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Abstract: Goldbach’s numbers, all-natural integers which satisfy Goldbach’s conjectures

are all odd integers and a subset of the even integers. Naturally, they appear in the

proof of Goldbach’s conjectures. In this paper, the construction of Goldbach’s numbers

approach is used to prove Goldbach’s conjectures, hopefully, it will bring a happy end.
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The Russian mathematician Christian Goldbach suggested in 1742 year that the prime numbers
are not only multiplication but addition blocks of the natural integers. The statements are
known as the weak: ”Every odd integer greater than 7 represents by a sum of three odd, not
necessarily distinct primes”, and the strong: ” Every even integer greater than 4 is represented
by a sum of two odd, not necessarily distinct primes”, Goldbach’s conjectures. As of today, no
proof of the strong conjecture..

Since then, the progress had been made by the work of Russian mathematician Ivan Matveye-
vich Vinogradov in 1937, and the paper ”The Ternary Goldbach Conjecture is True”, published
in 2014 by Harald A. Helfgott, is the final proof of the weak conjecture. The approach used by
Mr. Helfgot rests on the well-established approach based on the circle method, the large sieve
and exponential sums. However, it seems that it is possible to construct all Goldbach’s num-
bers on a proper integer subset, already Goldbach’s subset Nm, . Here, Goldbach’s numbers
are the sums 2G and 3G of two and three prime integers.

Further, we use 2a and 3a notation for the integers in the 2G and 3G Goldbach sets. The set
of all natural integers is N, the set of all primes is Π, the set of all primes smaller or equal
to a prime p is Πp, the sets of all integers smaller or equal to a prime p is Np, the set of all
odd integers smaller or equal to p is Np, and finally the set of all even integers smaller the p is
N′
p. Corresponding Goldbach’s sets are 2Gp and 3Gp.

Remark: Numerical calculations have proven that both Goldbach’s conjectures are true for
all integers n ≤ 8.875 · 1030. Therefore, for each prime number p : 7 ≤ p < 8.875 · 1030 the integer
set Np, is the Goldbach’s set Gp = 2Gp ∪ 3Gp. We construct the integer sets

N2p
p = p+ Gp, N2p = Np ∪ N2p

p .

Since, Gp = 1.2, 3, · · · , p, N2p
p = p+ 1, p+ 2, p+ 3, · · · , 2p, so that N2p = 1.2, 3, 4, 5, · · · , p, p+ 1, p+

2, p+3, · · · , 2p = N2p, and all integers in the set N2p are smaller and equal to the 2p. The following
Corollary gives two conclusions.

Corollary 1. All odd integers in the set N2p are the Goldbach 3Gp integers and all even integers
in that set are sums of the four primes.
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� The odd integers set Nq ⊂ N2p is Goldbach set 3Gp. For, all even numbers in Gp set are 2b =
α+ β Goldbach’s numbers, and all odd integers in the set N2p are the projection

(p+ Gp)↓(2N + 1) = {p+ 2a = p+ α+ β = 3a ∈∈ 3G2p} ⊂ 3G2p .

Since Np already contains the 3G Goldbach’s set, all odd integers in the set N2p are Goldbach’s
3G2p numbers. Further, all odd integers in the Gp set are 3a = α + β + γ integers, so that all even
integers in the set N2p are the projection

(p+ Gp)↓2N = {p+ 3a = p+ α+ β + γ ⊂ 2G2p ,

However, every even integer in the set Np is already the sum of four primes so that every even integer

in the set N2p is the sum of four primes. In conclusion, the weak Goldbach’s conjecture holds on the

integer set N2p. �

Corollary 2. Grim’s weak conjecture is true on the set of all integers.

� The weak Goldbach’s conjectures are true on the set N2p. Further, we proceed by induction on the

prime p. According to Bertrand’s postulate, there is a prime q between p and 2p, and all above holds for

the sets Gq = Nq and N2q. Now, assume that q is an arbitrary prime in the induction sequence. Again,

by Bertrand’s postulate, there is a prime r between q and 2q, and the same as above applies. Gold-

bach’s weak conjecture holds on the N2r. Consequently, Goldbach’s weak conjecture holds on all set N. �

In the rest of the paper, we will show that the strong Goldbach’s conjecture holds also on
all set N, see the paper ”Contribution to Goldbach’s Conjectures,” Number Theory, on the
viXra site, by Radomir Majkic. However, the proof is from word to word repeated here for
the completeness of the paper.

Further underlined truth is that the weak Goldbach’s conjecture is true. We specify the
following notation, |x〉 stands for a column and 〈y| for a row vector. The overline of an integer
z indicates that z belongs to the column vector. The set of all primes is Π, 3a are elements
of 3G and 2b are elements of 2G set. The pairing operation of two integer is ∧̂ : ∧̂(ξ, η)ξ ∧ η ∼
ξ+η. The operation |x〉〈x| creates two-dimensional objects by pairing objects. For example, the
matrix |x〉〈y| is the coupling of the column

∣∣x〉 vector and row
〈
y
∣∣ vector entries. The ∧ symbol

couples the arrays. The projection operation ↓ of a set A on the set B is A ↓ B = A ∩ B. The
lift of a set A is A ↑ B = A ∪B.
The set operations are used in the standard way and perhaps in a similar meaning. The
operations⊕ and 	 are the general objects addition operation.

Definition: The pairing operation ∧̂ is the ”onto complete” if the projection operation 3G ↓
2G and the lift operation 2G ↑ 2G are onto. The operation is ”distinct onto complete” if the
onto complete is supported by the all set 2G.

Corollary 3. Cardinal numbers of the sets 3G and 2G are identical.

� The proof, supported by the calculation in the Appendix, is done by construction in the following
few logical steps.

1. The pairing operation ∧̂(3G ↓ 2G) is the distinct onto complete.
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According to the weak Goldbach’s conjecture, the 3G set is the 3-primes complete, and for each3a ∈ 3G

3a = (ξ, η, ζ) = ((ξ, η), ζ) = (ξ, (η, ζ)) = (η, (ξ, ζ)) ⇒ ∃2b ∈ {(α, β), β, γ), (γ, α)}
∀ 3a ∈ 3G ∃2b = (α, β) ∈ 2G ∴ 3G ↓ 2G ⊂ 2G.

Assume that the lift 2G ↑ 3G is not onto. Then there is a pair 2b ∈ 2G such that

∀ 2b ∈ 2G ∃γ ∈ Π ∴ ∧̂(α, β, γ) = 3a ∈ 3G

⇒ 3a ↓ 2G = (α, β) ∈ 2G ∴ 2G ↑ 3G,

contradiction, and 3G
onto
L9999K 2G. The completeness implies that each 3G Goldbach’s number is sup-

ported by at least one, not necessarily distinct, pair in 3G. To show that 2G are all even integers, we
must show that there are sufficiently many distinct couples in the set 2G to support all odd integers.
The following part is an explicit construction proof of the set of distinct odd integers supported by
distinct prime pairs. The prime number ξ is the family prime of the triplet (ξ, η, ζ), and the prime η is
the matrix row prime enumerator.

2. All 3-prime integers of a prime ξ family are supported by the triangular fundamental matrix BdηΠ of
the prime pairs.

All possible 3-prime integers of a prime η from the prime ξ the family are in the η row vector

(η,Π) =
〈
|η〉,Π

∣∣ =
∣∣η〉〈Π∣∣ =

∣∣η〉〈η; 1, 3, 5, 7, · · · ζ · · ·
∣∣

of the matrix M1 in the table of matrices in the Appendix. The prime η is coupling to each, one by
one prime ζ ∈ Π, the distribution property of the prime η, to form the pair (η, ζ). The collection of all
η rows is forming the matrix of the pairs

〈
η,Π

∣∣. Since
〈
η,Π| =

∣∣η〉〈Π∣∣ the coupling operation has the

multiplication property. While
〈
η,Π

∣∣ is the coupling of the primes the
∣∣η〉〈Π∣∣ is the coupling of the

arrays. The matrix of the pairs M1 =
〈
η,Π

∣∣ is essential, and will be called the fundamental matrix of
the pairs BηΠ.

The simple inspection of the matrix M1 shows the redundancy of the fundamental matrix, the charac-
teristic of all matrices in the construction. The first case of redundancy is the couple multiplicity due
to the matrix’s main diagonal symmetry, and the second case is the pair multiplicity based on the pair
equivalence. Else two pairs are equivalent if they contribute the same value even integer. The goal is
to construct the matrices without multiplicities. The Appendix shows the explicit calculation.

Notice that the duplicates of the identical symmetric pairs in the matrix M1 are shaded. The identical
pair multiplicity eliminates by the removal of the left lower triangular sub-matrix of the fundamental
matrix. Exactly

D̂BηΠ = D̂
〈
|η〉,Π

∣∣ =
∣∣η〉〈D̂Π

∣∣ =
∣∣η〉〈Πd

∣∣ = BdηΠ,

and the reduced fundamental matrix BdηΠ is the unshaded triangular matrix of the matrix M1 in the
table of the matrices in the Appendix. The multiplication property of the coupling induces the reduced
upper right triangular prime matrix Πd in the matrix M2 in the Appendix.
The reduction operator R̂ removes the equivalence multiplicity from the matrix M2. A pair (η, ζ) in a
current row η cancels with an equivalent pair in any of the previous rows, which is the corresponding
ζ prime is canceled in the reduced prime matrix Πd. Exactly

R̂BηΠd =
∣∣η〉〈R̂Πd

∣∣ =
∣∣η〉〈Πdr

∣∣ = BdrηΠ

Πdr
η = R̂Πd

η = Πd
η 	

η∑
1<η′<η

Πd
η ∩Πd

η′

⇒ BdrηΠ =
⋃
η

∣∣η〉〈Πdr
∣∣.
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The matrices M2 and M3 in the Appendix show the calculation. Unshaded entries of the matrices M2
and M3 are the primes and even integers of the unit multiplicities in the reduced matrices of the prime
and the even numbers.

Remark: The distinct primes in the matrix M2 and distinct couples in the fundamental matrix
M3 are all possible distinct primes of the reduced prime matrix Πdr and all possible couples of the
reduced fundamental matrix BdrηΠ. By construction, these two matrices are in one-to-one correspondence.
Moreover, the fundamental matrix BdrηΠ, once created, is unique for all the family representatives ξ.

3. There are exactly as many distinct prime pairs as there are odd numbers.

The matrix BdrηΠ is a fundamental matrix unique for all family primsξ. Each single family prime ξ couples
to the same fundamental reduced matrix BdrηΠ to create all the family prime ξ odd integers Tξ =

ξ ∧ BdrηΠ. Since 2-prime integers of the matrix BdrηΠ are distinct by the construction the odd integers
Tξ are distinct 3Gξ Goldbach’s numbers. While each of the matrices M3.1, M3.2, M3.3, . . . is the
family of the distinct 3-prime integers their intersections are not empty. Inherited multiplicity of the
3Gξ numbers eliminates by the family multiplicity reduction operator Ψ̂.
Further, the sets 3G(1), 3G(3), 3G(5), · · · , 3G(ξ) · · · are distinct 3G families of the odd integers with the
intersections 3G(ξ) ∩1<ξ′<ξ 3G(ξ′) 6= ∅. Then for each family prime ξ

Ψ̂(3G(ξ)) = 3G(ξ)	
∑

1<ξ′<ξ

3G(ξ)	 (3G(ξ) ∩ 3G(ξ′)) = 3Gξ ⇒ 3G =
⋃
ξ

3Gξ.

The Goldbach’s set 3G rests on the collection of the distinct prime pairs by the construction, it is

distinct onto complete, and the number of the distinct 3G integers is the same as the number of the

distinct pairs in the set 2G, or the sets 3G and 2G are distinct onto complete with respect to the pairing

operation. The matrix M4 in the Appendix shows the calculation. �

Corollary 4. If the weak Goldbach’s conjecture is true the strong Goldbach’s conjecture is.

� All above is obtained under condition that the weak Goldbach’s conjecture is true. All possible Gold-

bach’s numbers 3G are supported by the fundamental matrix BdrηΠ and 3G = |Π〉
〈
BdrηΠ

∣∣. According to

the first part of Corollary 1 sets 3G and 2G are ”onto complete” with respect to the pairing operation,

and according to Corollary 2 they are the ”distinct onto complete” with respect to the same operation.

Thus, the Goldbach’s numbers 2G, 3G and the odd 2N+ 1 and even2N integers have the same cardinal

numbers. Consequently, the strong Goldbach’s conjecture is true.

In conclusion Goldbach’s conjectures are true. �

APPENDIX

The following table is the collection of the matrices supporting the construction of the all
3G Goldbach’s integers on the set of all 2G Goldbac;s integers to show the one-to-one corre-
spondence between two sets, all under condition that the weak Goldbah’s conjecture is true.
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Table 1. Construction of the 3G Integers

MATRIX M1: Fundamental Matrix BΠΠ

∀ ξ ζ → 1 3 5 7 11 13 17 19 23 · · ·

(η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ)

1 (1,1) (1,3) (1,5) (1,7) (1,11) (1,13) (1,17) (1,19) (1,23) · · ·
3 (3,1) (3,3) (3,5) (3,7) (3,11) (3,13) (3,17) (3,19) (3,23) · · ·
5 (5,1) (5,3) (5,5) (5,7) (5,11) (5,13) (5,17) (5,19) (5,23) · · ·
7 (7,1) (7,3) (7,5) (7,7) (7,11) (7,13) (7,17) (7,19) (7,23) · · ·
11 (11,1 (11,3) (11,5) (11,7) (11,11) (11,13) (11,17) (11,19) (11,23) · · ·
13 13,1) (13,3) (13,5) (13,7) (13,11) (13,13) (13,17) (13,19) (17,23) · · ·
17 (17,1) (17,3) (15,5) (17,7) (17,11) (17,13) (17,17) (17,19) (19,23) · · ·
19 (19,1) (19,3) (17,5) (19,7) (19,511 (19,13) (19,17) (19,19) (23,23) · · ·

MATRIX M2: Diagonal Symmetric Primes Πd = D̂Π

∀ ξ (η, ξ) ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

(1, ξ) 1 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(3, ξ) 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(5, ξ) 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(7, ξ) 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(11, ξ) 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(13, ξ) 13 17 19 23 29 31 37 41 43 47 53 · · ·
(17, ξ) 17 19 23 29 31 37 41 43 47 53 · · ·
(19, ξ) 19 23 29 31 37 41 43 47 53 · · ·

MATRIX M3: Unique Matrix 2G =
∣∣Π〉〈Πdr

∣∣ of All Distinct Prime Couples

∀ ξ (η, ξ) ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

(1, ξ) 2 4 6 8 12 14 18 20 24 30 32 38 42 44 48 54 · · ·
(3, ξ) 10 16 22 26 34 40 46 50 56 · · ·
(5, ξ) 28 36 52 58 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·

MATRIX M3.1: Distinct 3G(1) = 1 +
〈
Πdr

∣∣ Integers for ξ = 1

ξ = 1 (η, ξ) ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

(1, ξ) 3 5 7 9 13 15 19 21 25 31 33 39 43 45 49 55 · · ·
(3, ξ) 11 17 23 27 35 41 47 51 57 · · ·
(5, ξ) 29 37 53 59 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·
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MATRIX M3.2: Distinct 3G(3) = 3 +
〈
Πdr

∣∣ Integers for ξ = 3

∀ ξ = 3 (η, ξ) ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

(1, ξ) 5 7 9 11 15 17 21 23 27 33 35 41 45 47 51 57 · · ·
(3, ξ) 13 19 25 29 37 43 49 53 59 · · ·
(5, ξ) 31 39 55 61 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·

MATRIX M3.3:Distinct 3G(5) = 5 +
〈
Πdr

∣∣ Integers for ξ = 5

ξ = 5 (η, ξ) ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

(1, ξ) 7 9 11 13 17 19 23 25 29 35 37 43 47 49 53 59 · · ·
(3, ξ) 15 21 27 31 39 45 51 55 61 · · ·
(5, ξ) 33 41 57 63 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·

MATRIX M4: All Distinct 3G = 3G(1)	
∑

1<ξ′<ξ 3G(ξ)	 [3G(ξ) ∩ 3G(ξ′)] Integers

ξ = 1 (η, ξ) ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

(1, ξ) 3 5 7 9 13 15 19 21 25 31 33 39 43 45 49 55 · · ·
(3, ξ) 11 17 23 27 35 41 47 51 57 · · ·
(5, ξ) 29 37 53 59 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·
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