
Tessellations and Sweeping Nets: Advancing the Calculus of
Geometric Logic

Parker Emmerson

December 2023

1 Introduction
This paper focuses on the optimal arrangement of reflecting points for efficient ray tracing given
limited sweep time. We examine spatial configurations, employing our core concept of a sweeping
subnet and defining a causal barrier to capture constraints imposed by time.

We will also discuss the influence of these constructions on the design of an algorithm for
approximating optimal tessellations.

I have provided code for each of the graphs, as the mathematics is demonstrated unequivocally
by their implementation. The reader can test out the reality of this system by visualizing the graphs
themselves using Python in a suitable environment like Google Colaboratory.

2 Fundamentals

2.1 Sweeping Subnet
A sweeping subnet refers to the set of reachable points on a surface from a light source within a
time constraint. To formalize:

∥r⃗i − x⃗i∥ ≤ 2∥n⃗(Xi)∥ < 2ξ. (1)

This equation establishes the geometrical constraints required to capture the notion of sweeping
efficiency rigorously.

2.2 Causal Barrier
The causal barrier is the spatial limit reachable by rays within a defined temporal boundary:

rbarrier(t) = max
x,y∈C

G(x, y) · P (y, t). (2)

It delineates the boundary of influence for any point within our geometric configuration.

1

Figure 1: Schematic representation of a sweeping subnet.

2.2.1 Causal Barrier Dynamics

A pivotal factor in tracing rays within a limited timeframe is the concept of a causal barrier. This
barrier represents the set of points that are unreachable by light within a given period, restricted
by past events and influences. The causal barrier is a manifest constraint shaped by the maximum
sweep time τ and the network of reflecting points across the surface Ω.

The causal barrier’s radius, rbarrier(t), quantifies the spatiotemporal limit of causal influence for
light propagating in the medium, and is expressed as:

rbarrier(t) = max
(x,y)∈C

G(x, y) · P (y, t), (3)

where G(x, y) characterizes a geometric factor dependent on the spatial coordinates of the
medium, and P (y, t) signifies the probability of light or causal influence reaching point y at time t.

Notably, the causal barrier encompasses not just the physical impediments to light’s movement
but also integrates the historical dependencies influencing its progress. Factors such as prior ray
paths and reflecting surface orientations are embodied within this structure. For a discretized
model:

2

ki1...in := lim
x→pi

0

s(x), (4)

which signifies the link between the sites’ tessellation patches and the causal barrier. Here,
the function s(x) describes the geometric state at each point x along a path pi0, converging on
the reflective elements’ configurations. The optimized tessellation, qi1...im , thus not only examines
spatial coverage but also adapts to temporal dimension constraints imposed by the causal barrier.

Figure 2 illustrates the causal barrier’s structure, highlighting its variation with different dis-
cretization parameters and tessellation configurations. As the discretization granularity refines,
the causal barrier grows dynamically, underscoring the coupling between discretization strategies
and the operational envelope of the tessellated reflective elements. In essence, it becomes a data
structure encoding the system’s global dynamics, encompassing discretized ray paths, reflective in-
teractions, and time-sensitivity constraints. This characterization permits an informed assessment
of tessellation costs and provides insight into the computational complexity of potential paving
schemes across the surface Ω.

Figure 2: Visualization of Causal Barrier with varying discretization parameters.

Code f o r v i s u a l i z i n g the Causal Bar r i e r

import numpy as np
import matp lo t l i b . pyplot as p l t
from matp lo t l i b . c o l o r s import PowerNorm

Function to s imulate the causa l b a r r i e r
de f causa l_bar r i e r (t , x i) :

Represents a s imu la t i on o f b a r r i e r va lue s in the 2D space
For s imp l i c i t y , r e tu rn ing a p l a c eho lde r array mimicking b a r r i e r va lue s
X, Y = np . meshgrid (np . l i n s p a c e (−1 , 1 , i n t (2/ x i)) , np . l i n s p a c e (−1 , 1 , i n t (2/ x i)))
Z = np . exp (−((X∗∗2 + Y∗∗2)∗∗0 .5 + t) / x i) # Exponent ia l decay as an example
re turn X, Y, Z

3

Def ine time va r i ab l e and d i s c r e t i z a t i o n parameters
t = 1 # Fixed po int in time
d i s c r e t i za t ion_params = [0 . 1 , 0 . 05 , 0 . 0 1] # Varying d i s c r e t i z a t i o n parameters

Create f i g u r e
f i g , axs = p l t . subp lo t s (1 , l en (d i s c r e t i za t ion_params) , f i g s i z e =(15 , 5))

Loop through varying d i s c r e t i z a t i o n parameters and p lo t
f o r ax , x i in z ip (axs , d i s c r e t i za t ion_params) :

X, Y, Z = causa l_bar r i e r (t , x i)
Using s c a t t e r p l o t f o r performance and v i s u a l i z a t i o n o f d i s c r e t i z a t i o n po in t s
s c a t t e r = ax . s c a t t e r (X, Y, c=Z , cmap=’ v i r i d i s ’ , norm=PowerNorm (0 . 3) , s=2)
ax . s e t_ t i t l e (f ’ D i s c r e t i z a t i o n : { x i } ’)
p l t . c o l o rba r (s c a t t e r , ax=ax)

p l t . t ight_layout ()
p l t . show ()

Further complicating the causal barrier’s role is its influence on evolving system constraints.
It guides how computational processes unfold within the discretized model, calculating emerging
constraints through time-evolving tessellations. The causal barrier, therefore, has a symbiotic
relationship with the tessellation process: each contributing to and shaped by the logical calculus
of ray propagation.

Let A =
⋃

i Ai and Wi, we define larger residue sets, Ri, where each subset’s union within Wi

is Ai, ensuring their existence due to the infinite cardinality of the Cartesian product space.
In summary, the causal barrier serves as a critical component in the tessellation problem, re-

flecting the complexities of both spatial arrangement and temporal evolution. It encapsulates the
ultimate bounds of light’s propagation and provides a comprehensive framework for calculating ray
trajectory efficiencies across the discretized landscape of Ω.

3 Optimal Tessellation Framework
We now introduce the formalism for our tessellation strategy starting with the radius of spheres Sr.

This section demonstrates the method for approximating surfacing singularities of saddle maps
using a sweeping net. The method involves constructing a densified sweeping subnet for each indi-
vidual vertex of the saddle map, and then combining each subnet to create a complete approximation
of the singularities. The authors also define two functions f1 and f2, which are used to calculate
the charge density for each subnet. The resulting densified sweeping subnet closely approximates
the surfacing saddle map near a circular region.

{⟨∂θ × r⃗∞⟩ ∩ ⟨∂x⃗× θ∞⟩} →
{
(Ar ⊕Br) ∩ S+

r

}
. (5)

This is the implication of a calculus structure combining spatio-temporally to form a oneness
denoted 1E{⟨∂θ×r⃗∞⟩∩⟨∂x⃗×θ∞⟩}→{(Ar⊕Br)∩S+

r }.

4

Here S+
r is the right half of the unit circle, defined as

S+
r

{
(x, y) ∈ R2 |x2 + y2 = r2, x ≥ 0

}
, (6)

and Ar, Br are specified as follows

Ar

{
(x̃, ỹ)|x̃ ≥ 0, ỹ ≥ 0, x̃2 + ỹ2 = 1, arcsin x̃ ≥ f1(arcsin (r

−1x̃))
}
, (7)

Br

{
(x̃, ỹ)|x̃ ≥ 0, ỹ ≥ 0, x̃2 + ỹ2 = 1, arcsin ỹ ≥ f2(arcsin (r

−1ỹ))
}
, (8)

(9)

In the above, ⊕ indicates the direct sum of two sets and r+ = r. x⃗ is a curve where the slope
of tangent line is greater than the vertex in the line function (See Fig.(??)b upper line). In the
same way, ∂x⃗ is the vertex set of x⃗ (single point set). θ∞ is a direct sum of line lmn := {(x, y) ∈
R2|x+ ry = n} (n is constant) and the line with infinite slope.

We define f1, f2 : [0, π/2] → [0, π/2] as follows

∂ arcsin (sin θ)

∂θ
= ...

1√
1− sin2 θ

(∫ 1

0

d

dθ
sin θds

)
= ...

cos θ√
1− sin2 θ

When we take θ = π
2 , f1(0) = f2(0) = 0. It implies that f1 and f2 continuously connect with

straight line to positively going. The ω calculates as follows

ω

∣∣∣∣∣S+
r
=

∫ π
2

0

{(
K−1f ′

i(s)∂s
)
× (x̃(s, l)− x̃(0, l))

}
, i = {1, 2}(10)

where K and charge density ∂s are constant and expressed as

x̃(s, l)x̃(0) + r sin sỸ (l), (11)

x̃(0, l)x̃(0) + rỸ (l), (12)

respectively. Here x̃(0) = (1, 1)t, and Ỹ (l) = (cos l, sin l)t normalize. Consequently, the net (5)
approximates the surfacing saddle map around the right circle, when r > 0 is sufficiently small(Since
only around a right circle), approximately satisfying charge density of sweeping generic singular
saddle case around the right circle.

4 Graphing the System
Graphing this system yields two different graphs depending on whether you use Python or Mathe-
matica.

5

4.1 Python Code

import matp lo t l i b . pyplot as p l t
import numpy as np

Def ine the f unc t i on s f1 and f2
de f f 1 (theta) :

r e turn np . a r c s i n (np . s i n (theta)) + np . p i /2 ∗ (1 − np . p i / (2 ∗ theta))

de f f 2 (theta) :
r e turn np . a r c s i n (np . cos (theta)) + np . p i /2 ∗ (1 − np . p i / (2 ∗ theta))

Def ine the un i t c i r c l e and r i gh t h a l f c i r c l e
theta = np . l i n s p a c e (0 , np . pi , 200)
x_unit = np . cos (theta)
y_unit = np . s i n (theta)
x_right = x_unit [theta <= np . p i /2]
y_right = y_unit [theta <= np . p i /2]

Def ine the s e t s A_r and B_r
r = 0 .5 # Set the rad iu s
A_r = []
B_r = []
f o r theta in np . l i n s p a c e (0 , np . p i /2 , 100) :

Convert theta to x and y coo rd ina t e s on the un i t c i r c l e
x = np . cos (theta)
y = np . s i n (theta)

Check i f (x , y) i s in A_r
i f x >= 0 and y >= 0 and x∗∗2 + y∗∗2 == 1 and np . a r c s i n (x) >= f1 (np . a r c s i n (r ∗ x)) :

A_r . append ((x , y))

Check i f (x , y) i s in B_r
i f x >= 0 and y >= 0 and x∗∗2 + y∗∗2 == 1 and np . a r c s i n (y) >= f2 (np . a r c s i n (r ∗ y)) :

B_r . append ((x , y))

Plot the un i t c i r c l e , r i g h t h a l f c i r c l e , s e t s A_r and B_r
f i g , ax = p l t . subp lo t s ()
ax . p l o t (x_unit , y_unit , l a b e l =’Unit c i r c l e ’)
ax . p l o t (x_right , y_right , l a b e l =’Right h a l f c i r c l e ’)

f o r po int in A_r :
ax . p l o t (po int [0] , po int [1] , marker=’o ’ , c o l o r =’b ’ , alpha =0.5)

f o r po int in B_r :
ax . p l o t (po int [0] , po int [1] , marker=’o ’ , c o l o r =’g ’ , alpha =0.5)

6

Set l a b e l s and t i t l e
ax . s e t_x labe l (’ x ’)
ax . s e t_y labe l (’ y ’)
ax . s e t_ t i t l e (’ Set s A_r (blue) and B_r (green) on the un i t c i r c l e ’)
ax . l egend ()

Show the p l o t
p l t . show ()

4.2 Mathematica Code

7

(∗ Def ine the cons tant s and func t i on s ∗)
r = 0 . 5 ; (∗ Radius o f the \
c i r c l e ∗)K = 1 ; (∗ Constant K∗)
f 1 [\ [Theta]_] :=
ArcSin [Sin [\ [Theta]]] + \ [Pi] /2 (1 − \ [Pi] / (2 \ [Theta])) ;

f 2 [\ [Theta]_] :=
ArcSin [Cos [\ [Theta]]] + \ [Pi] /2 (1 − \ [Pi] / (2 \ [Theta])) ;

x0 = {1 , 1} ; (∗ I n i t i a l po int ∗)
Y[l_] := {Cos [l] ,

Sin [l] } ; (∗ Normalized vec to r ∗) (∗ Def ine the s e t s Ar and Br∗)Ar =
Impl i c i tReg ion [
x^2 + y^2 == 1 && x >= 0 && y >= 0 &&
ArcSin [x] >= f1 [ArcSin [r^−1 x]] , {x , y }] ;

Br = Impl i c i tReg ion [
x^2 + y^2 == 1 && x >= 0 && y >= 0 &&
ArcSin [y] >= f2 [ArcSin [r^−1 y]] , {x , y }] ;

(∗ Vi sua l i z e the s e t s ∗)

RegionPlot [{Ar , Br} , PlotRange −> {{0 , 1 . 2} , {0 , 1 . 2}} ,
BoundaryStyle −> {Red , Blue } , PlotLegends −> {"Ar" , "Br " }] ;

(∗ Def ine the curves x (s , l) and x (0 , l)∗)

x [s_ , l_] := x0 + r Sin [s] Y[l] ;
x0 l = x0 + r Y[l] ;

(∗ Parametric p l o t o f the curves ∗)
Parametr icPlot [{ x [s , l] , x0 l } / .

l −> t , {s , 0 , \ [Pi] /2} , {t , 0 , 2 \ [Pi] } ,
P l o tS ty l e −> {{Red , Thick } , {Blue , Dashed }}]

8

Ar := {x⃗ ∈ ∂Ω: ∃θ such that ∥∂θ × r⃗∥ ≤ 2ξ, ∥r⃗ − x⃗∥ < r},
Br := {r⃗ ∈ ∂Ω: ∃x⃗ such that ∥∂x⃗× θ∥ ≤ 2ξ, ∥r⃗ − x⃗∥ < r},

(13)

The strategic overlay of Ar and Br yields a tessellation conducive to an optimal sweeping subnet.

5 Algorithmic Approach
I used the sweeping net concept to generate tessellations along the curve dictated by the form of the
notated calculus singularity as above. The tessellations lengths follow the curve of this function:

import numpy as np
import matp lo t l i b . pyplot as p l t

Constants and d e f i n i t i o n s based on LaTeX input and provided data
r = 0 .5 # Radius va lue from data
theta_inf = 2 ∗ np . p i # I n f i n i t y ang le

Function f1 as de f ined in provided text
de f f 1 (theta) :

r e turn np . a r c s i n (np . s i n (theta)) + (np . p i / 2) ∗ (1 − (np . p i / (2 ∗ theta)))
i f theta != 0 e l s e 0

9

Function f2 as de f ined in provided text
de f f 2 (theta) :

r e turn np . a r c s i n (np . cos (theta)) + (np . p i / 2) ∗ (1 − (np . p i / (2 ∗ theta)))
i f theta != 0 e l s e 0

Placeho lde r f o r t e s s e l l a t i o n r e l a t e d func t i on based on LaTeX i n t e r p r e t a t i o n
de f t e s s e l l a t i o n_ l e n g t h (phi , ps i , theta) :

i f phi != 0 :
re turn phi / np . cos (theta)

e l i f p s i != 0 :
re turn p s i / np . s i n (theta)

e l s e :
r e turn 0

Def ine the p l o t t i n g func t i on f o r t e s s e l l a t i o n
de f p l o t_ t e s s e l l a t i o n () :

Generate theta va lue s f o r the r i gh t h a l f o f the c i r c l e
theta_values = np . l i n s p a c e (0 . 0 1 , np . p i / 2 , 300) # Avoid d i v i s i o n by zero

Compute t e s s e l l a t i o n l ength f o r the se theta va lue s
t e s s e l l a t i o n_ l e n g t h s = [t e s s e l l a t i o n_ l e n g t h (f 1 (theta) , f 2 (theta) , theta)
f o r theta in theta_values]

Plot the r i gh t h a l f un i t c i r c l e
x = np . cos (theta_values)
y = np . s i n (theta_values)

f i g , ax = p l t . subp lo t s ()
ax . p l o t (x , y , l a b e l="Right Hal f Unit C i r c l e ")
ax . s c a t t e r (x , y , c=t e s s e l l a t i o n_ l eng th s , cmap=’ v i r i d i s ’ ,

l a b e l =’ T e s s e l l a t i o n Lengths ’)

ax . s e t_x labe l (’ x ’)
ax . s e t_y labe l (’ y ’)
ax . s e t_ t i t l e (’ T e s s e l l a t i o n s on Right Hal f o f Unit C i r c l e ’)
ax . l egend ()
p l t . show ()

p l o t_ t e s s e l l a t i o n ()

10

We outline an approximation algorithm aimed at minimizing error while constructing an efficient
sweeping path:

1. Choose a starting point on the boundary ∂Ω.

2. Initialize ξ > 0 as the discretization parameter.

3. Calculate the final position and orientation using the specified dynamical system.

4. Construct a sequence of points that form an approximate sweeping path subject to discretiza-
tion constraints.

This algorithm is geometrically inspired and heuristics-based, ensuring computational efficiency
for real-time applications.

6 Example Tessellations from the Method

import numpy as np

11

import matp lo t l i b . pyplot as p l t
import matp lo t l i b . patches as patches
import networkx as nx

Constants
theta_inf = 2 ∗ np . p i
r = 0 .5

Functions f1 and f2
de f f 1 (theta) :

r e turn np . a r c s i n (np . s i n (theta)) + (np . p i / 2) ∗ (1 − np . p i / (2 ∗ theta))

de f f 2 (theta) :
r e turn np . a r c s i n (np . cos (theta)) + (np . p i / 2) ∗ (1 − np . p i / (2 ∗ theta))

Def ine d e c i s i o n graph f o r l o g i c modulation
de f create_decis ion_graph () :

G = nx . DiGraph ()

Def ine l o g i c a l nodes f o r q u a n t i f i e r s and l o g i c ope ra t i on s
log i ca l_nodes = [’ phi_eq_psi ’ , ’ some_other_node ’] # Adjust as needed
f o r node in log i ca l_nodes :

G. add_node (node , va lue=np . random . rand ()) # Assign random va lue s

f o r demonstrat ion
return G

G = create_decis ion_graph ()

Def ine a l o g i c vec to r c a l c u l a t i o n
de f l og i c_vec to r (G, node_name) :

Placeho lde r funct ion , not based on meaningful l o g i c yet
re turn G. nodes [node_name] [’ value ’] # Ret r i eve s the as s i gned ’ value ’
a t t r i b u t e from the node

Te s s e l l a t i o n v i s u a l i z a t i o n (co r r e c t ed)
de f v i s u a l i z e _ t e s s e l l a t i o n (G, domain , hex_centers , hex_size) :

f i g , ax = p l t . subp lo t s ()

Loop through each hexagon cente r
f o r c ent e r in hex_centers :

Convert c a r t e r s i a n (x , y) to po la r (r , theta) to use f 1 and f2
x , y = cente r
theta = np . arctan2 (y , x)

12

e f f i c i e n cy_va l u e = f1 (theta) ∗ f 2 (theta)
Combine f1 and f2 f o r s i m p l i f i c a t i o n

Fetch value from de c i s i o n graph
dec i s i on_va lue = log i c_vec to r (G, ’ phi_eq_psi ’)

Adjust e f f i c i e n c y based on d e c i s i o n value
ad ju s t ed_e f f i c i e n cy = e f f i c i e n cy_va l u e ∗ dec i s i on_va lue

Create and draw hexagon adjusted by l o g i c vec to r
hexagon = patches . RegularPolygon (center , numVertices=6,
rad iu s=hex_size , o r i e n t a t i o n=np . p i /6)
co lor_value = ad ju s t ed_e f f i c i e n cy
Placeho lde r : should be a mapping to a va l i d c o l o r range

Set c o l o r and add patch (co r r e c t ed)
hexagon . s e t_ fa c e co l o r (p l t . cm . v i r i d i s (co lor_value))

Set c o l o r without ass ignment
ax . add_patch (hexagon) # Add the hexagon patch to the p l o t

ax . set_xlim (domain [0] , domain [1])
ax . set_ylim (domain [2] , domain [3])
ax . set_aspect (’ equal ’) # Equal aspect r a t i o f o r x and y dimensions
p l t . ax i s (’ o f f ’) # Turn o f f ax i s l i n e s and l a b e l s
p l t . show ()

Def ine the domain and hexagon cente r func t i on
domain = (−5 , 5 , −5, 5) # Domain f o r p l o t t i n g
hex_size = 0 .5 # S i z e o f hexagons

Construct hexagon c en t e r s manually
hex_centers = [(i , j) f o r i in np . arange (domain [0] , domain [1] , hex_size)

f o r j in np . arange (domain [2] , domain [3] , hex_size)]

V i sua l i z e the t e s s e l l a t e d su r f a c e
v i s u a l i z e _ t e s s e l l a t i o n (G, domain , hex_centers , hex_size)

13

The provided Python code illustrates an algorithm to visualize a tessellated surface using
hexagons whose properties are influenced by a decision graph with logical nodes and geometry-
modulating functions.

Mathematical Framework The tessellation process involves two critical functions, f1 and f2,
which appear to be scalar fields that map the polar coordinate to a calculated value that influences
tessellation:

f1(θ) = arcsin (sin(θ)) +
π

2

(
1− π

2θ

)
(14)

f2(θ) = arcsin (cos(θ)) +
π

2

(
1− π

2θ

)
(15)

These functions are continuous for all 0 and are utilized in the tessellation to modulate the
properties of individual hexagons in the pattern. The choice of arcsine function suggests a periodic
influence within the tessellation, potentially attending to the natural constraints of the surface.

The mesh initialization relies on an evenly spaced grid determined by hex centers in Cartesian
coordinates, which are then mapped to polar coordinates within the visualization function. The
hexagonal tessellation operates in this 2D domain described by the variable domain.

In the scope of topology, each point (x, y) is mapped to the tessellation efficiency using the
functions f1 and f2 after converting to polar coordinates, . The radial aspect evokes a natural
coordinate system, possibly intended to align with radially symmetric properties of the surface or
light source distribution.

Logic Modulation and Visualization:

14

A directed graph G serves as a decision model, perhaps encoding logic or data pertaining to each
hexagon’s fitness regarding an overarching tessellation strategy. The nodes within G may represent
choices or properties deemed significant in the tessellation:

k =
where k is the logical output that could symbolize decision-making processes, such as the reflec-

tivity or permissibility of a hexagonal tile within the tessellation.
Visualization merges combinatorial logic and geometric heuristics to derive the tessellated sur-

face. The output hexagon’s color (color value) combines geometric modulating variables (from f1, f2)
and the logic-driven decisionvalue, illustratingviaacolormaptheareasinfluencedbylogicalconditions.

Interpretation and Usage The intersection of computational geometry and logic in this visualiza-
tion has a broad applicability in fields like robotics, spatial analysis, and computational optics. In
these fields, tessellations often underpin mesh generation for simulations, photorealistic rendering,
and path planning.

It is worth noting that the validity of the tessellation approach hinges on the semantic linkage
between polar coordinates (θ, r) and f1, f2 functionality. Moreover, the logic vector decisions
influenced by G’s logical nodes imply a flexibility that allows for optimized tessellations tailored to
varied application-specific conditions.

Commentary on Code Structure and Style The code elegantly combines functional abstraction
with procedural execution. The modeling of the problem in terms of polar coordinates implies an
understanding of spatial symmetry, and the use of a decision graph suggests an appreciation for
the mathematical rigor of computational logic. Computationally, converting Cartesian coordinates
to polar within a loop is suboptimal, and caching these conversions could improve performance.
Additionally, the logic model G is not fully exploited within the provided code but serves as a
scaffold for refining the decision-making process for each element of the tessellation.

Incorporating dynamic logic that modulates the visual representation of computational tessel-
lations presents an innovative approach, blending discrete mathematics with continuous geometries
to produce a visualization rich in information and adaptable to diverse scenarios in computational
design and analysis.

Examples:

15

7 Extrapolating into 3D

8 Logic Vectors as Directed Graphs and Geometric Logic
We want to essentially iterate the tessellation over a space that evolves through the logic vector
directed graphs. The edges of the hexagon units of the tessellation are geometric logic vectors,
and they manipulate the orientation and direction of the tessellation depending on the logical
deductions and inferences based on the geometric interpretation of the vectorial logic assessments
of other activities in the space.

The provided code above represents various computational concepts from different domains,
ranging from symbolic logic operations to graph theory and mathematical transformations.

import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . patches as patches
import sympy as sp
import networkx as nx

Constants

16

theta_inf = 2 ∗ np . p i
r = 0 .5

Functions f1 and f2
de f f 1 (theta) :

i f theta == 0 :
re turn np . p i / 2

re turn np . a r c s i n (np . s i n (theta)) + (np . p i / 2) ∗ (1 − np . p i / (2 ∗ theta))

de f f 2 (theta) :
i f theta == 0 :

re turn np . p i / 2
re turn np . a r c s i n (np . cos (theta)) + (np . p i / 2) ∗ (1 − np . p i / (2 ∗ theta))

Def ine d e c i s i o n graph f o r l o g i c modulation
de f create_decis ion_graph () :

G = nx . DiGraph ()
l og i ca l_nodes = [’ psi_1 ’ , ’ psi_2 ’ , ’ omega ’ , ’ phi ’]
f o r node in log i ca l_nodes :

G. add_node (node , va lue=np . random . rand ())
re turn G

Logic vec to r and l o g i c ope ra t i on s
de f update_logic_vector (G, log ic_expr) :

G. nodes [’ phi ’] [’ value ’] = log ic_expr # Update the l o g i c va lue based on user input

Function to randomly update the l o g i c va lue s f o r demonstrat ion purposes
de f random_logic_update (G) :

f o r node in G:
G. nodes [node] [’ value ’] = np . random . rand ()

Te s s e l l a t i o n v i s u a l i z a t i o n
de f v i s u a l i z e _ t e s s e l l a t i o n (G, domain , hex_centers , hex_size) :

p l t . ion ()
f i g , ax = p l t . subp lo t s ()
f o r c ent e r in hex_centers :

x , y = cente r
theta = np . arctan2 (y , x) i f x != 0 e l s e np . p i / 2
e f f i c i e n cy_va l u e = f1 (theta) ∗ f 2 (theta)
l og i c_va lue s = [G. nodes [node] [’ value ’] f o r node in G]
dec i s i on_va lue = np . mean(l og i c_va lue s)
ad j u s t ed_e f f i c i e n cy = e f f i c i e n cy_va l u e ∗ dec i s i on_va lue
hexagon = patches . RegularPolygon (center , numVertices=6, rad iu s=hex_size ,

o r i e n t a t i o n=np . p i /6)
co lor_value = np . c l i p (ad ju s t ed_e f f i c i en cy , 0 , 1)

17

hexagon . s e t_ fa c e co l o r (p l t . cm . v i r i d i s (co lor_value))
ax . add_patch (hexagon)

ax . set_xlim (domain [0] , domain [1])
ax . set_ylim (domain [2] , domain [3])
ax . set_aspect (’ equal ’)
p l t . ax i s (’ o f f ’)
p l t . show ()

Domain and hexagon s i z e f o r t e s s e l l a t i o n
domain = (−5 , 5 , −5, 5)
hex_size = 0 .5

Construct hexagon c en t e r s
hex_centers = [(i , j) f o r i in np . arange (domain [0] , domain [1] , hex_size)

f o r j in np . arange (domain [2] , domain [3] , hex_size)]

Create d e c i s i o n graph with random node va lue s
G = create_decis ion_graph ()

Simulat ion loop
f o r _ in range (3) : # Simulate user input and updating the graph 3 t imes

Randomly update the l o g i c va lue s
random_logic_update (G)
Re−v i s u a l i z e the updated t e s s e l l a t i o n
v i s u a l i z e _ t e s s e l l a t i o n (G, domain , hex_centers , hex_size)
p l t . pause (1) # Pause f o r v i s u a l e f f e c t

p l t . i o f f () # Turn o f f i n t e r a c t i v e mode
p l t . show ()

8.1 Symbolic and Fourier Transformations
The first two code snippets demonstrate the applications of Sympy, a Python library for symbolic
mathematics. They contain functions and symbols which allow for manipulation and representation
of symbolic expressions. The Fourier series approximations mentioned are indicative of attempting
to express a function as a series of sines and cosines, capturing the frequency domain representation
of spatial patterns.

8.2 Network Graph Logic Modulation
We see the instantiation of a decision graph via NetworkX, a library suitable for the creation, manip-
ulation, and study of the dynamics of complex networks. The directed graph G simulates logical con-
nections between hypothetical state representations psi1, psi2, andtheircombinedeffectonsomeresultantstateX.Thevisualizationfunctionvisualizegraphgeneratesarepresentationoftheselogicalrelationships.

Tessellation Visualization
The visualization functions within the last two snippets aim to generate a tessellated pattern

modified by the logic vector—the tessellation here is achieved via hexagonal and triangular units,

18

Figure 3: The base state

Figure 4: Mild Evolution of Coloring

19

Figure 5: Increased Color Change Indicates a kind of implied gradation movement

Figure 6: Increased Color Change Indicates a kind of implied gradation movement

20

Figure 7: Increased Color Change Indicates a kind of implied gradation movement

Figure 8: Increased Color Change Indicates a kind of implied gradation movement

21

Figure 9: Increased Color Change Indicates a kind of implied gradation movement

wherein their properties are modulated by some logic vector, a collection of mathematical functions
representing logical states. While the program is simple, it illustrates the prinicple that we can
evolve the pattern using different logic functions illustrating a geometric interpretation of reasoning.

9 Quasi-Quanta and Evolving Chaos
Integrating Geometric and Logic Structures The collective goal of these programs is to iterate
tessellations through a dynamically evolving space, influenced by logic vector directed graphs. Each
tessellation element’s edges represent geometric logic vectors—that is, the edges themselves have
logical properties dictating the flow and structure of the tessellation. This behavior is akin to
using an evolving map, where decisions at each geometric point affect the global arrangement of
the tessellation, carrying implications for both structural integrity and optimized design, possibly
within a machine learning or artificial intelligence context.

To illustrate this, we form an application of quasi-quanta symbolic transformations to visualize
the evolving chaotic states of the system. We see that the colorations represent varying depths of,
"runnels." This is illustrated using the program:

import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . patches as patches
import ipywidgets as widgets
from IPython . d i sp l ay import c lear_output

Imag inat ive ly d e f i n e some o f the custom symbols with parameters and func t i on s
Omega = 2 .0
gamma = 0.9

22

A_circ le = 1 .0
i_const = 1 .0
heart_factor = np . random . rand ()

Custom func t i on that i n t e r p r e t s the exp r e s s i on f o r a g iven (x , y)
de f interpret_quasi_quanta (x , y , t) :

Add some randomness to the c o l o r v a r i a t i o n
random_effect = heart_factor ∗ np . random . uniform (0 . 8 , 1 . 2)

Calcu la te a d i f f e r e n c e r ep r e s en t i ng Delta and Nabla as a d i s t ance from cente r
d i s t ance = np . sq r t (x∗∗2 + y∗∗2)
de l t a = np . abs (x − y)

Harmonic ope ra t i on s as a combination o f s i n e s and c o s i n e s
harmonic = np . s i n (Omega ∗ d i s t anc e ∗ t) + np . cos (gamma ∗ t)

Simulate the complex formula by combining terms in a c r e a t i v e way
r e s u l t = harmonic ∗ de l t a ∗ A_circ le / (i_const + random_effect) ∗ random_effect
re turn r e s u l t

Te s s e l l a t i o n parameters
domain = (−5 , 5 , −5, 5)
hex_size = 0 .5
hex_centers = [(i , j) f o r i in np . arange (domain [0] , domain [1] , hex_size)

f o r j in np . arange (domain [2] , domain [3] , hex_size)]

Widget f o r time con t r o l
t_s l i d e r = widgets . F l o a t S l i d e r (va lue=0, min=0, max=50, s tep =0.1 ,

d e s c r i p t i o n="Time" , continuous_update=False)

V i s u a l i z a t i o n func t i on that app l i e s the i n t e r p r e t i v e quasi−quanta func t i on
@widgets . i n t e r a c t (t=t_s l i d e r)
de f update_v i sua l i z a t i on s (t) :

c lear_output (wait=True)
f i g , ax = p l t . subp lo t s (f i g s i z e =(10 , 10))

Calcu la te c o l o r va lue s based on quasi−quanta func t i on i n t e r p r e t a t i o n
co lor_va lues = np . array ([interpret_quasi_quanta (x , y , t) f o r x , y in hex_centers])
Normalize c o l o r va lue s to [0 , 1] range
color_min , color_max = co lor_va lues . min () , co lor_va lues .max()
color_values_normal ized = (co lor_va lues − color_min) / (color_max − color_min)

Plot the t e s s e l l a t i o n and f i l l hexagons based on the c o l o r va lue s
f o r idx , c en t e r in enumerate (hex_centers) :

hexagon = patches . RegularPolygon (center , numVertices=6, rad iu s=hex_size ,

23

o r i e n t a t i o n=np . p i /6)
hexagon . s e t_ fa c e co l o r (p l t . cm . v i r i d i s (color_values_normal ized [idx]))
ax . add_patch (hexagon)

F i n a l i z e p l o t s e t t i n g s
ax . set_xlim (domain [0] , domain [1])
ax . set_ylim (domain [2] , domain [3])
ax . set_aspect (’ equal ’)
p l t . ax i s (’ o f f ’)
p l t . show ()

Display the widget
d i sp l ay (t_s l i d e r)

The form of the quasi quanta expression is taken from, "Combinations of Quasi Quanta Expres-
sions," (Emmerson, 2023), from the package, "Quasi Quanta Language Package." It serves as an
example form that large language models can apply to actual programs to visualize these kinds of
pseudo-programs using Python.

f ◦ g =
⋃

x∈S1∪S2

x = Ω
∆iÅ ∼
♡H ⊕ ·

⋆
⋆H∆Å

i⊕ ∼ ·♡

Thus, it serves as a more concrete example of how these linguistic expressions and linguistic
synchronicity forms can be applied and continue to evolve.

24

(a) t = .2 (b) t = .4

(c) t = .6 (d) t = .8

(e) t = 1.2 (f) t = 1.7

25

(a) t = 2.2 (b) Image 8

Figure 11: The pattern in the system resonance attains a higher degree of chaotic synchronicity as
time increases. This paper is published as a package with the Jupyter Python notebooks, and I
urge the reader to play with these programs as they see fit.

In practical terms, this could reflect a system where the tessellation adapts based on sensed or in-
ferred information—a robot adjusting its path planning based on dynamic environmental variables,
or a rendering system adjusting the level of detail based on viewer focus and processing power avail-
ability. Theoretically, the quasi quanta expressions then represent chaotic runnels through which
language flows into and through the oneness of the living one.

10 Logic Vectors, Directed Graphs, Tessellation Associations
This type of system requires careful orchestration of the logic and geometry interplay. Defining
a clear and coherent representation for the interaction between logical conditions and spatial tes-
sellation is key. It ultimately represents a complex adaptive system where localized decisions and
conditions propagate their influence through the network, affecting the larger whole and leading
to emergent spatial behaviors and patterns. This integration has a multitude of applications, from
computational physics simulations to optimizing rendering engines in computer graphics and ray
tracing.

However, for simplicity sake, I just want to draw the analogy between the potential for logic
statements to actively seek out proof environments by navigating geometric hexagonal tiling plat-
form topologically. Essentially, this works by simply noting the relationship between the interactive
compass, the symbolic directed graph (representative of a neural network), and the logic vector
adaptation presented by the large language model. The large language model essentially interprets
the logic vector (logic space geometry) as a mode of changing the functions of the tessellating
pattern.

26

For instance,

Figure 12: Example of an Arbitrary configuration of the Diredted Graph-Compass relationship.

27

Figure 13: Example of an Arbitrary configuration of the Diredted Graph-Compass relationship.

28

Figure 14: Example of an Arbitrary configuration of the Diredted Graph-Compass relationship.

29

Figure 15: Example of an Arbitrary configuration of the Diredted Graph-Compass relationship.

30

In the above code, we see how the time compass concept can be integrated with the connections of
a directed graph. Noticing this, we also notice that the time compass can be adapted to manipulate
the tessellation coloration program based on the interpretation of a set of logic vectors to form
runnels. This provides us a platform to connect chaos theory of an evolving dynamic system, logic-
vector space, which shares the same supra-manifold as space-time mathematically (Supramanifolds
of Logic, Emmerson 2023 (Limbertwig)), and the language of quasi-quanta synchronistic synergy.
This illustrates that there are real-number programmatic interpretations of the entire system and
that it isn’t just nonsense-dingbat statements when interpreted through a large language model
into functional code.

This kind of synthesis brings together computational logic, graph theory, and interactive visu-
alization in a way that allows for rich user interaction.

Here, we associate the tessellation coloration as an ebb and flow transformation over time
associated with the time-compass angular velocity conception, as

Figure 16: Slider (Angular Velocity adjusts the wave form within the circular band.)

Figure 17: "Time Compass"

31

Figure 18: In this example, the Time Compass adjusts the ebb and flow of the tidal coloring.

Not only this, though we can demonstrably prove that logic-vectors are a spatial language that
can be implemented in hard code using large language models to adapt the pseudo code of generative
mathematical language patterns (symbolic of quasi-quanta topological infinity meanings):

Look:

import ipywidgets as widgets
from IPython . d i sp l ay import d i sp l ay
import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . patches as patches
import sympy as sp
import networkx as nx

Def ine the f unc t i on s r equ i r ed f o r the t e s s e l l a t i o n pattern
de f f 1 (theta) :

i f theta == 0 :
re turn np . p i / 2

re turn np . a r c s i n (np . s i n (theta)) + (np . p i / 2) ∗ (1 − np . p i / (2 ∗ theta))

de f f 2 (theta) :
i f theta == 0 :

re turn np . p i / 2
re turn np . a r c s i n (np . cos (theta)) + (np . p i / 2) ∗ (1 − np . p i / (2 ∗ theta))

I n i t i a l i z e domain and hex c en t e r s f o r the t e s s e l l a t i o n
domain = (−5 , 5 , −5, 5)

32

Figure 19: Code for this program is attached in the python jupyter file included within the .zip
package of this paper.

33

Figure 20: It stands to reason that logical associations that form a geometrically solid structure
will form deeper runnels in the chaos theory itself as quasi-quanta syngergistically combine to form
oneness indications from infinity meanings.

34

hex_size = 0 .5
hex_centers = [(i , j) f o r i in np . arange (domain [0] , domain [1] ,

hex_size) f o r j in np . arange (domain [2] , domain [3] , hex_size)]

Def ine s l i d e r s f o r time , rad iu s and angular v e l o c i t y
t_s l i d e r = widgets . F l o a t S l i d e r (va lue=0, min=0, max=100 , s tep =0.1 ,

d e s c r i p t i o n="Time (s)")
R_sl ider = widgets . F l o a t S l i d e r (va lue=5, min=1, max=10, s tep =0.5 ,

d e s c r i p t i o n="Radius (m)")
omega_slider = widgets . F l o a t S l i d e r (va lue=2 ∗ np . pi , min=0, max=4 ∗ np . pi ,

s t ep =0.1 ∗ np . pi , d e s c r i p t i o n="Ang . Vel . (rad/ s)")

Function to c r e a t e the t e s s e l l a t i o n v i s u a l i z a t i o n
de f v i s u a l i z e _ t e s s e l l a t i o n (t , R, omega) :

f i g , ax = p l t . subp lo t s ()
f o r c ent e r in hex_centers :

x , y = cente r
theta = np . arctan2 (y , x) i f x != 0 e l s e np . p i / 2
e f f i c i e n cy_va l u e = f1 (theta) ∗ f 2 (theta) ∗ (1 − f 1 (theta)) ∗ (1 − f 2 (theta))
co lor_value = np . c l i p (e f f i c i e n cy_va l u e ∗ np . s i n (omega ∗ t) , 0 , 1)

hexagon = patches . RegularPolygon ((x , y) , numVertices=6, rad iu s=hex_size ,

o r i e n t a t i o n=np . p i /6)
hexagon . s e t_ fa c e co l o r (p l t . cm . v i r i d i s (co lor_value))
ax . add_patch (hexagon)

Adjust the layout or s t r u c tu r e o f the graph based on the
cur rent x and y po s i t i o n s
of the p a r t i c l e on the time compass
current_x_pos = R ∗ np . cos (omega ∗ t)
current_y_pos = R ∗ np . s i n (omega ∗ t)

The layout can be i n f l u en c ed by current_x_pos and current_y_pos

For example , we can use these va lue s to determine the s i z e or layout
o f the hexagons

ax . set_xlim (domain [0] , domain [1])
ax . set_ylim (domain [2] , domain [3])
ax . set_aspect (’ equal ’)
p l t . ax i s (’ o f f ’)

35

Display the p l o t
p l t . show ()

Function to c r e a t e the time compass v i s u a l i z a t i o n
de f v i sua l i z e_c i r cu la r_mot ion (t , R, omega) :

f i g , ax = p l t . subp lo t s ()

Draw c i r c l e and p lo t the cur rent p o s i t i o n o f the p a r t i c l e
c i r c l e = p l t . C i r c l e ((0 , 0) , R, c o l o r =’blue ’ , f i l l =Fal se)
ax . add_art i s t (c i r c l e)

x_path = R ∗ np . cos (omega ∗ np . l i n s p a c e (0 , t , 100))
y_path = R ∗ np . s i n (omega ∗ np . l i n s p a c e (0 , t , 100))
ax . p l o t (x_path , y_path , c o l o r =’gray ’ , l i n e s t y l e =’−−’)

current_x_pos = R ∗ np . cos (omega ∗ t)
current_y_pos = R ∗ np . s i n (omega ∗ t)
ax . arrow (0 , 0 , current_x_pos , current_y_pos , head_width=R/20 ,

head_length=R/15 , f c =’red ’ , ec=’red ’)
ax . s c a t t e r (current_x_pos , current_y_pos , c o l o r =’red ’)

ax . s e t_x labe l ("x (m)")
ax . s e t_y labe l ("y (m)")
ax . set_xlim(−R ∗ 1 . 5 , R ∗ 1 . 5)
ax . set_ylim(−R ∗ 1 . 5 , R ∗ 1 . 5)
ax . set_aspect (’ equal ’)

Update t e s s e l l a t i o n based on cur rent va lue s
v i s u a l i z e _ t e s s e l l a t i o n (t , R, omega)

Display the p l o t
p l t . show ()

Link s l i d e r s to v i s u a l i z a t i o n func t i on
widgets . i n t e r a c t i v e (v i sua l i z e_c i r cu la r_mot ion , t=t_s l ide r , R=R_slider ,
omega=omega_slider)

In this example, we use the logic vector:(
∀x
δ , ∃x

ϵ , ∀x
τ , ¬P (y)

∆ , R(x) =⇒ S(x)
∆ , ∃x∈E,∀y∈U,P (x) ⇐⇒ F (y)

∆

)
In this program, users can input a logical expression at each step to influence the visualization

of the tessellation. The draw logic graph edge function has been added to draw the logic graph on
the hexagon edges. The visualize tessellation function now includes the logic graph drawing inside
the loop over each hexagon center to embed the logic graph visualization within each hex tile. The
while True loop at the end of the program handles user input for interactivity.

36

11 Virtual Nerves
The tessellation, formed by a synergy that harnesses quasi-quanta significations to a oneness expres-
sion that maps the resulting conceptual energy number to the real number programming language,
this pseudo-coding method has yielded results. Thus, another potential application of the chaos-
expandin, runnel-forming, tessellation connection to logic vectors is virtual nerves as described by
Buchanan.

In Quantization and torsion on sheaves I, Buchanan states:
"Let Pε be an extended p̂-complex, and Γl [Pε] the group of toric connections stratifying every

p̂ into a space E.
Fig. 2

Pε regular with 01, 10 poles
P◦ = 0 ∂(10)

1

θ = P◦Π1 (P
⋆)

"
The theory has potential in the sense that we can form a kind of nerve scaffold that connects

via the time compass to the quasi-quanta linguistic synergy directing toward a symbolic analogical
oneness expression (isn’t it ironic that the directing toward a oneness in the energy number notation
is so similar to the directing of the oneness in the nerve center).

Then, we write a program,

import ipywidgets as widgets
from IPython . d i sp l ay import d i sp lay , c lear_output
import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . patches as patches
import sympy as sp
import networkx as nx

S l i d e r widgets f o r c o n t r o l l i n g parameters
t_s l i d e r = widgets . F l o a t S l i d e r (va lue=0, min=0, max=10, s tep =0.1 ,

d e s c r i p t i o n="Time (s)")
R_sl ider = widgets . F l o a t S l i d e r (va lue=5, min=1, max=10, s tep =0.5 ,

d e s c r i p t i o n="Radius (m)")
omega_slider = widgets . F l o a t S l i d e r (va lue=2∗np . pi , min=0, max=4∗np . pi , s t ep =0.1∗np . pi ,

d e s c r i p t i o n="Ang . Vel . (rad/ s)")

Function that r e tu rn s a new graph based on a given omega value
de f create_graph (omega_value) :

Here you can de f i n e the l o g i c o f how omega a f f e c t s the graph s t ru c tu r e
For demonstration , l e t ’ s generate a r a d i a l layout with a number o f nodes r e l a t e d to the omega value

37

G = nx . DiGraph ()
num_nodes = in t (4 + np . abs (np . s i n (omega_value)) ∗ 10)
f o r i in range (num_nodes) :

G. add_node (i)
i f i != 0 :

G. add_edge (0 , i)
r e turn G

Def ine the t e s s e l l a t i o n pattern and time compass func t i on
de f update_v i sua l i za t i on (t , R, omega) :

Clear any prev ious output
clear_output (wait=True)

Create a new d i r e c t ed graph based on omega
G = create_graph (omega)

Begin p l o t t i n g s ide−by−s i d e subp lo t s
f i g , (ax_tess , ax_compass) = p l t . subp lo t s (1 , 2 , f i g s i z e =(12 , 6))

Plot the time compass on the l e f t subp lot with dynamic outer r i ng th i c kne s s
c i r c l e = p l t . C i r c l e ((0 , 0) , R, c o l o r =’blue ’ , f i l l =False ,

l i n ew id th=np . abs (np . s i n (omega)) + 0 . 5)
ax_compass . add_art i s t (c i r c l e)
x_compass = R ∗ np . cos (omega ∗ t)
y_compass = R ∗ np . s i n (omega ∗ t)
ax_compass . p l o t (x_compass , y_compass , ’ ro ’)

Plot the moving po int on the c i r c l e
ax_compass . set_aspect (’ equal ’)
ax_compass . set_xlim(−R ∗ 1 . 5 , R ∗ 1 . 5)
ax_compass . set_ylim(−R ∗ 1 . 5 , R ∗ 1 . 5)
ax_compass . s e t_ t i t l e ("Time Compass ")

Plot the t e s s e l l a t i o n graph on the r i g h t subplot based on

the omega−dependent graph
pos = nx . spr ing_layout (G, i t e r a t i o n s =50)
nx . draw (G, pos=pos , ax=ax_tess)
ax_tess . s e t_ t i t l e (" Directed graph a f f e c t e d by Omega")
ax_tess . ax i s (’ o f f ’)

Update and d i sp l ay the f i g u r e
d i sp l ay (f i g)

I n t e r a c t i v e widgets to l i n k parameters with the v i s u a l i z a t i o n

38

widgets . i n t e r a c t i v e (update_vi sua l i za t ion , t=t_s l ide r , R=R_slider , omega=omega_slider)

Because this program can be tied to the, "time compass," concept, and thus in turn, phe-
nomenological velocity, we can formulate a theory of consciousness as the in-tandem existential
interaction of the actualizing of the symbolic experiential plateau synergizing a spontaneous big-
bang cosmograph with the structural nature of the geometric-logic game, but of course, we are left
with just another lens on metaphors of consciousness. However, it seems a promising mathematical
metaphor.

Figure 21: Slider (Angular Velocity adjusts the wave form within the circular band.)

12 Potential Applications of the Mathematical Linguistic In-
sight

Cellular Automata: These are mathematical models in which a grid of cells evolves through discrete
time steps according to a set of rules based on the states of neighboring cells. This could be
represented with a 3D tessellation where each layer represents a moment in time.

Graph Structures and Networks: Directed graphs and networks can visualize complex relation-
ships. These can be precisely defined with nodes representing logic states and edges representing
logical operations or transformations.

Fractals: Fractal structures emerge from simple rules applied recursively and can represent self-
similar logic at different scales, much like how genetic information can be packed densely within a
genome.

39

Figure 22: "Time Compass"

40

Figure 23: In this example, the Time Compass adjusts the ebb and flow of the tidal coloring.

41

Crystal Lattices: These structures can represent three-dimensional tessellations with repeating
logic units, much like how chemical structures crystallize according to molecular interactions.

Quantum Logic Gates: These are used in quantum computing and could be represented by a
complex 3D tessellation where each cell represents a qubit in a superposition of states.

Logic Solitons: In physics, a soliton is a self-reinforcing solitary wave that maintains its shape
while traveling at a constant speed. Similarly, we could envision a visual representation where logic
states propagate through a medium without dispersal.

Viral Capsids: The geometrical shapes of viral capsids can inspire new forms based on tessel-
lation logic. They often exhibit icosahedral symmetry, which could be translated into structured
logic patterns in 3D space.

To visualize these forms, we would define rulesets that determine the logical interactions and
transformations between units, much like how physical laws govern the structure of natural enti-
ties. By rendering these rulesets visually, we create a visual representation of how complex logical
structures might emerge from simple principles.

This type of modeling is highly abstract and crosses into areas of generative art, visual mathe-
matics, and computational biology. Each extrapolation represents an opportunity to explore how
patterns and logic can interplay to create rich and complex visual structures. Each form can also
embody different logical operations or interactions, allowing for a visual analogy to computational
processes or natural phenomena.

13 Conclusion
In this paper, we have explored geometrical constructs that define the optimal tessellation for ray
tracing within spatio-temporal constraints.

Our algorithmic approach serves as a substantial advancement in discretizing and handling
complex geometric configurations, permitting efficient computational simulations relevant to a range
of applications in computer graphics, optics, and robotic path planning.

The exploration of tessellation efficiencies using polar coordinates, logic vectors, and directed
graphs unveils a deeply interconnected framework between topology, computational geometry, and
logic. This intricate blend not only advances our understanding of mathematical landscapes but
also opens avenues for innovative applications across robotics, spatial analysis, and computational
optics. By translating logical operations into visual representations through tessellation, we create
a richly informative method for interpreting and manipulating complex datasets and processes.

The code structure and style discussed herein adeptly marry the abstract with the procedural,
unveiling an elegance in the computational modeling of spatial symmetries and logic operations.
Despite the computational challenges, such as the suboptimal conversion of Cartesian to polar
coordinates within iterative loops, the scaffold provided by the logic model G is a testament to the
adaptability and potential of this approach to optimize tessellations tailored to specific applications.

Extending these concepts into three-dimensional spaces and beyond, we embark on a journey
through potential forms that mimic the foundational structures of nature, from the double helix to
crystal lattices and quantum logic gates. Each of these extrapolations offers a unique perspective
on how logical structures emerge from simple rules, invoking a deeper appreciation for the inherent
logic that shapes our world.

Potential applications, as discussed, span from visually representing quantum computing phe-
nomena to The exploration of tessellation efficiencies using polar coordinates, logic vectors, and

42

directed graphs unveils a deeply interconnected framework between topology, computational ge-
ometry, and logic. This intricate blend not only advances our understanding of mathematical
landscapes but also opens avenues for innovative applications across robotics, spatial analysis, and
computational optics. By translating logical operations into visual representations through tessel-
lation, we create a richly informative method for interpreting and manipulating complex datasets
and processes.

The code structure and style discussed herein adeptly marry the abstract with the procedural,
unveiling an elegance in the computational modeling of spatial symmetries and logic operations.
Despite the computational challenges, such as the suboptimal conversion of Cartesian to polar
coordinates within iterative loops, the scaffold provided by the logic model G is a testament to the
adaptability and potential of this approach to optimize tessellations tailored to specific applications.

Extending these concepts into three-dimensional spaces and beyond, we embark on a journey
through potential forms that mimic the foundational structures of nature, from the double helix to
crystal lattices and quantum logic gates. Each of these extrapolations offers a unique perspective
on how logical structures emerge from simple rules, invoking a deeper appreciation for the inherent
logic that shapes our world.

Potential applications, as discussed, span from visually representing quantum computing phe-
nomena to modeling the evolution of viral capsids. The symbolic and generative capacities of
these mathematical and computational models unfold a rich tapestry of logical and geometric rela-
tionships that can be harnessed for varied and complex problem-solving scenarios, from AI-driven
analytics to the optimization of photorealistic rendering.

In conclusion, this paper has demonstrated the profound utility and versatility of combining
computational geometry with logic through tessellation. As we move forward, the continued devel-
opment and refinement of these methodologies promise to unlock further innovations in the fields
of computational design, analysis, and beyond. The path ahead is rich with possibilities, inviting
further exploration into the dynamic interplay between geometry, logic, and the computational arts.

References
[1] R. Buchanan, Quantization and Torsion on Sheaves I, Inde-

pendent Journal of Math and Metaphysics, 2023, Available at:
https://www.academia.edu/99676315/QuantizationandtorsiononsheavesI .

[2] P. Emmerson, Counter Calculus in Search of Greater Abstract Universality, Zenodo, 2020.
https://doi.org/10.5281/zenodo.4317712

[3] P. Emmerson, Research on Energy Numbers and Associated Mathematical Structures, Zenodo,
2020. https://doi.org/10.5281/zenodo.10541666

[4] P. Emmerson, Exploring the Possibilities of Sweeping Nets in Notating Calculus- A New Per-
spective on Singularities, Zenodo, 2020. https://doi.org/10.5281/zenodo.10433888

[5] P. Emmerson, Pseudo Function Example, Zenodo, 2020.
https://doi.org/10.5281/zenodo.10373727

[6] P. Emmerson, Vector Calculus of Notated Infinitones, Zenodo, 2021.
https://doi.org/10.5281/zenodo.8381918

43

[7] P. Emmerson, Quasi-Quanta Language Package, Zenodo, 2021.
https://doi.org/10.5281/zenodo.8157754

[8] P. Emmerson, Infinity: A New Language for Balancing Within, 2023, DOI:
https://doi.org/10.5281/zenodo.7710323.

[9] P. Emmerson, A New Function of Homological Topology Available at:
https://zenodo.org/record/7493362.

[10] P. Emmerson, Pre-Eminent Numeric Energy: The Theory of the Energy Number Available at:
https://zenodo.org/record/7574612.

[11] P. Emmerson, The Geometry of Logic V1 Available at: https://zenodo.org/record/7556064.

[12] P. M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys-
ical Review, vol. 34, no. 1, pp. 57–64, 1929.

[13] B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, 1987.

[14] M. Senechal, Quasicrystals and Geometry, Cambridge University Press, 1996.

[15] A. S. Glassner, Principles of Digital Image Synthesis, Morgan Kaufmann, 1995.

[16] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From Theory To Im-
plementation, Morgan Kaufmann, 3rd edition, 2016.

[17] J. Arvo (ed.), Graphic Gems Package: Graphics Gems II, Academic Press, 1991.

44

