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Abstract 

With manufacturing technology developing persistently, hardware manufacturing cost becomes lower and lower. 

More and more computers equipped with multiple CPUs and enormous data disk emerge. Existing programming 

modesmake people unable to make effective use of growing computational resources. Hence cloud computing 

appears. With theutilizationofMapReduceparallelizedmodel,existingcomputingandstorage 

capabilitiesareeffectivelyintegratedandpowerfuldistributedcomputingabilityis provided. 

Associationrulescanforcefullygetahorizontal relationinthebigdata,theApriorialgorithmisoneofthe most significant 

association rules. Traditional mining based on parallel Apriori algorithms needs much more time in data IO 

withtheincreasingsizeoflargetransactiondatabase.This paperimprovestheApriorialgorithmfromcompressing 

transactions,reducingthenumberofscansandsimplifying candidate set generation. And then the improved algorithm is 

parallelized on the Hadoop framework. The experiments show thatthisimprovedalgorithmissuitableforlarge-

scaledata mining and has good scalability and effectiveness. 
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1. Introduction 

In the context of the development of big data “spraying wells”, there isfrequently a close relationship between vast 

amountsofdata[1].Analysisanddecisionmakingthrough datamininghavebecomethemainstreamofsocial 

development.Inordertobetterfindtherelevanceof transactiondatasets,someresearchershavediscoveredthe 

conceptofassociationruleminingtechnology[2].Withthe attention of many researchers at home and abroad caused by 

theconceptionoftheassociation rule mining,theyhavedonealotof analysisinthisfieldandputforwarda lot ofdatamining 

algorithms. 

One of the most famous association rule algorithms is the Apriorialgorithm,whichisaclassicassociationrule 

algorithmdesignedbyAgrawal[3-4]in1994.Itisa level-by-levelsearchiterationmethodthatconstructsa k-item set to 

constitute a k+1-item set. The main ideas of this algorithm are: Firstly, all frequency sets are counted from the 

transactiondatabase,andthesupportofthisfrequentset must not be less than the minimum support degree; Secondly it 

enters into the process of strong association rule generation, andtherulesneedtosatisfythesupportandconfidence 

thresholdsatthesametime;Thirdly,onlyallrulesthat containcollectionitemsareretained.Oncetheserulesare retained and 

generated, that are greater than or equal to the MinConfidence.  

Due to emergence of cloud computing, it’s possible to get big cheapcomputingandstorageability quickly and 

dynamically,solvingthemostfundamentalproblemfordata 
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miningabouthowtoacquireinexpensivelypowerfuldatacomputingability[5-8]. Relatedresearchersdirectedattentions to 

cloudcomputingplatform,inthehopeof implementingdatamining algorithm 

withhighscalability,applyingcheapcomputingof cloudcomputingtodataminingbasedonstorageability, thus overcoming 

the shortcomingsin traditionaldatamining,reducingcalculationcostandenhancingdata mining efficiency [9-14]. 

With a view on the broad and promising future of cloud computing, the integration of studying and applying cloud 

computing and existing data mining algorithm has become hotconcerninvariousindustries[15-18]. 

The design of the Hadoop[19] framework originatedwas fromanopensourceprojectdevelopedbytheApache 

organizationFoundation.Becauseofitsinter-temporal significance, the Hadoop framework has been widely used in 

theinformationfieldathomeandabroad.Therearetwo importantmodulesintheHadoopframe-DistributedFile 

SystemHDFSandDistributedComputingFrame MapReduce[20].Asadistributedfilesystem,HDFS 

functionsaimstoimplementdatastorage.Itwillworkin conjunction with the computational framework. MapReduce 

works to provide the underlying support for data calculations; AndtheideaofMapReduce[21]isbasedonapaperby 

Google.Inshort,itscoremethodis"thedecompositionof tasks and the statute of results." 

Herewetransformclassicaldatamining 

correlativealgorithmAprioriintoimplementingincloudcomputingenvironmentbased 

onMapReducemodel;meanwhile,accordingtocharacteristicsof MapReducemodel, 

weimproveApriorialgorithmtomakeMapReduce-Apriorialgorithmwithstrong scalability, fit for tremendous data 

analysis and processing. Finally, utilize Map Reduce-

Aprioriparallelalgorithmtotesttheproposedmethodwithrunningtimefromthe 

perspectiveofdatavolumeandcomputingnodequantitytogetpracticallymeaningful data mining results [18]. 

 

2. Brief and Research Status of Apriori Alogorithm 

2.1 Overview of Apriori algorithm  

The Apriori algorithm is a iterative level-by-level search method that consists of a k-item set to construct a (k+1)-

item set.First,obtainafrequent1-itemset. 

L1cangeneratea frequent2-itemsetL2,andL2cangenerateafrequent 3-item set L3. According to this rule, when a 

frequent k-itemsetcannotbefound,thealgorithmends[22].Thespecific operation is as follows:  

1) Iteratethroughtheinitialtransactiondatabaseand count the frequency of occurrence of the candidate set. The 

resultisthesupportoftheproject.Allprojectswhoseall supports level no lower than the preset threshold generate a 

frequent 1-item set L1.  

2) ThealgorithmusesL1JOINL1toformacandidate C2-item set C2.  

3) Using the items in C2, traverse the database again to obtain the support degree of each candidate set. All projects 

with support levels not lower than the support level generate frequent 2-item set L2.  

4) ThealgorithmusesL2JOINL2toformasetC3of candidate 3-item sets.  

5) Using the items in C3 to traverse the database again, thesupportdegreeofeachcandidatesetcanbeobtained.  

All items with support levels not lower than the support level generate frequent 3-item set L3.  

Theaboveprocessisperformediterativelyuntilthe candidatesetCkisempty.TheApriorialgorithmdoes multiple IO 

operations on the database. Each stage consists of two parts, namely connection and pruning. 

2.2The shortcomings of Apriori algorithm  



1) WhentheApriorialgorithmgeneratesthecandidate item set, it needs to perform the self-connection operation on 

thefrequentitemsetsobtainedinthepreviousstep.Then scan the transaction data set again and compare the candidate set 

formed by the self-connection with min_sup. During the self-connectionoperation,alargeamountofcomparison work 

will be performed.  

2) Apriorialgorithmneedtorescantransactiondatasets before pruning, and then compare with min_sup. Therefore, 

when the size of the transaction dataset is getting larger and larger,eachscanwillconsumealotoftime,resultingin 

inefficient mining. 

3) In the current situation where the data information has a high dimension and the type is complex, the classical 

Apriori algorithm can't satisfy users.  

4) Because the classic Apriori algorithm is only applicable toasinglemachine,whenthesizeoftransactiondatasets 

gradually becomes larger and larger, it will lead to inefficient mining, insufficient storage space, and even system 

crashes. 

 

3.Implimentation of Apriori Algorithm Based on Hadoop Clusters 

3.1 Reduce frequent item sets self-connection comparison times and pruning steps 

In this paper, a method to reduce data when scan for candidate set has been introduced. 

If n-dimensional data set is not considered as frequent set, then its n-1dimensional data set is also not the frequent 

data set so that by comparing and deleting not-frequent data set is finally resulted in smaller size of data to scan 

leading to high efficiency of scanning algorithm. 

3.2 Reduce the Number of Scanned Databases  

It is kind of problematic to scan database for scanning frequent item sets because of frequent I/O but making the 

database as vertical data table effectively reduce the number of scanned databases because finally it is resulted in 

scanning one transaction database. 

3.3Combining Apriori Algorithm and Hadoop Platform 

3.3.1 Data Initialization  

The symbols used in this paper are described in table 1. 

Table 1. List of Symbols 

Symbol Meaning 

Lk Frequent sets of the kth layer 

GMap First layer frequently set the item set to id mapping table 

LMk Ordered and mapped to the kth layer of id in GMap frequent sets 

Ck Candidate sets for the kth layer 

Sk A superset of the kth layer 

MP Master mode 

MPSk Master mode (k-1) sub mode 

GP Generation model 

GPS Generation mode base 



T Original transaction set 

Tk kth layer transaction set after compression 

After producing first frequent itemset, then arrange it and combine it in frequent set so that simpler calculation is 

implemented without complex comparisons , still, it is needed to do huge amount of calculation so that it can be 

considered as independent stage called data initializing stage.  

Three steps have been done through data initializing stage. 

1) Producing frequent itemsets 

2) Ordering frequent itemsets 

3) Generating second candidate itemsets. 

The bellow pseudo code is parallelized process which is for data initializing stage to generate second frequent 

itemsets 
2C basing on Map Reduce model. Here

2C is odered.  

//MapReduce Stage1-1  

Mapper{   

Map() {  

For each itemsets  in value   

Key=itemsets  

Value=1   

Emit(key,value)  

}}  

//Stage1-2  

LM1=SortOutputAndMap(L1)  

//Stage1-3  

Mapper{   

Map() { 

For i=0; i< LM1.size()-1; i++ 

For j=i+1; j< LM1.size()-1; j++ 

Emit(LM1[i], LM1[j]) 

}} 

 

Through the second stage, results from the first stages are sorted by support degree and then ranked into digital id 

which is called GMap. GMap makes the data easier to treat because it transforms the character expressed data into 

numerical group attributing to high efficiency of data calculation such as comparison. 

The results of second stage is second candidate itemsets which is grouped by host nodes. Table 2 shows the 

dataflow thru the entire data initializing stage. 

Table 2. Initialization Phase Data Stream 

Original 

input 

After sorting the frequent sets 

(minimum support degree is 50%) 
Calculate the 1st itemset 



sort GMap MapOutPut ReduceOutPut(𝐶2) 

acfg 

a, 4 
c ,4 
d ,3 

g, 3 

1, a, 4 
2, c ,4 
3 ,d ,3 

4 ,g, 3 

(1,12) 
(1,13) 
(1,14) 
(2,23) 

(2,24) 
(3,34) 

(1,[12,12,14] 
(2,[23,24]) 

(3,[34]) 

abcde 

bdgac 

adc 

fhg 

3.3.2 Iterative implementation 

Finding frequent itemsets could be carried out by iterating bellow two oerations. These operations are basing on 

dataset from data initializing stage. 

1) Compute the kth frequent itemset  

In this stage all data is loaded to internal memory so that increase the efficiency of computation. Input data to Map 

is files’ row data and the output key is value of each column. The pseudo-codes are implemented as follows: 

//MapReduce Stage2-1 

Mapper{ 

Setup() 

Map() { 

Value=MapToid(value, GMap) 

value.sort() 

For each itemsets in 

If(value.contains(itemsets)) 

Emit(itemsets, 1) 

}} 

Reducer { 

Reduce() { 

sum=0 

For each value in values 

sum=sum + 1 

If sum > minsup 

Emit(key, sum) 

}}; 

Table 3. Calculating the Data of 2nd Layer Frequent Sets 

Original input 

Map stages Reduce stages 

Mapping 
and 

scheduling 
output input data output 

acfg 1,2 [1,2],1 

[1,2],1 
[1,2],1 
[1,2],1 
[1,2],1 

[1,2],4 
[1,3],3 
[2,3],3 

Abcde 1,2,3 
[1,2],1 
[1,3],1 
[2,3],1 

[1,3],1 
[1,3],1 
[1,3],1 



bdgac 1,2,3,4 

[1,2],1 
[1,3],1 

[2,3],1 
[2,4],1 
[3,4],1 

[2,3],1 

[2,3],1 
[2,3],1 

adc 1,2,3 
[1,2],1 
[1,3],1 
[2,3],1 

[2,4],1 
[3,4],1 

fhg 4   

2) Compute the (k+1)th candidate itemset 

This stage includes two steps of implementation: 

(1) produce superset at (k+1)th layer from the kth frequent sets;  

(2)trim superset at (k+1)th layer to generate candidate itemsets at (k+1)th layer. So to 

carryout,thisstagecanbedividedintotwostages:MapandReducestage.Figure1 shows the data iteration phase. 

[1, 2], 4

[1, 3], 3

[2, 3], 3

[1, 2], 4

[1, 3], 3

[2, 3], 3

1, 2

1, 3

2, 3

1

2

[2, 3], 1

 

Figure 1.The Third Layer Data Generated Superset Node Distribution 

4. Generation of Association Rules  

Associationrulesaregeneratedwhensupportingrateisbiggerthantheminimum confidence degree after calculation of 

the rate in frequent itemsets. It’s done in following steps: for given frequent itemsets 1 producing association rules, 

check 1 each non-empty subsettogetrelativerule 𝑎 ⇒ (1− 𝑎)1-aanditsconfidencedegreeis support(l) ÷ support(a); 

when confidence degree is bigger than the minimum confidence, the association rule is produced. 

In this process, one thing  to consider is that if the association rule produced by the maximum subset of frequent 

itemset do not meet the requirement of minimum confidence, then it is obvious that any subset frequent itemsets also 

cannot meet the minimum confidence requirement as well. 

Take for instance frequent itemset [1-4]. If the confidence degree of 1,2,3 ⇒4 can’t suffice the minimumvalue, it’s 

inevitably the confidence of 1,2 ⇒ 3,4 can’t suffice the minimum degree, without consideration of subset. Hence by 

that feature, we can improve efficiency of overall operation during actual computation. To parallelize 

theprocessofproducingassociationrules,wecanassigneachinfrequentitemsetsto 

differentMapforgeneratingsimultaneously.Sotheparallelgenerationofassociation rules based on the MapReduce 

model pseudo code as follows: 

//MapReduce Stage3 

Mapper{ 

Map() { 

a=l-1 



i=1 

While(confidence(l,a)>minisupport&&>i+1{ 

i=i++ 

Emit(𝑎 ⇒ (1− 𝑎) , confidence(l,a) 

a=l-1 }}} 

Reducer{ 

Reduce(){ 

Emit(key,value); 

}}; 

 

5. Experimental Analysis and Results 

This section evaluates the performance of the proposed algorithm by comparing its execution time performance 

against proposed algorithm. 

To analyze the proposed algorithm, we set up a cluster of 3 nodes. They have Intel(R) Core (TM) i3-4500U CPU 

@ 1.80GHz, 2401 MHz, 2 Core(s), 4 Logical Processor(s). All nodes have  8GB RAM, and a 500GB hard disk. The 

worker nodes are installed on Ubuntu 18.04, Hadoop 2.7.1.One is for namenode ant two of others are working as 

datanode. Replication is set to 2 and block size is 128MB. 

Experiment 1: Performance Comparison between Apriori Algorithm and Proposed Apriori Algorithm The 

transaction data set for this experiment is stored as a file,Performanceanalysisofminingtimebeforeandafter improved 

with 3 nodes Hadoop cluster test algorithm. First, onthepremisethatthenumberofnodesintheHadoop 

clusterisunchanged,continuouslyincreasethenumberof itemsetsintheexperimentaldataitemset,andsetthe 

minimumsupporttothesame,thatis,min_sup=0.3.The experimental results are shown in Table 4. 

Table 4. Comparing Apriori Algorithm with Proposed Algorithm 

Trasaction 

itemsets 
Apriori 

Alogorithm(s) 

Proposed 

Algorithm(s) 

1500 13.6 7.3 

3000 19.1 10.6 

4500 28.6 16.2 

6000 40.2 28.9 

7500 60.4 42.8 

From the table 4, proposed algorithm is often better than classical Apriori algorithm in temporal performance, and 

with the increasing number of transaction item sets, apriori algorithm running on a computer can significantly 

improve the time of mining analysis. However, with the proposed algorithm, as the number of transaction item sets 

increases, the time performance is getting better and better. Because with the increase in the number of transaction 

items, the nodes of the distributed cluster will gradually increase. In summary, the improved proposed algorithm is 

superior to the apriori algorithm in temporal performance.  

Experiment 2: Performance Comparison between Apriori Algorithm and Proposed Algorithm under Different 

Supporting Degrees.  



First ,this paper tests the data set RETAIL, selects the minimum support threshold range [0.02, 0.20]. And within 

this range, evenly increase the step: 0.02, so there will be a threshold of 10. Then, this paper use the data set retail to 

run the Apriori algorithm and the proposed algorithm respectively, and record the running time (Note that the 

running time is second). Figure 2 shows the experimental data obtained by executing the above three algorithms. 

Horizontal axis: support; vertical axis: time/s.  

Experiments show that the proposed algorithm runs much less time than the Apriori algorithm under different 

support levels. The higher the support, the longer the Apriori algorithm will run than the proposed algorithm. In 

summary, the temporal performance of the proposed algorithm under different support levels is always superior to 

the traditional Apriori algorithm. 

 

Figure 2. Performance Comparison under different support levels 

6. Conclusion 

Aiming at the traditional Apriori algorithm, when mining frequent itemsets, you need to continuously scan 

transaction data sets , So that the system I / O overhead and other shortcomings. In this paper, we improved Apriori 

algorithm in three aspects: compression in the transaction, reducing the number of scanning areas, and simplifying 

the candidate set generation. At the same time, the improved algorithm is parallelized in the Hadoop framework. The 

simulation results show that compared with the traditional Apriori algorithm, the proposed algorithm has good 

performance and security in temporal performance, mining frequent candidate itemsets and different support levels. 

However, it needs to be continuously improved in the future work. 
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