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The electron viscosity is popular in the dynamic deformations of metals, and it was 

revealed to dominate the related energy dissipation at low temperatures. The free 

electron model was extensively utilized to investigate the electron viscosity of the 

related phenomena including electron viscosity of mobile dislocations and the 

attenuation coefficient of elastic waves at low temperatures. However, the potential 

energy of the “free” electrons was neglected totally. In this work, the mechanical-

electric coupling which contains both the potential energy and kinetic energy of “free” 

electrons was taken into account. And it was found that the attenuation coefficients of 

the longitudinal and shear waves of metals at cryogenic temperatures are proportional 

to the electrical conductivity and the square of angular frequency, which was in accord 

with experimental observations. The longitudinal and shear waves in a metal was found 

to induce the electromagnetic radiation whose frequency is the same as the stress wave. 

In addition, the electron viscosity was discovered to result in a temperature increase 

over the compression wave front. The temperature increase depends on the strain 

gradient, and a larger strain gradient may lead to a larger temperature rise during the 

compression wave front. Furthermore, the electron viscosity of the mobile edge and 

screw dislocations was obtained in theory. And the order of calculated magnitude in 



terms of the mechanical-electric coupling strength that can be determined by the 

attenuation coefficient of the longitudinal and shear wave agrees with experimental 

results. Overall, the revealed important effects of the electron viscosity for the dynamic 

deformations of metals were investigated and the obtained findings may aid in 

understanding the related phenomena deeply. 
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1. Introduction 

It was experimentally revealed that the ultrasonic attenuation coefficient of normal 

state metals at low temperatures is attributed to the free electrons [1], i.e., electron 

viscosity. As indicated by the experimental observations, the electric attenuation 

coefficient is linear with the electrical conductivity and the square of the sound 

frequency [1]. The variations of the ultrasonic attenuation coefficient with the 

temperature and sound frequency was ever understood in terms of the free electron gas 

model [2] and the electron-phonon interaction [3]. However, these models neglected 

the important role of the ionic potential for the electrons in the normal state metal.  

Besides, the dislocations are a primary plastic mechanism and the dislocation motion 

commonly dominates plastic behaviors of the metals. When the dislocation slides in the 

normal metals, the electrons and phonons will resist the dislocation motion, yielding 

the electron viscosity and phonon drag [4]. The phonon drag commonly govern the drag 

coefficient of the mobile dislocations at relatively high temperatures [5, 6, 7]. But the 

electron viscosity can monitor the drag coefficient of the dislocation sliding at low 

temperatures [5, 6,]. Owing to the experimental obstacles in measuring the electron 

drag coefficient of an individual dislocation, the precise experimental determination of 

the electron drag coefficient is very difficult [5]. Many offers were made to explore the 

electron viscosity for the dislocation sliding in theory, but some conclusions were still 

debated, for example, the temperature dependence of electron drag coefficient [4, 5, 6,]. 

To account for the electron viscosity for the dislocation sliding, the free electron gas 

model was also utilized [6] which nevertheless did not take the important ionic potential 



of the electrons into account again. In addition, the debate of the temperature-dependent 

electron drag coefficient need to be clarified.  

In this work, the electron viscosity and electromagnetic radiation for the dynamic 

deformations of metals were investigated by means of the mechanical-electric coupling 

(MEC) which considers the ionic potential of the “free” electrons. And the debate of 

the electron drag coefficient versus temperature was tackled. The structure of this paper 

was organized as follows. The section 1 offered the introduction. The section 2 briefly 

introduced the fundamental theory of this work. The section 3 gave the obtained 

theoretical results and discussions. Wherein, the subsection 3.1 offered the general 

theory for the electron viscosity and electromagnetic radiation of the deformed metals. 

The subsection 3.2 discussed the electron viscosity for elastic waves and the involved 

electromagnetic radiation in metals. The subsection 3.3 touched the electron viscosity 

during the compression wave front in a metal. The subsection 3.4 focused on the 

electron viscosity for the mobile dislocations in metals. The section 4 gave the 

conclusions.  

2. Theory 

Yuheng Zhang equation should be introduced first, which may be the most important 

foundation in this work. For any metal, there may usually exist some physical factors 

such as strain, temperature, doping and so on, which can give birth to alterations of 

Fermi surface of the material. Analogous to water flowing from a higher position to a 

lower position, electrons also tend to drift from the regions with higher Fermi surface 

to the regions with lower Fermi surface regions, thereby inducing an electric field 



between the regions when the equilibrium state is reached. The physical relation 

between the formed electrostatic field and the correlated Fermi surface may be 

described by Yuheng Zhang equation [8-12],  

                                 FE eE 


                                (1) 

where e is electron charge, EF is the electron chemical potential (ECP). The value EF in 

this equation may usually be taken relative to the energy of a static electron at infinity 

without any electromagnetic disturbances and thus it must be negative. Of specially 

emphasized is that it may not be Fermi energy which is usually encountered in many 

textbooks and literatures, because Fermi energy for metals only refers to the energy 

difference between the highest and lowest occupied single-electron states in a non-

interacting free electron system at zero temperature and cannot take into account the 

variations of lowest occupied electron state influenced by some physical factors such 

as strain, doping and so on. Yuheng Zhang equation may be very important in various 

fields and its applicability should be discussed here. This equation may rigorously hold 

for systems that must satisfy the following conditions. First, the electron systems must 

be in an equilibrium state. Second, the electron systems must conform to the number 

conservation of electrons. Third, the electron must be a point particle and does not 

exhibit any measureable volume effects, which is the foundation of quantum 

electrodynamics (QED). Yuheng Zhang equation may play an important role in 

different areas and some significant applications were discussed elsewhere [8-12]. 

3. Results and discussion 

In this work, Yuheng Zhang equation would be employed to investigate the dynamic 



deformations of metals. Based on Equation (1), an important deriving relation may hold 

in mechanics of materials [9, 11], which is given by   
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where Ec is the electric field when the electron system reaches equilibrium state, ξij are 

the strain components, the indices are i, j=x, y, z and they obey Einstein summation 

convention. This equation means that the strains could alter ECP of a material and could 

generate an electric field in regions with different strains. In the following discussions, 

the electric field in Equation (2) would be the key in related mechanical phenomena of 

materials.  

3.1 The electron viscosity and electromagnetic radiation of deformed metals 

When a metal is deformed, a concomitant electrical current will appear. The general 

expression of the electrical current is  
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where J(r,t), p(r,t) is the position and time dependence of the electrical current and the 

electron average momentum, respectively, ne is the electron density, me is the electron 

mass. According to the classical electron dynamics, 
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where E(r,t) is the real electric field, EF(r,t) is the position and time dependence of ECP, 

τe is the electron relaxation time and it is built on the relaxation time Approximation. 

Based on the charge conservation and the Maxwell equations, the relations follow 
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where ρe(r,t) is both the position and the time dependent net charge density, ε0 is 

vacuum permittivity, ε is the relevant dielectric constant. 

If the position-dependent ECP is static and does vary with time, the combination of 

the above equations generates the partial derivative equation 

       
2

20
2

0e e e
e F

r ,t r ,t r ,t
E r

t t e

   


 
    

 

  


 

where the equilibrium time is τ=ε0ε/σ0, the direct electrical conductivity is σ0= nee2τe/ 

me. Its exact analytical solution may be  
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Generally, the ECP not only exhibits the position dependence but also changes with 

time. To solve the problem, the related physical variables could be written in the 

following Fourier series.  
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where q is wave vector, ω is the angular frequency. As a consequence, the electron 

momentum is 
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And the electrical current is  
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The net charge density can be expressed as follows 
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where the equilibrium time is τ=ε0ε/σ0. In terms of simple calculation, the net charge 

density is  
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And the derivative of the electric field may be  
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If the Lorentz gauge is used, the related magnetic vector potential and the electric 

potential obey the following relations [13] 
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where ܣԦሺݎԦ,  ,ሻ is the position and time dependence of the magnetic vector potentialݐ

߮ሺݎԦ, ሻ is the electric potential, the speed is ܿ௠ଶݐ ൌ 1 ⁄ߝ଴ߝ଴ߤ . In terms of calculation, 

the electric potential can be obtained. Performing the Fourier transformation yields 
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The solution is  
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The magnetic vector potential can be divided into two parts. One is the parallel 

component, and the other is the perpendicular component. 
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According to the Lorentz gauge, the parallel component conforms to the relation 
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As a consequence, the solution of the magnetic vector potential is  
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The electrical current can also be divided into two parts. One is the parallel component, 

and the other is the perpendicular component. 
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Based on the above equations, the parallel component of the electrical current is  
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Here the word “parallel” refers to the physical components parallel to the wave vector, 



i.e., parallel to the direction of the strain gradient. For the electron motion in the 

perpendicular direction, there is no driving force accelerating electrons in the direction, 

so the perpendicular components of the physical variables ,Ԧݍሺୄܬ ሻݓ , ,Ԧݍሺୄܧ	 ሻݓ , 

,Ԧݍሺୄܣ  .ሻ may be so small that they can be ignored safelyݓ

Thus the related electric field is  
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The electrical current will induce the electrical energy loss and the electromagnetic 

radiation. The electrically dissipated power may be   
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And the generated electromagnetic radiation outside the metal is   
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where k is wave vector of the electromagnetic radiation and it equals k=ω/c, ܣ௥ሬሬሬሬԦሺݎ	ሬሬԦ, ߱ሻ 

is the position dependence of the magnetic vector potential with angular frequency ω. 

So the position and time dependence of the magnetic vector potential is 
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The corresponding magnetic field of the radiation can be derived  
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The above discussion indicates that the metal undergoing the time-dependent 

deformation will give birth to an electrical current which further induces the 

electromagnetic radiation. Reversely, the exact detection of the electromagnetic 



radiation outside the metal may assist one in uncovering the dynamic deformation of 

the metal.   

  In general, any complicated dynamic strains of the metal may be regarded as a result 

of the action of the stress waves. And the strain rate may be expressed as  

                         ij r ijv  
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where vr is the velocity of the related stress wave. Concomitant with the propagation of 

the stress waves in a metal is the electrically dissipated power which can be calculated 

by substituting the above equation and the equation (2) into the equation (15). In order 

to illustrate it, some typical cases will be touched in the subsequent sections.  

3.2 Electron viscosity for elastic waves in metals 

3.2.1 Electron viscosity for the longitudinal elastic waves in metals 

The experiments indicated that the attenuation of the elastic waves in a metal at low 

temperatures can be mainly attributed to the electron viscosity [1, 14, 15]. To explore 

the effect of the electron viscosity, a longitudinal wave propagating in x direction in a 

metal is considered and could be described by 
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where q is wave vector, ωq is the wave vector dependence of the angular frequency and 

it is ωq=qvl, vl is the propagation speed of the longitudinal wave, ul is the displacement 

vector, Αl is the vibration amplitude of the longitudinal elastic wave, αl is the attenuation 

coefficient for the elastic wave because of the electron viscosity at low temperatures. 

Based on the definition of the strains [16, 17], the strain components induced by the 

elastic wave may be given by  
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Due to the Poisson effect, the normal strain in y and z direction can be given based on 

the Poisson’s ratio. For a simple cubic lattice, the normal strains are  
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where υ is the Poisson’s ratio, ξyy, ξzz are the normal strains in y direction and z direction, 

respectively. The strain gradient induced by the elastic wave in the metal may be  
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The strains may further causes the variations of the ECP which can be expressed as 

below.   
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Because of the symmetry of the simple cubic metal, the above equation may be 

simplified  
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where ξV is the volume strain. So there exists an electric field accompanying the 

longitudinal elastic waves and this electric field can be obtained according to Equation 

(2). The related electrical current can be obtained according to Equation (13), 
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The electrical current may lead to the dissipation power per unit volume according to 

Equation (15). 
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In general, the relation ωqτ>>1may be popularly valid for the elastic waves whose 

frequency usually ranges from 1 MHz to 100 MHz in the related experiments. The 

electrically dissipated power density may be  
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The energy density of the elastic waves including both the elastic energy and the 

kinetic energy may be  
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where GY is the Young’s modulus, Wl is the energy density of the longitudinal elastic 

wave. The energy of the longitudinal elastic wave may be attenuated by the 

electrically dissipated power 
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In the case that q>>αl, the attenuation coefficient may be derived   
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According to this relation, the electron viscosity-induced attenuation of a longitudinal 

elastic wave depends on several important factors such as electrical conductivity σ0, 

angular frequency ωq and normal strain-induced mechanical-electric coupling (MEC) 

strength. As is shown, the attenuation coefficient is proportional to the electrical 



conductivity and a higher electrical conductivity at lower temperatures usually result in 

a larger attenuation coefficient, which was verified by ultrasonic damping experiments 

at low temperatures [1, 14]. Also shown by the relation, the attenuation due to electron 

viscosity may be proportional to square of angular frequency, and the attenuation may 

be much more serious for elastic waves with shorter wavelength and higher frequency 

than that with longer wavelength and lower frequency. This point was also confirmed 

well by related experiments [1]. On the other hand, the attenuation coefficient may also 

be monitored by the MEC strength|߲ܧி ⁄௏ߦ߲݁ |, and a higher MEC may lead to a much 

more notable electron damping effect for longitudinal elastic waves in metals.  

   Inversely, the precise measurement of the attenuation coefficient for a longitudinal 

wave at low temperatures may help to determine the normal strain-induced MEC 

which is an important characteristic parameter for the metal, 
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The accurate value of MEC is very important, and it may further assist people in 

understanding the electron viscosity of mobile edge dislocations at low temperatures, 

which will be discussed later. 

Table 1 The physical parameters of some typical metals.  

metals 
Parameters    

Al Sn Cu Pb 

Electrical 
conductivity (S/m) 

1×1010 
(30K) [5] 

1×1010 
(10K) [1] 

2.5×109  
(40K) [1] 

1.67×109  
(10K) [1] 

Young’s modulus 
(Pa) 

7×1010  5×1010  13×1010  1.6×1010  

Longitudinal wave 
velocity (m/s) 

6.42×103 

 
3.48×103 

 
4.76×103 

 
2.35×103 

 
Longitudinal wave 0.54×106 10.3×106 47.8×106 [15] 26.5×106 [1] 



frequency (Hz) [14] [1] 
Attenuation 
Coefficient (DB/cm) 

0.0032 
[14] 

0.605 
[1] 

0.213 
[15] 

1.34 
[1] 

Normal strain MEC 

F VE e   (V) 

0.35  0.13  0.078  0.14  

Electrical 
conductivity (S/m) 

2×1010 (1K) 
[5] 

1×1010 
(10K) [1] 

2.5×109  
(40K) [1] 

1.67×109  
(10K) [1] 

Shear modulus (Pa) 2.6×1010  1.8×1010 4.8×1010  0.56×1010  
Shear wave velocity 
(m/s) 

3.04×103 1.9×103s 2.325×103 0.7×103 

Shear wave 
frequency (Hz) 

34.4×106  
[18] 

20×106 [1] 22.5×106 [1] 10.1×106 [1] 

Attenuation   
Coefficient (DB/cm) 

10.7  
[18] 

0.82 [1] 0.417 [1] 2.35 [1] 

Shear strain MEC

F SE e    (mV) 

9.8  2.7  7.6  2.8  

3.2.2 Electromagnetic waves radiated by the longitudinal elastic wave 

According to the discussion in section 3.2.1, when a longitudinal elastic wave 

propagates in the metal, the yielding current density is  

                          , ql
i qx tx

xJ x t e J q e e
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where the parameter J(q) is  
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The electrical current will radiate the electromagnetic waves and the magnetic vector 

potential is [13]  

                        
0

, 
, 

4

ik r r

r

V

J r t e
A r t dV

r r




 


 
    

                (22) 

where k=ωq/c is the wave vector of the radiated electromagnetic wave, c is the light 

speed. In the far-field regions, it may be simplified to be  
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Insertion of the expression of electrical current may result in the following equation 
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where S is the cross-section area of the metal, L is the length of the metal. As a result, 

the corresponding magnetic field is  
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Meanwhile the electric field component of the electromagnetic wave can be obtained 

by the relation 
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Based on the expressions, the radiated electromagnetic waves sensitively depends on 

the physical properties of the longitudinal elastic wave. First, the frequency of the 

radiated electromagnetic waves is the same as the frequency of the longitudinal elastic 

wave. Second, the magnitude of the radiated electromagnetic waves rests with the wave 

length of the longitudinal elastic wave. A more intensive electromagnetic wave will be 

radiated by the longitudinal elastic wave with shorter wave length. Third, the magnitude 

of the radiated electromagnetic waves is also dependent on the MEC of the metal. If the 

metal exhibits a big MEC, the magnitude of the electromagnetic waves radiated by the 

longitudinal elastic wave will also be large. 

3.2.3 Electron viscosity for the shear elastic waves in metals 

As was indicated by the well-designed experiments, the attenuation of the shear elastic 



waves in a metal at low temperatures also mainly originates from the electron viscosity 

[1]. In order to explore the involved electron viscosity, a shear elastic wave propagating 

in x direction and vibrating in z direction can be considered and described by  

 qs
i q x tx

s su e e
    

where αs is the attenuation coefficient for the shear elastic wave because of the electron 

viscosity at low temperatures, ωq is the corresponding angular frequency and it is 

ωq=qvs, vs is the propagation speed of the shear wave, us is the displacement vector in z 

direction, Αs is the vibration amplitude of the shear elastic wave. Thus, the related shear 

strain is  
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The ECP can be written as  
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Analogous to the discussion in section 3.2.2, the induced electrical current density can 

be obtained 
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So the electrically dissipated power density can be derived  
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The energy density of the shear elastic wave including both the elastic energy and the 

kinetic energy is  



                        22 2 22 sx
s s s sW G q A e                      (27) 

where Gs is the shear modulus of the metal. In analogy with the discussion for the 

longitudinal elastic wave, the low-temperature attenuation coefficient owing to the 

electron viscosity can be given by 
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The relation ωqτ>>1 may hold right for the elastic waves whose frequency usually 

ranges from 1 MHz to 100 MHz in the related experiments. Furthermore, the relations 

may be applicable ߲ܧி ௭௫ߦ߲ ൌ⁄ ிܧ߲ ௬௭ߦ߲ ൌ ிܧ߲ ⁄⁄௫௬ߦ߲  for the metals with the 

simple cubic symmetry. As a result, substitution of the equation (26) and equation (27) 

into the equation (28) generates 
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where ξS signifies the shear strains. For the ultrasonic wave utilized in the experiments, 

the relation usually fulfills q>>αs. Thus, the attenuation coefficient for the shear elastic 

wave is  
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Analogous to the case of the longitudinal elastic wave, it is indicated that the attenuation 

coefficient highly depends on the electrical conductivity, the angular frequency and the 

shear strain-induced MEC. More specifically, the attenuation coefficient is proportional 

to the square of angular frequency as well, which was confirmed by experiments in 

single crystalline metal at low temperatures [1]. Besides, the attenuation coefficient at 

low temperatures varies linearly with the electrical conductivity. The electrical 



conductivity of the metal generally increases with the decrease of temperature and 

thereby can cause a more visible attenuation for the shear elastic wave, as was observed 

in experiments [1]. Furthermore, the attenuation coefficient presents the dependence of 

shear strain-induced MEC. In general, the shear strain-induced MEC may be weaker 

than the normal strain-induced MEC, so the attenuation coefficient of the shear elastic 

wave might be much smaller than that for the longitudinal elastic waves with the same 

frequency.  

  The accurate measurement of attenuation coefficients of shear elastic waves at low 

temperatures is important and could also help people obtain the shear strain-induced 

MEC, 
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To estimate the magnitude of the shear strain-induced MEC, the shear strain-induced 

MEC can be calculated by means of the above equation, and the typical values can be 

listed in Table 1. As is shown, the shear strain-induced MEC is much smaller than the 

normal strain-induced MEC. The estimation of the shear strain-induced MEC is not 

only significant for realizing the attenuation coefficient but also vital for understanding 

the electron viscosity of the screw dislocation which will be addressed in the followings. 

3.2.4 Electromagnetic waves radiated by the shear elastic wave 

Like the case of the longitudinal elastic wave, the propagation of the shear elastic wave 

can also radiate the electromagnetic wave. Based on the equation (22), the magnetic 

wave vector of the radiated electromagnetic wave in the far-field regions is given by  
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where the electrical current density is  
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where the parameter is  
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Thus, the magnetic vector potential of the radiated electromagnetic wave in the far-

field regions follows  

           
   

   0 1
4

q

s

i k r t

iqL L
r x

s

J qe
A r ,t e S e

r iq




 

 
  



 

  
         (31) 

where S is the cross section of the metal, L is the length of the metal. The magnetic 

field of the radiated electromagnetic wave can be obtained  
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where Br(r, t) is the magnetic field component of the radiated electromagnetic wave. 

The electric field component of the radiated electromagnetic wave is  
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where Er(r, t) is the electric field component of the radiated electromagnetic wave. 

As is shown, the electromagnetic wave radiated by the shear elastic wave is 

sensitively dependent on the physical properties of the shear elastic wave. The 

frequency of the radiated electromagnetic wave is the same as the shear elastic wave. 

The magnitude of radiated electromagnetic wave depends on the shear strain-induced 

MEC and the wave vector. If the metal displays a small shear strain-induced MEC or 



the wave vector is small, the radiated electromagnetic wave will be weak.  

   The comparison between the electromagnetic wave radiated by the longitudinal 

elastic wave and that radiated by shear elastic wave is interesting. They both arise from 

the motions of the free electrons during the propagation of the elastic waves in the metal. 

Their magnitude both show the similar dependence of the wave vector and the MEC.  

However, the normal strain-induced MEC is usually much larger than the shear strain-

induced MEC, as was indicated in previous sections. As a result, the magnitude of the 

electromagnetic wave radiated by the longitudinal elastic wave may be much larger 

than that radiated by the shear elastic wave. In other words, the detected 

electromagnetic wave may be commonly dominated by the longitudinal elastic waves 

in the metal, but the contribution from the shear elastic wave may be subsidiary.  

3.3 Electron viscosity during the compression wave front in a metal  

When one dimensional compression wave propagates stably in a metal, a dramatic 

strain popularly exists during the compression wave front, which is illustrated in 

Figure 1. 

 

Figure 1 Schematic diagram of the metal under the compression wave. 

 The strains in the metal can be described by  



   
0; 0;

; 0 ;

0; ;
V

x vt

x vt x vt x vt w

x vt w


 

 
     
  

 

where v is the propagation speed of the compression wave, w is the width of the 

compression wave front, ξ0 is the compressive strain of the metal after the compression 

wave, ξV is the volume strain and it is ξV =ξxx+ξyy+ξzz. Supposing that the metal is simple 

cubic, the time and position-dependent ECP can be written as  
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Performing the Fourier transformation yields  
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The employment of the equation (15) can give the electrically dissipated power during 

the compression wave front, 
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where the angular frequency is ωq=qv. Substitution of the expression of ECP into the 

above equation will yield   
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In general, the relations may persist ωqτ >>1. As a result, the electrically dissipated 

power can be simplified as   
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Consequently, the temperature increase due to the electrically dissipated energy can 

be obtained  
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where CV is the heat capacity of the metal per unit volume, ΔTe is the temperature 

increase because of the electrically dissipated energy. The second derivative of the 

strain over space is supposed to be very small and could be ignored over the 

compression wave front. Thus, the temperature increase can be simplified to be 
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The uplift of the temperature heavily depends on the MEC |∂EF/e∂ξV|, the compressive 

strain and the strain gradient within the compressive wave front. A larger strain gradient, 

in another word, a bigger strain rate will lead to a higher increase of the temperature for 

the metal. Therefore, the shock waves which can cause the largest strain gradient and 

strain rate will result in the largest temperature rise. To estimate the temperature 

increase due to the electrically dissipated energy within the compression wave front, 

the typical values for the physical variables in the following table can be taken. The 

uplift of the temperature is about 40 K. Thus the temperature increase induced by the 

electrically dissipated energy in the metal may be noticeable when the strain gradient 

fulfills the condition |׏ξ௏| ൐ 10଼/݉ or the strain rate fulfillsหξሶ௏ห ൐ 10ଵଵ/ݏ.  

  It should be noted that in the above analysis the temperature dependence of the 

electrical conductivity and the heat capacity within the wave front was not taken into 

account. The simple treatment is rational if the temperature increase is not very high. 



Nevertheless, if the temperature increase can cause the remarkable alterations of the 

physical parameters, the variation of the electrical conductivity and the heat capacity 

with temperature must be considered in the wave front.   

   Here the conventional method of the temperature calculation for the shock-loading 

metal is briefly commented. The temperature of shock-loaded metal was commonly 

calculated by the Grüneisen ratio and the Grüneisen equation of state [16, 19]. However, 

the conventional method totally neglected the important electron viscosity across the 

shock wave front. Within the shock wave front, it was revealed that the electron 

transferring occurs and thereby a notable electrical current emerges, as was consistent 

with the observed electromotive force for the metals under shock loading [9, 20, 21]. 

The transfer of electrons and the related electrical current may not influence the 

Grüneisen equation of state that builds on the stable state of the material and thus they 

were not considered seriously before. But they can indeed cause the energy dissipation 

and thereby enables to induce a temperature rise which should be added in the 

calculations of the temperature of the metal after shock loading.  

  Table 2 The physical parameters for a typical metal under the compression waves. 

Parameters ξ0 w (nm) |∂EF/e∂ξV|2 (V2) σ0 (S/m) v (m/s) CV (J/Km3)

Value –0.1 10  0.1 107  4000  3×106  

3.4 Electron viscosity for the dislocation sliding in metals 

3.4.1 Electron viscosity for the sliding of an edge dislocation  

For simplicity, an individual straight edge dislocation sliding in x direction in a 

simple cubic lattice is considered. By means of the known stress field [17, 22], strain 



field, the normal volume strain is  
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where ved is the sliding speed of the edge dislocation. The volume strain rate arising 

from the slipping of the edge dislocation is given by 

                           , ,V ed Vx y v x y  
                     (36) 

On the other hand, the strain rate may be understood as a result of the action of the 

stress waves emitted by the mobile edge dislocation.  

                            ,V l Vx y v  
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where vl is the speed of the longitudinal wave, ׏ξ௏ is the volume strain gradient during 

the emitted stress wave. Here the variation of the longitudinal speed with the strain is 

ignored for simplicity. Therefore, the volume strain gradient of the stress wave arising 

from the slipping of the edge dislocation is  
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During the propagation of the stress waves emitted by the mobile dislocation, the 

electrically dissipated power will be induced. Based on the equation (32), the 

electrically dissipated power is  

            
  22 2

0
,

2
Vd edF

e
V l

x yL vE
P dxdy

e v x




    
            

            (38) 

Insertion of the equation (35) gives 
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where re0 is the cutoff radius of the edge dislocation and it may be relevant with the 



burgers vector. 

 As is indicated, the electrically dissipated power caused by the dislocation slipping in 

a metal depends on the direct electrical conductivity, the slipping speed of the 

dislocation, the MEC and the magnitude of the Burgers vector. A higher electrical 

conductivity of the metal at low temperatures will yield a larger dissipated power, and 

a stronger MEC for the metal may also lead to a larger dissipated power. Since the 

dissipated power is shown to be proportional to the square of slipping speed of the edge 

dislocation, the electron viscous force for the dislocation slipping may be proportional 

to the slipping speed. Thereby, the related electron viscous force per unit dislocation 

length can be obtained 
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The corresponding electron viscous coefficient may be  
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As is shown, the electron viscous coefficient may depend on several important factors 

such as the magnitude of Burgers vector, the electrical conductivity and the MEC. It is 

proportional to the square of the Burgers vector and a big Burgers vector may 

correspondingly result in a large electron viscous coefficient. The electron viscous 

coefficient also sensitively depends on the temperature and a very notable value will 

emerge at low temperatures, because the electrical conductivity of the metal increases 

dramatically as the temperature decreases. But another important dragging source of 



the edge dislocation, i.e., phonon damping mechanism, was found to decrease with the 

temperature decreasing [5, 23]. As a result, the electron viscosity will exceed the 

phonon damping mechanism at low temperatures, and the dominant viscosity 

mechanism of the mobile edge dislocation in a metal is the electron viscosity at low 

temperatures. As is demonstrated, the electron viscous coefficient may also depend on 

the MEC obviously, and it is proportional to the square of the normal strain-induced 

MEC. Therefore, a huge value of the normal strain-induced MEC will lead to a great 

electron viscous coefficient for the mobile edge dislocation.  

Table 3 The physical parameters for some metals and the calculated electron viscous 

coefficient of an edge dislocation. 

metals 
Parameters    

Al Sn Cu Pb 

Electrical 
conductivity σ0 (S/m) 

2×108 (100 
K) [24] 

7×108 
(20K) [1] 

2.5×109 
(40K) [1] 

1.67×109  
(10K) [1] 

Longitudinal wave 
velocity vl (m/s) 

6.42×103 

 
3.48×103 

 
4.76×103 

 
2.35×103 

 
Poisson ratio υ 0.35 0.36 0.34 0.44 
MEC |߲ܧி/߲ߦ௏| 
(V) 

0.35  0.13  0.078  0.14  

Theoretical Be  

(N·s/m2) 
4.4×10–3 7×10–3 5.5×10–3 9.4×10–3 

To estimate the magnitude of the electron viscous coefficient for the edge dislocation 

in a metal, the typically physical parameters of some metals can be listed in the 

following table. According to the normal strain-induced MEC inferred from the 

attenuation coefficient shown in Table 1, the corresponding electron viscous coefficient 

can be calculated in terms of the equation (40). It is difficult to perform the comparison 

between the theoretical results and the experimental results, because the precisely 

experimental measurement of the electron viscous coefficient of an individual edge 



dislocation is very challenging and still lacking. 

  Furthermore, one may note that when the electrical conductivity and the normal 

strain-induced MEC will vary, the electron viscous coefficient may behave the same as 

the attenuation coefficient at low temperatures. Therefore, an interesting relation may 

exist between them 
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The relation may reveal that the ratio of the attenuation coefficient over the square of 

the angular frequency of the longitudinal elastic wave is proportional to the electron 

viscous coefficient of the edge dislocation at low temperatures. Thereby the 

measurement of the attenuation coefficient of the longitudinal elastic wave can assist 

one in determining the electron viscous coefficient of involved edge dislocation at 

cryogenic temperatures. 

3.4.2 Electron viscosity for the sliding of a screw dislocation  

  This section will move to the case of the screw dislocation sliding in a simple cubic 

lattice. The straight screw dislocation is assumed to be in line with z direction and slide 

in x direction with the speed vsd. The strain fields of the screw dislocation is given by 

[17, 22]  
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The gradient of ECP can be given by 
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Owing to the symmetry of the simple cubic lattice, the shear strain components 

dependence of the ECP may be identical. Hence, the above equation can be written as 

                  2
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where ξS is the shear strain.  

The sliding of the screw dislocation will continuously emit the shear waves which 

can result in the electrically dissipated power. Using the equation (38), the electrically 

dissipated power can be calculated as      
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Through simple calculations, the electrically dissipated power for the sliding of the 

screw dislocation per unit length follows  
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where rs0 is the cutoff radius of the screw dislocation. Hence, the electron viscous force 

for the sliding of per unit length of the screw dislocation can be given by 
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Like the edge dislocation, the electron viscous force is also proportional to the sliding 

speed of the screw dislocation. The related electron viscous coefficient is  
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In analogy with the edge dislocation, the electron viscous coefficient of a screw 



dislocation is dependent of the Burgers vector, the electrical conductivity and the shear 

strain-induced MEC. It presents the sensitive temperature dependence and increases 

with the decrease of temperature, because the electrical conductivity of metals usually 

rises as the temperature decreases. The uncovered proportionality between the electron 

viscous coefficient and the electrical conductivity in equation (44) is in agreement with 

the dislocation damping constant due to the electron viscosity [6]. As is shown, the 

electron viscous coefficient of a screw dislocation rests with the square of the shear 

strain-induced MEC. Different from the case of the edge dislocation, the shear strain-

induced MEC is much weaker than the normal stain-induced MEC. So the electron 

viscous coefficient of a screw dislocation can be anticipated to exhibit a smaller 

magnitude than that of an edge dislocation at the same temperature.  

   To prove the theory, a comparison between the theoretical results and experimental 

results is necessary. However, the direct experimental means of measuring the electron 

viscous coefficient of an individual dislocation is not yet available. The related 

measurements cannot establish the accurate value of Be but was customarily utilized to 

demonstrate the existence of the electron viscosity and estimate the order of the 

magnitude of Be [6]. In order to estimate the order of the magnitude of Be given by the 

equation (44), the typical parameters can be substituted into the equation and the cutoff 

radius takes the value 3bs/4 which was ever ordinarily employed [5, 7]. The obtained 

electron viscous coefficient for a mobile screw dislocation and the involved physical 

parameters were listed in Table 4. It is observed that the order of the magnitude of the 

electron viscous coefficient may agree with the estimated value according to the 



experimental results. Despite that the comparison was rough, the agreement between 

the theoretical result and the experimental result may still prove the validity of the 

theory in the work.  

Analogous to the case of the edge dislocation, the relation between the attenuation 

coefficient of shear waves and the electron viscous coefficient of the screw dislocation 

may be offered by 
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It shows that the ratio of the attenuation coefficient of the shear elastic wave over the 

square of the angular frequency may be proportional to the electron viscous coefficient 

of the screw dislocation. And the relation can be utilized to obtain the electron viscous 

coefficient of a screw dislocation by means of the precise measurement of the 

attenuation coefficient of the related shear elastic wave at cryogenic temperatures.  

  Table 4 The physical parameters for some metals and the calculated electron viscous 

coefficient of a screw dislocation. 

metals 
Parameters    

Al Sn Cu Pb 

Electrical 
conductivity σ0 (S/m) 

2×108 (100 
K) [24] 

1×1010 
(10K) [1] 

2.5×109  
(40K) [1] 

1.67×109 
(10K) [1] 

Shear wave velocity 
vs (m/s) 

3.04×103 1.9×103 2.325×103 0.7×103 

Poisson ratio υ 0.35 0.36 0.34 0.44 
Shear strain MEC 
 ௦| (mV)ߦ߲/ிܧ߲|

9.8  2.7  7.6  2.8  

Theoretical Be 
(N·s/m2) 

1.8×10–5 1.6×10–4 2.5×10–4 4.8×10–5 

Experimental 
Be(N·s/m2) 

3.8×10–5 [5] – – – 

 



The electron viscosity of both the dislocations and the compression waves as well as 

the attenuation of involved elastic waves at low temperatures can be attributed to the 

same physical origin, i.e, the mechanical-electric coupling effect of the metals, which 

was referred to as Yuheng Zhang effect [8]. It is the mechanical strains that alter the 

ECP and thereby generate the electrical current, consequently yielding the electrically 

dissipated power. The series of waves were assumed to be adiabatic in the preceding 

theoretical treatments. The assumption may be rational, because the propagation of 

stress waves may be much faster than the thermal transport processes. In addition, the 

electrical conductivity was treated as a constant despite the variations of both the local 

strains and the local temperatures during the wave front. It should be especially noted 

that the electron viscosity may only dominate the mechanical processes at low 

temperatures, however, it will be subsidiary at the room and even higher temperatures. 

It is because the phonon viscosity will be dramatically enhanced as the temperature 

increases, and consequently plays a major role at room temperatures and higher [5, 6, 

23].  

 The free electron model was ever utilized to account for the attenuation coefficient 

of elastic waves in the metals at cryogenic temperatures [2, 3]. The “free” electrons are 

unavoidably subject to the attractive potential energy of positive ions in the metal. 

When the metal is deformed, not only the Fermi energy but also the attractive potential 

energy of the “free” electrons varies. Nevertheless, the important role of the attractive 

potential energy of the “free” electrons was totally neglected by the conventional free 

electron model. Contrarily, the ECP and the MEC include both the Fermi energy and 



the attractive potential energy. Thereby, the employment of them to explain the related 

attenuation coefficient and the electron viscosity may be more reasonable.  

4. Conclusion 

In summary, the electron viscosity in the mechanical phenomena of metals was 

studied by means of the mechanical-electric coupling (MEC). It was indicated that the 

electron viscosity dominates the attenuation coefficient of the longitudinal and shear 

waves in the metals at low temperatures. The induced attenuation coefficient is 

proportional to electrical conductivity, the square of the angular frequency and the MEC, 

which was consistent with experimental observations. Besides, the longitudinal and 

shear waves can cause the electromagnetic radiation whose frequency is identical to the 

vibration frequency of the waves. Moreover, the electron viscosity can result in a 

temperature rise in the compression wave front and a large strain gradient in the 

compression wave front may lead to a dramatic increase of the temperature. The 

electron viscosity of the sliding dislocations was obtained by considering the 

electrically dissipated power of emitted waves by mobile dislocations. According to the 

MEC determined by the attenuation coefficient, the magnitude of the electron viscosity 

coefficient of the mobile dislocations can be calculated and the obtained results was in 

agreement with the experimental results. In a word, using the MEC of the metals, the 

important electron viscosity for the dynamic deformations of metals were revealed in 

the work and the findings may find important applications in the related areas. 
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