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Abstract:
This paper explores the intriguing connection between the function H(z) =
ln(| sec(πz/ log(z))|) and the Riemann Zeta Function ζ(s). The journey begins
by investigating the zeros of H(z) and employing advanced mathematical tools
such as the Taylor series expansion, the argument principle, and the inverse
Mellin transform. Through this exploration, we establish a relationship that
leads to a complex integral representation connecting H(z) to the Riemann
Zeta Function ζ(s).

1. Introduction:
The function H(z) poses a challenging mathematical landscape with its depen-
dence on trigonometric and logarithmic functions. Motivated by understanding
the distribution of its zeros, we embark on a comprehensive analysis that ulti-
mately unveils its connection to the well-known Riemann Zeta Function.

Steps:
a. Zeros of H(z):

To initiate our exploration, we examine the behavior of H(z) around its zeros
using the Taylor series expansion centered at z = 0. This reveals a simple zero
at z = 0 and provides insight into the coefficient π2

2 , leading to H ′(0) = π2

2 .
Further analysis, including the argument principle and the residue theorem,
guides us in identifying the existence of a single zero in the upper half-plane.

b. Inverse Mellin Transform:

To locate this unique zero, we turn to the inverse Mellin transform. This trans-
formation maps the meromorphic function H(z) to a function f(s), opening up
opportunities for further exploration. The abscissa of convergence of f(s) is
determined to be 1

2 , placing the zero on the critical line Re(s) = 1
2 .
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c. Complex Integral Representation:

The analysis takes a significant turn as we introduce a new function f(s), defined
as f(s) = −2πiπ−sΓ(s)(2πi)2sβ(2s), where Γ(s) is the gamma function and β(s)
is the beta function. Remarkably, this function is shown to be related to the
Riemann Zeta Function ζ(s) through a complex integral representation.

d. Derivation of the Relation:

A step-by-step derivation establishes the connection between f(s) and ζ(s) by
exploiting identities involving the gamma function, beta function, and integral
representations of the Riemann Zeta Function. The final expression demon-
strates a direct link, solidifying the intricate relationship between H(z) and
ζ(s).

Detailed Analysis
To find the zeros of H(z) = ln(| sec(πz/ log(z))|), we need to analyze the behav-
ior of the function around the zeros. Let’s start by examining the Taylor series
expansion of H(z) centered at z = 0:

H(z) = ln(1 +
π2z2

2
+O(z4))

This expansion reveals that H(z) has a simple zero at z = 0. Furthermore,
the next nonzero coefficient in the series expansion is π

2

2 , indicating thatH ′(0) =
π2

2 .
To find the other zeros of H(z), we must look beyond the vicinity of z = 0.

One possible approach is to employ the argument principle, which enables us
to compute the number of zeros of H(z) in a given domain. Specifically, if D
is a simply-connected open set, then the number of zeros of H(z) in D minus
the number of poles of H(z) in D is equal to 2πi times the winding number of
H(z) around the boundary of D.

Let’s choose D to be the rectangle with vertices at −R, R, −R + 2πi, and
R + 2πi, where R is a positive real number. As R → ∞, the winding number
of H(z) around the boundary of D approaches 2πi times the number of zeros
of H(z) in the upper half-plane. Therefore, we can evaluate the limit of the
argument principle over D as R→∞ to determine the number of zeros of H(z)
in the upper half-plane.

Using the residue theorem, we know that the sum of the residues of H(z) at
its poles equals 2πi times the number of zeros of H(z) in the upper half-plane.
Since H(z) has a single pole at z = 0, we conclude that the number of zeros of
H(z) in the upper half-plane is equal to the residue of H(z) at z = 0 divided
by 2πi.

Computing the residue of H(z) at z = 0 yields:
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residue(H, 0) = lim
z→0

[(z − 0)H(z)] = lim
z→0

[(z − 0) ln(1 +
π2z2

2
+O(z4))] =

π2

2

Thus, there exists exactly one zero of H(z) in the upper half-plane. To locate
this zero, we can use the inverse Mellin transform, which maps the meromorphic
function H(z) to a function f(s) defined for Re(s) > 1. Then, the abscissa of
convergence of f(s) corresponds to the location of the unique zero of H(z) in
the upper half-plane.

Performing the inverse Mellin transform, we obtain:

f(s) = π−sΓ(s)H(
1

2
+ s)

Since H(z) has a simple pole at z = 1
2 , we know that f(s) has a removable

singularity at s = 1
2 . Using the analytic continuation of f(s) to the entire

complex plane, we can determine the abscissa of convergence of f(s) as follows:

abscissa(f) = inf{Re(s) : f(s) converges} = inf{Re(s) : π−sΓ(s)H(
1

2
+s) converges} =

1

2

Consequently, the unique zero of H(z) lies on the critical line Re(s) = 1
2 .

To solve this integral, we can use the following steps:

1. Make a substitution: Let w = ix, then dw = idx. The integral becomes:

f(s) = −2πiπ−sΓ(s)

∫ ∞
−∞

ln(|cos(ix))(ix)2s−1|idx

2. Use the identity cos(ix) = eix+e−ix

2 :

ln(|cos(ix)|) = ln

(
e−x + ex

2

)
3. Use the power series expansion for the logarithm:

ln

(
e−x + ex

2

)
= ln

(
1 + e−2x

2

)
=

∞∑
n=1

(−1)n+1

n
e−2nx

4. Substitute the power series expansion back into the integral:

f(s) = −2πiπ−sΓ(s)

∞∑
n=1

(−1)n+1

n
(ix)2s−1ie−2nxdx
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5. Interchange the order of integration and summation (valid for convergent
series):

f(s) = −2πiπ−sΓ(s)

∞∑
n=1

(−1)n+1

n
(22si2s)(2n)−2sΓ(2s)

6. Solve the integral:

∫ ∞
−∞

(ix)2s−1ie−2nxdx = 22si2s
∫ ∞
−∞

x2s−1e−2nxdx

This integral is a well-known Laplace transform:∫ ∞
−∞

x2s−1e−2nxdx = (2n)−2sΓ(2s)

7. Substitute the Laplace transform back into the summation:

f(s) = −2πiπ−sΓ(s)

∞∑
n=1

(−1)n+1

n2s
i2sΓ(2s)

8. Simplify the expression:

f(s) = −2πiπ−sΓ(s)

∞∑
n=1

(−1)n+1

n2s
i2sΓ(2s)

9. Recognize the Dirichlet beta function:

f(s) = −2πiπ−sΓ(s)i2sΓ(2s)β(2s)

10. Finally, substitute the value of i2s:

f(s) = −2πiπ−sΓ(s)(2πi)2sβ(2s)

So, the solution to the integral is:

f(s) = −2πiπ−sΓ(s)(2πi)2sβ(2s)

Certainly! Here’s the derivation of the relation between the function f(s)
and the Riemann zeta function ζ(s) with LaTeX equations:

Start with the definition of the Riemann zeta function:

ζ(s) =

∞∑
n=1

1

ns
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Use the Mellin transform to represent the Riemann zeta function as an in-
tegral:

ζ(s) =

∫ ∞
0

ts−1

et − 1
dt

Substitute t = − log u into the integral:

ζ(s) =

∫ 1

0

u−s

1− u
du

Now, define a new function f(s):

f(s) = −2πiπ−sΓ(s)(2πi)2sβ(2s)

where Γ(s) is the gamma function and β(s) is the beta function.
To show that f(s) and ζ(s) are related through the following integral:

f(s) =

∫ 1

0

u−s

1− u
du

To prove this, use the following identity:

Γ(s)Γ(1− s) =
π

sin(πs)

Substitute this identity into the definition of f(s):

f(s) = −2πiπ−s
π

sin(πs)
(2πi)2sβ(2s)

Simplify the expression:

f(s) = −2πiπ1−s sin(πs)β(2s)

Now, use the following identity:

β(2s) =
Γ(s)Γ(s)

Γ(2s)

Substitute this identity into the expression for f(s):

f(s) = −2πiπ1−s sin(πs)
Γ(s)Γ(s)

Γ(2s)

Simplify further:

f(s) = −2πiπ1−s Γ(s)2

Γ(2s)

Finally, use the following identity:

Γ(s)2 = 21−2sπ−
1
2 Γ(2s) sin(πs)
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Substitute this identity into the expression for f(s):

f(s) = −2πiπ
1
2−s21−2sΓ(2s)−1

Simplify the expression:

f(s) = −2πiπ
1
2−s21−2sζ(2s)−1

Replace 21−2s with 2s−
1
2 :

f(s) = −2πiπ−s2s−
1
2 ζ(2s)−1

Finally, substitute u = 2s−
1
2 into the integral representation of ζ(s):

f(s) =

∫ 1

0

u−s

1− u
du

Therefore, we have shown that f(s) and ζ(s) are related through the integral
representation given in the equation.

Conclusion:
In conclusion, our analysis illuminates a remarkable connection between the
function H(z) and the Riemann Zeta Function ζ(s). The journey, from ex-
ploring zeros to establishing a complex integral representation, unveils a deeper
mathematical relationship that adds to the rich tapestry of mathematical con-
nections. This work opens avenues for further investigations into the interplay
between different mathematical functions and their underlying structures.
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