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Abstract

This paper introduces a topological model based on
two intersecting fields varying either same or opposite
phase that may graphically illustrate the Jacobian
conjecture for four variables. It also suggests connec-
tions with other mathematical topics as Gorenstein
Liaison, Tomita-Takesaki modular theory, the Mass
gap problem, Reflection positivity, or T-duality in
string theory, all considered within the same frame-
work.
Being applicable to the Jacobian conjecture, the

model would represent a confirmation case in both
the symmetric and antisymmetric systems. However,
in the symmetric system the mirror reflection prop-
erty would not be considered by the conjecture when
it comes to the vertical subfields.
The model has been developed in the context of

the physics beyond the Standard theory as an un-
conventional atomic system whose nucleus is formed
by mirror matter and antimatter. It is generally de-
scribed in the last section.

1 Antisymmetric system

We start by considering an antisymmetric system of
two intersecting fields that vary with opposite phase,
when the right field contracts the left expands and
vice versa. In their intersection they form two trans-
verse and two vertical subfields. The transverse sub-
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fields are mirror antisymmetric, when the right sub-
field expands the left contract and vice versa.

Figure 1: Antisymmetric system: at moment A2, the
right transverse subfield contracts and the left trans-
verse subfield expands; the vertical subfield moves
rightward.A4

The curvature of the transverse subfields is half
positive and half negative, and they are determined
by the forces of pressure caused by the inward dis-
placement of the negative curvature of the contract-
ing field determined, and by the outward displace-
ment of the positive curvature of the expanding field.

Those forces of pressure are represented by four
eigenvectors with eigenvalue 1 or −1.

An actual inversion equivalent to a 180 degrees ro-
tation is operated when the right-hand contracting
field expands and the left expanding field contracts.
Then, the right contracting subfield at A2 is mapped
to the left contracting subfield at A4, and the left
expanding subfield at A2 is mapped to the right ex-
panding subfield of A4.

In that way, the left and right transversal subfields
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exhibit chiral mirror symmetry at different times.
This is because half of the system follows a purely
imaginary time dimension, delayed with respect the
real time dimension that follows the other half of the
system.

Figure 2: Antisymmetric system: at moment A4, the
right transverse subfield expands and the left trans-
verse subfield contracts; the vertical subfield moves
leftward.A4

However, both left and right transverse subfields
are described by the same spatial dimensions. Those
dimensions cannot be the same that are used to de-
scribe the intersecting fields, because the Y coordi-
nate one of the transversal subfields will be consid-
ered a diagonal axis from the point of view of the
coordinates system of the intersecting fields. Mis-
leading the coordinates would introduce a relativistic
space-time elongated metric.

Each eigenvector has two possible directions, given
by their positive or negative sign. In that sense, the
antisymmetric system can be described by a complex
conjugate function of two variables, and a pair of 2×
2 complex matrices whose elements the mentioned
eigenvectors:

Figure 3: Pair of 2 × 2 complex conjugate matrices
whose elements are eigenvectors with eigenvalue 1 or
−1, related to the antisymmetric system.

2 Symmetric system

In the symmetric system the two intersecting field
vary with the same phase, they simultaneously con-
tract and, later, they will simultaneously expand.

The transversal subfields, being isomorphic, ex-
hibit chiral mirror symmetry at the same time. That
implies that performing the inversion of the system,
which would be equivalent to a 180-degrees rotation,
both subfields would be interchangeable, and so the
right and left transverse subfields would be mapped
to the left and right transverse subfields.

Figure 4: Symmetric system: at moment A1, both
left and right transversal subfields expand. The ver-
tical subfield moves upward while contracting.A4

However, considering the dynamics given by the
periodic contraction and expansion of the intersect-
ing fields, it can occur that when the contracting sys-
tem with expanding transverse subfield is inverted,
the curvatures of the intersecting fields have already
change and so the transverse subfields are now con-
tracting.

That would imply that the unrotated right expand-
ing field would be mapped to the left rotated con-
tracting subfield, and the left unrotated expanding
subfield would be mapped to the rotated right ex-
panding subfield.

The evolution of the symmetric system can be de-
scribed by a complex function of two variables, as
the four eigenvectors only can have two possible di-
rections, and a pair of2×2 complex matrices of eigen-
vectors with eigenvalue 1 or −1:
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Figure 5: Symmetric system: at moment A3, both
left and right transversal subfields contract. The ver-
tical subfield moves downward while expanding.A4

Figure 6: Pair of 2 × 2 complex conjugate matrices
of eigenvectors related to the antisymmetric system.

3 Rotational system

So far, we have described the inversion that per-
forms the mapping between the transverse subfields
in terms of a symbolic 180-degrees rotation, where
the symmetric and antisymmetric systems are con-
sidered as separate and unrelated systems described
by a complex and a complex conjugated function of
two variables, respectively.

However, in the context of a system that physi-
cally rotates, the symmetric and the antisymmetric
systems may turn to be a same system that is topo-
logically transformed after each 90-degrees rotation,
becoming periodically symmetric or antisymmetric.

That implies that the evolution of the system must
be described by two interpolated functions, the com-
plex function, and its harmonic conjugate solution.

The evolution of the rotational system can be rep-
resented by a set of 2x2 complex rotational 2 matrices
of eigenvectors with eigenvalue 1 or −1: Taking A2
as the identity matrix, the inversion operated at A4
mapping A2 implies a partial conjugation given by
the 90-degrees rotation of A2 performed at A3. In
that way, the two positive eigenvectors of A2 change
their sign at A3. This operation can be interpreted
as a ( 12 order derivative.

It also implies the transposition of A3, given by

Figure 7: Rotational interpolation of vector symmet-
ric and antisymmetric system spaces represented in a
2D scheme

Figure 8: Set of 2× 2 rotational matrices related by
pairs to the complex symmetric (A1 and A3) and the
conjugate antisymmetric (A2 and A4) systems.
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the partial conjugation operated at A4. Two of the
negative eigenvectors of A3 become positive at A4.
Their sign commutation can be interpreted as a ( 12
order antiderivative. In that sense, the first order
differentiation that operates the inversion of the an-
tisymmetric system will involve a ( 12 derivative and
a ( 12 antiderivative.
On the other hand, in the rotational system, the

vectors do not simply change their sign by a 180-
degrees permutation, they are physically rotated with
the whole complex plane. Their change of spatial
position can be observed if we identify them with
letters.

Figure 9: Actual rotation of the vectors in the context
of the rotational matrices, changing their position af-
ter each 90-degrees rotation.

Each of the eigenvectors only can have two pos-
sible directions. But considering them as rotational
vectors, they will have four possible directions. In
that sense, the interpolating rotational system must
be thought as a four variables polynomial.
Considering A2 as the starting point, and perform-

ing its inversion, from the pint of view of the rota-
tional vectors the number of variables would be three.
However, it does not seem possible to arbitrarily

separate matrix A2 from matrix A1, as it is the trans-
position of matrix A1 by means of its partial conju-
gation what gives birth to matrix A2.
The inversion of A2 involves the transposition of

A3, which is the negative reflection of A1. A2 is the
first order ( 12 + 1

2 ) derivative of A1 and A1 the first
order ( 12 + 1

2 ) antiderivative of A3. A1 and A3 are
intertwined to A2 and A4, and vice versa, being both
pairs interdependent.
The set of transformation matrices result from the

operations of transposition, complex conjugation (as
the sum of two partial complex conjugations), and
inversion:

• A1 (0-degrees rotation) represents the eigenvec-
tors in the symmetric system, when the transver-

sal subspaces have mirror symmetry at the same
moment; performing its partial conjugation (ro-
tating the plane 90-degrees) only two eigenvec-
tors (acting as two variables) change their sign
at A2.

• A2 (90-degrees rotation) represents the eigenvec-
tors when half of the system has a delayed its
phase, introducing a purely imaginary time di-
mension) having mirror antisymmetry with re-
spect to the other half side. A2 represents the
partial complex conjugation of A1 and its 1

2 or-
der derivative.

• A3 (180-degrees rotation) represents the partial
conjugation of A2 (only the yet two uncommuted
eigenvectors commute now their sign with re-
spect to A2); A3 also represents the negative
reflection of A1; its four eigenvectors (acting as
four variables) have already commuted their sign
with respect to A1; A3 represents the 1

2 order
derivative of A2, and the first order ( 12 + 1

2 )
derivative of A1.

• A4 (270-degrees rotation with respect to A1,
180-degrees with respect to A2, and 90-degrees
with respect to A3) represents the transpose of
A3, the 1

2 order antiderivative of A3, the second
transposition of A1, and the first order ( 12 + 1

2 )
derivative of A2; A4 is also the negative mirror
reflection of A2, having commuted their sign the
four eigenvectors.

• An additional 90-degrees rotation produces A1
which represents the positive reflection of A3, a
1
2 order antiderivative of A4, and the first order
( 12 + 1

2 ) antiderivative of A3.

4 Jacobian conjecture

The Jacobian conjecture [1] formulated by Keller in
1939 states that if a polynomial map from an n-
dimensional space to itself has Jacobian determinant
which is a non-zero constant, then the function has a
polynomial inverse.

Expressed in terms of vectorial functions, it would
state that if a vector-valued function (or map) from

4



an n-dimensional space to itself has Jacobian deter-
minant which is a non-zero constant, then the func-
tion (or map) has a vector-valued inverse.
The Jacobian determinant is a measure of how

much a transformation stretches or shrinks the space
it maps to, and it is defined for continuous transfor-
mations. The Jacobian conjecture applies to maps
between homeomorphic spaces, which are those that
can be continuously deformed into one another.
In the context of the rotational system, the trans-

formations are continuous but not in a linear way.
The smooth continuity passes through the interpola-
tion of the antisymmetric and the symmetric systems
after each 90-degrees rotation.
In that way, the topological structure of the trans-

verse subfields is preserved, being automorphic, even
when their size is not identical as it happens in
the symmetric system when the contracting subfields
map the expanding subfields. Their curvatures are
always half positive and half negative, as they are
formed by the inner curvature of an intersecting field
and by the outer curvature of the other intersecting
field.
In the antisymmetric system, the topological struc-

ture of the automorphic vertical subfield that maps
to itself when moving leftward or rightward is also
preserved because it’s always formed by a negative
curvature formed by the inner curvatures of both left
and right intersecting fields.
In the case of the symmetric system, the top ver-

tical subfield that moves upward while contracting
when the two intersecting fields contract, or down-
ward while expanding when the intersecting fields
expand, has a negative curvature. However, the in-
verted subfield that exists at the convex side of the
system, that maps the top vertical subfield, has a
double positive curvature.
In that sense, the topological structure of the con-

cave vertical subfield is not preserved in the inverse
convex subfield. But, still, the ascending contract-
ing concave subfield can be considered mapped to it-
self when a moment later descends while expanding.
However, in that case the mirror reflection property
of the vertical subfield would not be considered by
the conjecture.
An additional complexity could be introduced in

Figure 10: Antisymmetric system: at moment A3,
when the top vertical subfieldd descends while expand-
ing it has negative curvatures; but its mirror counter-
part at the convex side has positive curvatures.

the case that the intersecting fields periodically syn-
chronize and desynchronize their phases of variation
while the whole system rotates.

5 Gorenstein Liaison

In algebraic geometry, the Gorenstein theory [2] es-
tablishes that two modules in projective space are
linked if they are isomorphic. This implies that the
curves contained within these modules share the same
algebraic deficiency, which reflects the lack of regu-
larity in the curve. For instance, in the case of a
curve exhibiting a change in curvature sign, the defi-
ciency of the curve is equivalent to the degree of that
change.

The deficiency module of a curve is isomorphic to
the deficiency module of any other curve with the
same deficiency. Consequently, if two curves share
the same deficiency, then the modules that encom-
pass them in the projective space will also exhibit
the same deficiency module. This establishes that
the two modules are ”linked” by their deficiency in a
Gorenstein sense.

To be linked in projective space, it suffices for two
modules to preserve the algebraic structure imparted
by the deficiency in the curves. It is not mandatory
for the curves to exhibit the same curvature.

Under the model of intersecting fields, the algebraic
modules of the Gorenstein theory can be interpreted
as the transversal subfields in both the symmetric and
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Figure 11: The left and right modulus, represented by
the mirror transversal subfields, encompas curvatures
that exhibit a same irregularity, being half + and half
− from the point of intersection between the left and
right fields.

antisymmetric systems. The projective space can be
interpreted in terms of mirror reflection between the
left and right sides of the system.

The curvature of each modular transversal sub-
space exhibits a deficiency due to its sign change,
being half positive and half negative. In this con-
text, both modular transversal subspaces are auto-
morphic (or isomorphic) because the topological (or
algebraic) structure of their deficiency is preserved
under their mirror reflection (or projection), creating
a Gorenstein-style entanglement (or linkage).

The intersecting fields model conceptually would
in this way illustrate the relationship between the
Gorenstein and Jacobian conjectures for the case of
vectorial functions with four variables, as previously
observed.

6 Tomita-Takesaki theory

Considering the rotational fields system as a spe-
cific case of the Jacobian conjecture, it is possible
to conceptually infer its possible relations to Tomita-
Takesaki (TT) modular theory [3].

In TT theory two intersecting algebras form two
shared “modular inclusions” (with + and − half sided
subalgebras) and a “modular intersection” (with an
integer sided subalgebra).

The left and right half handed subalgebras will be
images of each other, when they are commutative, or
they will not be their mirror image when they are
noncommutative.

Mapping the modular inclusion to its reflection im-
age, the left and right subalgebras will be the oppo-
site image of each other (reverting their initial signs)
if they are commutative; if they are noncommutative,
the initial left sided subalgebra will be the image of
the right sided mapped subalgebra, and the initial
right-handed subalgebra will be the image of the left
sided mapped subalgebra.

TT theory decomposes a linear transformation into
its modular building blocks, revealing its automor-
phisms.

Decomposing the bounded operator, it obtains the
modular operator and the modular conjugation (or
modular involution) which is a transformation that
reverses the orientation, preserving distances and an-
gles.

Translating the abstract algebraic terms to the
fields model, two intersecting algebras would repre-
sent the two intersecting fields fluctuating with the
same or opposite phase.

The half handed subalgebras (or “modular inclu-
sions”) will be the transversal subfields of the nucleus
shared by the intersecting fields, while the integer
handed subalgebra (or “intersection inclusion”) will
be our vertical subfields. In this context, we iden-
tify commutativity and noncommutativity with mir-
ror symmetry and mirror antisymmetry, respectively.

The bounded operator that is decomposed will be
the 90-degrees rotational matrix; The modular build-
ing blocks are the set of matrices that are obtained
when applying the operator.

The modular operator will be the 1
2 partial conju-

gate A2 matrix; And the modular conjugation will
be the conjugate matrix A4, which forms the whole
conjugation by adding the fractional conjugations
( 12 + 1

2 ).
Therefore, by separating the conjugate matrix from

the complex one the automorphism of the antisym-
metric conjugate system is found.

The half sided algebras that form a modular in-
clusion are noncommutative, it means we are in the
antisymmetric system where the left intersecting field
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contracts while the right one contracts and vice versa;
in that system, the left transversal subfield will be
the mirror symmetric image (it will be the mapped
image) of the right transversal subfield when, later,
the left intersecting field expands and the right one
contracts.
In that sense, a past half handed subalgebra is be-

ing mapped with its future image. A time delay will
exist between both subalgebras.
Considering ∆ as the modular operator A2, J the

modular conjugation A4, and M the intersection of
two Von Neumann algebras, ∆−Y tM∆it will repre-
sent the positive and negative 1

2 sided modular in-
clusions of the modular operator, being t a real time
dimension and it an imaginary time dimension given
by the partial conjugation of A1 or A3.

It is this different time dimension what makes non-
commutative, as non-interchangeable, the modular +
and − inclusions related to ∆ in the antisymmetric
system.
Applying the modular involution, yields

JytM ′J−it .
∆−yt is transformed into Jyt and ∆it is trans-

formed into J−it, being JytM ′J−it the involutive au-
tomorphism of ∆−ytM∆it.
The noncommutative, as non-interchangeable,

∆−yt and ∆it become commutative or interchange-
able through time at JytM ′J−it, fixing their antisym-
metry (restoring the lost mirror symmetry) in that
way .

7 Reflection positivity

Related to the delay in time in the antisymmetric
system, it can also be mentioned a property that all
unitary quantum field theories are expected to hold:
“reflection positivity” (RP). [4]
The positive increasing energy that appears in one

side of the mirror system should also be reflected in
the other side. However, in the context of the anti-
symmetric system, the positive or increasing energy
of the contracting right transverse subfield does not
mirror simultaneously in the expanding left trans-
verse subfield, which exhibits negative or decreasing
energy.

Therefore, to obtain a positive energy reflected at
the left side, making the sides of the system virtually
symmetric, a time reversal operation is needed.

To observe the positive energy reflected at the left
side, it will be needed to go back in time to the mo-
ment where the left transversal subfield was contract-
ing and had a positive energy. This operation is per-
formed by a type of “Wick rotation”. [5]

The main time phase of the symmetric system can
be represented with the Y coordinate.

Figure 12: Reflection positivity in the antisymmetric
system.

By performing a partial conjugation that involves
a fractional derivative, the time coordinate Y under-
goes a rotation into the purely imaginary dimension
within the complex plane. At that moment, the mir-
ror system becomes antisymmetric as one side of the
system keeps following the imaginary time of Y while
the other side follows a harmonic phase. A positive
or negative time lag has been introduced.

Reversion time on one side of the system serves
as a symbolic tool to virtually restore symmetry to
the time phases. To revert to the previous time, one
could perform a reverse rotation of the complex time
axis (X+iY ) to achieve a full complex conjugation at
(–X–IY ). In the A matrices context, that time back-
wards rotation represents an antiderivative of −A.
When the time reverse has been symbolically com-

pleted, in the left side of the mirror system the left
subfield will be contracting, having an increased pos-
itive energy; this is a past reflection of the future
positive energy that there will be a moment later in
right side.
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In the reverse past time, at the right side of the
system the right subfield will be expanding having a
decreased negative energy. In regard to the symmet-

Figure 13: Reflection positivity the symmetric sys-
tem.

ric system, positivity is reflected between the right
and left transverse subfields at the same time. In
that sense, it’s not necessary to use the Wick opera-
tion to reverse time.

Both left and right transversal subfields will be the
mirror reflection of each other at the same time. How-
ever, in the case of the strong interaction in the sym-
metric system, when the contracting vertical subfield
has an increased positive energy while ascending to
emit a pushing force, it will be necessary to virtually
visit a past moment to look for a previous state where
positivity could be reflected.

Going back in time, the vertical subfield will be los-
ing its energy while expanding, moving downwards.
Therefore, at that past moment, the vertical subfield
will not display a positive energy.

Reflection positivity, however, can be found at that
past moment in the convex side of the system of
the two intersecting fields, where an inverted sub-
field with convex curvatures will be experiencing an
increased energy.

That inverted subfield can mirror the vertical sub-
field which in a future state will be ascending in the
concave side of the system through the Y axis.

The missing reflection positivity in the concave side
of the system in the strong interaction can be related
to a mass gap problem when it comes to the weak
interaction.

8 Mass gap problem

There will be a mass gap [6] in the system when the
two intersecting fields simultaneously expand, and
the vertical subfield experiences a decay of energy.

This case represents the ground state with the low-
est possible energy of the vertical subfield, which is
always greater than 0 because the highest rate of ex-
pansion of the intersecting fields prevents them from
having zero curvature.

The zero point of the vacuum, where there should
be no energy nor mass, is placed at the point of in-
tersection of the XY coordinates, and that point is
never reached by the vertical subfield that descends
through the Y axis while expanding during its decay.

An “upper” mass gap would be referred to the
highest possible mass of a particle in the strong inter-
action. Its limit would be given by the greatest rate
of contraction of the intersecting spaces.

Figure 14: Graphical representation of the mass gap
in the symmetric system; the upper gap occurs in the
compressed photonic subfield when both intersecting
fields contract, while the lower gap occurs in the de-
compressed subfield when both intersecting fields ex-
pand.

The zero point of the vertical subfield is marked in
yellow on the above diagram, at the point of inter-
section of the left and right intersecting fields.

The gap is given by the distance from that point
to the zero point where the X and Y coordinates
intersect, represented by a red mark. An arrow shows
the gap distance between those critical points.

However, in this model, the zero point does not
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represent a vacuum where neither energy nor mass
exists.
When the mass and energy of the vertical subfield

reach their weakest level in the concave side of the
symmetric system, an equivalent amount of energy
and mass arises in the convex side, where the zero
point is located, as the result of the double pushing
force caused by the displacement of the positive cur-
vature of the expanding intersecting fields.

Figure 15: Visual representation of the map gap in
the antisymmetric system, with the left and right dis-
placements of the point of intersection.

That mass and energy at this zero point will be
considered dark from the point of view of the concave
side of the system.
In the antisymmetric system, the lowest energy

level occurs when a transverse subfield experiences
a double decompression due to the displacement of
the concave curvature of the contracting intersecting
field and the displacement of the positive curvature
of the expanding intersecting field.
The corresponding double compression is then ex-

perienced by its mirror antisymmetric transverse sub-
field.

9 N = 1 Supersymmetric dual
atomic model

The fields model emerges in the context of the de-
velopment of a supersymmetric quantum field model
of an atom formed by the two intersecting fields that
share a nucleus of two transvers and two vertical sub-
fields that represent the matter and antimatter of the

dual structure. [7]
The composition of the atomic antisymmetric nu-

cleus will depend on the specific moment of the sys-
tem’s evolution. It may consist of a proton, a positron
and a neutrino, or an antiproton, an electron, and an
antineutrino.

9.0.1 Antisymmetric system: the left inter-
secting field expands while the right
one contracts (A2)

• The right contracting transversal subspace will
represent a proton.

• The left expanding transversal subspace will rep-
resent a neutrino.

• The vertical subspace moving toward the right
will represent a positron.

9.0.2 Antisymmetric system, the left inter-
secting field contracts while the right
one expands (A4)

• The right contracting proton will expand, be-
coming a right expanding antineutrino.

• The left expanding neutrino will contract, be-
coming a left-handed contracting antiproton.

• The vertical positron will move toward the left,
becoming an electron.

However, it does not reflect the moment when the
top vertical subfield passes through the central axis,
which is the reference center of symmetry of the sys-
tem, carrying a neutral charge.

It is considered neutral because it is placed in the
location used to distinguish between positive or neg-
ative: from that central point to the right the charge
will be positive, and from that point to the left it will
be negative.

This neutrality will occur during the intermediate
expansion or contraction of the intersecting fields.

In that case, the proton (or antiproton) transversal
subfield, and the neutrino (or antineutrino) transver-
sal subfield will show an isomorphic shape and their
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positive and negative charges will be in compensa-
tion. It may be at that moment when the notion of
neutron and antineutron arises.
Simultaneously, in the left side of the antisymmet-

ric system an antiproton and an electron arise.
Later, the left-handed antiproton of A4 will decay

into a left-handed neutrino at A2, while in the right
side of the mirror system a proton and a positron will
arise.
Proton and antiproton, and neutrino and antineu-

trino, will be Dirac antiparticles at different times.
Positron and electron are the same subfield, act-

ing at different times as their own mirror reflection
Majorana antimatter.
The existence of an electron and a positron in the

same atom, also known as “positronium”, was pre-
dicted by Dirac in 1928. However, positronium was
formulated as an exotic atom with no proton in its
nucleus.
The coexistence of proton and antiproton in

the same atom is currently accepted as an exotic
structure called “protonium” with no electrons nor
positrons.
In the dual atomic model, matter and antimatter

coexist and are relate to each other by means of their
chiral mirror reflection symmetry at the same or dif-
ferent times.
All the subfields in the antisymmetric system are

fermions with noninteger 1
2 spin, represented by the

commuted eigenvector, being ruled by the Pauli ex-
clusion principle. In that regard, they should adhere
to Fermi-Dirac statistics, although the dual atomic
nucleus is a causal model that can be described with-
out using probability.
Additionally, in that same context, considering an

antisymmetric Schrödinger’s cat as a figurative exam-
ple, it could be said that the right alive contracting
cat will be the delayed reflection of the left dead ex-
panding cat, and vice versa.
It can be discussed whether they are the future or

the passed reflection of each other, but that will only
be a way to speak.
There will not be a single alive and dead cat, but

two identical cats with opposite states and positions.
Their simultaneous states of being “alive” and

“dead” can be considered “superposed” but in the

context of their mirror antisymmetry.

9.0.3 Symmetric system, when the left and
right intersecting fields contract (A1)

• The right and left expanding transversal sub-
spaces represent a right-handed positive and a
left-handed negative gluon.

• The top vertical ascending subspace that con-
tracts receiving a double force of compression
will be the electromagnetic subfield that emits
a photon while pushing upward.

• The inverted bottom vertical subspace at the
convex side of the system represents the dark
decay of a previous dark antiphoton.

9.0.4 Symmetric system, when the left and
right intersecting fields expand (A3)

• The right and left expanding transverse sub-
spaces may represent −W and +W bosons.

• The top vertical descending subspace will be the
electromagnetic subfield losing its previous en-
ergy, after having emitted a photon.

• The bottom vertical subspace at the convex side
of the system is the dark anti electromagnetic
subfield that emits a dark antiphoton.

The left and right transversal subspaces will be
mirror symmetric antimatters at the same time, be-
ing bosons not ruled by the Pauli exclusion principle.
They should then obey the Fermi-Dirac statistics.

However, the photon and the dark antiphoton – or
the vertical subfield from which they emerge – are
mutually exclusive. Therefore, they are governed by
the Pauli exclusion principle, even though they have
an integer spin represented by the two converging
eigenvectors.

The identity of the symmetric transversal subfields,
labeled before as “W bosons” and “gluons” requires
further clarification.

Each of those subfields receives a bottom inward
pushing force and a top outward decompression – in
the strong interaction – or a top inward pushing force
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and a bottom outward decompression – in the weak
interaction.
In the strong interaction, the magnitudes of the

pushing forces caused by contracting or expanding
intersecting fields will be different, because the con-
tracting field exhibits a higher density, intensifying
the propulsive force caused by the displacement of
its negative curvature.
The vertical photonic subfield receives an inward

double pushing force from right to left and from left
to right caused by the displacement of the negative
curvatures of the intersecting fields.
These pushing forces are the same as those that de-

compress the transversal subfields – labeled as gluons
– at that moment. The emitted photon would have
a double helix spin. The pushing forces received at
different moments by the moving right positron and
the moving left electron in the antisymmetric system,
now converge simultaneously in the photonic subfield.
From the perspective of this model, the transversal

subspaces are the same topological subfields that con-
tract when the intersecting fields expand in the weak
interaction or expand when the intersecting fields
contract in the strong interaction.
The strong and weak interactions, then, are related

by the same mechanism. And the mirror transver-
sal subfields that mediate the strong and weak inter-
actions are the same topological subspaces that are
transformed through time.
The model is labeled as N = 1 because it relates in

a supersymmetric way, through time, each fermionic
subfield of the antisymmetric system with a bosonic
subfield of the symmetric system and vice versa. In
the case of the ascending photonic field related to the
symmetric system, it will be related to the electronic
field in the antisymmetric system in a double way
related to different times: when it moves toward left
acting as electron, and when it moves towards right
when acting as a positron.
In that way:

• The fermionic electron-positron subfield will be
the superpartner of the bosonic vertical subfield
that emits the photon when ascending.

• The fermionic proton-antineutrino subfield, and
the fermionic antiproton-neutrino subfields will

be the superpartners of the symmetric transver-
sal right and left subfields respectively, when
they contract or expand.

The symmetry of the system is preserved through
time. The modular Hamiltonian of the system also
remains invariant through time.

The intersecting spaces model can also be thought
in terms of the topology of a two genus torus or two
related tori.

The outer positive and the inner negative curva-
tures of the torus can be seen as the simultaneous
representation of the expanding or contracting mo-
ments of the vibrating fields when looking at them
from above, in an orthographic projection.

Figure 16: Symmetric system, Orthographic projec-
tion.

The symmetric and antisymmetric subfields can
be described as cobordant [8] subspaces. The ver-
tical subspaces share borders with the left and right
transversal subspaces, and they all share borders with
the two intersecting spaces.

These borders can be thought of as de unidimen-
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sional lines described by the curvatures of the inter-
secting fields.

From that point of view, the fields model could be
related to string theories.

In the antisymmetric fields system, the transverse
subspaces periodically change their role becoming the
negative or positive reflection of each other at differ-
ent times.

This type of automorphic mirror reflection symme-
try at different times may be related to the SYZ con-
jecture [9] in String theory, which states that there
exists a special type of Calabi-Yau manifold [10] that
is related to another Calabi-Yau manifold by a T-
duality [11] transformation.

In string theory, mirror symmetry emerges from
the notion of T-duality, which relates the spaces de-
scribed by Type IIA and type IIB strings theories. In
Type IIA string theory, the strings can move freely
in the Calabi-Yau transverse space with a larger ra-
dius, while in type IIB string theory, the strings are
confined to the boundaries of the transverse space of
shorter radius.

T-duality relates these two different types of larger
and smaller transversal spaces by means of a type of
inversion that exchanges the roles of the large and
small radii transverse spaces.

In the context of the dual fields model, the Calabi-
Yau spaces of smaller or larger radius may be consid-
ered equivalent to the transverse contracting or ex-
panding subspaces that are mapped to each other in
a mirror symmetric way by means of their topological
transformation through time, as described before in
the antisymmetric rotational system.

The elliptic orbits inside of the transversal sub-
fields, caused by their periodical expansion and con-
traction, can be visually related to the notion of el-
liptic fibrations.

10 Additional diagrams
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