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The curve of matrix multiplication schemes
Warren D. Smith, Nov.2023. warren.wds@gmail.com

ABSTRACT. Various methods have been devised to multiply N×N matrices using O(NE) arithmetic operations when N→∞, for various exponents E with 2<E≤3.
However, in practice, the schemes with least known E are not the best, because they only start to win for infeasibly large N. Prior literature has unhealthily been
fixated on E alone, i.e. on the asymptotic large-N performance alone. To address that, we propose investigating, for each method, not merely its E, but also its
"breakeven N," meaning the least N causing that method to use fewer than the obvious algorithm's N3 bilinear multiplications [or fewer than Strassen's
O(N2.807355) scheme]. The set of (E,logN) datapoints then form a subset of the infinite rectangle (2,3]×[0,∞). Part of that rectangle is filled with datapoints, while
another part contains none. What is of interest is the curve delineating the boundary between those two regions.

Along the way we also provide the best available review (with new results and a numerical table) of bounds on the Salem-Spencer function: the cardinality of the
largest subset of {1,2,3,...,X} free of 3-term arithmetic progressions.

Notation

The "(a,b,c) matrix multiplication problem" shall mean multiplying a×b and b×c matrices to obtain an a×c matrix. We shall mainly be interested in the (N,N,N), i.e.
square-matrices, case. Any M-multiplication bilinear algorithm to solve (a,b,c) yields as a consequence bilinear algorithms for (N,N,N) with O(NE), where
E=3log(M)/log(abc), arithmetic operations. Rk[T] shall mean the minimum number of multiplications in a bilinear algorithm for solving problem T. And Rkh[T] shall
mean the same thing, but for "APA algorithms of degree=h," and Rk[T)=Rk∞[T] shall mean in the case where unboundedly large h is permitted. It is known
("hexality") that (a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), and (c,b,a) all have the same Rk[T]. Obviously Rk[(a,b,c)] is an increasing function of a,b, and c (proof:
consider "zero padding"). We shall use T=U⊕V to denote the task T consisting of solving both problem U and (apparently wholy independent) problem V. And
T=U⊗V denotes the "tensor product" task where each element of task U is replaced by an instance of task V; here note (aA,bB,cC)=(a,b,c)⊗(A,B,C) because
each entry of the a×b, b×c, and a×c matrices is replaced by a block, the respective block sizes being A×B, B×C, and A×C. It is known that ⊗ is associative and
together with ⊕ satisfies the distributive law, Rk[U⊗V]≤Rk[U]·Rk[V] and Rk[U]≤Rk[U⊕V]≤Rk[U]+Rk[V] and Rk[(a+A,b,c)]≤Rk[(a,b,c)]+Rk[(A,b,c)]. And
correspondingly for the Rkh and Rk variations, albeit with Rkmax(j,h)[U⊕V]≤Rkj[U]+Rkh[V] and Rkj+h[U⊗V]≤Rkj[U]·Rkh[V]. Finally U⊗U⊗...⊗U with p letters "U" is

the "pth tensor power" of U, written U⊗p.

Strassen versus Obvious

The obvious matrix multiplication method uses Mobv(N)=N3 elementwise multiplication and Aobv(N)=(N-1)N2 addition ops. In 1969, V.Strassen invented a
formula to multiply 2×2 matrices not via the obvious (8×, 4+) scheme, but rather (7×, 18±), which Winograd 1971 improved to (7×, 15±). Strassen's "7" was
shown to be best possible by both Hopcroft & Kerr and Winograd independently. Probert 1976 proved that Winograd's "15" was best possible if we are using 7
muls. However, Karstadt & Schwartz 2020 pointed out a way to do it in (7×, 12±) if the basis is changed (also showing "12" is best possible) provided the basis-
change operations are not counted as part of the "cost."

Importantly, both the obvious, Strassen's, Winograd's, and Karstadt & Schwartz's formulas work even if the 2×2 matrices' entries are members of an arbitrary
possibly-noncommutative ring. Therefore, we can recurse, i.e. can multiply 2N×2N matrices (even-sized) via 15 additions and 7 multiplications of N×N
subblocks. Odd-sized matrices can be handled by treating their last row and last column conventionally, then handling the four (N-1)/2×(N-1)/2 remaining blocks
by Strassen recursion. If T(N) denotes the runtime (e.g. op-count) to multiply N×N matrices, then we have T(2N)≤7T(N)+O(N2) and T(2N+1)≤7T(N)+O(N2) where
for all sufficiently-small N we may use the obvious scheme, i.e. if 1≤N≤N0 then use T(N)=N3 muls plus (N-1)N2 adds. (Choose the threshhold N0 to optimize

performance.) The solution is T(N)=O(NS) where S=log27≈2.807354922 is the Strassen exponent.

Unfortunately by using O-notation, we've hidden the constant factor. If we let Astr(N) denote the number of addition/subtraction ops, and Mstr(N) denote the

number of multiplications, then Astr(2N)=7Astr(N)+15N2, Mstr(2N)=7Mstr(N), Astr(2N+1)=7Astr(N)+15N2+(12N+2)N, Mstr(2N+1)=7Mstr(N)+(12N+6)N+1, except
that Astr(N)=Aobv(N) and Mstr(N)=Mobv(N) if N≤N0. The simplest (but perhaps stupid) choice is to use N0=1. I'll call that "Str1." These recurrences may
equivalently be written in "top down" rather than "bottom up" style:

Mstr(N) = 7Mstr(⌊N/2⌋) + (N mod 2)(3[N-1]N+1),       Astr(N) = 7Astr(⌊N/2⌋) + 15⌊N/2⌋2 + (N mod 2)(3N-2)(N-1)

if N>N0, with the base cases when N0=1 being Mstr1(1)=1 and Astr1(1)=0. These show 1≤N-SMstr1(N)≤47/30≈1.5666 and 2.7666≈83/30≤N-SAstr1(N)≤5 and we
get

N Mobv(N) Aobv(N) Mstr1(N) Astr1(N)
2 8 4 7 15
4 64 48 49 165
8 512 448 343 1395
16 4096 3840 2401 10725
32 32768 31744 16807 78915
64 262144 258048 117649 567765
128 2097152 2080768 823543 4035795
256 16777216 16711680 5764801 28496325
512 134217728 133955584 40353607 200457315
1024 1073741824 1072693248 282475249 1407133365
2048 8589934592 8585740288 1977326743 9865662195

   

N Mobv(N) Aobv(N) Mstr1(N) Astr1(N)
3 27 18 26 29
7 343 294 309 452
15 3375 3150 2794 4501
31 29791 28830 22349 37612
63 250047 246078 168162 289293
127 2048383 2032254 1225141 2132340
255 16581375 16516350 8770298 15362117
511 133432831 133171710 62173917 109291004
1023 1070599167 1069552638 438353938 772088317
2047 8577357823 8573167614 3081042053 5432876548
4095 68669157375 68652388350 21617589162 38143275573
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4096 68719476736 68702699520 13841287201 69122549925
8192 549755813888 549688705024 96889010407 484109507715
16384 4398046511104 4397778075648 678223072849 3389773186965
32768 35184372088832 35183298347008 4747561509943 23732438840595

8191 549554511871 549487419390 151524377005 267455700876
16383 4397241253887 4396972851198 1061475797954 1874001419501
32767 35181150961663 35180077285374 7433551516245 13125256841876
65535 281462092005375 281457797169150 52047744925786 91905787218469

Therefore on a machine on which multiplication is >11 times more expensive than addition, Str1 would beat Obvious for every N≥2. But even on a machine on
which multiplication and addition took equal time (and even using N0=1) the table shows Str1 would beat Obvious when N=512 and N=63, and hence for every
N≥512. (And even in a ridiculous world where addition was arbitrarily more expensive than multiplication, Str1 still would win when N=8192 and N=255 and
hence for every N≥8192.) If however we note that even on such an equal-time machine multiplying N×N matrices by the obvious method is >11 times more
expensive than adding those matrices for each N>6, then we see that Strassen-Winograd using N0=13, "Str13," should beat Obvious for every N≥14 based
on total (add & mul) op-count alone (and tie it for 1≤N≤13). This has ignored the fact Strassen-Winograd performs extra data copying and temporary storage. In
addition to the 3N2 entries of the 2 input and 1 output matrices, (2/3)N2 extra words of storage are required if Boyer et al 2009's memory-efficient scheduling
(their "table 1" due to Douglas et al 1994, or "table 9") are employed; Boyer "algorithm 2" gives a schedule using no extra storage at all ("in place") but
increasing the constant factor in Strassen's arithmetic-op count by 20%; neither extra storage nor any constant factor op-count increase are needed if we permit
overwriting both input matrices (their "algorithm 1").

The Karstadt-Schwartz (7×, 12±) changed-basis verson of Strassen can actually be made to work to reduce the total arithmetic-op count by a factor of 1.2
versus Strassen-Winograd when N→∞. They claim it experimentally outperforms Strassen-Winograd by about 12% when N=32768.

What happens on real machines? I first began programming on 8-bit microprocessors such as the Zilog Z80, Mostek 6502, Intel 8051, and RCA 1802 which
had no hardware multiplication instruction. If you wanted to multiply, you needed to program multiplication using shifts and adds. (The Z80 was first sold in 1976
with clock speed 2.5 MHz, contained 8500 transistors, ran on a single 5-volt power supply thanks to using NMOS technology, and on average code would
execute about 1 instruction every 7 clock cycles. Although the Z80 connected to external memory via an 8-bit-wide bus, internally some of its instructions could
operate on 16-bit-wide data.) I found on the web some 64-bit unsigned integer multiply (128-bit output) routines for the Z80 claiming average runtime 8721
cycles; and other code (codelength 45 bytes) to add or subtract 64-bits words in 294 cycles. So the multiply/add time-ratio for 64-bit integers on the Z80 was
about 8721/294≈29.66. Since this far exceeds 11, for matrices of 64-bit numbers on the Z80, Strassen would have been superior to Obvious for every
matrix size N≥2.

In 1979, the Motorola 68000 processor came out. It had 68000 transistors, still used 5-volt NMOS, had clock frequencies 4-17 MHz, 16-bit bus but many 32-wide
internal instructions, and on average code performed about 1 instruction every 5.7 clock cycles. (The "68SEC000," a CMOS version of the original 68000, as of
year 2023 is still in production from Freescale Semiconductor Inc. with clock speeds 10-20 MHz and supply voltage 3.5-5V. The "eZ80," a faster, CMOS version
of the Z80, now enhanced with many 24-bit-wide instructions, was introduced in 2001 and still was produced by Zilog Inc. as of year 2021. Its clock rates are up
to 50 MHz and thanks to redesigned internal pipelines executes instructions about 3 times faster than the original design would at equal clock rates.) Unlike the
Z80, the 68000 provided a multiplication instruction for unsigned 32-bit words (64-bit product) running in 38+2n clock cycles where n equals the number of
nonzero-bits in the operand, e.g. typically 70 cycles. Meanwhile adding took 4 or 8 cycles. But if you wanted to multiply 64-bit-wide words, then multiplication
was going to be at least 22 times more expensive than addition, so again Strassen on the 68000 would be superior to Obvious for every N≥2.

Today (year 2023) that is no longer the case. Modern CPUs use 1.2-volt CMOS, sometimes have over 1011 transistors on chip, operate at clock rates 1-9 GHz,
and perform 64-bit-wide ops including both integer and floating point multiplication using maximally-parallelized hardware, with comparable speeds for addition,
multiplication, and just copying data between different memory locations. They have fancy pipelining, branch prediction, and multicore parallelism schemes
enabling average instruction rates far exceeding clock rate. Data copying was considered an almost neglectible cost – much cheaper than ± or × – on old
machines like the Z80, but on year-2023 machines can be quite expensive. Furthermore, some modern machines have "vectorization" capability permitting
extremely fast computation of vector inner products – i.e. the inner loop of the obvious matrix-multiplication method – providing an artificial advantage for
"Obvious."

All this has caused claims that the breakeven N for Strassen can be as high as "several thousand" for some a priori reasonable-looking software on some
modern hardware – quite an astounding change from the value "2" valid when I began programming in the late 1970s!

But I have trouble believing that any reasonable hardware and software at all resembling today's Von Neumann machines will ever disagree that Strassen beats
Obvious for all N≥4000. And, if the matrix entries are sufficiently-wide multiprecision numbers (e.g. ≥10 words wide) then even on today's machines Strassen
should still beat Obvious for every N≥2. That's because for wide multiprecision numbers, multiplication is arbitrarily more expensive than either addition,
subtraction, or scalings by rational constants with bounded numerators and denominators, since all the latter have linear-time algorithms, while none are known
(and presumably none exist) for integer multiplication.

The curve. Our definition of "breakeven N."

Definitions: If some scheme for multiplying N×N matrices has op-count T(N) which obeys limN→∞ log(T(N))/log(N)=E, then I say it has exponent E. Aside from

Strassen and Obvious, we are only going to be considering schemes with E<S≡log27≈2.807354922. The least N>1 causing the scheme to employ <N3 bilinear
multiplications, is its breakeven N. For "mass production" schemes that do not just multiply one pair of N×N matrices, but in fact K independently specifiable
such pairs, the breakeven N is the least N>1 causing the scheme to employ <N3K bilinear multiplications.

My definition of "breakeven N" is the simplest. But it can be criticized for reasons we've already discussed causing the "true" breakeven N to perhaps be up to a
factor 2000 greater than my definition (depending on hardware & software). Also my definition is subject to abuse by "cheaters." (Don't do that.) Further, if you
wanted for the mul-count not merely to go below N3 but in fact to beat it by a factor of 2, then you'd need to multiply our breakeven N by a factor up to 21/(3-E),
which is <37 for schemes with E<2.807355.

Also interesting is the breakeven N versus Strassen rather than versus Obvious. I'll call those Nstr and Nobv.

It also is interesting to consider your algorithm's breakeven N versus the best matrix multiplication algorithm with greater E than yours... that being, arguably, the
N that matters most. But the trouble with that is that I do not know the best ones. Therefore, I'm mainly going to stick with Obvious and Strassen.

It seems nicest to plot the resulting set of (E,N) datapoints on semilog paper, i.e. instead plot (E,log2N). The main goal of the present work is simply to produce
that plot.

http://z80-heaven.wikidot.com/advanced-math#toc16
http://z80-heaven.wikidot.com/advanced-math#toc5
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Exponent E
Breakeven

Nobv
Log2Nobv

Breakeven
Nstr

Log2Nstr Comment

3 1 0 The Obvious matrix multiplication method
2.807354922 2 1 2 1 Strassen 1969 (Winograd variant) 7-mul formula for (2,2,2), all coeffs. in {0,±1}.
2.795668800 12 3.5850 12 3.5850 1040-mul formula from Rk[(2,4,4)]≤26 and Rk[(6,3,3)]≤40
2.792341873 18 4.1699 18 4.1699 3200-mul formula from Rk[(6,3,3)]≤40
2.790137008 22 4.4594 22 4.4594 5566-mul formula by Drevet, Nazrul Islam, Schost 2011
2.785876483 24 4.5850 24 4.5850 7000-mul formula by Drevet, Nazrul Islam, Schost 2011
2.782679679 26 4.7004 26 4.7004 8658-mul formula by Drevet, Nazrul Islam, Schost 2011
2.780276441 28 4.8074 28 4.8074 10556-mul formula by Drevet, Nazrul Islam, Schost 2011

2.780141891 48 5.5850 48 5.5850

Pan 1980: (2n3+27n2-2n)/6-mul exact formula for (n,n,n) with n=even, here when n=48.
Hadas & Schwartz 2023 have a redo of Pan 1980 which they claim will multiply N×N
matrices with total op-count [2+o(1)]NE with the same exponent
E=ln(47216)/ln(48)=2.78014 as Pan; and they say they can beat Strassen's total op-count
when N≈13800.

2.779885224 2985984 21.5098 7.032×1060 283.2120
10-mul APA formula by Bini et al 1979 for (2,2,3) with degree=1, arising from tiling 2
copies of a 5-mul APA1 formula for (2,2,2) with 1 input zeroed.

2.774299980 54 5.7549 54 5.7549 Smirnov 2013: 40-mul exact formula for (3,3,6), all coefficients in ±{0,1/8,1}.

2.773371017 44 5.4594 44 5.4594

Pan 1982: (4n3+45n2+128n+108)/12-mul exact formula for (n,n,n) with n=even, here
when n=44. Hadas & Schwartz 2023 have a redo of Pan 1982 which they claim will
multiply N×N matrices with total op-count [8.082+o(1)]NE with the same exponent
E=ln(36133)/ln(44)≈2.77337 as Pan.

2.739153525 1889568 20.8496 2.4088×1031 104.2481 Smirnov 14-mul APA formula for (3,2,3) with degree=2.
2.728435621 ? ? ? ? Smith 18-mul APA formula for (2,3,4) if valid (unknown degree).
2.726833028 43046721 25.3594 3.0903×1031 104.6075 Smirnov 20-mul APA formula for (3,3,3) with degree=6.

2.547992912 262144 18 2.749×1011 38 Schönhage 1981: lemma 6.1 with k=n=4 via his ASI.

2.478495141 1220703125 30.1851 1.1921×1016 53.4043 My simplified version of a Strassen 1987 "laser" method.

2.403632261 ≤68719476736 ≤36 ≤3.7779×1022 ≤75 "Baby" Coppersmith-Winograd 1990, their §6

2.3871900 3656158440062976 51.6993 ≤6.189×1028 ≤95.6436 "Toddler" Coppersmith-Winograd 1990, their §7
2.3754770 ? ? ? ? "Monster" Coppersmith-Winograd 1990, their §8

APA (arbitrary precision approximate) formulae

"APA formulae" arise when the coefficients in a formula for multiplying matrices AB are not ordinary numbers like ±1, but rather polynomials in some variable x;
and the matrix product C=AB arises as C=x-hformula(A,B)+error where error=O(x) in the limit x→0. (Such a formula is said to be "approximate with degree=h."
For any specific value of x, APA formulae will in general deliver wrong answers.) APA formulae can be converted to ordinary exact formulae by taking
appropriate linear combinations of the APA(x) formulae for h+1 different values of x.

In particular, if we let x be h+1 different complex numbers forming a regular (h+1)-gon centered at the origin, then the required "linear combination" is simply the
"average." If our matrices had complex-number entries, this yields an exact formula in work (for us measured as number of bilinear multiplications) equivalent to
h+1 specified-x invocations of the APA formula.

For multiplicand matrices A,B with real entries, we do not need all h+1 roots of unity, only ⌊(h+1)/2⌋, because those in the lower halfplane yield results which are
the complex conjugates of the results arising from roots we'd already handled in the upper halfplane. But (except when h≤1) this trick is not good enough to
reduce the cost to equivalent to h+1 specified-x invocations of the APA formula, because a complex multiplication costs 3, not 2, real multiplications. So the cost-
factor exceeds h+1 by 50%.

Nevertheless, one can achieve that goal: use h+1 specified real values of x, although unfortunately the unequal both-signed weights now required in the linear
combination increase numerical roundoff errors. Any h+1 distinct values xk work – due to the known formula for Vandermonde determinants being nonzero,
there is always a unique linear combination of the P(xk) guaranteed to equal P(0). If the polynomial P(x) had rational coefficients and the xk are rational, then the
coefficients in the linear combination will also be rationals.

Examples: Let L(x) be a linear, Q(x) a quadratic, C(x) a cubic, F(x) a fourth-degree polynomial, and Z(x) fifth-degree. Then here is a list of two kinds
("geometric" and "arithmetic") of formulae for P(0): 
L(0) = [2L(½)+L(-1)]/3 = [L(-1)+L(1)]/2. 
Q(0) = [8Q(½)+2Q(-1)-Q(2)]/9 = [Q(-1)+3Q(1)-Q(2)]/3. 
C(0) = [64C(-¼)+24C(½)-6C(-1)-C(2)]/81 = [-C(-2)+4C(-1)+4C(1)-C(2)]/6. 
F(0) = [1024F(-¼)+320F(½)-120F(-1)-10F(2)+F(-4)]/1215 = [-F(-2)+5F(-1)+10F(1)-5F(2)+F(3)]/10. 
Z(0) = [32768Z(-¼)+11264Z(½)-3520Z(-1)-440Z(2)+22Z(-4)+Z(8)]/40095 = [Z(-3)-6Z(-2)+15Z(-1)+15Z(1)-6Z(2)+Z(3)]/20.

These lists of formulae exhibit some patterns. Those patterns may be proven valid by the theory of Lagrange interpolation, and alternatively by induction on the
degree. The sequence of lefthand formulas [which I am calling "geometric" because their xk are proportional to (-2)k] has the sequence of largest coefficient

|ratios|=2(h+1)h/2, exhibiting superexponential growth.

The sequence of righthand formulas, which I call "arithmetic" since their xk are the h+1 nonzero integers with least absolute values, sorted into increasing order
starting from -⌊(h+1)/2⌋), are expressible in closed form. The coefficient-numerators for h=0,1,2,...,8 arise from this all-integer number-triangle

http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Lagrange_polynomial
http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html
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                                        1
                                     1     1
                                  1     3    -1
                              -1     4     4    -1
                           -1     5    10    -5     1

                 1    -6    15    15    -6     1
                      1    -7    21    35   -21     7    -1
                  -1     8   -28    56    56   -28     8    -1 
               -1     9   -36    84   126   -84    36    -9     1 
             1    -10   45  -120   210   210  -120    45   -10     1
          1   -11    55  -165   330   462  -330   165   -55    11    -1
      -1    12    -66  220  -495   792   792  -495   220   -66    12    -1
   -1    13    -78  286  -715  1287  1716 -1287   715  -286    78   -13     1

where note that every number (if we ignore its sign) is the sum of the two above it (as in "Pascal's triangle") except for the numbers in the middle column. Each
column of the triangle has constant sign. Rows containing an even number of entries are palindromic, aka even-symmetric. Rows containing an odd number of
entries have odd symmetry if their (always positive) central entry is ignored; their row-sum therefore equals their central entry. Those odd-cardinality rows have
rightmost entry 1, -1, 1, -1, 1, -1, ... alternating sign with period=2. (Also true about the even-cardinality rows.) The sequence 1,2,3,6,10,20,35,70,126... of
common denominators are the row-sums (now not ignoring signs!) and arise from the formula binomial(n, ⌊n/2⌋) where n=h+1 is the cardinality of that row.
These facts are enough to completely specify the entire infinite triangle. Since binomial(n, ⌊n/2⌋) is upper-bounded by 2h, this arithmetic class of formulas has
largest coefficient |ratio| growing merely exponentially(h) – more desirable from the standpoint of numerical precision than the geometric formulas'
superexponential growth.

What is the best choice of the xk for k=0,1,2,...,h? If h is odd, there is reason to argue that the answer is xk=cos(kπ/h). This choice maximizes the (h+1)×(h+1)
Vandermonde |determinant| for h+1 points on the real interval [-1,1], or equivalently (by considering the logarithm of that |determinant|) minimizes the potential
energy of h+1 mutually-repelling unit electrostatic charges (logarithmic potential) located on that interval. However, if h>3 most of these xk are irrational, which
would be rather sad if the entries of your matrices happened to be exact rational numbers.

All that works for matrices whose entries are integer, rational, real, or complex, which are the most important cases in practice. However, trouble can sometimes
arise for APA formulas if the matrix-entries instead are elements of the wrong finite field or ring. E.g. the first few geometric and arithmetic formulas we
tabulated involve division by 2, 3, 6, or 81. In such rings as "the integers mod 6" which contain the wrong "zero-divisors" (here 2 and 3) all four of those divisions
are forbidden! Also the latter three divisions are forbidden in the field of "integers mod 3." I shall not delve into that.

An M-multiplication degree-h APA formula for multiplying N×N matrices (2≤M⪅NS) has breakevens

Nobv = N⌈k⌉   where   k = ln(N-3M)-1 LambertW-1(M1/hN-3/hh-1ln(N3M-1)) - h-1

and
Nstr ≤ N⌈k⌉   where   k = ln(N-SM)-1 LambertW-1(M1/hN-S/hh-1ln(NSM-1)) - h-1.

These formulas arise from solving kh+1=(N3/M)k or kh+1=(NS/M)k for k≥1. The LambertW-1(x) function is the real value of y with y<-1 obeying eyy=x. It is

defined for -e-1≤x<0. Actually that Nstr formula can yield overestimates in cases where round-to-integer effects are unfavorable for Strassen, which is why I wrote
"≤," but the overestimation factors usually are not large.

Example: Bini et al 1979's 10-mul degree-1 APA formula for (2,2,3) matrix multiplication yields an M=1000 multiplication APA formula with degree h=3 for
multiplying 12×12 matrices: Rk3[(12,12,12)]≤1000. Compare the best known (as of year 2023) exact formula, which uses 1040 muls, and 123=1728 for the

obvious method. We find kobv=-3-1ln(6/5)-1LambertW-1(-6-15ln(6/5))-3-1≈5.10453 solves 3k+1=(6/5)3k with k≥1. Hence ⌈kobv⌉=6 and Bini's breakeven

Nobv=126=2985984. Similarly kstr≈80.4302 from solving 3k+1=exp([ln(12)ln(7)/ln(2)-ln(1000)]k) for k>1. Hence ⌈kstr⌉=81 suggesting Bini's breakeven

Nstr≤1281≈2.592×1087.

That is not exact; it is an overestimate. To verify that we compute Mstr1(1281)≈3.36883×10245 and compare that to the number of bilinear multiplications

244×100081=2.44×10245 used by Bini to multiply N×N matrices with N=1281. If N=1280 then Mstr1(1280)≈3.44444×10242 while Bini uses

241×100080=2.41×10242. If N=1279 then Mstr1(1279)≈2.764×10239 while Bini uses 2.38×10239. If N=1278 then Mstr1(1278)≈2.667×10236 while Bini uses

2350×10236. So the exact value of Nstr for Bini is 1279≈7.032×1060 with log2Nstr≈283.2120.

Example: Smirnov 2013's 14-mul degree-2 APA formula for (3,2,3) matrix multiplication yields an M=143=2744 multiplication APA formula with degree h=6 for
multiplying 18×18 matrices. (The least known mul-count for an exact formula is 3200; the obvious method uses 183=5832.) We find
kobv=-3-1ln(9/7)-1LambertW-1(-6-171/2ln(9/7))-6-1≈4.38727 solves 6k+1=(9/7)3k with k≥1. Hence ⌈kobv⌉=5 and the breakeven Nobv=185=1889568. Similarly

kstr≈25.5645. Hence ⌈kstr⌉=26 and the breakeven Nstr≤1826≈4.336×1032. Again this is an overestimate, and exact comparisons of Mstr1(N) and Smirnov mul-

counts show that the exact Nstr, i.e. the least N such that Smirnov's mul-count is below Strassen's, is 1825≈2.4088×1031 with log2Nstr≈104.2481.

Example: Smirnov 2013 also found a 20-mul APA formula with degree h=6 for multiplying 3×3 matrices. That compares with 23 muls for the most efficient
known exact formula (found by Laderman, Sykora, and various others) and 27 for the obvious method. We find kobv≈15.0397 solves 6k+1=(27/20)k with k≥1.

Hence ⌈kobv⌉=16 and the breakeven Nobv=316=43046721. Similarly kstr≈67.9766. Hence ⌈kstr⌉=68 and the breakeven Nstr≤368≈2.781×1032. Again this is an

overestimate, and exactly comparing Mstr1(N) versus Smirnov's mul-counts show that the exact Nstr is 366≈3.0903×1031 with log2Nstr≈104.6075.

Schönhage 1981's "asymptotic sum inequality" (ASI) and his specific result E≈2.547993

Schönhage in his lemma 6.1 stated an APA formula proving Rk2[(k,1,n)⊕(1,m,1)]≤kn+1 where m=(k-1)(n-1) and k,n≥2.
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In contrast, Rk[(k,1,n)⊕(1,m,1)]=kn+m=Rk[(k,1,n)]+Rk[(1,m,1)]. More generally Strassen has stated the still-open "additivity conjecture" that
Rk[U⊕V⊕...⊕W]=Rk[U]+Rk[V]+...+Rk[W] always holds. I'm skeptical – but if true, that would imply that improvements like Schönhage's lemma 6.1 can only be
obtained using APA algorithms.

Schönhage's "asymptotic sum inequality" (ASI – sometimes more-stupidly called his "tau theorem") shows that his lemma 6.1 yields a matrix multiplication
algorithm with exponent≤E≈2.54799291220440756106, where this E solves 16E+9E=173. This is the least exponent obtainable from Strassen's lemma 6.1 and
the ASI and arises from k=n=4, i.e. from Schönhage's 17-mul APA algorithm for simultaneously performing (4,1,4) and (1,9,1) rectangular matrix multiplications
approximately with accuracy degree=2.

More generally, Schönhage's ASI claims that if Rk[(a1,b1,c1)⊕(a2,b2,c2)⊕ ... ⊕(ap,bp,cp)]≤M, then the exponent E of matrix multiplication is upper-bounded by the

solution E of ∑1≤j≤p(ajbjcj)
E=M3.

Our (4,1,4)⊕(1,9,1) case is especially favorable for the ASI, not only because it uniquely minimizes E over all cases of Schönhage's lemma 6.1, and is
maximally-simple, but also because the "symmetrization step" in the proof of the ASI may be skipped because (4,1,4) and (1,9,1) both are palindromes.

We now shall figure out the breakeven N for that Schönhage 1981 matrix multiplication method while at the same time hopefully making it clear why and how the
ASI works. Schönhage's first point is that Rk2P[{(4,1,4)⊕(1,9,1)}⊗P]≤17P. The Pth tensor power of (4,1,4)⊕(1,9,1) is seen (due to expanding it via the "binomial

theorem") to contain binomial(P,a)=binomial(P,b) copies of (4a,9b,4a) for each pair (a,b) of non-negative integers with a+b=P. Here binomial(A,B)≡A!/[B!(A-B)!]. If
we further demand N=4a=9b then (4a,9b,4a)=(N,N,N). Actually you cannot satisfy this demand exactly with integer a,b, but if P is large enough to ignore round-
to-integer error then we find a=(log3/log6)P≈0.613147P and b=(log2/log6)P≈0.386853P. We therefore can approximately multiply two N×N matrices with
N=4(log3/log6)P≈2.33965P, hence with N3≈12.8072P, in 17P/binomial(P,a) muls per problem, with approximation degree=2P. Hence we can exactly multiply them
in (2P+1)17P/binomial(P,P·log3/log6) muls per problem where note we are solving binomial(P,P·log3/log6) independent problems of this type simultaneously.
Solving for least integer P>1 such that #muls≤N3 we find P=13. Therefore breakeven Nobv=2.3396513≈62945.06 would work – if we did not need to worry about
round-to-integer effects on matrix sizes.

It seems to me those effects can be handled by filling a fraction≤O(1/P) of the rows or columns of some of our matrices with 0s.

More precise than that general idea, though, is to consider specific numbers and the specific roundings-to-integers arising from them. Specifically
Rk26[{(4,1,4)⊕(1,9,1)}⊗13]≤1713, and {(4,1,4)⊕(1,9,1)}⊗13 contains binomial(13,5)=binomial(13,8)=1287 copies of (48,95,48)=(65536,59049,65536). Therefore,

59049×59049 matrices can be multiplied in 171327/1287≈2.07788×1014 bilinear multiplications per copy, which slightly exceeds the obvious method's
590493≈2.05891×1014. So the choice P=13 does not quite work to beat Obvious. Nor does P=14.

With P=15, we have Rk30[{(4,1,4)⊕(1,9,1)}⊗15]≤1715, and {(4,1,4)⊕(1,9,1)}⊗15 contains binomial(15,6)=binomial(15,9)=5005 copies of (49,96,49)=

(262144,531441,262144). Therefore, N×N matrices with N=262144=218 can be multiplied in 171531/5005≈1.77293×1016 bilinear multiplications per copy, which
is less than the obvious method's 2621443=254≈1.80144×1016. Hence the breakeven Nobv=262144=218.

If we instead solve for the least integer P>1 such that #muls≤NS we would find, ignoring integer roundoff effects, P≈27. But the roundoffs again are unfavorable.
Specifically:

P=27:  Rk54[{(4,1,4)⊕(1,9,1)}⊗27]≤1727, and {(4,1,4)⊕(1,9,1)}⊗27 contains binomial(27,16)=binomial(27,11)=13037895 copies of (416,911,416)=(4294967296,

31381059609, 4294967296). Therefore, N×N matrices with N=416=232 can be multiplied in 172755/13037895≈7.035×1027 bilinear multiplications per copy,
which is less than the obvious method's 296≈79.228×1027 but not as good as Strassen's 732≈1.104×1027.

P=28:  Rk56[{(4,1,4)⊕(1,9,1)}⊗28]≤1728, and {(4,1,4)⊕(1,9,1)}⊗28 contains binomial(28,17)=binomial(28,11)=21474180 copies of (417,911,417)=(17179869184,

31381059609, 17179869184). Therefore, N×N matrices with N=417=234 can be multiplied in 172857/21474180≈7.525×1028 bilinear multiplications per copy,
which is less than the obvious method's 2102≈507.0602×1028 but not as good as Strassen's 734≈5.412×1028.

P=29:  Rk58[{(4,1,4)⊕(1,9,1)}⊗29]≤1729, and {(4,1,4)⊕(1,9,1)}⊗29 contains binomial(29,18)=binomial(29,11)=34597290 copies of (418,911,418)=(68719476736,

31381059609, 68719476736). Therefore, 911×911 matrices can be multiplied in 172959/34597290≈8.219×1029 bilinear multiplications per copy, which is much
less than the obvious method's 366≈309.032×1029 but not as good as Strassen's #muls≤735≈3.788×1029.

P=30:  Rk60[{(4,1,4)⊕(1,9,1)}⊗30]≤1730, and {(4,1,4)⊕(1,9,1)}⊗30 contains binomial(30,18)=binomial(30,12)=86493225 copies of (418,912,418)=(68719476736,

282429536481, 68719476736). Therefore, N×N matrices with N=418=236 can be multiplied in 173061/86493225≈5.7785×1030 bilinear multiplications per copy,
which is much less than the obvious method's 2108≈324.519×1030 but not as good as Strassen's 736≈2.652×1030.

Finally with P=31, we get Rk62[{(4,1,4)⊕(1,9,1)}⊗31]≤1731, and {(4,1,4)⊕(1,9,1)}⊗31 contains binomial(31,19)=binomial(31,12)=141120525 copies of

(419,912,419)=(274877906944, 282429536481, 274877906944). Therefore, N×N matrices with N=419=238 can be multiplied in 173163/141120525≈6.218×1031

bilinear multiplications per copy, which is much less than the obvious method's 2114≈2076.919×1031 and (finally!) also beats Strassen's 738≈12.9935×1031,
indeed by a factor>2. So the breakeven Nstr=238≈2.749×1011.

It is quite interesting that this Schönhage ASI method (shown yellow in the table) actually does much better then any of the plain APA methods tabulated (shown
pink) reckoned by either E, Nobv, or Nstr. It would appear to obsolete every known plain-APA method. (Admittedly Schönhage ASI solves many, not just one,
matrix-multiplication problem; and it wastefully computes up to about P times as many output quantities as we want, simply wasting both compute time and
memory before we discarded them; but even taking both those complaints into account all known plain-APA's still seem obsoleted reckoned by either E or Nstr.
Furthermore, if Strassen's additivity conjecture is correct, then for each N there must exist a single copy N×N matrix-multiplication algorithm with the same or
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smaller mul-count as our ASI-method's mul-count per copy.)

Strassen 1987's "laser method": E≤ln(54)/ln(5)≈2.4784951415313494

Strassen's idea is quite similar in essence to Schönhage's ASI. (Incidentally, this whole construction of Strassen's is helpfully re-explained by Coppersmith &
Winograd 1990 in their §3. Here I am going to provide a simpler related method I call "simplified laser" which yields the same exponents E.) Both consider high
⊗-powers of some nice APA method T, then find inside the resulting messes, many copies of efficient APA formulas for multiplying large square matrices. (There
also is a lot of other stuff there too – which we simply discard, ignore, and waste!) The difference is that Strassen-laser, unlike Schönhage-ASI, does not demand
that T be a ⊕ of rectangular matrix product tasks. Strassen allows a wider class of bilinear tasks T that can bear little to no resemblance to any matrix product
task. Nevertheless at the end of the game, Strassen still finds inside the resulting messes, many copies of efficient APA formulas for multiplying large matrices,
albeit these copies can occur somewhat "encrypted," e.g. with their entries permuted. (Decryptions do not increase the bilinear-mul count.)

Strassen stated an APA1 formula for a certain family (parameterized by an integer q) of tasks T with Rk1[T]≤q+1. Hence Rkp[T⊗p]≤(q+1)p and

Rk3p[T⊗p⊗T'⊗p⊗T''⊗p]≤(q+1)3p. He then argued that T⊗p⊗T'⊗p⊗T''⊗p where T, T', and T'' are three symmetric altered versions of T, contains 22p-23 independent

rectangular matrix multiplication tasks (a,b,c), with perhaps-differing (a,b,c)'s but in all cases obeying abc=q3p. Then (essentially by the ASI), Strassen deduces
E≤[3ln(q+1)-ln(4)]/ln(q). The best (E-minimizing) choice of q is q=5, yielding E≤ln(54)/ln(5)≈2.4784951415313494.

If q is prime (and 5 is prime), then the number of possible 3-tuples (a,b,c) of positive integers obeying abc=q3p equals 3(p+1)(3p+2)/2. Therefore, even if we
restrict attention to the single most-popular 3-tuple (a,b,c), – just ignore and waste all the others – there must be at least 22p/[2(p+1)(3p+2)]. This diminution is
not enough to alter the asymptotic (when p→∞) value of E. The advantage of this "simplified laser method" is that we do not need to apply the ASI to many
different (a,b,c)'s – we only have one type. Furthermore by the 3-rotation-symmetry of Strassen's T⊗T'⊗T'' and the classic "central limit theorem" governing
binomial and trinomial coefficients, one may see that for large-enough p, the most popular (a,b,c) – or at least most popular up to arbitrarily small relative
counting-error – should in fact have a=b=c=qp. Therefore with this "simplified laser" we do not need the ASI since we are already where we want to be without it.

In summary (and converting from APA to exact, and assuming our p are large enough to make the "central limit theorem" valid enough for our purposes) my
"simplified Strassen laser method" in this case employs (q+1)3p(3p+1) bilinear muls to multiply at least 22p/[2(p+1)(3p+2)] different pairs of N×N matrices with
N=qp, and the best choice of q (which for me must be prime) is q=5. Per copy, then, the mul-count for exact N×N matrix multiplication is (q+1)3p21-2p(p+1)(3p+2)
(3p+1) which when q=5 simplifies to 63p21-2p(p+1)(3p+2)(3p+1). That beats Obvious, which uses 53p, if p≥13, hence the breakeven
Nobv=513=1220703125≈1.221×109 with log2(Nobv)≈30.185.

Laser's mul-count first goes below Mstr1(5p) when p=23, when N=523=11920928955078125≈1.1921×1016, whereupon Mstr1(N)≈1.80966×1045 and laser's mul-

count≈1.66976×1045. Hence Nstr=523≈5.960×1016 with log2(Nstr)≈53.4043.

My simplified Strassen laser method with E≈2.4785 again would appear to obsolete every known plain-APA method. However, I have (very roughly) calculated
that it first beats Schönhage 1981's ASI method with E≈2.5480 for N somewhere between N≈1030 and 1060 with 100≤log2N≤200.

Interlude about Salem-Spencer function

If X≥0 is an integer, SalemSpencer(X) denotes the greatest cardinality of a subset of {1,2,3,...,X} containing no 3-term arithmetic progression. (Or "a subset of
{J,J+1,J+2,...,J-1+X}" for any particular J, e.g. starting from J=0 is often more convenient, and J does not even need to be an integer.) For example
SalemSpencer(14)=8 because of the unique {1,2,4,5,10,11,13,14}. These sets have also been called "nonaveraging sets" since no element is the average of
any other two: if a,b,c∈S then a+c=2b ⇒ a=b=c.

The table: The primary purpose of this entire section is to compile a big table – by far the best available – of bounds on SalemSpencer(X), for X up to about
1050. All tabulated SalemSpencer "values">1024 really are merely lower bounds (since I got tired of writing "≥"). Bounds stated with decimal points are inexact,
since computed by Monte Carlo, but have ≤0.001 relative standard statistical errors. "×N": indicates a "product" using ModSS(X)≥N. When SalemSpencer(X)≥B
we also tabulate the "exponent" e=log(B)/log(X) obeying Xe=B. Although Behrend's constructions show e→1 when X→∞, the greatest e achieved in the table for
X>100 is only e≈0.769 arising from X≈2.54254×1050 and B≈6.281×1038 via the Tbh(34,31,351) Triangular Behrend construction. 
Key: b3,b5,b7=Base 3,5,7 bounds by Szekeres, Rusza, and me. EX=exhaustive searches for X≤211 by Fausto A.C. Cariboni. GGK=incomplete "branch &
bound" computer searches by Gasarch, Glenn, Kruskal 2008. GT & JW=computer searches by Gavin Theobald & Jaroslaw Wroblewski. Tbh(D,R,V): My
"triangular Behrend" construction (described below). WY=J.Wroblewski & Fumitaka Yura computer search.

There is an O(XlogX)-op algorithm which, given a subset of {0,1,2,...,X-1}, decides whether it is a nonaveraging set (and if not, finds a counterexample, indeed
finds all midpoints b of 3-term-arithmetic progressions):

1.  Sort the set into increasing order in O(XlogX) steps.
2. Let aj=1 if j is in the set, otherwise aj=0.

3. Let P(u) be the polynomial ∑0≤j<X u(aj).

4. Compute P(u)2, which takes O(XlogX) operations using fast convolution algorithms based on the FFT.
5. If all coefficients of P(u)2 are <3 then output "set is nonaveraging" and stop.
6. If any coefficient of u2b is ≥3 then output "set contains 3-term arithmetic progression a,b,c" and for any particular such b we can search for suitable a (going

leftward from b) and c (going rightward from b the same distance) in O(X) steps.

http://oeis.org/A003002
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Fast_Fourier_transform
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X SalemSpencer(X) ⌊1000e⌋ Reason
1 1
2-3 2 1000 b3(1),EX
4 3 792 EX
5-8 4 861 b3(2),EX
11-12 6 747 EX
14-19 8 787 b3(3),EX
20-23 9 733 EX
26-29 11 735 EX
32-35 13 740 EX
41-50 16 746 b3(4),EX
63-70 20 723 EX
100-103 27 715 EX
122-136 32 721 b3(5),EX
174-193 40 715 EX
209-211 43 704 EX
222 44-52 700 22×2,GGK
227 45-55 701 GGK
233 46-56 702 GT,GGK
245 48-58 703 GT,GGK
256 ≥49 701 GT
272 ≥53 708 GT
332 ≥61 708 GT
365 ≥64 704 b3(6)
518 ≥80 701 8×10
768 ≥102 696 GT
809 ≥108 699 GT
864 ≥114 700 GT
916 ≥119 700 GT
1023 ≥126 697 GT
1092 128 = 27 693 GT
1241 ≥151 704 GT
1375 ≥160 702 4×40
1410 ≥161 700 GT
1881 ≥172 682 43×4
1998 ≥180 683 18×10
2548 ≥224 689 8×28
2828 ≥248 693 8×31
3180 ≥256 = 28 687 GT
3850 ≥320 698 8×40
5500 ≥360 683 9×40
7150 ≥440 685 11×40
8800 ≥520 > 29 688 13×40
9900 ≥560 687 14×40
11275 ≥640 692 16×40
14025 ≥680 683 17×40
14850 ≥720 684 18×40
15950 ≥760 685 19×40
17325 ≥800 684 20×40
26125 1040 > 210 683 26×40
33550 1280 686 32×40
46475 1560 684 39×40

X SalemSpencer(X) ⌊1000e⌋ Reason
53350 1640 680 41×40
57475 1720 679 43×40
78375 2080 > 211 677 1040×2
100375 2560 681 b3(6)×40
235125 4160 > 212 673 1040×22

237600 4560 680 GT×40
300300 5120 677 GT×40
387750 6440 681 GT×40
705375 8320 > 213 670 4160×2

1058750 12800 681 8×402

1966250 17600 674 11×402

2116125 16640 > 214 667 ×2

2420000 20800 676 13×402

4764375 32000 674 20×402

6348375 33280 > 215 664 ×2

7184375 41600 673 26×402

12780625 62400 674 39×402

15805625 68800 > 216 671 43×402

20570000 84800 673 53×402

25107500 97600 674 61×402

47416875 137600 > 217 669 ×2

106631250 257600 674 161×402

141232023 258048 664 b7(5)
142250625 275200 > 218 667 ×2

291156250 512000 674 8×403

423696069 516096 662 b7(5)×2
426751875 550400 > 219 665 ×2

540718750 704000 669 11×403

665500000 832000 670 13×403

852671875 1024000 672 b3(4)×403

1310203125 1280000 > 220 669 20×403

2079687500 1728000 669 27×403

2537218750 2048000 671 b3(5)×403

3536728278 2.107e6 > 221 662 Tbh(9,11,12)×2

4346546875 2752000 668 43×403

6920604385 3784704 668 b7(6)=Tbh(12,7,6)
10610184834 4.215e6 > 222 660 Tbh(9,11,12)×4
12968325779 5.960e6 669 Tbh(10,11,13)
19219943492 7.890e6 670 Tbh(9,15,23)
28528868646 8.000e6 660 Tbh(10,7,5)×31
36579093772 9.461e6 > 223 660 Tbh(11,7,5)×10
38838806325 1.032e7 662 Tbh(10,7,5)×40
48444465988 1.406e7 668 Tbh(13,7,7)
62285439465 15138816 665 b7(6)×4
80067968750 20480000 670 8×404

116714932011 2.384e7 666 Tbh(10,11,13)×4
142655126682 3.417e7 > 225 675 Tbh(11,11,15)
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X SalemSpencer(X) ⌊1000e⌋ Reason
288321933617 5.875e7 677 Tbh(10,15,26)
427965380046 6.835e7 > 226 673 Tbh(11,11,15)×2
711137909204 7.890e7 666 Tbh(9,15,23)×10
864965800851 1.175e8 676 Tbh(10,15,26)×2
1007990560869 1.216e8 673 Tbh(10,17,43)
1283896140138 1.367e8 > 227 671 Tbh(11,11,15)×4
1569209936615 1.973e8 680 Tbh(12,11,16)
2373778833372 2.109e8 672 Tbh(15,7,7)
2594897402553 2.350e8 674 Tbh(10,15,26)×4
3851688420414 2.734e8 > 228 670 Tbh(11,11,15)×8
4707629809845 3.947e8 678 Tbh(12,11,16)×2
7784692207659 4.700e8 672 Tbh(10,15,26)×8
8339897606041 6.270e8 > 229 680 Tbh(10,21,60)
12974487012726 8.940e8 682 Tbh(11,15,26)×2
17261312845878 1.140e9 > 230 684 Tbh(13,11,17)
20712905678375 1.466e9 688 Tbh(10,23,57)
38923461038178 1.788e9 680 Tbh(11,15,26)×4
47683145343751 2.414e9 > 231 685 Tbh(10,25,83)
58244920356306 3.273e9 691 Tbh(11,19,43)
64872778301117 3.423e9 690 Tbh(12,15,29)
143049436031253 4.830e9 > 232 684 Tbh(10,25,83)×2
175138372880731 6.562e9 689 Tbh(11,21,68)
210353319238441 7.673e9 690 Tbh(10,29,112)
291310964560397 9.012e9 > 233 688 Tbh(12,17,52)
409810293823897 1.457e10 695 Tbh(10,31,102)
631059957715323 1.535e10 688 Tbh(10,29,112)×2
973096800297992 2.624e10 > 234 695 Tbh(13,15,32)
1106655274513275 3.128e10 697 Tbh(12,19,46)
2088623609220854 3.826e10 > 235 690 Tbh(15,11,20)
2919290400893976 5.249e10 693 Tbh(13,15,32)×2
3319965823539825 6.257e10 695 Tbh(12,19,46)×2
3677913026681293 6.917e10 > 236 696 Tbh(12,21,76)
4952288038881425 7.784e10 693 Tbh(13,17,57)
8757871202681928 1.050e11 691 Tbh(13,15,32)×4
9.9599e15 1.252e11 693 Tbh(12,19,46)×4
1.10337e16 1.383e11 694 Tbh(12,21,76)×2
1.45965e16 2.016e11 699 Tbh(14,15,35)
2.10265e16 3.004e11 703 Tbh(13,19,52)
2.98023e16 3.738e11 702 Tbh(12,25,102)
4.37894e16 4.031e11 697 Tbh(14,15,35)×2
5.49023e16 4.392e11 695 Tbh(11,29,124)×4
7.50473e16 8.964e11 708 Tbh(12,27,93)
2.18947e17 1.560e12 703 Tbh(15,15,37)
2.25142e17 1.793e12 706 Tbh(12,27,93)×2
2.52018e17 2.219e12 709 Tbh(13,23,75)
3.99503e17 2.901e12 708 Tbh(14,19,55)
5.30722e17 3.161e12 705 Tbh(12,29,132)×2

X SalemSpencer(X) ⌊1000e⌋ Reason
7.45058e17 4.660e12 708 Tbh(13,25,111)
1.19851e18 5.803e12 706 Tbh(14,19,55)×2
1.62196e18 7.720e12 707 Tbh(14,21,87)
3.2842e18 1.213e13 706 Tbh(16,15,39)
3.66263e19 1.044e14 716 Tbh(13,31,133)×2
5.58794e19 1.169e14 712 Tbh(14,25,118)×2
1.02183e20 1.642e14 710 Tbh(15,21,95)×2
1.09879e20 2.087e14 714 Tbh(13,31,133)×4
1.33318e20 2.977e14 719 Tbh(15,23,86)
1.48779e20 3.295e14 719 Tbh(14,29,154)
3.29637e20 4.174e14 712 Tbh(13,31,133)×8
4.65661e20 7.333e14 719 Tbh(15,25,127)
7.15284e20 8.739e14 716 Tbh(16,21,101)
1.47716e21 2.202e15 724 Tbh(15,27,117)
3.06631e21 3.461e15 723 Tbh(16,23,92)
4.31459e21 4.776e15 724 Tbh(15,29,164)
9.19892e21 6.922e15 721 Tbh(16,23,92)×2
1.17326e22 1.244e16 729 Tbh(15,31,155)
3.51979e22 2.489e16 727 Tbh(15,31,155)×2
3.98832e22 2.985e16 728 Tbh(16,27,126)
7.0525e22 4.033e16 726 Tbh(17,23,98)
1.25123e23 6.941e16 729 Tbh(16,29,177)
2.11575e23 8.065e16 724 Tbh(17,23,98)×2
9.8921e23 2.497e17 725 Tbh(19,19,75)
1.07685e24 4.053e17 732 Tbh(17,27,133)
1.62208e24 4.706e17 729 Tbh(18,23,103)
3.62857e24 1.011e18 733 Tbh(17,29,188)
7.27596e24 1.472e18 730 Tbh(18,25,154)
1.08857e25 2.021e18 731 Tbh(17,29,188)×2
1.12751e25 2.996e18 737 Tbh(17,31,176)
2.90749e25 5.521e18 736 Tbh(18,27,142)
3.38252e25 5.992e18 735 Tbh(17,31,176)×2
1.05229e26 1.474e19 736 Tbh(18,29,199)
1.81899e26 1.863e19 733 Tbh(19,25,162)
2.61674e26 2.208e19 732 Tbh(18,27,142)×4
3.04427e26 2.397e19 731 Tbh(17,31,176)×8
3.49527e26 4.661e19 740 Tbh(18,31,186)
7.85021e26 7.523e19 739 Tbh(19,27,150)
1.04858e27 9.323e19 739 Tbh(18,31,186)×2
3.05163e27 2.153e20 739 Tbh(19,29,211)
4.54747e27 2.362e20 736 Tbh(20,25,170)
7.06519e27 3.009e20 735 Tbh(19,27,150)×4
1.08353e28 7.261e20 744 Tbh(19,31,196)
2.11956e28 1.027e21 741 Tbh(20,27,158)
3.2506e28 1.452e21 742 Tbh(19,31,196)×2
6.35867e28 2.054e21 739 Tbh(20,27,158)×2
8.84973e28 3.149e21 742 Tbh(20,29,222)
1.9076e29 4.108e21 738 Tbh(20,27,158)×4
3.35895e29 1.133e22 746 Tbh(20,31,207)
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X SalemSpencer(X) ⌊1000e⌋ Reason
5.72281e29 1.404e22 744 Tbh(21,27,166)
1.00769e30 2.266e22 745 Tbh(20,31,207)×2
1.71684e30 2.808e22 742 Tbh(21,27,166)×2
2.56642e30 4.611e22 745 Tbh(21,29,232)
5.15053e30 5.616e22 740 Tbh(21,27,166)×4
7.69926e30 9.222e22 743 Tbh(21,29,232)×2
1.04128e31 1.770e23 749 Tbh(21,31,217)
1.54516e31 1.920e23 746 Tbh(22,27,174)
2.30978e31 1.844e23 741 Tbh(21,29,232)×4
3.12383e31 3.540e23 747 Tbh(21,31,217)×2
4.63547e31 3.841e23 744 Tbh(22,27,174)×2
7.44262e31 6.761e23 747 Tbh(22,29,245)
9.37148e31 7.080e23 745 Tbh(21,31,217)×4
1.39064e32 7.682e23 743 Tbh(22,27,174)×4
2.23279e32 1.352e24 745 Tbh(22,29,245)×2
3.22795e32 2.767e24 751 Tbh(22,31,228)
4.17193e32 2.631e24 748 Tbh(23,27,182)
6.69836e32 2.704e24 744 Tbh(22,29,245)×4
9.68386e32 5.534e24 750 Tbh(22,31,228)×2
1.77636e33 6.168e24 745 Tbh(24,25,205)
2.15836e33 9.923e24 749 Tbh(23,29,255)
2.90516e33 1.107e25 748 Tbh(22,31,228)×4
5.32907e33 1.234e25 743 Tbh(24,25,205)×2
6.47508e33 1.985e25 748 Tbh(23,29,255)×2
1.00067e34 4.331e25 754 Tbh(23,31,238)
2.74376e34 4.704e25 745 Tbh(22,31,228)×17
3.002e34 8.663e25 752 Tbh(23,31,238)×2
6.25925e34 1.458e26 751 Tbh(24,29,266)
9.00599e34 1.733e26 750 Tbh(23,31,238)×4
1.87777e35 2.915e26 750 Tbh(24,29,266)×2
2.7018e35 3.465e26 749 Tbh(23,31,238)×8
3.10206e35 6.786e26 755 Tbh(24,31,249)
9.30619e35 1.357e27 754 Tbh(24,31,249)×2
1.81518e36 2.143e27 753 Tbh(25,29,277)
2.79186e36 2.715e27 752 Tbh(24,31,249)×4
5.44554e36 4.285e27 752 Tbh(25,29,277)×2
8.2116e36 6.796e27 753 Tbh(26,27,206)
9.6164e36 1.064e28 757 Tbh(25,31,259)
2.88492e37 2.128e28 756 Tbh(25,31,259)×2
5.26403e37 3.152e28 755 Tbh(26,29,289)
8.65476e37 4.256e28 754 Tbh(25,31,259)×4
1.57921e38 6.304e28 753 Tbh(26,29,289)×2
2.21713e38 9.338e28 755 Tbh(27,27,214)
2.98108e38 1.670e29 759 Tbh(26,31,270)
6.6514e38 1.868e29 753 Tbh(27,27,214)×2
8.94325e38 3.340e29 757 Tbh(26,31,270)×2
1.52657e39 4.641e29 757 Tbh(27,29,300)

X SalemSpencer(X) ⌊1000e⌋ Reason
2.68297e39 6.680e29 756 Tbh(26,31,270)×4
4.5797e39 9.282e29 755 Tbh(27,29,300)×2
5.98626e39 1.284e30 756 Tbh(28,27,222)
8.04892e39 1.336e30 754 Tbh(26,31,270)×8
9.24136e39 2.623e30 761 Tbh(27,31,281)
2.77241e40 5.245e30 759 Tbh(27,31,281)×2
4.42705e40 6.837e30 758 Tbh(28,29,311)
8.31722e40 1.049e31 758 Tbh(27,31,281)×4
1.61629e41 1.766e31 758 Tbh(29,27,230)
2.49517e41 2.098e31 756 Tbh(27,31,281)×8
2.86482e41 4.122e31 762 Tbh(28,31,291)
8.59446e41 8.243e31 761 Tbh(28,31,291)×2
1.28384e42 1.008e32 760 Tbh(29,29,322)
2.57834e42 1.649e32 759 Tbh(28,31,291)×4
4.36398e42 2.432e32 759 Tbh(30,27,237)
8.88094e42 6.481e32 763 Tbh(29,31,302)
2.66428e43 1.296e33 762 Tbh(29,31,302)×2
3.72314e43 1.487e33 761 Tbh(30,29,333)
7.99285e43 2.592e33 761 Tbh(29,31,302)×4
1.17828e44 3.350e33 760 Tbh(31,27,246)
2.75309e44 1.020e34 765 Tbh(30,31,312)
8.25928e44 2.039e34 763 Tbh(30,31,312)×2
1.07971e45 2.194e34 762 Tbh(31,29,345)
2.47778e45 4.078e34 762 Tbh(30,31,312)×4
3.18134e45 4.616e34 761 Tbh(32,27,254)
7.43335e45 8.157e34 761 Tbh(30,31,312)×8
8.53459e45 1.605e35 766 Tbh(31,31,322)
2.56038e46 3.210e35 765 Tbh(31,31,322)×2
3.13116e46 3.240e35 763 Tbh(32,29,356)
7.68113e46 6.421e35 763 Tbh(31,31,322)×4
8.58963e46 6.367e35 762 Tbh(33,27,262)
9.39349e46 6.480e35 762 Tbh(32,29,356)×2
1.69407e47 7.157e35 759 Tbh(34,25,291)
2.64572e47 2.528e36 767 Tbh(32,31,332)
7.93717e47 5.056e36 766 Tbh(32,31,332)×2
1.98002e48 5.137e36 760 Tbh(31,31,322)×32
2.38115e48 1.011e37 764 Tbh(32,31,332)×4
8.20174e48 3.984e37 768 Tbh(33,31,343)
2.24886e49 4.297e37 762 Tbh(32,31,332)×17
2.46052e49 7.969e37 767 Tbh(33,31,343)×2
6.26184e49 1.212e38 764 Tbh(35,27,278)
7.38156e49 1.594e38 766 Tbh(33,31,343)×4
2.21447e50 3.188e38 764 Tbh(33,31,343)×8
2.54254e50 6.281e38 769 Tbh(34,31,354)
7.62762e50 1.256e39 768 Tbh(34,31,354)×2
1.69070e51 1.673e39 765 Tbh(36,27,286)
2.28828e51 2.513e39 767 Tbh(34,31,354)×4

Due to exhaustive computer searches, SalemSpencer(X) is known exactly for each X≤211. Unfortunately, it seems entirely possible that nobody will ever know
any exact value of SalemSpencer(X) for any X≥2000. For all large-enough X, there exist positive constants c1, c2, c3, c4, such that

c1 X exp(-c2 [lgX]1/2) (lgX)1/4 < SalemSpencer(X) < c3 X exp(-c4 [lgX]1/9)

Here lgX≡log2X, the lower bound is Elkin 2011's improvement of Behrend 1946 which both have c2=81/2ln2<1.9605163, and the upper bound was proved by
Kelley & Meka as refined by Bloom & Sisask in 2023 with c3=1 for all large-enough X. Miscellaneous bounds:

Monotonicity & Subadditivity: SalemSpencer(X)≤SalemSpencer(X+Y)≤SalemSpencer(X)+SalemSpencer(Y).
Cubes: The sequence of nonnegative cubes 0,1,8,27,64,125,... contains no three elements in arithmetic progression (theorem by L.Euler 1770 and by A-
M.Legendre 1823 or before, see Dickson vol2 p.572-573). Indeed Darmon & Merel 1997 showed for each K≥3 that there are no three nonnegative Kth-
powers in arithmetic progression, proving a conjecture of Denes 1952, who had already proven it for K∈{3,4,5,...,30} in his Satz 9. Hence
SalemSpencer(X)≥⌊1+X1/3⌋. But that does not work for squares (K=2) due to (1,25,49), nor for triangle numbers due to (6,21,36) – although numerous
authors starting with Euler in 1780 all proved or repeated a 1640 claim by Fermat that no four squares form an arithmetic progression (Dickson vol.2 p.440
and near bottom of p.635 lists citations, few or none of which actually contain proofs; Itard 1963 allegedly proved it by "Fermat's method of infinite descent"

http://oeis.org/A003002
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on his p.112-113; the webpage by Brown gives another; Conrad uses an elliptic curve to prove in his "theorem 3.4" the somewhat stronger claim that no
four rational squares form an arithmetic progression; also no 4 triangular numbers form an arithmetic progression for the same reason).
Certain squares or triangular numbers: Nevertheless, the squares n2 arising only from n that are products of distinct primes of form 4j+3 (examples:
n=19 and n=3·7·23) is a nonaveraging set. So are the triangular numbers (n+1)n/2 arising only from n with 2n+1 equalling such a product. Consequently,
SalemSpencer(X)≥c(X/logX)1/2 for some positive constant c. [Proof sketch: L.Pisano ("Fibonacci") in 1225 proved a theorem completely characterizing the
triples (a,b,c) of nonnegative integers such that a2+c2=2b2, namely: a=(k/2)(x2+2xy-y2), b=(k/2)(x2+y2), c=(k/2)(y2+2xy-x2) for any 0<x<y and k>0 such that
a,b,c all are integers, Then in view of the famous two-squares theorem (originally stated by A.Girard in 1632) that a number z is representable as a sum of
two squares z=x2+y2 if and only if all the primes of form 4j+3 in its prime factorization occur only raised to even powers, we see that if we restrict attention
only to the n2 with n being products of distinct primes all of form 4j+3, then the middle elements b2 of 3-term arithmetic progressions of squares, can never
occur. Finally, the fact that the numbers up to X≥3 that are products of distinct primes all of form 4j+3, is known to have cardinality asymptotic to a positive
constant times (X/logX)1/2 by arguments related to the "Landau-Ramanujan constant."]
Randomizing argument: Permute the elements of {1,2,3,...,X} into random order than add them one at a time to the set (when permitted). The expected
cardinality of the final set, which lower-bounds SalemSpencer(X), will be ≥2X1/2/3.
Explicit square-based construction: Let P be a prime. Consider the set of 2-digit numbers AB written in radix R=2P+1 with each digit in {0,1,2,...,P-1}
[causing addition of two such numbers to be carryless] and B=A2-1 mod P. Then this set is nonaveraging and shows SalemSpencer(2[P-1]P+1)≥P.
Apparently this construction never is optimal. Hence for an infinite set of X we have SalemSpencer(X)≥[(2X-1)1/2+1]/2 and in view of known results about
gaps between consecutive primes SalemSpencer(X)≥(X/2)1/2[1-o(1)] so that SalemSpencer(X)>0.7071X1/2 for all large-enough X.
G.Szekeres' Base-3 method: Consider the set of nonnegative numbers whose radix-3 representation contains no 2. For this integer subset a+c=2b is
impossible. If we consider only the (≤k)-digit ternary numbers, this shows SalemSpencer([3k+1]/2)≥2k. That Szekeres bound is never optimal if k≥7, but
nevertheless works well for X<1010. Szekeres' bound also arises from "greed" instead of the above "randomizing argument," i.e. if you do not randomly
pre-permute {0,1,2,...,X-1} but simply "greedily" add elements in increasing order when permitted, then you get precisely Szekeres' base-3 construction.
For all large-enough X, Szekeres also shows SalemSpencer(X)>X0.6309. since 0.6309<log2/log3. Indeed for every X≥0 we have SalemSpencer(X)>(½)
(2X)log2/log3.
Products: SalemSpencer(XY)≥ModSS(X)SalemSpencer(Y) where ModSS(Y) is the cardinality (preferably largest possible) of a nonaveraging subset of
the integers modulo Y. [The nonaveraging set showing this is Xa+b where a is in the SalemSpencer(Y) set and b in the ModSS(X) set.] Also
ModSS(XY)≥ModSS(X)ModSS(Y) and ModSS(X)≤SalemSpencer(X)≤ModSS(2X-1). These are very useful for "filling holes" in the table. For example,
because ModSS(3)=2 [and hence ModSS(3k)≥2k for each k≥0] we see that SalemSpencer(3Y)≥2SalemSpencer(Y), which enables forcing all "holes" in our
table of SalemSpencer(X) lower bounds to be at most a factor 3 wide. More examples: ModSS(37)≥10 from {0,1,3,7,17,24,25,28,29,35} mod 37;
ModSS(85)≥17 from {0,1,3,4,9,10,13,24,28,29,31,36,40,42,50,66,73} mod 85 (Fumitaka Yura); ModSS(182)≥28 from
{0,5,6,9,22,23,29,31,32,34,43,48,50,51,60,61,75,84,85,92,101,103,104,106,112,129,130,135}; ModSS(202)≥31 from
{0,9,10,17,19,22,23,40,42,43,47,56,59,60,66,68,79,81,87,88,91,100,104,105,107,125,128,130,137,138,147}; ModSS(232)≥32 from
{0,3,8,15,17,21,33,36,40,46,50,53,62,68,76,81,82,87,95,101,110,113,117,123,127,130,142,146,148,155,160,163}; ModSS(275)≥40 from
{0,7,8,10,17,22,23,28,40,42,43,45,53,54,59,60,87,88,93,94,102,104,105,107,119,124,125,130,137,139,140,147,177,183,199,209,213,223,239,245}. The
last four all are by Gavin Theobald. The mod-232 one plus Szekeres shows, e.g, SalemSpencer(232k[3j+1]/2)≥25k+j for all j,k≥0. The mod-275 one plus
Szekeres similarly shows SalemSpencer(275k[3j+1]/2)≥2j40k for all j,k≥0, and hence SalemSpencer(X)≥X0.6567 for all large-enough X since
0.6567<log(40)/log(275). Indeed for every X≥0 we have (after enough examination of small-X cases) SalemSpencer(X)>Xlog(40)/log(275).
New "Modular sum of two squares" construction: Let P be prime with P mod 4=3 and hence unrepresentable as a sum of two squares [every multiple
of P below P2 also is unrepresentable]. Consider the set of 3-digit numbers ABC written in radix R=2P+1 with each digit in {0,1,2,...,P-1} [causing addition
of two such numbers to be carryless] and C=A2+B2-1 mod P. Then this set is nonaveraging and shows SalemSpencer([4P2+2P-5]P+1)≥P2 and hence for
all large-enough X that SalemSpencer(X)≥(X/4)0.6666 since 0.6666<2/3. Apparently this construction is never optimal.
I.Z.Ruzsa's Base-5 method: Consider the set of nonnegative numbers written in radix 5 using digits 0,1,2 only with exactly a fixed count of 1s. Again for
this integer subset a+c=2b is impossible. If we consider 3k-digit numbers using count=k, then the maximum permitted number is 222...222111...1115, i.e.

(after evaluating the geometric sum) [125k2-5k-1]/4, while the minimum is 000...000111...1115=[5k-1]/4. Hence Rusza's construction shows

SalemSpencer([25k-1]5k/2+1)≥22k(3k)!/[(2k)!k!], which first outperforms Szekeres when k=6, showing SalemSpencer(1907348625001)≥76038144 while
Szekeres only gives 67108864=226. This 3k-digit Ruzsa bound apparently never is optimal. For all large-enough X this also shows
SalemSpencer(X)>X0.6826 since 0.6826<log3/log5.
New Base-7 construction by me: Consider the set of nonnegative numbers written in radix 7 using digits 0,1,2,3 only with exactly a fixed count of digits
lying in the set {1,2}. For any such integer subset a+c=2b is impossible. If we consider 2k-digit numbers using count=k, this shows
SalemSpencer([(7k3-2)7k+5]/6)≥22k(2k)!k!-2. This first exceeds Szekeres when k=3, showing SalemSpencer(58711)≥1280, versus 1024 from Szekeres,
and k=4, showing SalemSpencer(2881601)≥17920, versus 16384 from Szekeres. For large X this also shows SalemSpencer(X)>X0.7124 since
0.7124<log4/log7.
L.Moser 1953's upper bound (obsoleted by below):   SalemSpencer(X)<min{2X/5+3, 4X/11+5}.
My new optimal-linear upper bound:   SalemSpencer(X)≤min{X, (2X+2)/3, (4X+16)/9, (8X+104)/27} with equality only when X=0, 1, 2, 5, 14, and 41.
Proof: SalemSpencer(162)=36 by exhaustive search and since 162=6×27 and 36=6×6 we see that SalemSpencer(X)≤6X/27=2X/9 whenever X is a
multiple of 162. For 0≤X≤211 the result holds by exhaustive verification. For X>211 it follows from subadditivity. Q.E.D. 
I conjecture (16X+640)/81 can be adjoined as a fifth argument of the min, with X=122 added as a new equality-case. It even is somewhat plausible one
can also adjoin (32X+1280)/243 and X=365, but this pattern definitely cannot be continued further. [Pattern? 0,2,16,104,640,1280 arise from 2n-1(3n-1),
and 0,1,2,5,14,41,122,365 from (3n+1)/2.]

Jaroslaw Wroblewski's open question: what is the minimum θ, such that for every B≥1, a cardinality=B nonaveraging subset of {1,2,3,...,⌊Bθ⌋} exists?
Because SalemSpencer(204)=42 we know that θ≥log(204)/log(42)>1.4228. Wroblewski conjectured θ≤3/2=1.50. I can prove θ≤log(275)/log(40)<1.522623 from
ModSS(275)≥40 combined with known bounds for SalemSpencer(X) for small X. The data in my table is compatible with this conjecture: 1.42≤θ≤1.52. Molsen
1941 showed: Whenever N≥118 there are primes in (N,4N/3] congruent to each of 1, 5, 7, and 11 modulo 12. Consequently whenever N≥33 there are primes in
(N,4N/3] congruent to 3 mod 4. This improved Breusch 1932's theorem that between every number N≥7 and 2N there is at least one prime number from each of
the four progressions 3k+1, 3k+2, 4k+1 and 4k+3; for the cases 4k+1 and 4k+3 almost the same result was shown entirely using elementary methods by Erdös
1935 (redone more precisely by Moree 1993); those in turn improved "Bertrand's postulate" that for each N≥4 at least one prime p exists with N<p<2N-2.
Anyhow, Molsen combined with my modular-sum-of-two-squares construction and explicit verifications for all small B shows that Wroblewski is correct if
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weakened by a factor of 10, that is: a cardinality=B nonaveraging subset of {1,2,3,...,⌊10B3/2⌋} always exists.

Behrend 1946's lower bounds are ultimately superior to any of the above-listed miscellaneous constructions. I'll first explain his construction, then show how to
improve it. It arises by choosing good parameters D,R,V in the following. Consider the set of D-digit numbers written in radix R=4J+1 but only permitting digits
xk∈{-J,1-J,...,J-1,J}. Here xk, k=0,1,2,...,D-1, is the kth digit.) This prevents "carries" if two such numbers are added. Further demand that the ∑0≤k<D(xk)2=V. We
can call this set "Beh(D,R,V)." It cannot contain any 3-term arithmetic progression because the sphere of radius=√V is a strictly-convex surface, whose
intersection with a line therefore has at most two points.

The best choice of V is the one maximizing the cardinality #Beh(D,R,V) of Beh(D,R,V). We then have SalemSpencer(X)≥#Beh(D,R,V) where X=2Y+1 and Y is
the maximum element of Beh(D,R,V). It is easy to determine Y using "rightward-traveling greed." E.g. if D=35, J=9 (hence R=37), and V=926, then the maximum
element of Beh(D,R,V) is 9999999999953100000000000000000000037 in view of the fact that 926=9211+52+32+1. Note that, regardless of V, we always have

Y≤J∑0≤k<DRk=(RD-1)/4. There are only J2D+1 possible values V could take, namely {0,1,...,J2D}. hence SalemSpencer([RD+1)2)≥(2J+1)D/(J2D+1), which by

choosing D≈(2lgX)1/2 leads to Behrend's claim that c2=81/2ln2+o(1)<1.9605163.

Rather stupidly, Behrend did not notice (in view of "Chebyshev's inequality" from probability theory, regarding the digits as being uniform-in-[-J,J] random
integers) that only O(J2D1/2) of those candidate V – namely the ones within ±O(σ) away from Expectation(V)=(J+1)JD/3, where the standard deviation σ is
asymptotic when J→∞ to 8(D/45)1/2J2 – can allow substantial cardinalities; and they in total constitute at least a positive constant fraction of the summed
cardinalities. Elkin 2011 understood this. Hence SalemSpencer(RD)≥(2J+1)Dκ/(J2D1/2+1). for some positive constant κ. That does not improve Behrend's c2, but

does improve the bound-formula he gave at the start of his paper by a factor of order (lgX)1/4.

Further, if we employ the "central limit theorem" rather than merely Chebyshev's bound then we can determine the exact asymptotic (when D→∞, R→∞, V→∞)
value of the constant κ, namely κ=8-1(2π/45)-1/2≈0.3345233.

So I recommend V≈(J+1)JD/3 and asymptotically D≈(2lgX)1/2.

A second rather stupid decision by Behrend (unfortunately repeated by Elkin) was choosing the squaring function f(x)=x2 in his demand that ∑0≤k<Df(xk)=V. A
better choice would have been the slowest-growing concave-∪ integer→integer function, which is f(x)=(x+1)x/2 for x≥0 (triangular rather than square numbers).
Asymptotically, this simple change improves Behrend's lower bounds on the SalemSpencer function by a factor of 2. More precisely:

My new "triangular Behrend" construction: Define the strictly-concave-∪ function FJ(x) mapping integers to nonnegative integers as follows:

If J is odd:   FJ(x)=(x-⌊J/2⌋)(x-⌈J/2⌉)/2,
If J is even:   FJ(x)=[2x-J][2x+2sign(2x-J)-J]/8.

Among all functions mapping integers x to nonnegative integers that are even-symmetric about x=J/2 and strictly-concave-∪, FJ(x) is minimal for each x (this is
easy to prove using induction on x→x+1). Consider the set Tbh(D,R,V) of D-digit radix=R=2J+1 nonnegative integers, with all digits x0, x1,..., xD-1, lying in
{0,1,2,...,J}, such that ∑0≤k<DFJ(xk)=V.

Claim: if a<b<c all are members of Tbh(D,R,V), then it is impossible for a+c=2b. (Proof: "carries" impossible; strictly-convex surface.)

Consequence: If X equals 1 plus the difference between the maximum and minimum elements of Tbh(D,R,V), then SalemSpencer(X)≥#Tbh(D,R,V).

Note the max and min determining X both are easy to find using "rightward-traveling greed." And we can print out the whole set #Tbh(D,R,V) for the best
(cardinality-maximizing) value of V (and find that V) algorithmically in near-linear time, namely O([J+1]D) operations, because: There are only FJ(J)D+1 possible

values of V and all the Tbh(D,R,V), for all possible V simultaneously, can be enumerated in O([J+1]D) operations. When J is odd the expected value of V is
(J+2)JD/6; when J is even (J+2)(J+1)JD/(6J+6). Furthermore, if you do not want to generate Tbh(D,R,V) – you merely want to estimate its cardinality (for every V
yielding high cardinality simultaneously) – with relative error≤ε (with correctness probability≥1-δ) then you can do that in O[J2D1/2|logδ|ε-2] steps by Monte Carlo.
So I certainly do not agree with claims (e.g. Moser 1953) that Behrend's method is "nonconstructive." Empirically, triangular Behrend always seems either to
outperform or tie original Behrend, if so completely obsoleting it.

Szekeres, Ruzsa, and my base 3, 5, and 7 methods all arise as special cases of my Tbh construction with R=3, 5, and 7. Empirically, the Tbh construction works
better when R mod 4=3 (odd J) than for R mod 4=1 (even J).

New "multiple sphere" improvements of the Beh and Tbh constructions: Here are the cases with 2 spheres:

Beh≠0(D,R,V-1)∪Beh(D,R,V), where the "≠0" subscript means all the digits must be nonzero has (with optimal choice of V, in limits where D,R,V all go to ∞)
approximately twice the cardinality of Behrend's original bound and still works, i.e. contains no 3-term arithmetic progressions.
If J is odd then consider the set Tbh≠0,|distinct|(D,R,V-1)∪Tbh(D,R,V), where the "|distinct|" subscript means that no two digits a,b are permitted to have |2a-
J|=|2b-J| while the "≠0" subscript means that no digit a obeys FJ(a)=0. This set has (with optimal choice of V, in limits where D,R,V all go to ∞)
approximately twice the cardinality of my Tbh bound (hence about 4 times Behrend's original bound) and still works.

It is possible to adjoin more spheres while imposing more conditions on the digits; but the conditions become more and more onerous the more spheres we
adjoin, causing the resulting bounds to be less and less "constructive." Here are the cases with 3 spheres:

Beh≠0,|distinct|(D,R,V-2)∪Beh≠0(D,R,V-1)∪Beh(D,R,V), where V≥1, and "|distinct|" here means any two digits a and b must have |a|≠|b|.
(For J odd) Tbh≠C3,|distinct|,≠0(D,R,V-2)∪Tbh|distinct|,≠0(D,R,V-1)∪Tbh(D,R,V), where V≥2, "|distinct|" here means any two digits a and b must have |2a-J|
≠|2b-J| where 2J+1=R, and "C3" means that any three digits a,b,c must have FJ(a)+FJ(b)=FJ(c).

For the general case with L concentric spheres from ∑FJ(xk)∈{V,V-1,...,V+1-L}, you get asymptotically L times greater lower bounds than plain (L=1) Beh or Tbh

http://en.wikipedia.org/wiki/Chebyshev%27s_inequality
http://en.wikipedia.org/wiki/Central_limit_theorem
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would have provided. [Call those sets "TbhL."] This is valid for any fixed L, as well as if we permit L to grow like a sufficiently small positive constant times

(lgX)1/2/lglgX. However, the computational effort required to verify that a given D-digit number obeys the conditions, grows with L, perhaps something like D⌈L/2⌉.

Furthermore, the L-sphere Tbh idea only can significantly improve SalemSpencer lower bounds if D⪆RL. That does not seem to happen, not even for L=2, within
the domain covered by my table.

Elkin's improvement is: instead of making Behrend's D digits, regarded as an integer D-vector, be the lattice points on the sphere [this sphere has radius=V1/2

and center (0,0,...,0) in Behrend's original construction as I described it] and within the axis-oriented hypercube of sidelength=2J+1; make this set of vectors be
the extreme points of the convex hull of the lattice points within both that sphere and hypercube. That (he showed) with optimal choice of V improves Behrend's
bound-formula by a further factor of order≥(lgX)1/2. For odd J, Elkin's idea also works for my Tbh variant; the surfaces still are spheres, but the radius now is
[2V+¼]1/2 and the center is (J/2, J/2, ..., J/2), which now is not a integer-lattice point at all. (For even J the Tbh surfaces are non-spherical, but still strictly
convex.) Unfortunately Elkin's sets are algorithmically much harder to compute than the Beh and Tbh sets and their few-sphere versions. So the epithet
"nonconstructive" is much more appropriate for Elkin.

Nevertheless, we now – for the first time – present an algorithm to produce non-averaging sets which actually can be larger than, and always are at least as
large as, Elkin's extreme-point sets, and that can be implemented to run in time and memory both bounded by |S|1+o(1) where |S| is the cardinality of the output
set. (It also permits J to be even, in which case it outputs new kinds of sets):

1. Let S(ν) denote the set of D-digit radix-R numbers with all digits xk in [0,J] where R=2J+1 and obeying ∑0≤k<DFJ(xk)=ν.
2. Let S=S(V).
3. For k=1,2,...,Vo(1) {

S←S∪S(V-k). Use the prior fast algorithm to determine all b∈S that are midpoints of 2 other set elements. Then remove all such midpoints.

}

Elkin pointed out to me that his SODA 2010 paper contained a fast algorithm for constructing his sets omitted in his 2011 journal paper. Elkin's algorithm is
different from mine but perhaps comparably fast. Elkin's sets were extreme points of a convex body in D-dimensional space and hence contained, not merely
"no 3-term arithmetic progressions" but actually "no a ⃗,b⃗,c ⃗ with b⃗ being any convex rational-linear combination of a ⃗ & c ⃗." Since the algorithm above only asks for
the former, weaker, demand that a ⃗+c ⃗≠2b⃗, it ought to produce larger sets than Elkin, perhaps even larger by a factor which grows unboundedly with X.

Future work. By more prolific use of product constructions, mixed-radix generalizations of Tbh, and also considering constructions something like Elkin's and/or
adjoining more set-members to Tbh sets, one could produce a larger, finer-grained, and more-precise table of lower bounds. It also would be feasible to extend it
up to, say, X=10999. Nobody seems to have decent explicit upper bounds, so somebody should try to produce them.

"Baby Coppersmith-Winograd": E≤ln(4000/27)/ln(8)≈2.403632260832873

As an application of the Laser method, plus new ideas, Coppersmith & Winograd 1990 in their §6 devised a matrix multiplication method with exponent
E≤ln(4000/27)/ln(8)≈2.40363. I'll now try to summarize the key parts of their derivation.

They begin (in their EQ5) by describing a certain task T (which is already 3-way symmetric, unlike Strassen's T we discussed previously) that they can
approximately solve via a degree-3 APA (APA3) formula (which they state) employing q+2 multiplications. Then they take the 3Pth tensor power T⊗3P of T, which

therefore is an APA9P formula. They plan to consider large P. Let Y=2X+1 where X=(2P)!P!-2. They will use a Z=SalemSpencer(X) set in their construction, i.e. a

Z-element subset of {1,2,3,...,X} without any 3-element arithmetic progressions. They also will use Behrend's theorem that Z≥X1-o(1) when X→∞.

They then create 3P+1 random quantities, each an integer in the interval [0,Y), that they call "wj." They then argue that their tensor product after a certain
processing based on the wj's (which does not include any bilinear muls) is applied to it, contains at least H different encrypted square-matrix products (with

disjoint variables) of form (N,N,N), where N=qP, where Expectation(H) ≥ (Z/4) (3P)!P!-3 Y-2. (The expectation is over the randomness in the wj's; this is their
EQ8.) They then argue that some suitable particular values for all their wj's must exist that cause H≥Expectation(H). They select and use those particular
suitable values.

Therefore: if N=qP then

Rk9P[ H independent copies of (N,N,N) matmul task ] ≤ (q+2)3P

for some H obeying

H ≥ 4-1 (3P)!P!-3 SalemSpencer( (2P)!P!-2 ) [2(2P)!P!-2+1]-2.

Consequently,

Rk[ H independent copies of (N,N,N) matmul task ] ≤ (9P+1) (q+2)3P.

They argue that in the limit of large P, where the SalemSpencer "o(1)" goes to 0, this yields matrix multiplication exponent E ≤ log_q( 4 (q+2)3 / 27 ) which if q=8
(the E-minimizing choice) shows E ≤ log_8(4000/27) < 2.40364.

A problem with understanding Coppersmith-Winograd is that the SalemSpencer(X) function is unknown. That makes it almost impossible to determine the
breakeven Nobv and Nstr. All we can do is determine upper bounds on them by using known lower bounds on SalemSpencer(X) for appropriate X. If those
lower bounds are assumed/hoped to be nearly tight, then our estimates of Nobv and Nstr will be fairly accurate.
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Numerical Example: q=8, P=11: Then N=811=233=8589934592. The combined multiplication count to multiply all H pairs of N×N matrices is

#muls ≤ (9P+1) (q+2)3P = 1035.

Here the number of copies H obeys

H ≥ 4-1 33! 11!-3 SalemSpencer( 22! 11!-2 ) [22!11!-22+1]-2 = 34131748865760 SalemSpencer(705432) 1410865-2 ≥ 34131748865760 · 8320 · 1410865-2 >
142662.867.

Hence

#muls per copy ≤ 1035 / 142662.867 ≤ 7.01×1029

which has failed to be cheaper than the Obvious method's mul-count N3=299≈6.34×1029. However it would be cheaper if somebody could improve the lower
bound on SalemSpencer(705432) from 8320 to 9202, which might be possible.

Numerical Example: q=8, P=12: Now N=812=236=68719476736. The combined multiplication count to multiply all H pairs of N×N matrices is

#muls ≤ (9P+1) (q+2)3P = 109×1036.

Here the number of copies H obeys

H ≥ 4-1 36! 12!-3 SalemSpencer( 24! 12!-2 ) [24!12!-22+1]-2 = 846182940630300 SalemSpencer(2704156) 5408313-2 ≥ 846182940630300 · 20800 · 5408313-2 ≥
601733.187.

Hence

#muls per copy ≤ 109×1035 / 601733.187 ≤ 1.82×1032

which is cheaper than the Obvious method's mul-count N3=2108≈3.25×1032. Hence Nobv=236=68719476736≈6.87×1010 if our table of lower bounds were all that

were known about the SalemSpencer function. But with future improvements it is possible this might drop to Nobv=233=8589934592≈8.59×109.

Numerical Example: q=8, P=24: Coppersmith-Winograd with N=824=272 uses about 37% more muls than Strassen's 772 if the lower bound
SalemSpencer(32247603683100)≥1.466×109 is all we know.

Numerical Example: q=8, P=25: Coppersmith-Winograd with N=825=275 beats Strassen's mul-count 775 if the lower bound
SalemSpencer(126410606437752)≥3.69×109 is used. This lower bound cannot be read directly from our bounds table but is deducible from
SalemSpencer(143049436031253)≥4.830×109 if you believe that the rightmost 17261312845878 among the 143049436031253 contain at most 1.140×109

elements of the nonaveraging set. Therefore Nstr≤275≈3.7779×1022.

"Toddler" Coppersmith-Winograd: E≤2.3871900

Toddler, from §7 of Coppersmith & Winograd 1990, is conceptually similar to Baby.

In their EQ10 they invent a certain new task T (again already 3-way symmetric) that they can approximately solve via a stated APA3 formula again employing

q+2 multiplications. They take the 3Pth tensor power T⊗3P of T, therefore an APA9P formula. Let L=⌊βP⌋ where β is a constant with 0<β<1 whose optimal value

they will determine later. Let Y=2X+1 where X=(P+L)!(2P-2L)!L!-2(P-L)!-3. They again use a Z=SalemSpencer(X) set in their construction, i.e. a Z-element subset
of {1,2,3,...,X} without any 3-element arithmetic progressions and again use Behrend's theorem that Z≥X1-o(1) when X→∞. Then again using a "randomized
encryption" scheme they argue that their tensor product after a certain "decryption" contains at least H different encrypted square-matrix products (with disjoint
variables) of form (N,N,N), where N=qP-L, where

Expectation(H) ≥ (Z/4) (3P)!(P-L)!-3L!-3 Y-2.

They then again argue that some suitable particular values for all their randoms must exist that cause H≥Expectation(H), and select and use those particular
suitable values. Therefore: if N=qP-L then

Rk9P[ H independent copies of (N,N,N) matmul task ] ≤ (q+2)3P

for some H obeying

H ≥ 4-1 (3P)!(P-L)!-3L!-3   SalemSpencer( (P+L)!(2P-2L)!L!-2(P-L)!-3 )   [2(P+L)!(2P-2L)!L!-2(P-L)!-3+1]-2.

Consequently,

Rk[ H independent copies of (N,N,N) matmul task ] ≤ (9P+1) (q+2)3P

which is ≤(9P+1)(q+2)3P/H muls per copy. They argue that in the limit of large P, where the SalemSpencer "o(1)" goes to 0, if they take q=6 and β=6/125=0.048,
this yields matrix multiplication exponent E≤2.38719. Notice that with this choice of β, we already need P≥21 just to allow L>0 so that this method can operate
nontrivially at all.
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Numerical Example: q=6, P=21, L=1: This P is the minimum allowed causing Toddler to be a nontrivial algorithm, i.e. to have L>0. Then
N=620=3656158440062976. The combined multiplication count to multiply all H pairs of N×N matrices is

#muls ≤ (9P+1) (q+2)3P ≈ 190×863 ≈ 1.491×1059.

Here the number of copies H obeys

H ≥ 4-1 63! 20!-3 1!-3 SalemSpencer( 40! 22! 1!-2 20!-3 ) (40!22!1!-220!-32+1)-2 = 34419383037232130160280840132350 SalemSpencer(63685096314840)
127370192629681-2

Using SalemSpencer(63685096314840)>3.273×109 we find H ≥ 6.944×1012. Hence

#muls per copy ≤ 1.491×1059 / (6.944×1012) ≤ 2.147×1046

which is cheaper, by more than a factor of 2, than the Obvious method's mul-count N3=660≈4.8874×1046. Hence Nobv=620=3656158440062976 with
log2(N)≈51.69925.

Numerical Example: q=6, P=32, L=1: Then N=631=1326443518324400147398656. The combined multiplication count to multiply all H pairs of N×N matrices is

#muls ≤ (9P+1) (q+2)3P ≈ 289×896 ≈ 1.437×1089.

Here the number of copies H obeys

H ≥ 4-1 96! 31!-3 1!-3 SalemSpencer( 62! 33! 1!-2 31!-3 ) (62!33!1!-231!-32+1)-2 = 445908090855572846831392535773770961755140997120
SalemSpencer(491492341037555708928) 982984682075111417857-2

Using SalemSpencer(491492341037555708928)>7.333×1014 we find H ≥ 3.384×1020. Hence

#muls per copy ≤ 1.437×1089 / (3.384×1020) ≤ 4.247×1068.

This fails to be as cheap as Strassen's mul-count Mstr1(N)=64790535543956475873471063036267033900568157035323972289522237508492≈6.479×1067.

Hence Nstr>631 if our lower bound on SalemSpencer(491492341037555708928) is correct to within a factor of 6.

Similarly we find P=37 also is not enough to make Toddler beat Mstr1(N), at least if the conjectural bound

SalemSpencer(622172631629232511560824)>1.6×1017 is not too weak. However, P=38 suffices to make Toddler beat Mstr1(N), indeed by over 20%, using

SalemSpencer(2587765496345398042971024)≥4.706×1017. Hence Nstr≤637≈6.189×1028 with log2(N)≈95.6436.

"Monster" Coppersmith-Winograd: E≤2.3754770

Monster, from §8 of Coppersmith & Winograd 1990, is conceptually similar to Toddler. However, they now use intentionally-coupled (rather than statistically
independent) uniform random variables in their decryption scheme; they begin by defining T now to be the tensor square of (their EQ10) Toddler task; and they
do not merely find a lot of independent copies of square-matrix multiplications inside the high tensor powers of T they then consider, but rather a variety of
different sizes and shapes of rectangular matrix multiplication tasks – then they use Schönhage's ASI on those. They also need to optimize three real
parameters simultaneously to tune their construction (whereas for Toddler there was only one real parameter "β" to optimize).

I'm not going to try to work out the breakeven N for Monster because I do not understand it well enough. I think, though, that they considerably exceed the
corresponding breakeven N's for Toddler. It took everybody 20 years to recover from Coppersmith-Winograd 1990, but then during 2010-2023, other workers

Authors of papers on "post-Coppersmith-Winograd" fast matrix multiplication:
A.M.Davie, Andrew J. Stothers, Virginia Vassilevska-Williams, Francois Le Gall, Josh Alman, Ran Duan, Hongxun Wu, Renfei Zhou

considered higher tensor powers (up to power 32) in CW's E=2.375477 construction, improved the randomized encryption/decryption schemes, and/or added
other tricks, while solving optimization problems (or trying to) sometimes with over 300 real parameters(!) to find out how to optimally tune their algorithms...
which allegedly improved the exponent bound even further to E≤2.3736898 and E≤2.3729269 and E≤2.3728639 and E≤2.3728596 and E≤2.371866. These later
schemes make Monster look simple by comparison, and I believe their breakeven N's exceed Monster's. I shall not examine any of them either. However, I think
that at least some of the authors who devised those improvements must have written special purpose software to help them; and that software hopefully could
be repurposed comparatively easily, to estimate their breakeven N's. Unfortunately when I tried enquiring about that by emailing those authors, I received zero
responses.

Coppersmith-Winograd (baby, toddler, and monster) all can be described (or criticized) as seeming closer to a "nonconstructive proof that an algorithm exists"
than "an algorithm" for matrix multiplication.

The rate of decrease of exponents (for true op-counts that are not power-laws)

For the simplest recursive matrix-multiplication schemes, e.g. based on Strassen's 7-mul (2,2,2) formula and Smirnov's 40-mul (3,3,6) formula, the mul-count of
the algorithm applied to N×N matrices is bounded between two positive constants times NE (for whatever E is appropriate for that algorithm) for all N≥1.
However, for plain-APA schemes, e.g. based on Smirnov's 20-mul APA6 formula for (3,3,3), that is not true! Now the mul-count is bounded between two positive

constants times NElog(N). Equivalently we can regard this as NE(N) with non-constant exponent E(N)=(c+lnlnN)/lnN+E(∞) for some c bounded between two
constants. In other words the exponent E(N) now is decreasing toward its limit value – and rather slowly!
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The mul-count of the Schönhage ASI scheme (with E≈2.547993) we analysed is bounded between two positive constants times NElog(N)3/2, which we may
equivalently regard as NE(N) where E(N)=(3/2)(c+lnlnN)/lnN+E(∞) for some c bounded between two constants.

With the particular instantiation of Strassen's laser method we examined (q=8, E≈2.478495), the mul-count is bounded between two positive constants times
NElog(N)3. We may equivalently regard this as NE(N) where E(N)=3(c+lnlnN)/lnN+E(∞) for some c bounded between two constants.

With Coppersmith-Winograd, an additional ingredient enters the pot: the Behrend/Elkin lower bounds on the SalemSpencer(X) function. These (if presumed
nearly tight) cause E(N) for "Baby" to behave like E(N)=4(3lgN)-1/2+E(∞), and for "Toddler" like E(N)=(8.00689/lgN)1/2+E(∞). ?? ignoring lower order terms.
These are much slower rates of decrease for E(N). E.g, back in the fixed-E point of view Baby's mul-count is NEexp(4[ln(21/3)ln(N)]1/2[1±o(1)]).

To give you an idea of just how slow these rates of approach to the limit E(∞) are, we tabulate crude estimates of the least N needed to cause E(N) to
approximate E(∞) accurate to 1, 2, and 3 decimal places:

Quantity N causing
Quantity=0.1

N causing
Quantity=0.01

N causing
Quantity=0.001 Comment

lnlnN/lnN 3.43×1015 1.29×10281 7.94×103959 plain APA schemes

(3/2)lnlnN/lnN 7.46×1026 5.07×10452 4.42×106235 Certain Schönhage ASI schemes including the one with E≈2.548 we
examined

3lnlnN/lnN 2.08×1065 9.02×101009 1.81×1013475 Certain Strassen Laser schemes including the one with E≤2.479 we
examined

4(3lgN)-1/2 3.54×10160 8.57×1016054 2.04×101605493 Coppersmith-Winograd "Baby" (Behrend)

(8.00689/lgN)1/2 1.07×10241 1.38×1024103 1.15×102410314 Coppersmith-Winograd "Toddler" (Behrend)

Evidently, when authors of theoretical papers helpfully state exponents E accurate to 10 decimal places... that is not always as helpful as they think. The final
line of the table also suggests that in order for Coppersmith-Winograd Toddler to beat Schönhage's ASI scheme with E≈2.548, we need N at least 1090.

The limitations of asymptotics in theoretical computer science

Once an algorithm's breakeven N's correspond to input sizes exceeding the number of bits of entropy storable in the observable universe, which should be
below 10124 (from Bekenstein-Hawking entropy of black hole with mass=1053kg=mass in observ.universe) then we can agree it is no longer going to be an
algorithm of practical interest. (Actually, black holes seem to be "write only memories," posing a slight problem. If we agree to abstain from using black holes
then the entropy potentially storable using the particles present in the observable universe today – mainly photons, neutrinos, and gravitons left over from the big
bang – should be below 1091 bits.) That is: the number 3N2 of matrix entries in the 3 matrices exceeds 10124 when N exceeds 6×1061, or equivalently
log2(N)>205.2.

This threshold definitely is exceeded for the N causing breakeven between Bini et al's (2,2,3) APA based scheme versus Strassen's 2×2-based scheme. It also
seems exceeded for the N causing breakeven between Coppersmith-Winograd "Toddler" versus the Schönhage ASI scheme with E≈2.548.

Those of us who lack confidence in our ability to command all information potentially storable in the entire observable universe, might regard it as beyond reach
if a problem's input size, in bits, exceeds merely the number 2×1050 of atoms in planet Earth. This lesser threshold seems safely exceeded by the Nstr causing
breakeven between Coppersmith-Winograd Toddler, versus Strassen's 2×2 method.

To place the Universe and Earth thresholds in perspective, let us mention a few other problems. John Tromp upper bounded the number of legal positions
(including en passant and castling statuses and side to move) in chess by 8.727×1045 (and 2.892×1039 for positions with no promoted pawns). He estimated
the true number to be 4.82×1044 to within ±10%. That would pose no obstacle to a demigod who could control the isotopic type of each atom in the dwarf planet
Ceres (1046 atoms) – such a demigod could solve chess and store the win/loss/draw value of every legal posiiton.

Now instead consider the oriental game of go which is played on an H×W grid (traditionally H=W=19) with each grid point either occupied by a black stone, a
white stone, or empty. The number of go position diagrams therefore is 3361. However, only a subset of these can actually arise during a legal game of go. The
exact cardinality T of that subset was computed by Tromp & Gunnar Farnebäck in 2016:   T≈2.081681994×10170≈3356.97. Unfortunately, a hypothetical database
giving the perfect-play win/loss value (or final score value; you win if your final score, minus your opponent's, exceeds the pre-agreed "komi" constant value) of
every such position would not necessarily solve go. That's because of the "superko rule" that moves that repeat a go-diagram that previously occurred in the
game are illegal. This rule causes the true game-state not to merely be described by the board diagram plus "who is to move" – also a possibly-huge amount of
game prior-history information could be required! Although the superko rule prevents go games from lasting for an infinite number of moves, it does not stop
them from lasting for at least 10100. This problem could be greatly reduced if we added to the Tromp-Taylor ruleset for go, this additional rule:

If any string of 100 consecutive moves occurs whose net effect is not to decrease the number of empty grid points, then the game instantly ends. (I
do not know whether "100" is the best value to use.)

This would ensure that go games last <36100 moves. Tromp suspects that "multiple ko" situations do not occur in perfect play – although triple-to-quintuple kos
have occurred in professional go games at a historical rate of about once per 8000 games – in which case a database size below 361T presumably indeed
would solve go.

Anyhow, for us the important thing is that such a T-bit go database would be too big to be storable in the observable universe.

As our final example, consider the Harvey & van der Hoeven 2021 algorithm for multiplying N-bit integers in time O(NlogN) on a multitape Turing machine (which
time-bound conjecturally is optimal). The crucial step in this algorithm which distinguishes it from previous slower ones can only happen when N≥21729.

When I was taught computer science as a student in 1980s my teachers contended that only asymptotic bounds matter; so algorithms with better asymptotics
are better – for all but a tiny number of atypically-naughty algorithm examples. Unfortunately it looks now that the reality is more the opposite. The term "galactic

http://github.com/tromp/ChessPositionRanking
https://tromp.github.io/go/legal.html
http://tromp.github.io/go.html
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algorithm" was introduced by K.Regan & R.J.Lipton to denote the "rare" naughty examples, which in fact appear to be the majority of algorithms at CS theory
conferences today.

Conclusions

Strassen-like exact formulas and perhaps some instantiations of Schönhage's ASI are the only two fast matrix multiplication ideas yet proposed with breakeven
N small enough to possibly have practical interest. These are the rows color-coded white and yellow in our main table.

References

Felix A. Behrend: On sets of integers which contain no three terms in an arithmetic progression, Proc. Nat. Acad. Sci. USA 32,12 (Dec.1946) 331-332.

Dario A. Bini, Milvio Capovani, Francesco Romani, Grazia Lotti: O(n2.7799) Complexity for n×n Approximate Matrix Multiplication, Information Processing Letters
8,5 (June 1979) 234-235.

Thomas F. Bloom & Olof Sisask: The Kelley-Meka bounds for sets free of three-term arithmetic progressions, Essential Number Theory 2,1 (2023) 15-44. and
An improvement to the Kelley-Meka bounds on three-term arithmetic progressions (both 2023).

B.Boyer, J.-G.Dumas, C.Pernet, W.Zhou: Memory efficient scheduling of Strassen-Winograd's matrix multiplication algorithm, Proc. 2009 International
Symposium on Symbolic & Algebraic Computation (ISSAC 2009) 55-62. Their table 10 summarizes their algorithms; they implemented and tested several on an
Intel "3GHz core2 duo" finding they all outperformed Obvious when N=4096.

Robert Breusch: Zur Verallgemeinerung des Bertrandschen Postulates, dass zwischen x und 2x stets Primzahlen liegen, Mathematische Zeitschrift 34 (1932)
505-526.

Kevin S. Brown: No Four Squares In Arithmetic Progression web page. The most readable proof I found was a blatantly plagiarized, then streamlined and
republished, version of Brown's proof by Alfred van der Poorten (2007) at http://arxiv.org/pdf/0712.3850.pdf.

Keith Conrad: Arithmetic Progressions of Four Squares, http://kconrad.math.uconn.edu/blurbs/ugradnumthy/4squarearithprog.pdf.

Don Coppersmith: Rectangular matrix multiplication revisited, J. of Complexity 13,1 (Mar.1997) 42-49.

Don Coppersmith & Shmuel Winograd: On the asymptotic complexity of matrix multiplication, SIAM J. Comput. 11,3 (1982) 472-492.

Don Coppersmith & Shmuel Winograd: Matrix multiplication via arithmetic progressions, Proceedings 19th annual ACM conference on Theory of computing
STOC (1987) 1-6.

Don Coppersmith & Shmuel Winograd: Matrix multiplication via arithmetic progressions, J.Symbolic Computation 9,3 (Mar.1990) 251-280.

Henri Darmon & Loic Merel: Winding quotients and some variants of Fermat's Last Theorem, J. Reine Angew. Math. 490 (1997) 81-100.

J.Demmel, I.Dumitriu, O.Holtz: Fast Linear Algebra Is Stable, Numerische Mathematik 108,1 (2007) 59-91.

J.Demmel, I.Dumitriu, O.Holtz, R.Kleinberg: Fast Linear Algebra Is Stable, Numerische Mathematik 106,2 (2007) 199-224.

Peter Denes: Über die Diophantische Gleichung xℓ+yℓ=czℓ, Acta Math. 88 (1952) 241-251.

Leonard E. Dickson: History of the theory of numbers, 3 vols, Chelsea reprint 1966. QA241.D5.

C.C.Douglas, M.Heroux, G.Slishman, R.M.Smith: GEMMW: A portable level 3 BLAS Winograd variant of Strassen's matrix-matrix multiply algorithm,
J.Computational Physics 110 (1994) 1-10.

Ch.-E.Drevet, Md.Nazrul Islam, E.Schost: Optimization techniques for small matrix multiplication, Theoretical Computer Science 412,22 (May 2011) 2219-2236.

Michael Elkin: An improved construction of progression-free sets, Israel J. Math. 184 (2011) 93-128. A considerably shorter, but unfortunately even "less
constructive," proof of (essentially) Elkin's result was found by B.Green & J.Wolf in 2008. Elkin also pointed out to me that he'd also written a conference version:
Proc. Annual ACM-SIAM Symposium on Discrete Algorithms SODA 21 (2010) 886-905 which contains some material omitted in the journal version.

Pal Erdös: Über die Primzahlen gewisser arithmetischer Reihen [On the prime numbers of certain arithmetic series], Mathematische Zeitschrift 39 (1935) 473-
491. Similar results were proven by similar methods by Giovanni Ricci in Bolletino della Unione Matematica Italiana 1933-1934.

William Gasarch, James Glenn, Clyde P. Kruskal: Finding large 3-free sets I: The small n case, J. of Computer and System Sciences 74,4 (June 2008) 628-655.

William Gasarch, James Glenn, Clyde P. Kruskal: Finding Large Sets Without Arithmetic Progressions of Length Three: An Empirical View and Survey II (2010
preprint, never published, except on internet: http://www.cs.umd.edu/~gasarch/BLOGPAPERS/3apsurvey.pdf. Appendix VII contains errors, for example in the line
beginning 1013 the claimed ordering of B3 and B5 differs from what their numbers say. In appendix IV, many "recommended" values in table 5 are incorrect. I
sent GG&K a counterexample indicating their "SPHERE_NZ" bound and their theorem 38 (which seems the main new result claimed) are incorrect. Therefore I
presume lemma 35.1, lemma 35.4, and the claim in proof of theorem 38 that "we can ignore the cases where c=1" all are incorrect.

Tor Hadas & Oded Schwartz: Towards Practical Fast Matrix Multiplication based on Trilinear Aggregation, ISSAC '23: Proceedings of the 2023 International
Symposium on Symbolic & Algebraic Computation (July 2023) 289-297.

David Harvey & Joris van der Hoeven: Integer multiplication in time O(NlogN), Ann. of Math. (2), 193,2 (March 2021) 563-617.

John E. Hopcroft & Leslie R. Kerr: On minimizing the number of multiplications necessary for matrix multiplication, SIAM J. Appl. Math. 20 (1971) 30-36.

Jean Itard: Arithmetique et Theorie des Nombres, Presses Universitaires de Paris, Paris 1963 (also was a 3rd ed, 1973).

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1078964/pdf/pnas01693-0039.pdf
http://arxiv.org/abs/2302.07211
http://arxiv.org/abs/2309.02353
http://arxiv.org/abs/0707.2347
http://www.mathpages.com/home/kmath044/kmath044.htm
http://arxiv.org/abs/0712.3850
http://kconrad.math.uconn.edu/blurbs/ugradnumthy/4squarearithprog.pdf
http://www.math.mcgill.ca/darmon/pub/Articles/Research/18.Merel/paper.pdf
https://projecteuclid.org/journals/acta-mathematica/volume-88/issue-none/%C3%83%C5%93ber-die-Diophantische-Gleichung-xlylczl/10.1007/BF02392133.full
http://doi.org/10.1016/j.tcs.2010.12.012
http://arxiv.org/abs/0801.4310
http://arxiv.org/abs/0810.0732
http://eudml.org/doc/168561
http://doi.org/10.1016/j.jcss.2007.06.002
https://hal.science/hal-02070778v2/document


1/13/24, 12:35Matrix multiplication breakeven curve

Page 17 of 17file:///Volumes/CaseSensVol/MatMulCurve.html

Igor Kaporin: A practical algorithm for faster matrix multiplication, Numerical linear algebra with applications 6,8 (1999) 687-700.

Igor Kaporin: The aggregation and cancellation techniques as a practical tool for faster matrix multiplication, Theoretical Computer Science 315, 2-3 (2004) 469-
510.

Elaye Karstadt & Oded Schwartz: Matrix multiplication, a little faster, J.of the ACM 67 (2020) 1-31.

Zander Kelley & Raghu Meka: Strong bounds for 3-progressions (2023), http://arxiv.org/abs/2302.05537.

Karl Molsen: Zur Verallgemeinerung des Bertrandschen Postulates, Deutsche Math. 6 (1941) 248-256.

Pieter Moree: Bertrand's Postulate for primes in arithmetic progressions, Computers mathematics applications 26,5 (1993) 35-43.

Leo Moser: On Non-Averaging Sets of Integers, Canadian J. Maths 5 (1953) 245-252.

Victor Ya. Pan: New fast algorithms for matrix operations, SIAM J. Computing 9,2 (May 1980) 321-342.

Victor Pan: New combinations of methods for the acceleration of matrix multiplications, Computers & Mathematics with Applications 7,1 (1981) 73-125.

Victor Pan: Trilinear aggregating with implicit canceling for a new acceleration of matrix multiplication, Computers & Mathematics with Applications 8,1 (1982)
23-34.

Victor Pan: How can we speed up matrix multiplication? SIAM Review 26,3 (July 1984) 393-415.

Victor Pan: How to multiply matrices faster, Lecture Notes in Computer Science #179, Springer, 1984.

Victor Pan: The techniques of trilinear aggregating and the recent progress in the asymptotic acceleration of matrix operations, Theoretical Computer Science
33,1 (1984) 117-138.

Leonardo Pisano ("Fibonacci"): Liber Quadratorum (1225). L.E.Sigler republished this as The Book of Squares ("An [Extensively] Annotated Translation into
Modern English"), Academic Press Boston 1987; and Reinhard Schultz posted a redo of Fibonacci's characterization of the 3-term arithmetic progressions of
squares on the internet at http://math.ucr.edu/~res/math153-2019/history07b.pdf.

Robert L. Probert: On the additive complexity of matrix multiplication, SIAM J. Comput. 5,2 (1976) 187-203.

Alexey Vladimirovich Smirnov: The bilinear complexity and practical algorithms for matrix multiplication, Computational Mathematics & Mathematical Physics,
53,12 (Dec.2013) 1781-1795, Originally published in Russian in Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 53,12 (2013) 1970-1984.

Arnold Schönhage: Partial and total matrix multiplication, SIAM J. Computing 10,3 (Aug.1981) 434-455

Volker Strassen: Gaussian elimination is not optimal, Numerische Mathematik 13,4 (Aug.1969) 354-356.

Volker Strassen: Rank and optimal computation of generic tensors, Linear algebra & its applications, 52-53 (July 1983) 645-685.

Volker Strassen: Relative bilinear complexity and matrix multiplication, J. für die reine und angewandte Mathematik 375/376 (1987) 406-443.

Volker Strassen: The asymptotic spectrum of tensors, J. für die reine und angewandte Mathematik 384 (1988) 102-152.

Ondrej Sykora: A fast non-commutative algorithm for matrix multiplication, pp.504-512 in Jozef Gruska, editor, Proceedings 6th International Symposium on
Mathematical Foundations of Computer Science, Springer Lecture Notes in Computer Science #53, Tatranska Lomnica, Czechoslovakia, September 1977.

Shmuel Winograd: On multiplication of 2×2 matrices, Linear algebra & its applications 4,4 (Oct.1971) 381-388.

http://www.cs.huji.ac.il/~odedsc/papers/SPAA17-MatMul-a-Little-Faster.pdf
http://arxiv.org/abs/2302.05537
https://core.ac.uk/download/pdf/82443347.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8EEC5A032BCEA2A71CED8677D6574DBD/S0008414X00043911a.pdf/on-non-averaging-sets-of-integers.pdf
http://math.ucr.edu/~res/math153-2019/history07b.pdf

