xµ

∂yα
∂yα

∂xς
dxς

dτ

] [
∂xν

∂yβ
∂yβ

∂xυ
dxυ

dτ

]
− ∂2yσ

∂xν∂xλ

[
∂xν

∂yα
∂yα

∂xς
dxς

dτ

] [
∂xλ

∂yβ
∂yβ

∂xυ
dxυ

dτ

]
=

∂yσ

∂xκΓκµν(x)dx
µ

dτ
dxν

dτ −
∂2yσ

∂xν∂xλ
dxν

dτ
dxλ

dτ .

Upon equating the sum of the initial expressions of the two foregoing equality chains to the sum of their

final expressions, the bad terms ± ∂2yσ

∂xν∂xλ
dxν

dτ
dxλ

dτ of their final expressions cancel, producing the result,

d2yσ

dτ2 + Γσαβ(y)dy
α

dτ
dyβ

dτ = ∂yσ

∂xκ
d2xκ

dτ2 + ∂yσ

∂xκΓκµν(x)dx
µ

dτ
dxν

dτ = ∂yσ

∂xκ

[
d2xκ

dτ2 + Γκµν(x)dx
µ

dτ
dxν

dτ

]
,

so the above Eq. (1.3i) standard form of the geodesic equation indeed transforms as a contravariant vector
equation. The Eq. (1.3i) geodesic equation therefore keeps its form under general coordinate transformations.
That is true as well of the Einstein equation for the metric tensor gµν(x), and the resulting arbitrariness in the
four-vector argument xλ of gµν(x), and therefore in gµν(x) itself, makes choosing the physically appropriate
coordinate condition of crucial importance. Just as the geodesic equation follows from the variation with
respect to δxλ(τ) of an action which is invariant under general coordinate transformations, the Einstein
equation follows from the variation with respect to δgµν(x) of the Einstein-Hilbert action, which is likewise
invariant under general coordinate transformations (see chapter 12 of Steven Weinberg’s 657-page 1972 tome
Gravitation and Cosmology . . .). The invariant curvature scalar is the central purely gravitational part of
that invariant action. We next discuss curvature’s relation to successive covariant differentiations.
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If, on the earth’s curved surface, one starts at the equator and first travels a short distance directly
toward the north pole, followed by traveling the same short distance directly east, one ends up at a slightly
different point than if one first travels that same distance directly east, followed by traveling that distance
directly toward the north pole. Somewhat similarly, taking two covariant derivatives in succession of a tensor
gives a result that depends on the order in which the two covariant derivatives are taken. The difference
between a second covariant derivative of a tensor and its reversed-order counterpart highlights a combination
of the affine connection and its first partial derivatives that describes a metric tensor’s intrinsic curvature,
and is called the metric tensor’s Riemann-Christoffel curvature tensor. In detail,

V κ;µ;ν =
∂V κ;µ

∂xν + ΓκνσV
σ

;µ − ΓσµνV
κ

;σ = ∂
∂xν

[
∂V κ

∂xµ + ΓκµλV
λ
]

+ Γκνσ

[
∂V σ

∂xµ + ΓσµλV
λ
]
− ΓσµνV

κ
;σ ={

∂2V κ

∂xµ∂xν +
[
Γκµσ

∂V σ

∂xν + Γκνσ
∂V σ

∂xµ

]
− ΓσµνV

κ
;σ

}
+ V λ

[
∂Γκλµ
∂xν + ΓσλµΓκνσ

]
,

where we renamed one summed-over pair of dummy indices from λ to σ, and we interchanged certain of
the symmetric lower indices of affine connection symbols. Since the entity enclosed in curly brackets is
symmetric under the interchange of its µ and ν indices, we see that,

V κ;µ;ν(x)− V κ;ν;µ(x) = V λ(x)Rκλµν(x),

where,

Rκλµν(x)
def
=

∂Γκλµ(x)

∂xν − ∂Γκλν(x)
∂xµ + Γσλµ(x)Γκνσ(x)− Γσλν(x)Γκµσ(x), (1.8s)

is called the metric tensor’s Riemann-Christoffel curvature tensor. Two key contractions are the Ricci tensor,

Rλν(x)
def
= Rκλκν(x),

and the invariant curvature scalar,

R(x)
def
= gλν(x)Rλν(x).

In Einstein’s gravity theory, the source of gravitational curvature is energy-momentum, which supersedes
the Newtonian concept that the source of gravitational forces and potentials is mass; a key motivating
consideration is that mass isn’t conserved, but energy-momentum is. The density and flux of a physical
system’s energy-momentum is given by its energy-momentum tensor Tµν(x), which transforms as a tensor
under general coordinate transformations. It is symmetric in its two indices,

Tµν(x) = Tνµ(x),

and its covariant divergence vanishes,

Tµν;µ(x) = 0,

where, as usual, indices are raised using the contravariant matrix inverse gµν(x) of the metric tensor, and
lowered using the covariant metric tensor gµν(x) itself; in particular, Tµν(x) = gµλ(x)Tλν(x). In Sections
12.2 and 12.3, on pages 360-363, Steven Weinberg’s tome gives a general definition of a physical system’s
energy-momentum tensor in terms of its action integral, together with a proof of the above two properties
of that tensor. To arrive at the definition of Tµν(x), a physical system’s Lorentz-invariant action integral
is first converted to one that is invariant under general coordinate transformations by replacing occurrences
of ηµν by gµν(x), occurrences of partial derivatives by covariant derivatives, and the occurrence of d4x by√
−det(gµν(x)) d4x. Taking half of the functional derivative with respect to the metric tensor gµν(x) of

that upgraded action integral then yields the energy-momentum tensor. In Section 12.4 on page 364 in
Eq. (12.4.2), Weinberg then goes on to give the simple gravitational scalar-curvature based action integral,

IG = − c3

16πG

∫
R(x)

√
− det(gµν(x)) d4x,

which when added to the type of upgraded action integral for a physical system described above yields the
Einstein equation upon first-order variation of their sum with respect to the metric tensor gµν(x).

We now present another approach to deriving the Einstein equation, which is set out in Section 7.1
on pages 151-154 of Steven Weinberg’s tome. The idea is that in principle we can always make a general
space-time coordinate transformation such that the local effect of any gravitational field becomes extremely
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weak, which is known as going into free fall in that local gravitational field. The earth is freely falling in its
orbit around the sun, so we have almost no sense of the the sun’s gravitational field, but the curvature of the
sun’s gravitational field persists; no general space-time coordinate transformation can make the gravitational
curvature tensor vanish. The curvature of the sun’s gravitational field indeed exerts a seasonal effect on
the earth’s ocean tides. Since the Einstein equation relates only the curvature of the gravitational field
to its energy-momentum source, we are perfectly able to derive the Einstein equation while simultaneously
assuming that gravitational effects are extremely weak, which is exactly what we will now do. That we can do
this is a pointed reminder of how useless the Einstein equation, which only determines the metric’s “Einstein
curvature” for a given energy-momentum tensor, is by itself for fully determining that metric, and therefore
how crucial it is that the Einstein equation’s accompanying coordinate condition be physically appropriate.

To implement the assumption that the gravitational field produced by the energy-momentum tensor
Tµν(x) is extremely weak, we present its metric tensor gµν(x) as ηµν + hµν(x), where |hµν(x)| � 1. Thus
the Eq. (1.3i) affine connection Γκµν(x) becomes,

Γκµν(x) = 1
2g
κλ(x)

(
∂gλµ
∂xν + ∂gλν

∂xµ −
∂gµν
∂xλ

)
= 1

2g
κλ(x)

(
∂hλµ
∂xν + ∂hλν

∂xµ −
∂hµν
∂xλ

)
≈ 1

2η
κλ
(
∂hλµ
∂xν + ∂hλν

∂xµ −
∂hµν
∂xλ

)
= 1

2

(
∂hκµ
∂xν + ∂hκν

∂xµ −
∂hµν
∂xκ

)
,

where in the final step we used ηκλ = ηκλ to raise and lower indices. Therefore from Eq. (1.8s),

Rκµλν(x) ≈ ∂Γκµλ
∂xν −

∂Γκµν
∂xλ

≈ 1
2

∂
∂xν

(
∂hκµ
∂xλ

+ ∂hκλ
∂xµ −

∂hµλ
∂xκ

)
− 1

2
∂
∂xλ

(
∂hκµ
∂xν + ∂hκν

∂xµ −
∂hµν
∂xκ

)
=

1
2

[
∂2hκλ
∂xν∂xµ −

∂2hµλ
∂xν∂xκ

− ∂2hκν
∂xλ∂xµ

+
∂2hµν
∂xλ∂xκ

]
,

the weak-field Riemann-Christoffel curvature tensor. Therefore the weak-field Ricci tensor is,

Rµν(x) = Rλµλν(x) ≈ 1
2

[
∂2hλλ
∂xν∂xµ −

∂2hµλ
∂xν∂xλ

− ∂2hλν
∂xλ∂xµ

+
∂2hµν
∂xλ∂xλ

]
= 1

2

[
∂2hλλ
∂xν∂xµ −

∂2hµλ
∂xν∂xλ

− ∂2hνλ
∂xµ∂xλ

+
∂2hµν
∂xλ∂xλ

]
,

whose the third term is reexpressed to show that Rµν = Rνµ. Therefore the weak-field curvature scalar is,

R(x) ≈ ηµνRµν(x) ≈
[
∂2hλλ
∂xµ∂xµ

− ∂2hµλ
∂xµ∂xλ

]
.

In the weak-field limit, the energy-momentum tensor’s vanishing covariant divergence condition Tµν;µ(x) = 0

is of course replaced by the vanishing of its ordinary divergence, ∂Tµν(x)
∂xµ = 0. Therefore to create a self-

consistent Einstein equation in the weak-field limit, we need a second-rank curvature-related tensor Eµν(x)

that is symmetric in its two indices, Eµν(x) = Eνµ(x), and whose divergence vanishes, ∂Eµν(x)
∂xµ = 0. In

terms of such a curvature-related tensor Eµν(x), the self-consistent Einstein equation would have the form
Eµν(x) = KTµν(x), where the constant K is determined by Newtonian gravity when this equation’s energy-
momentum source Tµν(x) is a weak static energy density. In looking for such a curvature-related Eµν(x),
we next calculate the weak-field Ricci tensor’s divergence,

∂Rµν(x)
∂xµ = 1

2

[
∂3hλλ

∂xν∂xµ∂xµ
− ∂3hµλ

∂xν∂xµ∂xλ
− ∂3hνλ

∂xµ∂xµ∂xλ
+ ∂3hµν

∂xµ∂xλ∂xλ

]
=

1
2

∂
∂xν

[
∂2hλλ
∂xµ∂xµ

− ∂2hµλ
∂xµ∂xλ

]
− 1

2

[
∂3hνλ

∂xµ∂xµ∂xλ
− ∂3hµν

∂xµ∂xλ∂xλ

]
= 1

2
∂R(x)
∂xν −

1
2

[
∂3hλν

∂xλ∂xµ∂xµ
− ∂3hµν

∂xµ∂xλ∂xλ

]
=

1
2
∂(δµνR(x))

∂xµ − 1
2

[
∂3hµν

∂xµ∂xλ∂xλ
− ∂3hµν

∂xµ∂xλ∂xλ

]
=

∂( 1
2
δµνR(x))

∂xµ ,

a result which implies that,

∂
(
Rµν(x)− 1

2δ
µ
νR(x)

)/
∂xµ = 0,

whose strong-field counterpart clearly is,(
Rµν(x)− 1

2δ
µ
νR(x)

)
;µ = 0,

which is a Bianchi identity. Therefore we have found the curvature-related tensor that we are looking for,

Eµν(x) = Rµν(x)− 1
2gµν(x)R(x),
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so the Einstein equation that we are looking for has the form,

Rµν(x)− 1
2gµν(x)R(x) = KTµν(x).

We next obtain the value of K from this equation’s Newtonian weak-field and static energy-density case.
To do so, we assume that the only component of the energy-momentum tensor Tµν(x) which doesn’t

vanish is the energy density T00(x), and that it has no time dependence, which of course is necessary because
the divergence ∂Tµν(x)/∂xµ must vanish. We also assume that T00(x) is weak enough to be compatible with
the assumed weak-field condition |hµν(x)| � 1, and that the hµν(x) also have no time dependence. These
conditions effectively enforce Newtonian gravitational physics, and we know that the Newtonian gravitational
potential φ(x) satisfies the Newtonian gravitational-potential equation,

∇2
x φ(x) = 4πGρ(x).

Since under these conditions h00(x) = 2φ(x)/c2 (see Eq. (1.4j)), and the energy density T00(x) is effectively
the Newtonian mass density ρ(x) times c2, the above Newtonian potential equation can also be written,

∇2
x h00(x) = (8πG/c4)T00(x). (1.8t)

These Newtonian conditions cause the above Einstein-equation form Rµν(x) − 1
2gµν(x)R(x) = KTµν(x) to

imply a relation very similar to Eq. (1.8t), which enables evaluation of the constant K. Under these condi-
tions, this Einstein-equation form becomes Rµν(x)− 1

2ηµνR(x) = KTµν(x). Only four of the components of
this Einstein-equation form are needed to obtain the relation similar to Eq. (1.8t); they are,

R00(x)− 1
2R(x) = KT00(x), (1.8u)

and,

Rjj(x) + 1
2R(x) = 0 for j = 1, 2 and 3, (1.8v)

but we also need the relations of R00(x), Rjj(x) and R(x) to h00(x). Since R(x) = ηµνRµν(x) = R00(x)−∑3
j=1Rjj(x), Eq. (1.8v) yields that R(x) = R00(x) + 3

2R(x), so R(x) = −2R00(x), which inserted into
Eq. (1.8u) yields that 2R00(x) = KT00(x). Next we use the weak-field version of the Ricci tensor,

Rµν(x) = 1
2

[
∂2hλλ
∂xν∂xµ −

∂2hµλ
∂xν∂xλ

− ∂2hνλ
∂xµ∂xλ

+
∂2hµν
∂xλ∂xλ

]
,

in conjunction with the fact that hαβ(x) is independent of time to obtain the result R00(x) = − 1
2∇

2
x h00(x),

that, on being inserted into the above result that 2R00(x) = KT00(x), yields −∇2
x h00(x) = KT00(x), which

on comparison with Eq. (1.8t) yields that K = −(8πG/c4). Insertion of this value of K into the above
Einstein-equation form yields the Einstein equation,

Rµν(x)− 1
2gµν(x)R(x) = −(8πG/c4)Tµν(x). (1.8w)

There is far less to the Einstein equation than meets the eye because the Einstein curvature-related
tensor Eµν(x) = Rµν(x) − 1

2gµν(x)R(x) doesn’t determine the metric tensor gµν(x); the Einstein equation
doesn’t even determine a test particle’s trajectory. In fact, with the additional requirement that g00(x) = 1
everywhere, which is fully compatible with the Einstein equation and was stipulated with delight by A.
Friedmann, G. Lemaitre, R. C. Tolman, H. P. Robertson, A. G. Walker, J. R. Oppenheimer and H. Snyder,
but which is incompatible with Lorentz covariance of gµν(x) (it is fully compatible with Galilean covariance of
gµν(x)) and totally eliminates gravitational time dilation, sending c to infinity, the Einstein equation yields
purely Newtonian gravitational physics, including purely Newtonian-gravitational test-particle trajectories.
The pointlessness of confecting purely Newtonian gravitational physics from the Einstein equation and the
Lorentz-covariance incompatible requirement that g00(x) = 1 everywhere is obvious. It is equally obvious
that the physical appropriateness of the coordinate condition which accompanies the Einstein equation is
of crucial importance. Einstein’s coordinate condition det(gµν(x)) = −1 is the simplest possible coordinate
condition which (1) guarantees the existence of the inverse gαβ(x) of the metric tensor gµν(x), and thereby
guarantees the existence of the affine connection, (2) is compatible with Lorentz covariance of the metric
tensor gµν(x) and (3) in the general case supplies four additional equations (i.e., the four equations Γκκλ = 0
of Eq. (1.7h)) that supplement the six independent equations supplied by the Einstein equation to fully
determine the metric tensor. These three properties of Einstein’s coordinate condition are unmatched by
any coordinate condition found in Weinberg’s tome; Weinberg favors the harmonic coordinate condition
gµνΓλµν = 0, which uses gαβ(x), but fails to guarantee its existence.
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Einstein’s coordinate condition also remarkably reverts the form of the electrodynamics equation,

Fµν ;µ = 4πjν/c, (1.9a)

in the presence of gravitation to its form in the absence of gravitation. We verify this by writing out in detail
the covariant divergence of Fµν , bearing in mind its antisymmetry, Fµν = −F νµ,

Fµν ;µ = ∂Fµν

∂xµ + ΓµµλF
λν + ΓνµλF

µλ, (1.9b)

where, from Einstein’s coordinate condition, Γµµλ = 0 (see Eq. (1.7h)). In addition, ΓνµλF
µλ = 0 because Γνµλ

is symmetric under the interchange of the indices µ and λ, whereas Fµλ is antisymmetric under that index
interchange. Thus Eq. (1.9a) becomes,

∂Fµν

∂xµ = 4πjν/c, (1.9c)

the form this electrodynamics equation has in the absence of gravitation. Einstein’s coordinate condition
likewise reverts the form of the vanishing of the current density’s divergence jν ,

jν ;ν = 0, (1.9d)

in the presence of gravitation to its form in the absence of gravitation. The covariant divergence of jν is,

jν ;ν = ∂jν

∂xν + Γννλj
λ, (1.9e)

where, from Einstein’s coordinate condition, Γννλ = 0 (see Eq. (1.7h)). Thus Eq. (1.9d) becomes,

∂jν

∂xν = 0, (1.9f)

the form this equation of the vanishing of the current density’s divergence has in the absence of gravitation.
The remaining cyclic electrodynamics equation, Fαβ;γ + Fβγ;α + Fγα;β = 0, automatically has the same

form in the presence of gravitation as in gravitation’s absence because Γλαβ = Γλβα and Fλγ = −Fγλ,

Fαβ;γ + Fβγ;α + Fγα;β =[
∂Fαβ
∂xγ − ΓλαγFλβ − ΓλβγFαλ

]
+
[
∂Fβγ
∂xα − ΓλβαFλγ − ΓλγαFβλ

]
+
[
∂Fγα
∂xβ
− ΓλγβFλα − ΓλαβFγλ

]
=

∂Fαβ
∂xγ +

∂Fβγ
∂xα +

∂Fγα
∂xβ
−
[
ΓλαγFλβ + ΓλγαFβλ

]
−
[
ΓλβγFαλ + ΓλγβFλα

]
−
[
ΓλβαFλγ + ΓλαβFγλ

]
=

∂Fαβ
∂xγ +

∂Fβγ
∂xα +

∂Fγα
∂xβ

, (1.9g)

so the remaining electrodynamics equation Fαβ;γ + Fβγ;α + Fγα;β = 0 automatically has the form,

∂Fαβ
∂xγ +

∂Fβγ
∂xα +

∂Fγα
∂xβ

= 0, (1.9h)

that it has in the absence of gravitation.
Although Einstein’s coordinate condition ensures that the zero-gravity electrodynamics equations,

∂Fµν

∂xµ = 4πjν/c and
∂Fαβ
∂xγ +

∂Fβγ
∂xα +

∂Fγα
∂xβ

= 0, (1.9i)

hold even in the presence of gravitation, nevertheless Fαβ = gαµgβνF
µν in the presence of gravitation, so it

is impossible in the presence of gravitation to obtain the particular wave-type electromagnetic equation,

∂2Fαβ
∂xγ∂xγ

= (4π/c)
[
∂jβ
∂xα −

∂jα
∂xβ

]
,

which holds in the absence of gravitation; gravitation affects the propagation of electromagnetic waves.
Einstein applied the coordinate condition det(gµν(x)) = −1 to the deflection of light by the sun’s gravity for
the first time on November 18, 1915, and he thereupon for the first time obtained the correct deflection.

Finally, in the presence of both gravitation and an electromagnetic field, the trajectory of a test particle
of mass m and charge e is governed by the equation of motion,

m
(
d2xκ

dτ2 + Γκµν
dxµ

dτ
dxν

dτ

)
= (e/c)Fκλ

dxλ

dτ , where Fκλ = gλυF
κυ. (1.9j)

It would sorely strain physical credibility for the motion of such a test particle to violate Lorentz covariance,
or for Γκµν to fail to exist. Einstein’s coordinate condition det(gµν(x)) = −1 neatly quashes those concerns.
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We have mentioned that the space-time differential volume d4x, which is a Lorentz invariant, isn’t
a general coordinate transformation invariant; its transformation produces the well-known factor of the
absolute value of the determinant of the transformation’s Jacobian matrix,

d4y =
∣∣det

(
∂yα/∂xµ

)∣∣d4x. (1.9k)

We know that gµν(x) transforms as a covariant second-rank tensor,

gαβ(y) = ∂xµ

∂yα
∂xν

∂yβ
gµν(x), (1.9l)

so, since the determinant of a product of matrices is equal to the product of their determinants,

det
(
gαβ(y)

)
=
(
det
(
∂xµ/∂yα

))
2 det

(
gµν(x)

)
. (1.9m)

Applying that same product rule to the identity,

∂xµ

∂yα
∂yα

∂xν = δµν , (1.9n)

yields,

det
(
∂xµ/∂yα

)
= 1/ det

(
∂yα/∂xν

)
, (1.9o)

which implies that the Eq. (1.9m) transformation relation can alternatively be written,

det
(
gαβ(y)

)
= det

(
gµν(x)

)/(
det
(
∂yα/∂xµ

))
2, (1.9p)

Combining Eq. (1.9p) with Eq. (1.9k) yields the transformation relation for
√
−det(gµν(x)) d4x,√

−det(gαβ(y)) d4y =
√
−det(gµν(x)) d4x. (1.9q)

Thus
√
−det(gµν(x))d4x is a coordinate transformation invariant which, in the absence of gravitation (when

gµν(x) = ηµν), reduces to d4x. Therefore Einstein’s coordinate condition det(gµν(x)) = −1 reverts the

coordinate transformation invariant
√
−det(gµν(x))d4x to the form d4x it has in the absence of gravitation.

We have now seen that Einstein’s coordinate condition det(gµν(x)) = −1 reverts some key relativistic
entities, such as the electrodynamics equation Fµν ;µ = 4πjν/c and the invariant differential space-time

volume
√
−det(gµν(x))d4x to the forms ∂Fµν/∂xµ = 4πjν/c and d4x they have in the absence of gravitation.

Not a single one of the coordinate conditions to be found in Weinberg’s tome, including Weinberg’s favored
harmonic coordinate condition, effects such reversions. Clearly Einstein’s coordinate condition det(gµν(x)) =
−1 infuses the nebulous Einstein equation, Rµν(x) − 1

2gµν(x)R(x) = −(8πG/c4)Tµν(x), with a relativistic
specificity no other coordinate condition comes even close to matching. The Einstein equation itself is devoid
of relativistic specificity, as is quite overwhelmingly demonstrated by the addition to it of the Lorentz-
covariance incompatible condition g00(x) = 1 prized by Friedmann, Lemaitre, Tolman, Robertson, Walker,
Oppenheimer and Snyder, which totally eliminates gravitational time dilation, sends c to infinity, and causes
the Einstein equation to vent purely Newtonian gravitational physics. Steven Weinberg, due to his reading of
a 1928 article by the mathematician K. O. Friedrichs, had some understanding of the nebulousness inherent
in the Einstein equation by itself, an understanding not specific enough to adequately serve Weinberg as a
theoretical physicist. On pages 92-93 of Section 4.1 in his tome Weinberg writes, “. . .there are generally
covariant theories of gravitation that allow the construction of inertial frames at any point in a gravitational
field, but that satisfy Galilean relativity rather than special relativity in these frames.”

By November 18, 1915 Einstein had sufficiently progressed with his nascent relativistic gravity theory
that he was able to accurately calculate the part of Mercury’s perihelion shift which wasn’t accounted for
by that planet’s gravitational interaction with the other planets. A key factor in Einstein’s success was the
introduction of his coordinate condition det(gµν(x)) = −1 to supplement the Einstein equation; if Einstein
had, for example, instead introduced g00(x) = 1, the calculation would have yielded the purely Newtonian
result of zero perihelion shift. Einstein in addition found that the introduction of his coordinate condition
det(gµν(x)) = −1 doubled the deflection of light rays by the sun’s gravity compared to his previous calculation
which didn’t use that coordinate condition—his new result was verified by a 1919 solar eclipse expedition. An
English translation of Einstein’s November 18, 1915 paper is given within the November 21, 2021 preprint
“Einstein and the Perihelion Motion of Mercury” by Michel Janssen and Jürgen Renn, which is posted on
arXiv. In his November 18, 1915 paper, Einstein calculated and used a second-order approximation to Γi00(x)
produced by a static point mass, provided det(gµν(x)) = −1, but by January 13, 1916 Karl Schwarzschild
had worked out the exact metric gµν(x) produced by a static point mass, provided det(gµν(x)) = −1.
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2. Schwarzschild’s 1916 metric versus the unphysical “Schwarzschild metric” in textbooks

The metric of a static point source must, of course, be time-independent and spherically symmetric, so
Schwarzschild took that metric to have the form,

(c dτ)2 = F (r)(c dt)2 −G(r)(dr)2 −H(r) r2
(
(dθ)2 + (sin θ dφ)2

)
, (2.1a)

on which the Einstein coordinate condition det(gµν(r)) = −1 imposes the requirement,

H(r) = 1
/√

F (r)G(r), (2.1b)

so,

(c dτ)2 = F (r)(c dt)2 −G(r)(dr)2 −
(
1
/√

F (r)G(r)
)
r2
(
(dθ)2 + (sin θ dφ)2

)
. (2.1c)

The Newtonian gravitational potential φ(r) produced by a point mass M located at r = 0 is of course,

φ(r) = −GM/r. (2.1d)

Consequently, in light of Eqs. (1.4k) and (2.1d),

F (r) = g00(r) ≈ 1 + 2φ(r)/c2 = 1− rs/r when r � rs, (2.1e)

where,

rs
def
= 2GM/c2, (2.1f)

is called the Schwarzschild radius. In addition, of course, G(r)→ 1 as r →∞.
The metric given by Eq. (2.1c) and constrained by the two requirements that F (r) is asymptotic to

1− rs/r as r →∞ and that G(r)→ 1 as r →∞ must satisfy the empty-space Einstein equation, namely,

Rµν − 1
2gµνR = 0, (2.1g)

at every r > 0. Since gµν(Rµν − 1
2gµνR) = −R = 0 follows from Eq. (2.1g), Eq. (2.1g) itself is equivalent to,

Rµν = 0, (2.1h)

as is well known. Schwarzschild’s task was to insert the Eq. (2.1c) metric form into Eq. (2.1h), and then
solve it at every r > 0 for F (r) and G(r), subject to the constraints that F (r) is asymptotic to 1 − rs/r as
r → ∞ and that G(r) → 1 as r → ∞. Since Eq. (2.1h) must be satisfied at every r > 0, it is crystal clear
that F (r) and G(r) are at least twice differentiable at every r > 0. The exact solution in Schwarzschild’s
January 13, 1916 paper satisfies all of these conditions—that paper was translated into English by S. Antoci
and A. Loinger, who posted it on arXiv in 1999 (arXiv:physics/9905030v1 [physics.hist-ph] 12 May 1999).

But before we write down Schwarzschild’s January 13, 1916 exact metric solution, we jump ahead to
May 27, 1916, when J. Droste published an exact metric solution for the static point source which satisfies
the additional condition G(R) = 1/F (R). But unlike Einstein’s coordinate condition det(gµν(x)) = −1, this
additional condition G(R) = 1/F (R) is incompatible with Lorentz covariance, just as the exremely widely-
applied condition g00(x) = 1 is incompatible with Lorentz covariance. However that Lorentz-covariance
incompatible additional condition G(R) = 1/F (R) makes Droste’s exact metric solution,

(c dτ)2 = (1− rs/R)(c dt)2 − (1/(1− rs/R))(dR)2 −R2
(
(dθ)2 + (sin θ dφ)2

)
, (2.1i)

algebraically very much simpler than Schwarzschild’s January 13, 1916 exact metric solution. The famous
mathematician David Hilbert was impressed by the algebraic simplicity of the Eq. (2.1i) exact metric solution
(algebraic simplicity, when it is possible, is highly prized by mathematicians), so Hilbert keenly promoted it in
1918. The upshot of Hilbert’s promotional effort is that textbooks, including Weinberg’s tome, prominently
feature J. Droste’s May 27, 1916 Eq. (2.1i) exact metric solution for the static point mass, but astoundingly
state that it was found by K. Schwarzschild. One consequence is that Schwarzschild’s physically-correct
January 13, 1916 exact metric solution has been thrust into almost complete obscurity.

The metric factor (1/(1−rs/R)) in the Eq. (2.1i) Droste metric has a severe singularity at R = rs, which
utterly contravenes the physical requirement that the metric satisfies Rµν = 0 at every R > 0; this physical
requirement implies that such metric factors must be at least twice differentiable at every R > 0, as indeed is
the case for Schwarzschild’s physically-correct January 13, 1916 exact metric solution. The Eq. (2.1i) Droste
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metric in addition has a more subtle physical defect which arises from that metric’s incompatibility with
Lorentz covariance pointed out in the paragraph above Eq. (2.1i). Although relativistic gravitational and
speed time dilation has a far smaller and much less obvious effect on circular orbits than on elliptic orbits,
in principle relativistic time dilation will make a circular orbit’s period at a given radius slightly longer than
the Newtonian value, and the percent of this tiny increase in the circular orbit’s period above the Newtonian
value should grow as the orbit’s radius decreases. Eq. (8.4.25) at the top of page 188 of Weinberg’s tome
yields the period T (R) of a circular orbit of radius R for a metric of the type of Eq. (2.1i),

T (R) = (2π/c)
√

2R/(d(1− rs/R)/dR) = 2π
√

2R3/(c2rs) = 2π
√
R3/(GM) since rs = 2GM/c2. (2.1j)

The Eq. (2.1j) result for the period T (R) of a circular orbit of radius R for the Eq. (2.1i) Droste metric is
identical to the Newtonian value; there is no time dilation whatsoever. This complete absence of time dilation
for circular-orbit periods illustrates the Eq. (2.1i) Droste metric’s incompatibility with Lorentz covariance
pointed out in the paragraph above Eq. (2.1i). Schwarzschild’s physically-correct January 13, 1916 metric
solution contrariwise yields a slight increase beyond the Newtonian value in the period of a circular orbit,
and the percent of the increase in the period above the Newtonian value grows as the orbit’s radius decreases.
It is clear that the Eq. (2.1i) Droste metric (which textbooks mistakenly call the “Schwarzschild metric”),
although an exact solution of the Einstein equation, is unsuited to relativistic gravitation.

Since Schwarzschild’s January 13, 1916 metric also is an exact solution of the Einstein equation, it can be
obtained from the Eq. (2.1i) Droste metric by a transformation R(r) of the Droste metric’s radial coordinate
R. We have noted in the text below Eq. (2.1h) that it is physically necessary for the metric factors F (r)
and G(r) of the Eq. (2.1c) metric form to be at least twice differentiable at every r > 0, whereas the Droste
metric factor (1/(1− rs/R)) has a severe singularity at R = rs. Therefore it is absolutely essential that the
transformation R(r) send the point R = rs to the point r = 0, which implies that the transformation R(r)
satisfies R(r = 0) = rs. In addition, the transformation R(r) of course must be such that the transformed
metric has the determinant value −1 in accord with Einstein’s coordinate condition det(gµν(x)) = −1. The
result of applying the transformation R(r) to the Eq. (2.1i) Droste metric is,

(c dτ)2 = (1−rs/R(r))(c dt)2−(1/(1−rs/R(r)))(dR(r)/dr)2(dr)2−(R(r)/r)2 r2
(
(dθ)2+(sin θ dφ)2

)
, (2.1k)

a metric whose determinant value is −1 when (dR(r)/dr) = (r/R(r))2, an equation whose solution is readily
verified to be R(r) = (r3 + (r0)3)

1
3 , where r0 is an arbitrary constant with the dimension of length. We

pointed out above that R(r = 0) = rs, so the transformation we require is R(r) = (r3 + r3
s)

1
3 . In his January

13, 1916 paper Schwarzschild presents the resulting metric in the wonderfully elegant, but very terse, form,

(c dτ)2 = (1− rs/R(r))(c dt)2 − (1/(1− rs/R(r)))(dR(r))2 − (R(r))2
(
(dθ)2 + (sin θ dφ)2

)
, (2.1l)

where R(r) = (r3 + r3
s)

1
3 . A less cryptic form of Schwarzschild’s January 13, 1916 metric is obtained by

noting that R(r) = (r3 +r3
s)

1
3 implies that (dR(r)/dr) = (r/R(r))2, which is then substituted into Eq. (2.1k),

(c dτ)2 = (1−rs/R(r))(c dt)2−(1/(1−rs/R(r)))(r/R(r))4(dr)2−(R(r)/r)2 r2
(
(dθ)2+(sin θ dφ)2

)
, (2.1m)

where R(r) = (r3+r3
s)

1
3 . Since r > 0 implies that R(r) > rs, we see that when r > 0 Schwarzschild’s January

13, 1916 metric is free of singularities, which we have repeatedly pointed out is physically required. The
Eq. (2.1c) metric factors are F (r) = (1− rs/R(r)) and G(r) = (1/(1− rs/R(r)))(r/R(r))4. David Hilbert’s
ill-advised 1918 promotion of J. Droste’s May 27, 1916 Eq. (2.1i) metric because of its algebraic simplicity,
with insufficient scrutiny of its physical soundness, ultimately spawned nonexistent “event horizons” and
“wormholes”, which have long been a pernicious distraction from sound relativistic gravitational research.

We next insert the Eq. (2.1l) Schwarzschild metric form into the Eq. (2.1j) circular-orbit period formula,

T (R(r)) = (2π/c)
√

2R(r)/(d(1− rs/R(r))/dR(r)) = 2π
√

(R(r))3/(GM) = 2π
√

(r3 + r3
s)/(GM). (2.1n)

Since the Newtonian-gravity circular-orbit period is TN (r) = 2π
√
r3/(GM), the ratio (T (R(r))/TN (r)) =√

1 + (rs/r)3, which, although extremely close to unity, is nevertheless always greater than unity and grows
with decreasing radius r, exactly as one would expect. Thus the circular-orbit period result of Schwarzschild’s
January 13, 1916 metric makes relativistic-gravity sense, but the purely Newtonian-gravity circular-orbit
period result of the Eq. (2.1i) Droste metric doesn’t make relativistic-gravity sense.

Finally, it is interesting to consider the speed v(r) of the circularly-orbiting test particle; v(r) of course
is the quotient of the the circular orbit’s circumference 2πr with the circular orbit’s period, which in the
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Newtonian-gravity case, and also in the Droste metric case, is 2π
√
r3/(GM), so v(r) =

√
GM/r in those

two cases. Therefore the circular-orbit speed v(r) goes to infinity as r goes to zero in those two cases.
For Schwarzschild’s January 13, 1916 metric, we have seen that the circular-orbit period is increased by
the factor

√
1 + (rs/r)3 relative to the Newtonian circular-orbit period, so for that metric the Newtonian

circular-orbit speed
√
GM/r is decreased by the factor

√
1 + (rs/r)3. Noting that GM = 1

2rsc
2, we see that

for Schwarzschild’s January 13, 1916 metric the circular-orbit speed is,

v(r) =
√

(GM/r)/(1 + (rs/r)3) = c
√

(rs/r)/(2(1 + (rs/r)3)) = c
√

(r/rs)2/(2(1 + (r/rs)3)), (2.1o)

which goes to zero instead of to infinity as r goes to zero, so Schwarzschild’s January 13, 1916 metric correctly
captures the effect on a test-particle’s speed v(r) of surpassingly-strong gravitational time dilation. Since the
Eq. (2.1o) circular-orbit speed v(r) also goes zero as r goes to infinity, v(r) is maximum at an intermediate
value of r. The function u2/(1 + u3) has a maximum at u = 2

1
3 , and the value of that maximum is 2

2
3 /3.

Therefore the Eq. (2.1o) circular-orbit speed v(r) reaches its maximum at r = 2
1
3 rs = 1.25992 rs, and the

value of that maximum circular-orbit speed is (2
1
3 /
√

6) c = 0.51436 c. Thus Schwarzschild’s January 13, 1916
metric also correctly captures the fact that a relativistic test-particle’s speed never exceeds c.

These facts of relativistic gravity of course aren’t captured at all by the purely Newtonian-gravity circular-
orbit speed v(r) =

√
GM/r for the Eq. (2.1i) Droste metric. This discussion of circular-orbit speed reconfirms

the fact that the Eq. (2.1i) Droste metric (which is mistakenly called the “Schwarzschild metric” by text-
books) is unphysical despite its being an exact solution of the Einstein equation. A century of propagating
misunderstanding of relativistic gravitation needs to reversed forthwith by urgent replacement in textbooks
of the unphysical Eq. (2.1i) Droste metric by Schwarzschild’s January 13, 1916 Eq. (2.1l) metric.

Just as the circular-orbit motion of a test particle is rendered purely Newtonian by the unphysical
Eq. (2.1i) Droste metric, the radial motion of the surface of an Oppenheimer-Snyder spherical blob of zero-
pressure, uniform-density perfect fluid is rendered purely Newtonian by the unphysical Eq. (1.6a) Robertson-
Walker metric form, which features the Lorentz-covariance incompatible condition g00(x) = 1 that totally
eliminates gravitational time dilation, sends c to infinity and causes the Einstein equation to vent purely
Newtonian gravitational physics. The comprehensive cure for this issue is the replacement of the Eq. (1.6a)
Robertson-Walker metric form by the Eq. (1.6e) metric form, which is a coordinate transformation of the
Eq. (1.6a) Robertson-Walker metric form that satisfies Einstein’s coordinate condition det(gµν(x)) = −1
instead the Lorentz-covariance incompatible condition g00(x) = 1. This formidably cumbersome comprehen-
sive approach, however, isn’t needed to deal with the radial motion of the freely-falling spherical surface of
an Oppenheimer-Snyder spherical blob of zero-pressure, uniform-density perfect fluid; the Birkhoff theorem
tells us that we can proceed as if the entire conserved energy enclosed by the radially freely-falling spherical
surface of the Oppenheimer-Snyder spherical blob is concentrated in a static point mass at the blob’s center.
Therefore in the next section we develop and analyze the equation for a test particle’s freely-falling radial
motion in Schwarzschild’s January 13, 1916 Eq. (2.1l) metric.

3. The equation for a test particle’s freely-falling radial motion in Schwarzschild’s 1916 metric

To obtain a test particle’s equation of freely falling radial motion in Schwarzschild’s January 13, 1916
Eq. (2.1l) metric, we apply the methods of Weinberg’s Section 8.4 on pages 185-188 of his tome, so it is
convenient to adhere, in expressing Schwarzschild’s Eq. (2.1l) metric, to Weinberg’s Section 8.4 notation,

(c dτ)2 = B(R(r))(c dt)2 −A(R(r))(dR(r))2 − (R(r))2
(
(dθ)2 + (sin θ dφ)2

)
, (3.1a)

where R(r) = (r3 + r3
s)

1
3 , B(R(r)) = 1 − rs/R(r) and A(R(r)) = 1/B(R(r)). The Eq. (3.1a) metric itself

immediately yields the particular first-order equation of freely-falling motion,

1 = B(R(r))(dt/dτ)2 −A(R(r))((1/c)dR(r)/dτ)2 − (R(r))2
(
((1/c)dθ/dτ)2 + (sin θ (1/c)dφ/dτ)2

)
. (3.1b)

Since the freely-falling test particle we consider here is an arbitrarily small part of the radially freely-falling
spherical surface of an Oppenheimer-Snyder spherical blob of zero-pressure, uniform-density perfect fluid,
this test particle’s motion of course is exclusively radial, so the Eq. (3.1b) angular frequencies dθ/dτ and
dφ/dτ are both equal to zero, which reduces Eq. (3.1b) to a first-order equation for freely-falling radial motion,

c2 =
[
c2B(R(r))−A(R(r))(dR(r)/dt)2

]
(dt/dτ)2. (3.1c)
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We can’t, of course, solve Eq. (3.1c) for the test particle’s radial trajectory r(t) until we know the value of the
factor (dt/dτ)2. The Eq. (1.3) geodesic equation d2xκ/dτ2 + Γκµν (dxµ/dτ) (dxν/dτ) = 0 is a second-order
equation of motion for xκ(τ) = (ct(τ), x(τ)) for a given metric gµν(x). Weinberg’s Eq. (8.4.6) on his tome’s
page 185 gives the geodesic equation’s time component for the specific Eq. (3.1a) metric form,

d2t
dτ2 + dt

dτ
dB(R(r))/dR(r)

B(R(r))
dR(r)
dτ = 0, (3.2a)

which can be written,

1
dt/dτ

d(dt/dτ)
dτ + dB(R(r))/dR(r)

B(R(r))
dR(r)
dτ = 0, (3.2b)

which in turn can be written,

d
(
ln
(
dt/dτ

)
+ ln

(
B(R(r))

))/
dτ = 0, (3.2c)

which implies that,

ln
(
(dt/dτ)(B(R(r)))

)
= −C, (3.2d)

where C is an arbitrary dimensionless constant. Eq. (3.2d) implies that,

dt/dτ = 1/(KB(R(r))), (3.2e)

where K = exp(C) is an arbitrary dimensionless positive constant. Inserting Eq. (3.2e) into Eq. (3.1c) yields,(
A(R(r))

/
(B(R(r)))2

)
(dR(r)/dt)2 −

(
c2
/
B(R(r))

)
= −c2K2. (3.3a)

The object dR(r)/dt in Eq. (3.3a) is of course equal to (dR(r)/dr)(dr/dt), and we noted immediately above
Eq. (2.1m) that dR(r)/dr = (r/R(r))2. That follows as well from R(r) = (r3 + r3

s)
1
3 , which is given

immediately below Eq. (3.1a), as is A(R(r)) = 1/B(R(r)) and B(R(r)) = 1− rs/R(r). Inserting all of this
into Eq. (3.3a) yields,(

(r/R(r))4
/

(1− rs/R(r))3
)
(dr/dt)2 −

(
c2
/

(1− rs/R(r))
)

= −c2K2, (3.3b)

where R(r) = (r3 + r3
s)

1
3 and rs = (2GM/c2). We next work out the c→∞ asymptotic form of Eq. (3.3b).

Taking c to infinity sends rs to zero and R(r) to r. However the c → ∞ asymptotic form of the entity
(c2/(1− rs/R(r))) is (c2 + (2GM/r)). Therefore the c→∞ asymptotic form of Eq. (3.3b) is,

(dr/dt)2 − (2GM/r) = c2(1−K2). (3.3c)

Upon multiplying Eq. (3.3c) through by 1
2m, where m is the mass of the test particle, we obtain,

1
2m(dr/dt)2 − (GMm/r) = 1

2mc
2(1−K2). (3.3d)

If we now assign the dimensionless constant K2 the value [1 − (2E/(mc2))], where E is the conserved sum
of the mass m test particle’s nonrelativistic positive radial kinetic energy with its nonrelativistic negative
gravitational potential energy, Eq. (3.3d) becomes,

1
2m(dr/dt)2 − (GMm/r) = E, (3.3e)

which is the standard nonrelativistic equation of radial motion of a test particle whose gravitational poten-
tial energy is −(GMm/r). Thus the c → ∞ asymptotic form of Eq. (3.3b) is indeed the corresponding
nonrelativistic, Newtonian-gravity equation of the test particle’s radial gravitational motion.

We next consider the special initial condition for Eq. (3.3e) that dr/dt = 0 at an initial time ti, in which
case the conserved energy E equals −(GMm/r(ti)), so Eq. (3.3e) can be rewritten,

(dr/dt)2 = (2GM/r(ti)) [(r(ti)/r(t))− 1]. (3.3f)

Upon switching from r(t) to the dimensionless “scaled radius” R(t)
def
= (r(t)/r(ti)) which has the property

that R(ti) = 1, Eq. (3.3f) assumes the form,

(dR/dt)2 = (2GM/(r(ti))
3) [(1/R(t))− 1]. (3.3g)
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If r(ti), the radially-moving test particle’s radial coordinate at the initial time ti when dr/dt = 0, is as well the
radius of the Oppenheimer-Snyder spherical blob at that time ti, then the density ρ(ti) of the Oppenheimer-
Snyder spherical blob at that initial time ti is ρ(ti) = M/((4π/3)(r(ti))

3). So in terms of the Oppenheimer-
Snyder spherical blob’s initial density ρ(ti), Eq. (3.3g) is equivalently written,

(dR/dt)2 = ((8πG)/3)ρ(ti) [(1/R(t))− 1], (3.3h)

which is precisely Eq. (11.9.24) at the bottom of page 344 of Weinberg’s tome, the central result of a very
laborious 24-step Oppenheimer-Snyder calculation using the Robertson-Walker metric form. That arriving
at Eq. (3.3h)—which is nothing more than a disguised special case of Eq. (3.3e) that is very well-known to
every first-year undergraduate physics student—involved complicated 24-step heroics shows the woeful lack
of understanding of gravity theory which has persisted for over a century. Of course applying the Robertson-
Walker metric form, which very prominently features the Lorentz-covariance incompatible condition g00(x) =
1, thereby totally eliminating gravitational time dilation, sending c to infinity (mimicking what we have done
to transition from Eq. (3.3b) to Eq. (3.3c)) and causing the Einstein equation to vent purely Newtonian
gravitational physics, transitions the Oppenheimer-Synder model (a spherical blob of zero-pressure, uniform-
density perfect fluid) into merely first-year undergraduate physics.

Before we leave the simple radial-motion nonrelativistic-gravity Eq. (3.3e) to return to its relativistic-
gravity Eq. (3.3b) counterpart, we note that Eq. (3.3e) tells us that the closer the test particle is to the
gravitational point source, the greater is its speed, and that its speed in that gravitational field has no upper
bound. In the case of relativistic gravity, however, the gravitational time dilation which accompanies strong
gravitation ultimately reduces a test particle’s speed rather than increases it, and, in any case, a test particle’s
speed must always be less than c.

We also take note of the fact that the gravitational acceleration experienced by a nonrelativistic test
particle governed by Eq. (3.3e) is completely independent of its energy E,

d
(

1
2m(dr/dt)2

)/
dt = d

(
(GMm/r) + E

)/
dt implies,

m(dr/dt)(d2r/dt2) = −(GMm/r2)(dr/dt) which implies, d2r/dt2 = −(GM/r2), (3.3i)

irrespective of the test particle’s energy E.
Returning now to the Eq. (3.3b) equation of relativistic radial motion appropriate to Schwarzschild’s

January 13, 1916 static point-mass metric, we rewrite it as,

(dr/dt)2 = c2(R(r)/r)4
[
(1− rs/R(r))2 −K2(1− rs/R(r))3

]
=

c2(R(r)/r)2
(
(R(r)/r)− (rs/r)

)
2 − c2K2(R(r)/r)

(
(R(r)/r)− (rs/r)

)
3, (3.4a)

where R(r) = (r3 + r3
s)

1
3 . An alternative way of writing Eq. (3.4a) is,

(dr/dt)2 = c2(1 + u3)
2
3

(
(1 + u3)

1
3 − u

)
2 − c2K2(1 + u3)

1
3

(
(1 + u3)

1
3 − u

)
3, (3.4b)

where u = (rs/r). We saw from Eq. (3.3e) that in the nonrelativistic case, as r → 0, (dr/dt)2 increases
without bound; indeed in that Newtonian case the radial speed |dr/dt| is asymptotic to

√
2GM/r as r → 0.

But from the Eq. (2.1o) relativistic result for circular-orbit speed, we expect that in the relativistic case the
radial speed |dr/dt| instead goes to zero asymptotically as r → 0; indeed from Eq. (2.1o) we expect that
|dr/dt| is asymptotic to a numerical factor times c(r/rs) as r → 0. The immense change in the r → 0
asymptotic behavior of |dr/dt| when one passes from Newtonian gravitation to relativistic gravitation is the
consequence of gravitational time dilation, which doesn’t exist in Newtonian gravitation.

To work out the asymptotic behavior of (dr/dt)2 as r → 0 in Eq. (3.4b), we note that as r → 0,
u = (rs/r) → ∞. As u → ∞, we note that (1 + u3)

1
3 = u((1/u)3 + 1)

1
3 ' (u + 1

3 (1/u)2), which implies

that ((1 + u3)
1
3 − u) ' 1

3 (1/u)2. Insertion of these u → ∞ asymptotic results into Eq. (3.4b) yields
(dr/dt)2 ' c2[((1/u)2/9)−K2((1/u)5/(27))] ' c2(1/(3u))2. Since u = (rs/r), the asymptotic upshot is that,

the test particle’s radial speed |dr/dt| is asymptotic to (c/(3rs))r as r → 0. (3.4c)

To work out the upper bound of (dr/dt)2, it is convenient to reexpress Eq. (3.4b) as,

(dr/dt)2 = c2χ(u)− c2K2ξ(u) where,

χ(u)
def
=
(
(1 + u3)

1
3

(
(1 + u3)

1
3 − u

))
2, ξ(u)

def
=
(
1−

(
u
/

(1 + u3)
1
3

))
χ(u) and u = (rs/r). (3.4d)

We next show that χ(u) is a strictly decreasing function for u ≥ 0 by verifying that dχ(u)/du is negative,
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dχ(u)/du = 2
(
(1 + u3)

1
3

(
(1 + u3)

1
3 − u

))[
2u2/(1 + u3)

1
3 − u3/(1 + u3)

2
3 − (1 + u3)

1
3

]
=

2
(
(1 + u3)−

1
3

(
(1 + u3)

1
3 − u

))[
2u2(1 + u3)

1
3 − u3 − (1 + u3)

]
=(

1−
(
u
/

(1 + u3)
1
3

))[
4u2
(
(1 + u3)

1
3 − u

)
− 2
]
. (3.4e)

We must now verify the inequality
[
4u2
(
(1 +u3)

1
3 −u

)
− 2
]
< 0 when u ≥ 0. We do so by exhibiting a chain

of inequalities which are logically equivalent to it, where the final inequality in the chain is clearly valid,[
4u2
(
(1 + u3)

1
3 − u

)
− 2
]
< 0 ⇐⇒ 2u2(1 + u3)

1
3 < 2u3 + 1 ⇐⇒ 8u6(1 + u3) < (2u3 + 1)3

⇐⇒ 8u9 + 8u6 < 8u9 + 12u6 + 6u3 + 1 ⇐⇒ 4u6 + 6u3 + 1 > 0 when u ≥ 0. (3.4f)

Since for u ≥ 0, χ(u) is strictly decreasing, it follows that χ(u) ≤ χ(0) = 1. It is furthermore true that
K2 = exp(2C) > 0 (see Eqs. (3.2d) and (3.2e)) and that

(
1−

(
u
/

(1 + u3)
1
3

))
> 0, so we can use Eq. (3.4d)

to show that for u ≥ 0, (dr/dt)2 < c2,

(dr/dt)2 = c2χ(u)
[
1−K2

(
1−

(
u
/

(1 + u3)
1
3

))]
< c2χ(u) ≤ c2χ(0) = c2, (3.4g)

so (dr/dt)2 < c2 under all circumstances. Therefore the test particle, which is an infinitesimal part of the
spherical surface of the spherical Oppenheimer-Snyder blob of zero-pressure uniform-density perfect fluid,
can never have a speed as great as c. Of course this result is an absolutely fundamental aspect of relativistic
gravity theory, but it is violated in the most extreme way conceivable in the course of the “gravitational
collapse” and “Big Bang” events that ensue when the purely Newtonian Robertson-Walker metric form is
applied to the Oppenheimer-Snyder model. In those “gravitational collapse” and “Big Bang” cases, the radius
of the blob becomes arbitrarily small as its density becomes arbitrarily large, so the speed of its surface
becomes arbitrarily large in accord with the Newtonian-gravitational relation that |dr/dt| is asymptotic to√

2GM/r as r → 0. The Einstein equation by itself has no Lorentz-covariant specificity whatsoever; it is
fully compatible with the Galilean condition g00(x) = 1 of the Robertson-Walker metric form that totally
eliminates gravitational time dilation, sends c to infinity and causes the Einstein equation to vent purely
Newtonian gravity. It takes Einstein’s coordinate condition det(gµν(x)) = −1 (which is correctly built into
Schwarzschild’s January 13, 1916 metric that we applied to obtain the gravitational model of Eq. (3.4d)) to
self-consistently infuse the Einstein equation with physically crucial Lorentz covariance.

In Eq. (3.4e) we worked out dχ(u)/du, where χ(u) =
(
(1 + u3)

1
3

(
(1 + u3)

1
3 − u

))
2. It is useful to as well

work out dξ(u)/du, where ξ(u) =
(
1−

(
u
/

(1 + u3)
1
3

))
χ(u) = (1 + u3)

1
3

(
(1 + u3)

1
3 − u

)
3,

dξ(u)/du =
(
u
/

(1 + u3)
1
3

)
2
(
(1 + u3)

1
3 − u

)
3 + (1 + u3)

1
3 3
(
(1 + u3)

1
3 − u

)
2
((
u
/

(1 + u3)
1
3

)
2 − 1

)
=((

(1 + u3)
1
3 − u

)/
(1 + u3)

1
3

)
2
[
u2(1 + u3)

1
3 − u3 + (1 + u3)

1
3 3
(
u2 − (1 + u3)

2
3

)]
=(

1−
(
u
/

(1 + u3)
1
3

))
2
[
4u2(1 + u3)

1
3 − u3 − 3− 3u3

]
=(

1−
(
u
/

(1 + u3)
1
3

))
2
[
4u2
(
(1 + u3)

1
3 − u

)
− 3
]
. (3.4h)

That
[
4u2
(
(1 + u3)

1
3 − u

)
− 3
]
< 0 is a corollary of the Eq. (3.4f) verification, so ξ(u), like χ(u), is a strictly

decreasing function for u ≥ 0, in fact ξ(u) decreases more rapidly than χ(u) does.
Next we investigate the radial speed |dr/dt| of the spherical surface of the Oppenheimer-Snyder blob as

r → ∞, which, since u = (rs/r), corresponds to u = 0. From Eq. (3.4d) we see that χ(0) = ξ(0) = 1, so,
since (dr/dt)2 = c2χ(u)− c2K2ξ(u),

|dr/dt| → c
√

1−K2 as r →∞. (3.5a)

If K2 > 1, Eq. (3.5a) tells us that the Oppenheimer-Snyder spherical blob is gravitationally bound, so its
surface can’t reach arbitrarily large values of r. Conversely, the closer K2 is to zero, the closer the blob’s
asymptotic surface speed is to c. We have pointed out that in the nonrelativistic limit, K2 can be taken to
be 1− (2E/(mc2)), where m is the mass of the test particle and E is the sum of the nonrelativistic positive
kinetic energy of the test particle with the nonrelativistic negative gravitational potential energy of the test
particle, the test particle being an arbitrarily small part of the Oppenheimer-Snyder blob’s spherical surface.
Thus, in the nonrelativistic limit, c

√
1−K2 =

√
2E/m. This nonrelativistic interpretation of the relativistic

entity K2 being 1− (2E/(mc2)) however is only satisfactory if |1−K2| � 1, as we shall now see.
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Having obtained the radial speed |dr/dt| of the spherical surface of the Oppenheimer-Snyder blob as
r → ∞, we next investigate its radial acceleration d2r/dt2 as r → ∞. In Eq. (3.3i) we noted that the
nonrelativistic Newtonian-gravity value of d2r/dt2 is −(GM/r2). The relativistic value of d2r/dt2 is obtained
after differentiating both sides of the Eq. (3.4d) relation (dr/dt)2 = c2χ(u)− c2K2ξ(u) with respect to t,

2(dr/dt)(d2r/dt2) = c2
(
dχ(u)/du−K2dξ(u)/du

)
(du/dr)(dr/dt). (3.5b)

Since u = (rs/r) and rs = (2GM/c2), 1
2c

2(du/dr) = −(GM/r2), so Eq. (3.5b) becomes,

d2r/dt2 = −(GM/r2)(dχ(u)/du−K2dξ(u)/du). (3.5c)

Since we want the asymptotic form of the acceleration d2r/dt2 as r → ∞, we need the values of dχ(u)/du
and dξ(u)/du at u = 0, which from Eqs. (3.4e) and (3.4h) are −2 and −3 respectively. Therefore,

the test particle’s radial acceleration d2r/dt2 is asymptotic to (GM/r2)(2− 3K2) as r →∞. (3.5d)

This relativistic-gravity acceleration result only substantially agrees with the Newtonian-gravity acceleration
result −(GM/r2) when |1 − K2| � 1. In fact, when 0 < K2 < 2

3 , which makes the asymptotic speed

c
√

1−K2 of the spherical blob’s surface a substantial fraction of c, the expected negative acceleration becomes
positive acceleration. Exactly such an unexpected positive acceleration of the expansion of the universe has
been very reliably observed, and its discoverers awarded a Nobel prize. Because cosmological models, of
which the Oppenheimer-Snyder spherical blob of zero-pressure uniform-density perfect fluid is the simplest,
have up to now always been solved using the Robertson-Walker metric form, which rigidly enforces the
nonrelativistic purely Newtonian-gravity solution, such a gross deviation from “normal” Newtonian-gravity
negative acceleration seemed as inexplicable and physically unattainable as falling upwards in the earth’s
gravity would be. Nonrelativistic Newtonian gravity fails to include gravitational time dilation, a phenomenon
which, when it is strong enough, provokes motion opposite to that associated with Newtonian gravity.

Unwilling to admit that the purely Newtonian-gravity cosmological solutions which the Robertson-Walker
metric form rigidly enforces are an issue which must be addressed, the gurus of gravity instead chose to
postulate a completely ad hoc epicycle that incredibly took the form of adding a cosmological constant to
the Einstein equation, a maneuver which Einstein had emphatically characterized as “my biggest mistake”.
Adding a λgµν term to the Einstein equation scuppers the verification that the Einstein equation reproduces
Newtonian gravity in the weak-field and static energy-density case (see the long paragraph accompanying
Eqs. (1.8t) through (1.8w)). Discarding the untenable λgµν term for the second time cannot occur too soon.

We next elucidate the possible time dependences r(t) of the spherical blob’s radius r as r → 0. We first
treat Newtonian gravity, where (dr/dt)2 ' (2GM/r) as r → 0. The two possible r → 0 time dependences
follow from solutions of the two differential equations drB/dt = +

√
2GM/rB and drC/dt = −

√
2GM/rC

that also satisfy rB(t)→ 0 and rC(t)→ 0. Therefore rB(t), drB/dt, rC(t) and drC/dt are given by,

rB(t) =
(
(9/2)GM(t− tB)2

)1
3 and drB/dt =

(
(4/3)GM

/
(t− tB)

)1
3 as (t− tB)→ 0+, and,

rC(t) =
(
(9/2)GM(tC − t)2

)1
3 and drC/dt = −

(
(4/3)GM

/
(tC − t)

)1
3 as (tC − t)→ 0+, (3.6a)

where rB(t) and drB/dt give the rB(t) → 0 “Big Bang” asymptotic time behavior as (t − tB) → 0+, where
tB is the time earlier than t when the “Big Bang” occurred, while rC(t) and drC/dt give the rC(t) → 0
“gravitational collapse” asymptotic time behavior as (tC − t)→ 0+, where tC is the time later than t when
the “gravitational collapse” will occur. Both of these time dependences accord with r → 0, but they both
as well accord with |dr/dt| → ∞, which is the most extreme violation of |dr/dt| < c conceivable. Moreover,
all initial conditions for this model, when solved using purely Newtonian gravity, exhibit either a past “Big
Bang” or a future “gravitational collapse” or both. In a nutshell, rigidly enforcing purely Newtonian gravity
by using the Robertson-Walker metric form for cosmological models is a disastrous physics mistake.

We now treat the relativistic-gravity version of this model, where (dr/dt)2 ' ((c/(3rs))r)
2 as r → 0

(see Eq. (3.4c)). Therefore we find solutions of the two differential equations drI/dt = +(c/(3rs))rI and
drD/dt = −(c/(3rs))rD that also satisfy rI(t)→ 0 and rD(t)→ 0,

rI(t)=rI(0) exp(ct/(3rs)) and drI/dt=c(rI(0)/(3rs)) exp(ct/(3rs)) for t≤0 & rI(0)→ 0, and,

rD(t)=rD(0) exp(−ct/(3rs)) and drD/dt=−c(rD(0)/(3rs)) exp(−ct/(3rs)) for t≥0 & rD(0)→ 0, (3.6b)
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where the inflationary rI(t) = rI(0) exp(ct/(3rs)) for t ≤ 0 increases exponentially with time t, and the
deflationary rD(t) = rD(0) exp(−ct/(3rs)) for t ≥ 0 decreases exponentially with time t. Since |drI/dt| ≤
c(rI(0)/(3rs)) and rI(0)→ 0, |drI/dt| < c, and since |drD/dt| ≤ c(rD(0)/(3rs)) and rD(0)→ 0, |drD/dt| < c.

We also note that both the inflationary and the deflationary r → 0 asymptotic forms rI(t) and rD(t)
manifest entirely positive acceleration. This is a prime example of the fact that gravitational time dilation,
when it is strong enough, provokes motion opposite to that associated with Newtonian gravity. It is apparent
that proper understanding of the universe’s inflationary era can’t be attained without appreciation of the
fundamental underlying role of gravitational time dilation.

At the same time, it is trivially obvious that the metric condition g00(x) = 1 for all x, first introduced
by Friedmann in 1922, and an absolutely integral part of the Robertson-Walker metric form,

(c dτ)2 = (c dt)2 − (R(t))2
[(

1− kr2
)−1(dr)2 + r2

(
(dθ)2 + (sin θ dφ)2

)]
,

(see Eq. (1.6a)), utterly and completely eliminates gravitational time dilation, which is,[
(the tick rate of the clock at x2)/(the tick rate of the clock at x1)

]
=
√
g00(x2)/g00(x1) ,

(see Eq. (1.5d)). Therefore there can be no fundamental understanding of the universe’s inflationary era,
among other fascinating relativistic-gravity facts which are closely related to gravitational time dilation,
until the Robertson-Walker metric form ceases to be applied to cosmological models.

It is mind-boggling that nowhere in Weinberg’s 657-page tome is there any mention whatsoever of the
trivially-obvious fact that the metric condition g00(x) = 1 utterly and completely eliminates gravitational
time dilation. Of course recognition of this trivially-obvious fact invalidates entire chapters of Weinberg’s
tome, particularly those concerned with cosmology, so there has to be more than a minor suspicion that this
“oversight” in Weinberg’s 657-page tome occurred on purpose.

Another strange “oversight” in Weinberg’s tome is the failure to exhibit the result of applying the tome’s
page-188, Eq. (8.4.25) formula for the angular frequency of circular orbits of a class of metrics to the simplest
metric of that class, which is the Droste metric (mistakenly called the “Schwarzschild metric” by virtually
all textbooks, including Weinberg’s tome). That result reveals that the Droste-metric circular-orbit angular
frequency is identical to the Newtonian-gravity circular-orbit angular frequency, which obviously casts doubt
on the physical validity of the Droste metric. There has to be more than a minor suspicion that Weinberg
purposely didn’t exhibit this result in order not to be displaying evidence that the Droste metric is unphysical
(which it definitely is, see the discussion in the paragraphs containing Eqs. (2.1i) through (2.1n)).

Finally, when Weinberg presents the evidence in Subsection C of Section 13.5 on page 403 of his tome
that the Robertson-Walker metric form solves the Einstein equation for spherically-symmetric and spatially-
homogeneous energy-momentum sources, he “conveniently forgets” to remind the reader that every coordinate
transformation of a metric which solves the Einstein equation is also a metric which solves the Einstein
equation, a property which makes the Einstein equation by itself all but useless for obtaining definite physical
results. It is, however, straightforward to work out a coordinate transformation of the Robertson-Walker
metric form which satisfies Einstein’s coordinate condition det(gµν(x) = −1 instead of the disastrous Lorentz-
covariance incompatible Friedmann condition g00(x) = 1 satisfied by the Robertson-Walker metric form
itself that eliminates gravitational time dilation, sends c to infinity and causes the Einstein equation to
vent purely Newtonian gravity. See Eq. (1.6e) for the coordinate-transformed Robertson-Walker metric form
which satisfies Einstein’s coordinate condition det(gµν(x) = −1. In a nutshell, Weinberg apparently purposely
leaves the reader with the utterly false impression that the Robertson-Walker metric form alone satisfies the
Einstein equation for spherically-symmetric and spatially-homogeneous energy-momentum sources.

Weinberg’s seeming efforts to hide simple, straightforward facts from the reader’s view which could cause
the reader to seriously question some of what Weinberg presents are the utter antithesis of what science is.

In this section we have learned far more relevant facts about cosmology models than are to be found
in textbooks such as Weinberg’s tome. To begin with, we have learned that the Newtonian-gravity Big
Bang is disastrously physically untenable because |dr/dt| is unbounded, which is the most extreme violation
of |dr/dt| < c conceivable (see below Eq. (3.6a)). This fact is apparent as well in the combination of
Eqs. (15.1.20) and (15.1.22) on page 472 of Weinberg’s tome, but as Weinberg repeatedly does with regard to
inconvenient pertinent facts (such as the trivially-obvious fact that Friedmann’s g00(x) = 1 metric condition
completely eliminates gravitational time dilation) Weinberg copes by simply turning a blind eye.

24



In contrast, we have been able to show that the radial speed |dr/dt| of the simple Oppenheimer-Snyder
blob’s spherical surface satisfies |dr/dt| < c under all circumstances when treated using the Birkhoff theorem
and the physically-correct relativistic metric published by Schwarzschild on January 13, 1916. Denoting the
total conserved energy enclosed by the blob’s radially freely-falling surface as Mc2, and the blob’s radius
as r(t), we also showed that as that radius goes to infinity, |dr/dt| → c

√
1−K2, where K = exp(C) is a

dimensionless positive constant of integration. However, when K2 > 1, the blob is gravitationally bound and
its radius cannot attain arbitrarily large values. When |1 −K2| � 1, we can interpret an arbitrarily small
part of the blob’s surface as a nonrelativistic particle of mass m and total nonrelativistic energy E (E is
the sum of that infinitesimal particle’s nonrelativistic positive kinetic energy and its nonrelativistic negative
gravitational potential energy), where K2 = 1− (2E/(mc2)), so that c

√
1−K2 =

√
2E/m.

In addition to the radial speed |dr/dt| = c
√

1−K2 of this relativistic blob’s spherical surface in the
limiting case of arbitrarily large values of its radius r(t), we have obtained that the radial acceleration d2r/dt2

of this relativistic blob’s spherical surface in the limiting case of arbitrarily large values of its radius r(t) is
d2r/dt2 = (GM/r2)(2 − 3K2), which doesn’t agree with the well-known nonrelativistic negative acceleration
d2r/dt2 = −(GM/r2) unless |1−K2| � 1. In fact, when 0 < K2 < 2

3 , which makes the blob’s radial surface

speed c
√

1−K2 a considerable fraction of c, the negative acceleration turns positive, a classic consequence
of sufficiently strong gravitational time dilation. This result is very interesting indeed, since it is now known
that the acceleration of the universe is actually positive, and the current “explanation” of that observation
is a completely ad hoc epicycle that, even worse, postulates a λgµν term in the Einstein equation which
scuppers the verification that the Einstein equation reproduces Newtonian gravity in the weak-field and
static energy-density case.

We have furthermore obtained from this relativistic-gravity model that in the limiting case of arbitrarily
small values of the blob’s radius r(t), (dr/dt)2 is asymptotic to ((c/(3rs))r(t))

2 (where the Schwarzschild
radius rs is (2GM/c2)), which implies the two differential equations drI/dt = (c/(3rs))rI and drD/dt =
−(c/(3rs))rD for asymptotically small rI(t) and rD(t). The asymptotically small solution for rI(t) is
rI(t) = rI(0) exp(ct/(3rs)) for t ≤ 0 and rI(0) → 0, and the asymptotically small solution for rD(t) is
rD(t) = rD(0) exp(−ct/(3rs)) for t ≥ 0 and rD(0) → 0. The inflationary asymptotically small solution
rI(t) increases exponentially with increasing time, while the deflationary asymptotically small solution rD(t)
decreases exponentially with increasing time. Both rI(t) and rD(t) have positive acceleration due to very
strong gravitational time dilation. It is of course well known that the early universe was inflationary when
it was sufficiently small, and these solutions of the relativistic-gravity Oppenheimer-Snyder model show that
this was a consequence of very strong gravitational time dilation.

This relativistic-gravity Oppenheimer-Snyder model shows the supreme importance of gravitational time
dilation both to the observed acceleration of the expansion of the universe and to the inflationary character
of the universe when it was sufficiently small. Of course this relativistic-gravity model only permits speeds
strictly less than c under all circumstances, so nothing remotely like a Big Bang, with its unbounded speeds,
could ever occur. Also, the relativistic-gravity universe has existed forever, albeit in a state of extreme
gravitational time dilation “suspended animation” when it was far smaller than its Schwarzschild radius
rs = (2GM/c2). With no Big Bang whatsoever, and its having existed forever, there is absolutely no reason
why the universe should not have a surplus of particles over antiparticles. In the next, very short section we
round out this picture with additional broad-brush ideas of a more speculative nature.

4. Further broad-brush ideas of a more speculative nature about the universe’s evolution

A key property of the universe is that it is expanding, so it presumably was arbitrarily compact and dense in
the sufficiently remote past; in particular it was far inside its Schwarzschild radius rs = (2GM/c2), whereMc2

is the universe’s conserved energy. In that era its behavior would have been dominated by gravitational time
dilation, so all physical processes would have been greatly slowed and radiation frequencies greatly reduced;
it would have been dark and cold with almost paralyzed physical processes, even its expansion rate would
have been greatly reduced. Going further back in time only further accentuates its “suspended animation”
character. Going forward in time eventually brings it to a radius of the order of rs. The accompanying
decrease in gravitational time dilation would have allowed its expansion rate to increase, which would have
still further reduced gravitational time dilation, causing its expansion rate to increase still further, etc.
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Thus when the universe reached a radius of the order of rs it was on the cusp of a rapid increase in
its expansion rate. Physical process rates in that era would have also rapidly increased as the dead hand of
extreme gravitational time dilation fell away. Notwithstanding its rapid expansion, the universe would still
have been vastly, vastly more compact and dense than today’s universe, which has undergone billions of years
of additional expansion. So dense a universe, which was liberated from extreme gravitational time dilation,
would have been able to give birth to every conceivable kind of young star at an utterly enormous rate,
with particular emphasis on immensely massive, extremely hot and short-lived giants. However considering
how much even denser than that the universe was when it neared the liberating radius rs, only a quite small
fraction of its matter would have been able to participate directly in those fireworks; by far the greatest part
of its matter would have been compelled to take the form of primordial black holes (but do bear in mind
that black holes absolutely do not have event horizons). However those primordial black holes profoundly
modulated the spectacular star-formation fireworks underway by, for example, becoming the active nuclei of
galaxies, with the primordial black holes of lesser mass being utterly crucial to galaxy formation by supplying
the necessary cold, dark gravitational “glue”. When the compact, dense universe’s star-formation fireworks
was at its zenith, the universe was obviously extremely hot, so the black-body cosmic microwave background
is the frequency-downshifted remnant of the universe’s immense black-body radiation of that intense star-
formation era. With its continued expansion, the universe’s density of course diminished, diminishing its
rate of star and galaxy formation. The James Webb Space Telescope may possibly be registering evidence
of rapid galaxy formation in the early universe.
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