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Abstract

In this paper I attempt to describe Mark Burgin’s results in non-Diophantine
mathematics which are important for foundation of mathematics and its appli-
cations in quantum field theory. In particular, the elimination of divergences
in Quantum Electrodynamics is described.
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1 Problems in foundation of classical mathematics

The title of the famous Wigner’s paper [1] is: ”The unreasonable effectiveness of
mathematics in the natural sciences”, and the paper is concluded as follows:

”The miracle of the appropriateness of the language of mathematics for
the formulation of the laws of physics is a wonderful gift which we neither understand
nor deserve. We should be grateful for it and hope that it will remain valid in future
research and that it will extend, for better or for worse, to our pleasure, even though
perhaps also to our bafflement, to wide branches of learning.”

Wigner is known mainly as a famous physicist, and it is seen from those
words that he treated mathematics mainly as a powerful tool for applications (e.g.,
in physics, information theory, chemistry, biology etc.). However, when I discussed
the problem of foundation of mathematics with mathematicians, I was surprised that
many of them treat mathematics only as an abstract science, and for them it is not
important whether or not there are problems in applications of mathematics.

In principle, such an approach also has the right to exist, and history
shows that many mathematical results, which at one time were considered purely
abstract, eventually found their application in physics and other sciences. But even
if some results are not of practical use, they may have a purely aesthetic value. For
we do not demand that poetry or music have any applications for the description of
nature. In poetry and music, the main thing is beauty, which cannot be expressed in
words. In mathematics, as Dirac said, the main thing is the beauty of formulas. But
there are some criteria here. Under the influence of my professors of mathematics, I
thought that the rigor of mathematical proofs is sacred for mathematicians, and they
will never sacrifice this. But is it?

1



In a possible approach to foundation of mathematics, which we call Ap-
proachA, it is not posed a question whether mathematics should correctly describe
nature. The goal of the approach is to find a complete and consistent set of ax-
ioms which will make it possible to conclude whether any mathematical statement
is true or false. This problem is also formulated as the Entscheidungsproblem which
asks for algorithms that consider statements and answers ”Yes” or ”No” according to
whether the statements are universally valid, i.e., valid in every structure satisfying
the axioms.

One of the most famous mathematicians who supported ApproachA was
Hilbert. For example, he said: ”No one shall expel us from the paradise that Cantor
has created for us”. Hilbert believed that the problem of foundation of mathematics
would be solved mainly within the framework of classical mathematics. One of the
definitions of this mathematics in the literature is that this mathematics is based on
classical logic and ZFC set theory. This is the mainstream approach to mathematics
which is used in applications. In simpler words, one can say that classical mathe-
matics involves all integers, all real numbers, continuity, infinitesimals and infinitely
large numbers. Alternatives to classical mathematics in ApproachA are construc-
tive mathematics and predicative mathematics, but they are almost never used in
applications.

The problem of foundation of classical mathematics is very difficult. The
Gödel’s incompleteness theorems state that mathematics involving standard arith-
metic of natural numbers is incomplete and cannot demonstrate its own consistency.
The problem widely discussed in the literature is whether the problems posed by
the theorems can be circumvented by nonstandard approaches to natural numbers,
e.g., by treating them in the framework of Robinson arithmetic, finitistic arithmetic,
transfinite numbers etc. However, the results obtained by Tarski, Turing and others
show that, in ApproachA, the problem of foundation of mathematics remains, and
this problem has not been resolved yet.

Gödel’s works on the incompleteness theorems, saying that any mathemat-
ics involving the set of all natural numbers has foundational problems, are written
in highly technical terms of mathematical logics. However, this fact is obvious from
the philosophy of verificationism. In the 20s of the 20th century the Viennese circle
of philosophers under the leadership of Schlick developed an approach called logi-
cal positivism which contains verification principle: A proposition is only cognitively
meaningful if it can be definitively and conclusively determined to be either true or
false (see e.g., [2, 3, 4]). However, this principle does not work in classical mathemat-
ics. For example, from the point of view of verificationism, it cannot be determined
whether the statement that a + b = b + a for all natural numbers a and b is true or
false.

However, in scientific community, there are strong opponents of verifica-
tionism. For example, as noted by Grayling [5], ”The general laws of science are not,
even in principle, verifiable, if verifying means furnishing conclusive proof of their
truth. They can be strongly supported by repeated experiments and accumulated evi-
dence but they cannot be verified completely”. So, from the point of view of standard
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mathematics and standard physics, verification principle is too strong.
Also, Popper proposed the concept of falsificationism [6]: If no cases where

a claim is false can be found, then the hypothesis is accepted as provisionally true.
In particular, the statement that a + b = b + a for all natural numbers a and b can
be treated as provisionally true until one has found some numbers a and b for which
a+ b 6= b+ a.

However, according to the philosophy of quantum theory, there should be
no statements accepted without proof and based on belief in their correctness (i.e.,
axioms). The theory should contain only those statements that can be verified, where
by ”verified” physicists mean an experiment involving only a finite number of steps.
So, the philosophy of quantum theory is similar to verificationism, not falsificationism.
Note that Popper was a strong opponent of quantum theory and supported Einstein
in his dispute with Bohr.

In particular, quantum theory should not be based on mathematics that
has foundational problems, but, according to Gödel’s incompleteness theorems, classi-
cal mathematics does have such problems. Quantum theory has made great progress
in fulfilling its program. For example, in this theory, physical quantities are not ab-
stract concepts, but only those that are described by well-defined operators. However,
existing quantum theory still is based on classical mathematics because it involves
space-time coordinates for which there are no well defined operators in relativistic
quantum theory. Therefore, the current version of most general quantum theory does
not yet satisfy all the principles of this theory and, as a consequence, in this theory,
some physical quantities are described by divergent integrals (see below).

From the point of view of verificationism and the philosophy of quantum
theory, standard classical mathematics is not well defined not only because it contains
an infinite number of numbers. For example, let us pose a problem whether 10+20
equals 30. Then we should describe an experiment which should solve this problem.
Any such experiment must use some kind of computing device. Therefore, the answer
to the question posed should be given not from any abstract considerations, but from
how this computing device works.

Any computing device can operate only with a finite amount of resources
and cannot work with numbers greater than some number L. If a and b are natural
numbers then we assume that our computing device gives for a + b and a · b the
same numbers as in standard mathematics if those numbers are less than L but at
no circumstances it can give a number greater than L. Consider two possibilities:

• a) If those numbers are greater than L then the result equals L. Say L = 40,
then the experiment will confirm that 10+20=30 while if L = 25 then we will
get that 10+20=25.

• b) If those numbers are ≥ L then the result equals standard result but modulo
L. Say L = 40, then the experiment will confirm that 10+20=30 while if L = 25
then we will get that 10+20=5.

So the statements that 10+20=30 and even that 2+2 = 4 are ambiguous because they
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do not contain information on how they should be verified.
In contrast to ApproachA, we define ApproachB as an approach to math-

ematics where mathematics not only correctly describes experimental data, but also
does not contain foundational problems. As is clear from Mark Burgin’s approach to
foundation of mathematics described in the subsequent sections, he was a proponent
of ApproachB. Even in the spirit of the last example, the title of Mark Burgin’s paper
[7] written in 1997 reads: ”Non-Diophantine Arithmetics or is it Possible that 2+2 is
not Equal to 4?” Meanwhile, for now, in this section, we will still describe problems
in ApproachA.

We believe the following observation is very important: although classical
mathematics (including its constructive version) is a part of our everyday life, people
typically do not realize that classical mathematics is implicitly based on the assump-
tion that one can have any desired amount of resources. Classical mathematics is
based on the implicit assumption that we can consider an idealized case when a com-
puting device can operate with an infinite amount of resources. In other words, from
the point of view of verificationism, standard operations with natural numbers are
implicitly treated as limits of operations with a finite natural L when L→∞. As a
rule, every limit in mathematics is thoroughly investigated but in the case of standard
operations with natural numbers it is not even mentioned that those operations are
formal limits of operations with a finite L when L→∞. In real life such limits even
might not exist if, for example, the universe contains a finite number of elementary
particles.

One of the key concepts in classical mathematics is the concept of infinites-
imals proposed by Newton and Leibniz more than 300 years ago. Since that time, a
titanic work has been done on foundation of classical mathematics. As noted above,
this problem has not been solved till the present time, but, for many mathemati-
cians, the most important thing is not whether a rigorous foundation exists but that
standard mathematics is a powerful tool for solving many problems.

The idea of infinitesimals was in the spirit of existed belief that any macro-
scopic object can be divided into arbitrarily large number of arbitrarily small parts,
and, in the times of Newton and Leibniz, people did not know about the existence of
atoms and elementary particles. But now we know that when we reach the level of
atoms and elementary particles then standard division loses its usual meaning and in
nature there are no arbitrarily small parts and no continuity.

For example, typical energies of electrons in modern accelerators are mil-
lions of times greater than the electron rest energy, and such electrons experience
many collisions with different particles. If it were possible to break the electron into
parts, then it would have been noticed long ago.

Another example is that if we draw a line on a sheet of paper and look at
this line with a microscope then we see that the line is strongly discontinuous because
it consists of atoms. That is why standard geometry (the concepts of continuous lines
and surfaces) can describe nature only in the approximation when sizes of atoms
are neglected, standard macroscopic theory can work well only in this approximation
etc. For example, differential geometry (DG) is used in General Relativity, which is
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a purely classical (i.e., non-quantum) theory that uses standard continuum mathe-
matics and does not take into account that matter consists of atoms and elementary
particles. DG is also used in quantum field theories involving a curved space-time
background. Those theories contain not only mathematical foundational problems
related to Gödel’s incompleteness theorems, but also to the problem that physical
quantities are described by divergent integrals.

Of course, when we consider water in the ocean and describe it by differ-
ential equations of hydrodynamics, this works well but this is only an approximation
since water consists of atoms. However, it seems unnatural that even quantum the-
ory is based on continuous mathematics. Even the name ”quantum theory” reflects
a belief that nature is quantized, i.e., discrete, and this name has arisen because in
quantum theory some quantities have discrete spectrum (i.e., the spectrum of the
angular momentum operator, the energy spectrum of the hydrogen atom etc.). But
this discrete spectrum has appeared in the framework of classical mathematics, i.e.,
mathematics which involves infinitesimals and has foundational problems.

I asked mathematicians whether, in their opinion, the indivisibility of the
electron shows that in nature there are no infinitesimals and standard division does
not work always. Some of them say that sooner or later the electron will be divided
but, as a rule, mathematicians agree that the electron is indivisible and in nature
there are no infinitesimals. They say that, for example in practice, dx/dt should be
understood as ∆x/∆t where ∆x and ∆t are small but not infinitesimal. I ask them:
but you work with dx/dt, not ∆x/∆t. They reply that since mathematics with
derivatives works well then there is no need to philosophize and develop something
else.

One of the key problems of modern quantum theory is the problem of
divergences: the theory gives divergent expressions for the S-matrix in perturbation
theory. In renormalized theories, the divergencies are eliminated by the renormaliza-
tion procedure where finite observable quantities are formally expressed as products
of singularities. Although this procedure is not well substantiated mathematically,
in some cases it results in excellent agreement with experiment. At the same time,
in nonrenormalized theories, infinities cannot be eliminated by the renormalization
procedure, and this a great obstacle in several fundamental problems, e.g., for con-
structing quantum gravity based on quantum field theory. As the famous physicist
and the Nobel Prize laureate Steven Weinberg writes in his book [8]: ”Disappoint-
ingly this problem appeared with even greater severity in the early days of quantum
theory, and although greatly ameliorated by subsequent improvements in the theory, it
remains with us to the present day”. The title of Weinberg’s paper [9] is ”Living with
infinities”.

So, classical mathematics has foundational problems which so far have not
been solved in spite of efforts of such great mathematicians as Cantor, Fraenkel, Gödel,
Hilbert, Kronecker, Russell, Zermelo and others, and, as noted above, classical math-
ematics is problematic from the point of view of verificationism and the philosophy of
quantum theory. The philosophy of those great mathematicians was implicitly based
on macroscopic experience in which the concepts of infinitely small/large, continuity
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and standard division are natural. However, as noted above, those concepts contra-
dict the existence of elementary particles and are not natural in quantum theory. The
illusion of continuity arises when one neglects the discrete structure of matter.

The above discussion gives reason to think that the problem of foundation
of mathematics can only be solved if significant changes are made to existing math-
ematics. However, this does not mean that existing mathematics will be canceled.
The history of science shows that new fundamental theories do not cancel existing
theories that have proven themselves in many problems. New theories usually only
show that existing theories are not universal because there are conditions under which
they do not work. Probably, the most famous example: the theory of relativity does
not cancel classical mechanics, but shows that it only works when all speeds are much
less than the speed of light, while when they are already comparable to the speed of
light, then it is necessary to apply the theory of relativity. The next section describes
what changes Mark Burgin proposed to make to mathematics to solve the problem
of its foundation.

2 Mark Burgin’s approach to the problem of foun-

dation of mathematics

Mark Burgin studied at the Faculty of Mechanics and Mathematics of Moscow Uni-
versity. In those years, this department was considered the Mecca of mathematics
throughout the Soviet Union. Many students and professors of the faculty believed
that other sciences are inferior with respect to mathematics. Therefore, they believed
that the problem of foundation of mathematics should be considered only from the
point of view of ApproachA described in Sec. 1. However, Mark believed that appli-
cations of mathematics were also very important, and this is clear even from the title
of his book with Czachor [10].

Apparently, Mark’s first paper on foundation of mathematics was [11] writ-
ten in 1977. It begins with the words: ”Even at the very beginning of the emergence
of mathematics as a science in ancient Greece, doubts arouse about how true many
basic mathematical logical abstractions were. In this case, the most important, ap-
parently, are the concept of infinity and the construction of natural numbers... These
problems were formulated in detail by P.K. Rashevsky [12], who pointed out on the
need to construct a natural series that differs significantly in its properties from the
classic natural series.”

In his paper [12], Rashevsky writes that ”... the natural series is still the
only mathematical idealization of real counting processes. This monopoly position
dawns its aura of a certain truth in the ultimate instance, absolute, the only pos-
sible, recourse to which is inevitable in all cases when a mathematician works with
recalculation their objects. Moreover, since the physicist uses only the apparatus
that mathematics offers him, then the absolute power of the natural series extends
and on physics and — through the number line — predetermines to a large extent
possibilities of physical theories.”
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In [11], Mark defined concepts that later became basic in his approach to
non-Diophantine Arithmetic. Then in [7, 10, 13, 14, 15] he builds a non-Diophantine
arithmetic A of integer numbers using weak projectivity with the Diophantine arith-
metic Z of all integer numbers where the definition of weak projectivity is as follows.

Let us take two abstract arithmetics A1 = (A1; +1, ◦1,≤1) and A2 =
(A2; +2, ◦2,≤2) and consider two mappings g: A1 → A2 and h: A2 → A1.

Definition. a) An abstract arithmetic A1 = (A1; +1, ◦1,≤1) is called
weakly projective with respect to an abstract arithmetic A2 = (A2; +2, ◦2,≤2) if
there are following relations between orders and operations in A1 and in A2 :

a+1 b = h(g(a) +2 g(b))

a ◦1 b = h(g(a) ◦2 g(b))

a ≤1 b only if g(a) ≤2 g(b))

b) The mapping g is called the projector and the mapping h is called the
coprojector for the pair (A1,A2).

The functions g and h determine a weak projectivity between the arithmetic
A1 and the arithmetic A2.

Informally, it means that to perform an operation, e.g., addition or multi-
plication, in A1 with two numbers a and b, we map these numbers into A2 , perform
this operation there, and map the result back to A1.

For instance, let us take A2 = Z, g(x) = x + 1 and h(x) = x− 1. Taking
a = 2 and b = 3, we have

2 +1 3 = h(g(a) + g(b)) = h(g(2) + g(3)) = h(3 + 4) = h(7) = 6

In such a way, these two functions g and h define the non-Diophantine arithmetic
A1 of integer numbers. Note that A1 contains the same integer numbers as the
conventional arithmetic Z but operations with them are defined in a different way.

In his papers and joint book with Czachor [10], Mark considers various
choices of functions g and h for various problems in non-Diophantine arithmetic.
However, from the point of view of foundation of mathematics, the set of all possible
pairs (g, h) must be significantly narrowed. As discussed in Sec. 1, from the point
of view of verificationism and philosophy of quantum theory, only those versions
of mathematics can be substantiated which do not contain the concept of infinity.
Those versions necessarily should contain a parameter L such that the theory does
not contain numbers greater than L.

As noted in Sec. 1, from the point of view of verificationism and the
philosophy of quantum theory, classical mathematics is not well defined because it
does not contain information on how all operations with numbers should be verified.
They can be verified only by using computing devices which can operate only with a
finite amount of resources and cannot work with numbers greater than some number
L. Nevertheless, the way of thinking of most mathematicians and physicists is such
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that fundamental mathematics and fundamental physics should not contain such a
number L.

However, the laws of how fundamental mathematics correctly describes
physics are determined by the universe in which we live, and this universe can be
considered a computer that determines these laws. For example, if there is only
a finite number of elementary particles in the universe, then the presence of L is
mandatory in these laws. This number is determined by the state of the universe.
Since this state is changing, the number L will be different at different stages of the
evolution of the universe.

Based on these considerations, Mark proposed in [16] the following option
for the functions g and h. Let us take a natural number L as the boundary parameter
of the non-Diophantine arithmetic AL . We build the non-Diophantine arithmetic AL

taking the following functions g and h for establishing a weak projectivity between
AL and Z:

g(x) =


x if −L ≤ x ≤ L

L if x > L

−L if x < −L

and

h(x) =


x if −L ≤ x ≤ L

L if x > L

−L if x < −L

Then the operations, that is, addition, subtraction, and multiplication, in
AL are defined in the following way:

a+L b = h(g(a) + g(b))

a×L b = h(g(a)× g(b))

a−L b = h(g(a)− g(b))

The number L is called the upper boundary number of the arithmetic AL.
Note that formally the non-Diophantine arithmetic AL contains all integer numbers
but with the above choice of the functions g and h, only numbers greater than –L and
less than L are accessible. All other integer numbers do not impact operations with
accessible numbers. As a result, arithmetic AL exactly models computer arithmetic
with integer numbers [17, 18]. It is also possible to suggest that arithmetic AL

will be useful for building finite physics based on sound and adequate mathematical
structures.

As shown in [16], the arithmetic AL becomes the standard arithmetic
Z in the formal limit L → ∞. However, as noted above, from the point of view
of verificationism, the value of L should be finite. For illustration, Mark considers
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examples of operations in the arithmetic AL where L = 10100. If ⊕, 	 and ⊗ are used
to denote addition, subtraction and multiplication in this arithmetic, respectively,
then:

1000⊕ 1000 = 2000

1090 ⊕ 1090 = 2× 1090

10200 ⊕ 1010 = 10100

1000⊗ 1000 = 1000000

1090 ⊗ 1090 = 10100

10200 ⊗ 1010 = 10100

1090 	 1080 = (1010–1)1080

10200 	 1010 = 10100

(10200 + 1000)	 10200 = 10100

Direct application of the definition of operations in the arithmetic AL gives the fol-
lowing result:

Proposition. For any natural numbers L and n, we have the following
identities in the arithmetic AL :

L+L n = L

L×L n = L

−L+L (−n) = −L−L n = −L

−L×L n = −L

−n+L n = n−L n = 0

L×L (−n) = −L

n−L L = 0 if n > L

0×L n = 0

0 +L n = n if −L ≤ n ≤ L

0 +L n = L if n > L

0 +L (−n) = −L if n > L
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and one can prove [16] the following

Theorem For any natural number L, we have:

a) addition and multiplication are commutative in the arithmetic AL;

b) addition in the arithmetic AL is not always associative;

c) multiplication in the arithmetic AL is always associative;

d) multiplication in the arithmetic AL is not always distributive with respect to
addition;

e) The results of addition, subtraction, and multiplication in the arithmetic AL

cannot be greater than L and less than –L.

The next section describes typical divergent integrals which appear in
quantum field theory (QFT) as a consequence of the fact that standard approach to
QFT is not well-defined. Then it is explained, how with Mark Burgin’s approach
to non-Diophantine arithmetic described above, divergent integrals in QFT can be
considered without divergences in the framework of a consistent mathematical theory.

3 Elimination of divergences in quantum electro-

dynamics

As noted in Sec. 1, one of the key problems of modern quantum theory is the problem
of divergences. Typical divergences in QFT are similar to the divergences in quantum
electrodynamics (QED). As shown in [16], after the integration over hyperspherical
angular variables, the integrals for the Feynman diagrams describing the electron
self-energy, the photon self-energy and the electron-photon vertex are:

J1 =

∫ ∞
0

p3dp

(p2 + l)2
; J2 =

∫ ∞
0

p5dp

(p2 + l)2
; J3 =

∫ ∞
0

p5dp

(p2 + l)3
(1)

In standard theory, those integrals are divergent, and in the literature this is some-
times illustrated as follows. Let Ji(pmax) (i = 1, 2, 3) be the integrals in Eq. (1) where
the upper limit is not ∞ but pmax. Then a simple integration gives that if pmax is
very large then

J1(pmax) =
1

2
(ln

p2max

l
− 1); J2(pmax) =

1

2
(p2max − 2pmaxln

p2max

l
+ l);

J3(pmax) =
1

2
(ln

p2max

l
− 3

2
) (2)

From the point of view of formal construction of QED, one should take the limits
of those expressions when pmax → ∞ because standard QED is based on standard
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mathematics where there is no maximum for the momentum. However, these limits
do not exist. This is an indication that mathematically QED is not well-defined.
Then a question arises why, nevertheless, QED describes experimental data with a
high accuracy.

The answer is as follows. Perturbation theory in QED starts from the
bare electron mass m0 and bare electron electric charge e0. However, the description
of experiment should involve not those quantities but real electron mass m and real
electron charge e. It has been proved that, in each order of perturbation theory, all
singularities of unknown quantities m0 and e0 and all singularities of QED perturba-
tion theory are fully absorbed by m and e such that the resulting formulas expressed
in terms of m and e do not contain singularities anymore.

This property of QED is characterized such that QED is a renormalizable
theory. A very impressive property of QED is that it describes the electron and
muon magnetic moments with the accuracy eight decimal digits. This result has
been achieved in the third order of perturbation theory, and so far no comparisons
of theory and experiment in higher orders is possible. It has been also proved that
electroweak theory and quantum chromodynamics also are renormalizable theories.
At the same time, QED and those theories cannot answer the question whether the
perturbation series in them are convergent or asymptotic. Also, the existing versions
of quantum gravity are not renormalizable.

Despite successes of renormalizable theories in describing experimental
data, the above discussion shows that those theories are not well-defined mathemat-
ically. One of the reasons, indicated in known textbooks (see e.g., [19]) is that they
contain products of quantized fields at the same points. This is not a correct mathe-
matical operation because quantized fields are distributions.

We now consider how the integrals in Eq. (1) should be treated in non-
Diophantine mathematics (NDM). We will use the version of NDM where the func-
tions g and h are described in the preceding section and it has been noted that those
functions have been proposed by Mark Burgin in [16].

A detailed description of NDM has been given in [10] and the very basic
facts of NDM have been described in Sec. 2. Let S(x) be a set of integer, rational
or real numbers x. Then, as follows from Theorem in Sec. 2, in NDM there always
exists a number L with the following properties: if x1, x2 ∈ S, then the results of
addition, subtraction and multiplication of x1 and x2 will be the same as in standard
mathematics if |x1| and |x2| are much less than L but can essentially differ from the
results in standard mathematics is x1 and/or x2 are comparable to L. Therefore,
we can say that Mark Burgin’s approach is applicable not only to foundation of
arithmetic, but also, in the general case, to foundation of mathematics.

Consider, for example, the integral J1 in Eq. (1). The Riemann sums for
this integral are defined as follows. We represent the interval [0,∞) as the union
[0,∞) = ∪∞i=0[pi, pi+1) where pi = i∆p, (i = 0, 1, ...∞) where ∆p > 0. Then the

11



Riemann sum for J1 is

S(n) =
n∑

i=1

p3i
(p2i + l)2

∆p (3)

and J1 is the limit of S(n) when ∆p→ 0 and n→∞.
Let us note that p and l are the dimensional quantities, and their dimen-

sions depends on systems of units. For example, in SI the dimension of p is kg ·m/s
while in the system of units h̄ = c = 1, which is often used in particle theory, the di-
mension is 1/length. To obtain the corresponding descriptions in NDM, it is necessary
to use non-Grassmannian linear spaces [10] where integer, rational and real numbers
are dimensionless. For this reason one can define p = ax where a is a constant having
the dimension of momentum, and x ∈ [0,∞) is the dimensionless variable. Then

S(n) =
n∑

i=1

x3i
(x2i + b)2

∆x (4)

where ∆x = ∆p/a, pi = axi and b = l/a2.
Since all the terms in the sum (4) are positive, in standard theory, J1

diverges and J1 is a limit of the sums S(n) when ∆x → 0 and n → ∞, then in
standard theory, ∀L > 0 ∃δ > 0 and ∃n0 such that S(n) > L ∀∆x < δ and ∀n > n0.

To eliminate the unwelcome divergence of the considered integrals, one can
use the non-Diophantine mathematics RL obtained from AL by replacing Z by the
set of real numbers R [10]. Then operations with numbers and functions cannot go
beyond the boundary number L in the positive direction and the boundary number –L
in the negative direction, as well as in AL. At the same time, results of contemporary
physics in general, and quantum theory in particular, which do not involve infinity
in the form of divergence, are preserved in this new setting if we take L sufficiently
large because for all numbers from RL from the interval (−L1/2/2, L1/2/2), all basic
arithmetical operations are the same as in the conventional Diophantine mathematics
R of real numbers. Note that if L is very large, the interval (−L1/2/2, L1/2/2) is
sufficiently large.

Contemporary quantum physics is based on the Diophantine mathematics
because in it, all operations with numbers and functions are performed according to
the rules of this mathematics. Using operations from a non-Diophantine mathematics
in QFT, we obtain ND quantum physics. When we utilize the non-Diophantine math-
ematics RL for building ND quantum physics, the Riemann sum (3) is transformed
to the non-Diophantine Riemann sum

SL(n) =
⊕n∑
i=1

[(p3⊗i ) � (p2⊗i ⊕b)2⊗]⊗∆p (5)

Here ⊕ denotes addition, 	 denotes subtraction, � denotes division,
∑⊕ denotes

multiple addition, and ⊗ denotes multiplication in the non-Diophantine mathematics
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RL. Taking the limit of SL(n) when ∆p→ 0 and n→∞, we obtain a non-Newtonian
integral [10]

JL =

∫ ⊕
[(p3⊗) � (p2⊗⊕b)2⊗]⊗ dp (6)

In ND quantum physics based on the non-Diophantine mathematics RL, it is the
counterpart of the integral J1 that describes the electron self-energy. By construction
of the non-Diophantine mathematics RL, the sum (5) cannot be greater than the
number L. Consequently, the integral (6) also cannot be greater than the number L.

By the same technique as before, in the non-Diophantine mathematics one
can transform the Riemann sum (4) to the non-Diophantine Riemann sum

SL(n) =
⊕n∑
i=1

[(x3⊗i ) � (x2⊗i ⊕b)2⊗]⊗∆x (7)

Taking the limit of this sum when ∆x→ 0 and n→∞, we obtain a non-Diophantine
integral [10]

JL =

∫ ⊕
[(x3⊗) � (x2⊗⊕b)2⊗]⊗ dx (8)

In ND quantum physics based on the non-Diophantine mathematics RL, the sum (7)
is also the counterpart of the integral J1 that describes the electron self energy. By
construction, this sum also cannot be larger than the number L. Consequently, the
integral (8) also cannot be larger than the number L.

As noted by Mark in [16], in a similar way, it is possible to demonstrate
that in the non-Diophantine mathematics RL, for all integrals — JL1 that describes
the electron self-energy, JL2 that describes the photon self-energy, and JL3 that de-
scribes the electron-photon vertex, we have the following inequalities

JL1 ≤ L, JL2 ≤ a2L, JL3 ≤ L (9)

This shows that, in contrast to standard mathematics where the values of Ji (i =
1, 2, 3), are infinite, their counterparts in ND quantum physics based on the non-
Diophantine mathematics RL are finite. Therefore, in ND quantum physics, the
renormalization procedure can be performed in a fully legitimate mathematical way.

4 Discussion

The consideration in Secs. 1 and 2 shows that only such versions of mathematics can
be free from foundational problems that do not involve the concept of infinity. One
such possibility is the version of non-Diophantine mathematics where the functions
g and h are as suggested by Mark Burgin in [16]. However, in the joint book of
Mark Burgin with Marek Czachor [10], another version of non-Diophantine arithmetic
without infinity is proposed. This is a version based on modular arithmetic where the
ring Z is replaced by the modular ring Zp where p is the characteristic of the ring.
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The rules of addition, subtraction and multiplication in Zp are inherited from the
rules in Z but all operation are taken modulo p. The authors of [10] give an example
that in Z10, 2+2=4 but 5+5=0.

In Sec. 1, when we discussed verificationism and the philosophy of quan-
tum theory, we mentioned possibilities a) and b). The version of non-Diophantine
mathematics discussed in Sec. 2 and its applications discussed in Sec. 3 is in the
spirit of possibility a). The applications of modular arithmetic are in the spirit of
possibility b). Such applications are discussed in [20].

At present, it is unclear which version of mathematics will be more promis-
ing. The immediate advantage of Mark Burgin’s approach is that (as the discussion
in Sec. 3 shows) the results of this approach can be immediately applied to vari-
ous concrete problems, while applying the approach of [20] requires a considerable
preparatory work. In any case, in fundamental mathematics, the foundational prob-
lems must be solved, and, as follows from the principle of verificationism, such math-
ematics should not contain the concept of infinity. As can be seen from the discussion
above, Mark Burgin has made considerable contributions in this direction.

Now I will describe a problem that Mark started working on, but, unfor-
tunately, did not finish it.

Let A and B be two processes such that:

• the initial states in A and B are the same;

• all particles in the finite states of A and B have the same momenta and spins
but the final state of B contains an additional (soft) photon with a very small
energy E = h̄ω.

Then, as shown in a wide literature, with a high accuracy, the differential cross
sections dσA and dσB of the processes A and B are related as:

dσB = αdσAFdo
dω

ω
(10)

where α ≈ 1/137 is the fine structure constant, k is the momentum of the soft photon,
o is the range of solid angles for the unit vector n = k/ω and F is a function of the
initial and final momenta in the process A. If we consider only cases where ω ∈ [ω1, ω2]
and integrate over o and ω then we get

dσB = αdσAGln
ω2

ω1

(11)

where the function G is of the order of unity and depends only on the initial and final
momenta in the process A. As noted in the literature on QED, with the logarithmic
accuracy, ω2 can be replaced by the energy of the particle which emitted the soft
photon but the value of ω1 is not limited from below. Therefore when ω1 → 0, dσB
becomes infinite, and this situation is called infrared catastrophe.

As explained in the literature, the reason of the infrared catastrophe is
that the result (11) is obtained in the perturbation theory over α while in fact, as
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follows from Eq. (11), the parameter of the perturbation theory is α · ln(ω2/ω1)
and this quantity is not less than unity when ω1 is small. It is also explained that
the infrared catastrophe can be avoided if a cutoff for ω1 in the intermediate stage of
calculations is introduced, and this cutoff disappears at the final stage of calculations.
Although this rule is not well substantiated mathematically, in practice it results in
avoiding the infrared catastrophe.

So, the situation is analogous to the divergences in QED discussed in Sec.
3 but now the divergences appear not at very large momenta but vice versa, at very
small momenta. But Mark believed that well defined theories should not contain
divergences at all. His idea was that the problem with the infrared catastrophe
can be solved in a rigorous mathematical way in the framework of non-Diophantine
mathematics, and he started working on this problem.

I had not met Mark in person and knew nothing about his family. But
we communicated by phone and email. I was very impressed that, unlike many
mathematicians and physicists (who believe that foundational questions are not very
important and that the main thing is that the theory should work well in concrete
problems), Mark believed that foundational questions are a very important part of
fundamental mathematics and fundamental physics.
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