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Abstract

We introduce eight infinite sets of constants. Some we calculate. Roughly speak-
ing, we seek graphs as small as possible. The graphs serve as examples for differ-
ent kinds of ‘dimensions’.
In the second part ‘Points’, we place points on the plane, and from this, we ask
infinite many questions.
In a third part, we introduce for each graph a sequence called the ‘Thuerey Num-
bers’. At the end, we summarize the open questions.
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1 Introduction

In the book [1] we have read on page 93 Erdös’s Open Problem 13.12: ‘What is the smallest
number of edges in a graph G, such that dimG = 4 ?’.
That gives the cause to introduce some constants, which are all elements of the natural numbers
N := {1,2,3, . . .}.

We assume that the reader is familiar with the concepts of graphs, edges, and vertices. A
display of an abstract graph G means an isomorphic graph H in Rm such that the edges are line
segments, and H has a finite number of intersection points.

We repeat the definitions of four ‘dimensions’.

Let G be a connected finite graph.

*49 (0)421 591777, volker@thuerey.de

1



Definition 1. The dimension dim(G) is the minimum natural number k such that there is a
display of an isomorphic graph H in Rk, and all pairs of adjacent vertices in H have the same
distance. Please see [1] and [2].
The symbol Edim(G) means the same, except that all pairs of vertices of G which are adjacent
have the same distance, while pairs that are not adjacent have other distances. See [1].
The edge distance of two vertices a⃗ and b⃗ in a graph G is defined as the minimum number of
edges in a way from a⃗ to b⃗.
The dimension mdim(G) is defined as the smallest cardinality of a resolving set R, where a
resolving set is a subset of the vertices of G. It has the property that for each pair (⃗a,⃗b) of
vertices of G where a⃗ ̸= b⃗ there is r⃗ ∈ R such that the edge distance between a⃗ and r⃗ differs
from the edge distance between b⃗ and r⃗. In the case that there is no resolving set we write
mdim(G) = ∞. See the papers [3] and [4].
The distance from a vertex v⃗ to an edge e between vertices a⃗ and b⃗ is the minimum of the edge
distances between a⃗ and v⃗ and b⃗ and v⃗, respectively. We call this number d(⃗v,e).
The number edim(G) is defined as the smallest cardinality of an edge resolving set E, where
an edge resolving set is a subset of the vertices of G. It has the property that for each pair ( f ,g)
of edges of G where f ̸= g there is r⃗ ∈ E such that d(⃗r, f ) ̸= d(⃗r,g). In the case that there is no
edge resolving set we write edim(G) = ∞. See [5] or [6].

We define eight sequences of natural numbers. To avoid problems we define the denomination
R0 for the set of a single real number.

The number n is an element of N.

Definition 2.
vertex dim(n) := The smallest natural number of the cardinality of the set of vertices of a
graph G such that dim(G) = n.
vertex Edim(n) := The smallest natural number of the cardinality of the set of vertices of a
graph G such that Edim(G) = n.
vertex mdim(n) := The smallest natural number of the cardinality of the set of vertices of a
graph G such that mdim (G) = n.
vertex edim(n) := The smallest natural number of the cardinality of the set of vertices of a
graph G such that edim(G) = n.
edge dim(n) := The smallest natural number of the cardinality of the set of edges of a graph G
such that dim(G) = n.
edge Edim(n) := The smallest natural number of the cardinality of the set of edges of a graph
G such that Edim(G) = n.
edge mdim(n) := The smallest natural number of the cardinality of the set of edges of a graph
G such that mdim(G) = n.
edge edim(n) := The smallest natural number of the cardinality of the set of edges of a graph
G such that edim(G) = n.

Let S be a graph that has no edges. We define

dim(S) := Edim(S) := mdim(S) := edim(S) := 1 .
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2 Some Dimensions

Proposition 1.
It holds vertex dim(1) = vertex Edim(1) = 2 and vertex dim(2) = vertex Edim(2) = 3 and
vertex dim(3) = vertex Edim(3) = 4

Proof. The complete graphs K2, K3, and K4 establish the proposition.

Proposition 2. It holds edge dim(1) = edge Edim(1) = 1, edge dim(2) = edge Edim(2) = 3,
and edge dim(3) = edge Edim(3) = 6

Proof. The first two claims are trivial.
Graph K4 has a dimension of 3, see [1], p. 88, while graphs with fewer edges and four ver-
tices have a smaller dimension since we can embed them in R2. This shows edge dim(3)
= edge Edim(3) = 6, the number of edges of K4.

We can calculate vertex dim(n).

Proposition 3. It holds
vertex dim(n) = n+1 for all natural numbers n.

Proof. From [1], p. 88, we get dim(Kn+1) = n. The graph Kn+1 has n+1 vertices. Every graph
with fewer vertices is isomorphic to a subgraph of Kn.

Conjecture 1. For all n∈N it holds vertex Edim(n)= n+1 and edge dim(n) = edge Edim(n)=
1
2 ·n · (n+1). We believe that we need Kn+1.

3 Points

There are a well-known riddle ‘Place 9 points in the plane, such that 8 of them form a square,
and the 9. point is the center, such that there are 8 sets of 3 collinear points. Now draw 4 line
segments through all points. The line segments are connected.’ We generalize the riddle to an
infinite set of questions.
Let n be a natural number. We place n points anywhere in the plane on fixed positions. We call
this P(n). Note that for each n, P(n) describes infinite many placements.
We define that a polygon line consists of a finite number of line segments and it is homeomor-
phic to a line segment.
We define that a zig-zag line consists of a finite number of line segments. Every line segment
is connected at both ends with another line segment (with the exception of the first and the last
one). It may self-intersect.
We define a right-angle line as a polygon line and each piece either is horizontal or vertical.
We define a rectangle line as a zig-zag line such that each piece either is horizontal or vertical.
It may self-intersect.
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We define for each placement P(n) of n points eight constants.

Let denote C(P(n)) be the least natural number k such that all points of P(n) are a subset
of a polygon line, which consists of k line segments.
Let denote D(P(n)) be the least natural number k such that all points of P(n) are a subset of a
zig-zag line, which consists of k line segments.
Let denote E(P(n)) be the least natural number k such that all points of P(n) are a subset of a
right-angle line, which consists of k line segments.
Let denote F(P(n)) be the least natural number k such that all points of P(n) are a subset of a
rectangle line, which consists of k line segments.
Let denote G(P(n)) be the least natural number k such that all points of P(n) are a subset of
a polygon line, which consists of k line segments, and each point is a subset of a single line
segment from the polygon line.
Let denote H(P(n)) be the least natural number k such that all points of P(n) are a subset of
a zig-zag line, which consists of k line segments, and each point is a subset of a single line
segment.
Let denote I(P(n)) be the least natural number k such that all points of P(n) are a subset of a
right-angle line, which consists of k line segments, and each point is a subset of a single line
segment.
Let denote J(P(n)) be the least natural number k such that all points of P(n) are a subset of
a rectangle line, which consists of k line segments, and each point is a subset of a single line
segment.

Proposition 4. For a natural number n all just defined eight constants are less or equal 2 ·n.

Proof. We will construct a right-angle line that consists at most of 2 · n line segments, where
the points are a subset of the line, and every point is a subset of a single line segment. This
example fulfills the conditions for the situations to estimate all constants which we just have
defined above.
We assume n points, which are placed anywhere on the plane. Every point is defined by two
coordinates x and y. We assume that the points are ordered by their x coordinate. At first we
assume that all x coordinates are different. We start with the first point. We go vertically and
then horizontally to the second point. In this way, we connect all points. We use only horizontal
and vertical line segments. In the case that some points have equal x coordinates, we draw one
vertical line segment to connect them.
This means that we draw at most 2 ·n line segments, which do not intersect. We have drawn a
right-angle line. The proof is finished.
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Figure 1

On the right-hand side

is on the left a zig-zag line

and on the right a polygon line.
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Figure 2

On the right-hand side

on the left, we see a rectangle line

and on the right, a right-angle line.

4 The Thuerey Numbers

Let G⊂Rk be a graph with edges. If G has no subgraph Kn for all n> 2 we define T(G)n := 1
for n> 2. Otherwise, let N be the natural number > 2 such that there is a subgraph KN of G, and
for all n>N it holds that there is no subgraph Kn of G. (It may be that there is no N). We define
T(G)n := 1 for all n > N. For N ≥ n > 2 we define T(G)n as the minimum natural number of
colors such that there is a possibility to color the edges of G and there is no monochromatic
subgraph Kn of G. In the case that there is no such number we write T(G)n = ∞.
We define T(X)1 := T(X)2 := 0 for all graphs X. If we define T(L)n := 0 for all n for a
graph L without edges, we have defined a sequence (T(X)n)n∈N for each graph X. We call
‘T(X)n(n ∈ N)’ the ‘Thuerey Numbers’.

We summarize the open problems.

5 Open Problems

We ask for the sequences of Definition 2. We ask for the constants xxx(P(n)) for any placement
P(n), where xxx is from {C,D,E,F,G,H, I,J}. Further, for a graph X we ask for the sequence
(T(X)n)n∈N.
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Figure 3

The riddle:

Show D(P(9)) = 4 •
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