
Spectral and Symplectic Riemann Mappings

Ryan Buchanan

January 24, 2024

Abstract

Given a collection of sections of a principle fiber running from the
base of a topological space to its top, can we recreate the entire topological
space? We answer this question in the affirmative for symplectic manifolds,
assuming we are given a filtration of weights. Using the weights which are
representative generators at each local neighborhood about each section
of a smooth fiber, we reduce our original problem to the Ricci-iterated
mapping of Riemann surfaces along a geodesic.

Preamble

The motivation for this is to reduce the following equation:∫ ⊤T

⊥T

d(P ∩ γi,wi)

di

to a transitive binary relationship R ∈ End(T ), when ⊥T = Rep(inf(E)),
and when ⊤T is defined likewise. Our strategy is to supply enough notions
from symplectic and spectral algebraic geometry to sufficiently weaken this
problem before attacking. In particular, we are able to reduce this task to
one of finding a weak equivalence between the homotopy types of symplectic
spectra, the definition of which will be revealed later.

So, let T be a topological space with base space B. Let π : E → B be a
fiber bundle. Attach, to each section γ ∈ π a norm ν(γ), such that the map

γ+ : d(P ∩ γ,w0)→ d(P ∩ γ′,w1) (0.1)

is transitive, but not necessarily distance-preserving for all w{0,1}. One notices
immediately that, whence this map is a weak equivalence, γ becomes the fibrant
object, and wi → wi+1 is a cofibration for all i ∈ N.

Of course, the underlying assumption here is that T is flatly presentable,
or in other words generated by a tame topological stack, T ×X. This, in turn,
implies that the map from B onto π is projective, and essentially surjective.
This is effectively trivial when one is working with Cat(0) spaces. However,
for a map of norms a → b for unequal a and b, we obtain a rough idea of the
curvature for the principle fiber of π. That is to say,

Curv(P ∈ π) ∼= k
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is the chief topological invariant for a Cat(k) space. We assume that each wi is
a representative weight for a given section γi. Thus, for our base, we obtain an
object of lowest weight, which we can use to construct a net of maps

N(i, γ) := wi −mod −→ Bγ

from weighted modules to the classifying space of each section.

Notation 0.1. For a collection of sections,
∑j

i<j γi, we will write Γi→j.

It is evident that each collection of sections is algebraically equivalent to a
filtration:

Fil[i,j] πn(T )

and, specifically, max(n) = j − i.

Definition 0.1. We will call T geodesible if, for any i < j, the composition
of all maps

Γi→j := γ+
j−1 ◦ ... ◦ γ

+
i+1 ◦ γ

+
i

we have
Avg(Curv(Γi→j)) = Curv(P )

such that the curvature of our principle fiber is exactly equal to the mean curvature
of the space.

This means, classically, that we will call a path-connected curve γi → γj a
geodesic if it is isomorphic to a path-connected curve wi −→ wj . Note, however,
that this is akin to (but not quite as strong as) saying that the map defined in our
first equation vanishes at every step of its Ricci iteration. The condition of being
geodesible means for us that cofibration a ⇀ b is isomorphic to the canonical
trivial fibration given by passing from fibrant to cofibrant objects along the
principle bundle. Equivalently, the tautological line bundle indexing every given
path is representative of the path via an isomorphism between filtered objects
and weighted objects, which induces a strong equivalence

N(i, γ) ≡ Fil[i,j] πn(T )

which is realized by every Γi→j .
We will be interested in studying the case when a collection Γi→j of sections

is treated differentially. That is to say, when the Ricci iteration

Rici(π) −→ Rici+g(π)

admits a Riemann mapping for each g < (j − i) ∈ N. For a class of Riemann-
mappable sections, not only is there a natural way of deriving the norm on each
section, but there is also a canonical Bousfield localization to each section, given
by the slice category T/ν(γ).

Recollection 0.1. Recall that for a class of Riemann maps [R], there is an
isomorphic category WE[K ] of weakly equivalent Kan complexes given by passing
between homotopy types of sections.
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This is a powerful statement, as it means that for our topological space,
there is a unique Yoneda embedding:

Y o(T ) :

∫ ⊤π

⊥π

d(wi)

di
−→ Γ⊥π→⊤π

∼= T

which allows us to reconstruct the original topological space from its weighted
representatives. When taken seriously, as a formal gluing condition, this means
that the class of representatives of a given topological space

[Rep(T )] = [w]

is actually a presheaf of sections

= Pshv(γ)

which can be “sheafified” via the group completion of the fiber bundle. Thus,
we have:

(Pshv(γ) ↪→ (Γ∞ ∼= Π∞(w(i−j)≤∞, γ)) = Shv(Γi→j) = π◦(T )

for a C∞ (genuinely smooth) topological space. This eases rigidity, and allows
us to pass from strict norms to equivalence classes of norms by mapping out of
the principle fiber and into the moduli space of all admissible fibers.

Definition 0.2. We call a fiber F : A −→ B admissible if, for all ε and for all
δ ∈ [j − i] ≤ (ℵ0 ∼ ∞), the fibration

a⋉ b = ((δ × ε)(a ∈ A) −→ b ∈ B) = δi(a→ b)

has an inverse

a⋊ b = ((δ × ε)(b ∈ B) −→ a ∈ A) = δi(a← b)

such that (a⋊ b) ◦ (a⋉ b) = Ida is the trivial action.

Proposition 0.1. Fibrations of admissible fibers preserve dependent sums.

We prove this proposition using standard-fare abstract nonsense:

Proof. The following diagram

a b ∼= Σiai Σjbj

b a Σibj Σiai

⋉

⋉

⋊

⋊ δ×ε

δ×ε

ε×δ

ε×δ

is an equivalence for all fiber spectra ai and bj . Thus, the image of the map
δi(a→ b) : a⊕ ϵ is given by the quasi-isomorphism

(b ∼= (b⊕ ε)) ∼ (δ ∼= γ+)
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which gives us the following 3-cell:

b δ

b⊕ ε γ+

denoted by the squiggly lines in the center of the above diagram.
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1 Background

Riemann, in his PhD thesis [6], proved that for any 2-dimensional surface S,
there is a unique embedding S −→ S1 into the unit sphere, thus establishing
a fundamental fact of topology. Later works of birational geometers would
rely on establishing birational invariants, or in other words symmetries between
pullback objects and their projective immersions into minimal surfaces, which
rely on as little geometric data as possible.

We will not indulge in the birational paradigm here, but we will rather be
focused on homotopical invariants. In the past, the author has written about
forcing and its relationship to homotopy theory. In a nutshell, for a collection
D of data, there is a distinguished character d ∈ D such that there is a forcing
notion d ⊩ Hn+g(Rep(D)). Here, the isofibration d

∼−→ g is essentially our core
homotopical invariant. In this paper, we represent this fibration as a path whose
union with the affine line A1 can be reduced to a projection of the trivial bundle
of a manifold containing Lagrangian submanifolds. This bears some resemblence
to the work done in [5] and [7], where the authors treated a map

H̃am(CP)n −→ Hamn(CP)

out of a pre-symmetric manifold whose Hamiltonian is given by a choice of
semi-linear representative paths. This gives rise to the notion of a quasi-state.

Essentially, our thinking was born about in considering a pre-sheaf of quasi-
states with a gluing condition, which allows us to reconstruct a topological
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space by taking its local Yoneda embeddings at every given object for each
of its subobject-identifiers which coincide with the classification of a filtered,
representative weight. From this project, we are able to decompose higher
dimensional manifolds into towers of low-dimensional homotopical data. This
is physically significant, as it suggests that the structure of good ol’ Minkowski
spacetime itself is generated via the transport of a probe in En. Loops in
this space represent closures of open intervals, which in turn are the group
completions of the supercircle group Sp|q. This coincides with Schreiber’s recent
thinking, in which he constructed a rather elaborate spacetime probe.1

2 Symplectic Manifolds

Recollection 2.1. A symplectic manifold (M,ω) is an even-dimensional, orientable
manifold M endowed with a non-degenerate 2-form ω called a symplectic form.

Recollection 2.2. Symplectic manifolds are locally indistinguishable.

Because of this reason, symplectic geometry is naturally non-local. For a
tower

... ...

Mζ ⊗ ωζ = Symζ

Mη ⊗ ωη = Symη

Mθ ⊗ ωθ = Symθ

... ...

We have a sequence of characters:

S = {..., ζ, η, θ, ...} 7−→ BN

taking each sub-object and sending it to a unique classifier. By applying our
gluing condition, we obtain a unique sheaf of symplectic manifolds equipped
with a 2-form ω ×S , where S acts as the flow variable. Call this sheaf Oω.

Definition 2.1. A symplectic connection, ∇Sym, consists of a geodesible symplectic
manifold M , along with a restriction

Oω|x

of a a symplectic sheaf to a single stalk x, called the typical stalk.

1See [8]
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Remark 2.1. We drop the Sym and simply write ∇ when there is no plausible
confusion as to whether the connection is symplectic or not. Symplectic connections
always have vanishing torsion [1] and are parallel to the symplectic form.

Notation 2.1. We write Diffx for the set of diffeomorphisms of x.

Remark 2.2. We recreate the diagram in [2.4] of [2]:

M1 M2

X1 X2

π1 π2

f

f♯

where (dfx1)
∗ : T ∗

x2
X2

∼−→ T ∗
x1
X1, such that f♯|T∗

x1
is its inverse map.

We use the following equation:∫ (x∼0)→∞

x∼0

dε

(x)
δ =

x

ε
(2.1)

to map every pre-animated object out of x, where x is the kernel for some space
Hn(X), which has coherent homotopies at level n. Technically, x ∼=

∑∞
i=0 xi is

an object in a Lie group, whose etale immersion (δi(x) = xi) ↪→ X is essentially
a projection out of a Noohi topological stack X.

To measure whether this projection has occurred or not, we attach a binary
classifier:

Bω∨∅ : Xpre −→ Σ∇X

where X is isomorphic to Diffx.

3 Truth values and section bundles

Let Γi→j be a bundle of sections with filtration Fil[i,j]. For each intersection:

î = (̃i ∈ Γi→j) ∩ (i ∈ [i, j])

we have a product
(ev0(̃i× i)× (̃i⊗ i)) = τ(i)

where ev0 is evaluation at the zeroth projection.

Notation 3.1. We use the notation xpre to denote the pullback of the forgetful
functor E|x −→ K.

To keep in the spirit of Hancock’s “process-oriented mathematics”, we will
let τ itself be a functor:

ipre −→ i
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which is dual to the actualization

ipre −→ 1

the category of discrete groupoids. If these groupoids are presentable, then they
are actually the singleton set containing each xi.

Notation 3.2. To denote the actualization, we will write τ∨(i).

Composition of the τ(∗) and τ∨(∗) is commutative, associative, and unital,
up to a generic isomorphism with the projection of the tautological bundle,
which is taken over a normed Lagrangian gauge space.

Remark 3.1. It is worth considering these structures as both topological spaces,
or as pure categories. The purely categorical perspective is largely Yoneda-based,
and relies on a transport of fibrant objects along a chain complex, which form
the complete system of weak equivalences of every single-subobject object xi.

Remark 3.2. While the geometric and topological applications of this theory
are very interesting, we need not get bogged down into a debate as to whether
the “real-world” spacetime realizing these formulae is smooth or discrete. On the
categorical level, a morphism may be “smooth” but admit degenerate representative
topologies. This is why we prefer here to work with the symplectic spaces.
We might be more invested in which Fukaya category we are projecting onto.
We shall name here the relative Fukaya category, B≥0 as a candidate for our
purposes. In terms of algebras, these are the absolutely real algebras, whose
canonical valuation is given by:

|r| : r −→ R+

The underlying philosophy here is that all truth must be inherently realized
in order to be measurable.

We will prove the smoothness of the map 0 −→ 1 now.

Proof. Let x = 1 and put y ∈ (0, 1). Then we, can have x − yz∈Z, and we can
take the limit z → ∞ and prove that there is a rational limit for which the
series converges. Since every z is no greater than ∞, then we can always select
a finite partion of z which admits an infinite number of finite decompositions,
etcetera. Thus, the map 0 −→ 1 is C∞-smooth over R, and since it is classically
invertible (bijective on objects), its inverse is also smooth.

Example 3.1. It is worth considering, rather than strict smooth manifolds, any
old-fashioned topological space T . Suppose it is the discrete space |N|. Then,
we have a discontinuity at the punctured point |z|.

Axiom 3.1. |z| is a regular cardinal.

This axiom non-trivially states that z ≤ ∞ restricts to the strict filtration
Filz z <∞.
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4 Spectral Operators

In this section, we present the minimal technical jargon in order to construct
a synthetic spectral theory. The desiderata for such a theory are the ability to
perform soft computations on B≥0, compatibility of syntax with pre-existing
motivic constructions, and the production of exact formulae for computing the
homotopy types of slice categories of a generic topological space. Suppose for a
moment that we are given two objects α and β (roughly analogous to particles),
and we are free to index them with subobject identifiers of our choosing.

Define

αi ⊛ βj :=

∫ j

i

α
∧
j−i

β

where the right-hand-side of the above equation is a smooth sum of smash
products of k-tuples for i < j.

Using the field E of energy numbers (as defined by Emmerson2), set

E∞(αi ⊛ βj) = E∞
i→j(α, β)

=

∞∑
i+j

(α ∧ β) ∼= ⊥E→ ⊤E

∼= k

where i→ j is a structure-preserving map homomorphic to a group completion,
k is a sheaf, and αi × βj forms a presheaf of symmetric spectra.

Emmerson recently gave us his Σ-adic algebra:

ΣE = (

(⊤E)∼∞∑
n=vE

an ⋆ an) ↪→ DMEff

which is an alternative way of counting the automorphisms of [0, 1] ⊆ 1. Here,
the star operator is an operator which endows each actualization (an∨an)↠ R+

with a transitive relationship ρ such that ρ∞((an)∨(an)) ↪→ |an|∨|an| is a 1-cell
in 1.

Remark 4.1. We can reword the above into a map:

(γiργj) −→ ν(γj)

for all section bundles Γi→j.

The Σ-adic algebra is a technique for producing an internal object in the
category of energetic sheaves with an exact representation as a normed Lagrangian
submanifold. Substituting ⊛ for the relationship ρ gives us the smash product
of all independent α, β as indexed by a tautological line bundle Ltaut.

2See [3]
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In Schreiber’s notation:

∀ℓn ∈ Ltaut ∃f : ℓn 7→ wm

where m− n vanishes whence the the section γ ∋ (n↔ m) is Ricci flat.
Let

tr(k) =

j∑
i=0

δi(x) ↪→ ∆i(X)

where ∆i(X) = (∆ ⊂ X)/TiM for an immersed submanifold M of X. Note
that if tr(k) has codimension zero, then it is exact, so the condition

codim(tr(k)) = 0

implies exactness; however, this is not an only if statement, as we need only let

max(Dim(δi(X))) = dim(∆i(X))

in order for the inclusion to be exact.

Remark 4.2. Note that the codimension of the immersion is the dimension
of the free loop space obtained by sending each ℓn to some Ωℓn. See [4] for
information on extending this construction.

Suppose we have two cotangent bundles, and we relate them by:

T ∗αi ⊛ T ∗βj

Then, we perform our ordinary computation, but rather than receiving the usual
geometric data, we obtain a parameterization ζ(M) of spectra S, such that

ζ∗(M)ζ(M) = S −→ {∗} ∼ 0

is the contraction of our total space to a point. This gives us an orbifold Sorb :
Orb∗Rep(S). The homotopy type of Sorb is given by calculating πn(ζ(M)) for
n→∞.

Thus, we have
Hsoft(Sorb) = colim

n→∞
Π
n
M

= N(i, γ) (wi ∈ E|Hn(M))× γ ∈ ΓvE→n

which reduces to a Calabi quasi-morphism (in the sense of Fukaya, et al. [5])
n

∼−→ ∞, which is a Riehl-Verity isofibration. Essentially, the homotopy type
of slice category T/n is determined uniquely by the chosen class of “good
reductions,” or Bousfield localizations to singletons. In the categorical framework,
these singletons are objects, and they are singular in the sense that they contain
just a single subobject: s 7−→ os.
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4.1 A∞ algebras

Recollection 4.1. An A∞ algebra A over k is given by the following data:

• a Z-graded free k-module A

• a codifferential on the cofree algebra T (A[1]) = ⊕n≥1A[1]⊗n

and we refer the reader to [9] for more information.

Definition 4.1. An A∞ category is a large A∞ algebra isomorphic to End(⊕X∈Ob(C)X).

Let A be an A∞ algebra. We define the map A 7−→ Xdg to a dg-manifold
by taking the evaluation evX : (Xi ⊕ Yj) −→ X for 0 ≤ i < j ≤ n. Then, n is
the formal colimit

colim
n

dj−iε

kδ
k

= d∗ε

obtained by modding the class of codifferentials by a quasi-linear representative
of the cotangent bundle. Thus, one has:

[T (A[1])]/w̃ε = d∗ε

and we use the usual cup product to obtain the Bressler-Soibelman holonomy
object, holBS(X), which acts on stalks of the sheaf Oω via the formula:

hol•BS(X) = Oω|• × dj∪iε

where ω is a symplectic form on X.

Proposition 4.1. The above equation is weakly equivalent to Pic(A ) : A −→
Ltaut ⊗Z

∫
w.

Proof. Recall that the Picard functor takes as its input some object at a desired
level of abstraction (e.g. ind-schemes, varieties, and less typically, stacks), and
outputs a fiber bundle with a distinguished line Ltaut.

Because this functor is representable (at least for the naive Fukaya category),
we obtain a family of geodesible subspaces of the space T generated by A .
Thus, we may attach to each geodesic, a Lie algebra g : w ↪→ T |g such that
each w is the barycenter of a Lagrangian submanifold of T .

Proposition 4.2. If T is a complex (oriented or otherwise) manifold, then, as
per [10] there is a Betti realization functor

SH(k) −→ SHtop

where k is the ring containing w0.
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Remark 4.3. The above proposition is analogous to the map H̃amk −→ Hamk

as established in the preamble. When the chosen field k is equal to E, we obtain
a restricted specialization:

k|k′ : (z ∈ k)⇝ |z|

for |z| a preferred realization. In this formula, k ∼= k′pre, and the pre-quantum
line bundle Bunk is a dg-ind-scheme for a totally real manifold.

Letting | • | : • −→ 1 be the actualization used in [Sect. 3], we obtain a short
exact sequence:

0 −→ k −→ Bunk −→ k −→ k′ −→ 0

which is isomorphic to z −→ Bζ(z) and weakly equivalent to the interval
(−∞,∞), the closure of which is the push-out of the following Cartesian square:

(j − i) n−

n+ n± ∼ ±∞

where n+ is the bosonic sector and n− is fermionic. We have:

n± =
√
(↓ n)2 + (↑ n)2

where n is given by one of three Pauli matrices:

[
0 1
1 0

]
,

[
0 −i
i 0

]
, or

[
1 0
0 −1

]
denoted respectively by σx, σy, and σz.

By letting σx = T ∗
i x and σy = T ∗

j y, one obtains σx · σy = σz ⋆ tr(k). This
can be seen by decomposing tr(k) into comodules and taking the cup product:

((ki ∨ kj ∨ kk)
∧

kijk) ∨
1

dε

which gives us the stabilizer for a representative groupoid G1.

Remark 4.4. An embedding G1
∼
↪→ ∗ is, in general, not flat. Thus, we can

“unstraighten” the point by taking the inverse ∗ ∧ G −1
1 . This gives us a lossless

transfer from Euclidean space to the class of all topological spaces, by first
factoring through a topological stack, giving us the sequence:

G1 −→ ∗ −→ (∗ ∧ G −1
1 ) −→ X −→ ξ

where ξ ∈ X is a one-object category. This category is a presentable character
whose representation is a point.
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