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Abstract

In this paper we will define a superset of integers
(the complete integers, ZC), which contains the
dual of integers along parity (e.g. the odd zero,
the even one, ...). Then we will see how they form
a ring and how they can be used as exponents for
real numbers powers, in order to write functions
which have a discontinuity in zero (the function it-
self or one of its derivates), as for example |x| and
sgn(x).

1 Introduction

Doing calculus with polynomials is very easy, aside
the fact they are all C∞, you can apply some simple
rules to resolve all the possible polynomials [Lan51].
Instead with functions defined by cases and with
functions which are not C∞, the analysis becomes
more complicated: you usually have to study sepa-
rately each case, and then combine them back.

It would be helpful to have a way to write those
functions in a polynomial-like way. A lot of func-
tions can be approximated with series (e.g. Taylor
and Maclaurin), but just as many don’t [TFW96].

In this paper we will explore a superset of the in-
tegers which introduces the dual of integers along
parity, so we will define the “odd zero” (a num-
ber with null value, but the same behaviour of odd
numbers), the “even one” (a number with unitary
value, but the same behaviour of even numbers),
and so on.

The peculiarity of those numbers is that they will
allow us to define an exponentiation of reals f(x) =
xz (where x ∈ R, z ∈ ZC) which is not C∞. More
precisely we will see that a real number elevated to
a complete integer is allowed to have a discontinuity
or a non-differentiable point in zero.

All the theorems, lemmas and corollaries have
been proved using Agda proof assistant [BDN09],
based on Martin-Löf type theory [MS84]. The
code of the proofs is available at the following
git repository: https://gitlab.com/DPDmancul/
complete-integers-agda.git. For the non triv-
ial proofs a trail is reported in this paper.

2 Complete integers

In this section we will define the ring of complete
integers (ZC) and we will show some useful prop-
erties of this numbers.

Definition 1 (Complete integers). Let’s define the
set of the complete integer numbers as

ZC := Z× F2

Where F2 is the filed of integers modulo 2 [LN97].
We will call the first component value, and the

second parity, and write them as
[
value
parity

]
.

The value states the quantity represented by the
complete integer, whilst the parity represents its
evenness; we will discuss it better in subsection 2.2.

Definition 2 (Ring of complete integers). Let’s
define ZC as a commutative ring with unit:

Given
[
a
b

]
,

[
c
d

]
∈ ZC

[
a
b

]
+

[
c
d

]
:=

[
a+ c
b⊕ d

]
[
a
b

]
·
[
c
d

]
:=

[
a · c
b · d

]
where ⊕ is the sum modulo 2 (known in boolean
algebra as exclusive or) [LN97; Gre98].
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It is easy to prove it forms a commutative ring

with unit
[
1
1

]
and zero

[
0
0

]
.

Lemma 1 (Powers of complete integers).[
v
p

]n
=

[
vn

p

]
∀ n ∈ N+

[
v
p

]0
=

[
1
1

]

2.1 Cartesian plot

We can visualize the sum between complete inte-
gers as a vector sum on a bi-dimensional Cartesian
plane with the value on x-axis and parity on y-axis
(Figure 1).

value

parity
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1

0

Figure 1: Sum of complete integers.[
2
1

]
;

[
5
1

]
;

[
7
0

]
=

[
2
1

]
+

[
5
1

]

Obviously ZC is not a vector space because Z is
not a field and is also a different set from F2. In fact
on x-axis we could have only integer numbers and
on y-axis we have only 0 and 1 cyclically repeated
(integers modulo 2).

The previous representation is valid also for
“scalar product” (sum exponentiation), which is the
product by an integer (Figure 2).

value

parity
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Figure 2: Sum exponentiation of complete integers.[
1
1

]
;

[
1
0

]
;

[
3
1

]
= 3 ·

[
1
1

]
;

[
3
0

]
= 3 ·

[
1
0

]

Remark 1. Repeating parity on the negative side of
the y-axis we notice that the “vectors” which goes
up by one or goes down by one alongside y-axis are
indeed the same (Figure 3). So we don’t need to
repeat parity (Figure 4).

value

parity
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1

1

Figure 3: ±1 on the parity axis is the same.[
3
1

]

value

parity
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1

Figure 4: Sum exponentiation without repeating y-
axis. [

3
1

]
+

[
3
1

]
= 2 ·

[
3
1

]
=

[
6
0

]
; 3 ·

[
2
1

]
=

[
6
1

]

2.2 Value and parity
In this subsection we will see two functions, which
explain the role of the value and of the parity, and
see their properties.

Definition 3 (Value function).

val : Z ∪ ZC → Z
val(z) := z ∀ z ∈ Z

val

([
v
p

])
:= v ∀

[
v
p

]
∈ ZC

The value function returns the quantity repre-
sented by a number. For an integer it is obviously
itself, and for a complete integer it is its first com-
ponent, as said before.

We can compare this function to the absolute
value. In facts we can write1 Z = N × {+,−} and
the absolute value of a integer defined in this way
would return the first component of it: the mag-
nitude stripped by the sign. As the absolute value

1Paying attention to the fact (0,+) = (0,−).
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returns the magnitude of a number stripped by the
information about its sign (all absolute values are
positive), the value function returns the quantity
(with the sign), but stripped by its information
about the parity.

Theorem 1 (Properties of value). Given x, y ∈
Z ∨ x, y ∈ ZC and z ∈ Z it is possible to show the
following properties hold.

1. Value is an odd function.

val(−x) = − val(x)

2. Value is a linear function.

val(x+ y) = val(x) + val(y)

And recalling that, since z is an integer num-
ber, z · x is the sum exponentiation (i.e. sum-
ming x for z times):
z · x = sgn(z) · (x+ x+ · · ·+ x︸ ︷︷ ︸

|z|times

)

val(z · x) = z val(x)

3. Idempotence of the value.

val ◦ val = val

4. Completely multiplicative.

val(1) = val

([
1
1

])
= 1

val(x · y) = val(x) · val(y)

Definition 4 (Parity function).

par : Z ∪ ZC → F2

par(z) :=

{
0 z even
1 z odd

∀ z ∈ Z

par

([
v
p

])
:= p ∀

[
v
p

]
∈ ZC

The parity function returns the evenness of its
argument. We can read it as a boolean value: 0
means false, whilst 1 means true, as an answer
to the question “is it even?”. Another point of view
is saying a number has the same evenness of its
parity.

Obviously the parity of an even integer is the
same of 0, whilst the parity of an odd integer is the
same of 1. For what concerns complete integers we
said in the definition the second component repre-
sents the parity of the number.

In the analogy we made before between value
function and absolute value, the parity function
would correspond to the sign: as the sign discards
all the information about the magnitude of an in-
teger, retaining only its sign, the parity function
returns a representative of the parity, discarding
the value of the number.

Theorem 2 (Properties of parity). Given x, y ∈
Z∨x, y ∈ ZC and z ∈ Z we can prove the following
properties of parity function.

1. Parity is an even function.

par(−x) = par(x)

2. Parity is a linear function.
Since par(x) ∈ F2 the sum operator must be
replaced by exclusive or (⊕).

par(x+ y) = par(x)⊕ par(y)

3. Idempotence of the parity.

par ◦ par = par

4. Completely multiplicative.

par(1) = par

([
1
1

])
= 1

par(x · y) = par(x) · par(y)

It is now easy to see how the parity of a com-
plete integer is not a mere binary flag, but induces
the same properties of even and odd numbers into
ZC : complete integers with even parity act like even
numbers and those with odd parity like odd num-
bers. This is summarized in Table 1 (recall 0 is a
representative of even parity and 1 for odd parity).

Corollary 2.1 (Parity of powers). The parity of a
power, with positive natural exponent, is the same
of the base.

par(xn) = par(x) ∀ x ∈ Z ∪ ZC , n ∈ N+
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par(x) par(y) par(x+ y) par(xy)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 1: The behaviour induced by parity in sum
and multiplication.

3 Integers and dis-integers
In the previous section we have defined the set of
complete integers and seen it forms a ring with the
given operations. Despite in the introduction we
said ZC to be a superset of the integers we haven’t
stated such relation yet. In this section we will
define an isomorphism between a subset of ZC and
Z to prove our first utterance.

Moreover we will analyze the other complete in-
tegers (the ones which are not involved in this iso-
morphism) and their properties.

Definition 5 (Integers prime). Let us define the
set of integers prime as the subset of ZC where the
parity equals the parity of the value.

Z′ :=

{[
v
p

]
∈ ZC : p = par(v)

}
=

=

{[
v

par(v)

]
: v ∈ Z

}
Definition 6 (Dis-integers). Let us define the set
of dis-integers as the subset of ZC where the parity
is different from the parity of the value.

ZD :=

{[
v
p

]
∈ ZC : p ̸= par(v)

}
Remark 2. {Z′,ZD} is a partition of ZC .

Z′ ⊔ ZD = ZC

Theorem 3 (Integers and integers prime are iso-
morphic). The function fZ : Z → Z′ defined as

fZ(z) =

[
z

par(z)

]
is an isomorphism.

Since Z′ is isomorphic to Z, and so the two cannot
be distinguished, we won’t write Z′ anymore and we

will use the notation
[

v
par(v)

]
to denote elements

in Z too.
More precisely we will write, with an abuse of

notation, Z′ = Z and
[

v
par(v)

]
= v meaning re-

spectively Z′ = fZ(Z) and
[

v
par(v)

]
= fZ(v).

3.1 Dis-integers

We said in the introduction that dis-integers are
the dual of integers along parity, in fact in ZD we

have
[
0
1

]
which has null value and odd parity,

[
1
0

]
which has unitary value, but even parity, and in

general
[
v
p

]
where the parity p is the dual of parity

of the integer v.

Definition 7 (Odd zero). Let’s call o :=

[
0
1

]
the

odd zero, since it has null value and odd parity.

Lemma 2 (Swap parity). Summing the odd zero
to a complete integer its parity changes, but not its
value.

val(z + o) = val(z) ∀z ∈ ZC

par(z + o) ̸= par(z) ∀z ∈ ZC

more precisely

par(z + o) = 1− par(z) = par(z) ∀z ∈ ZC

Definition 8 (Even unit). Let’s call l :=
[
1
0

]
the

even unit, since it has unitary value and even parity.

Lemma 3 (Change only value). Summing the even
unit to a complete integer only it’s value changes,
not its parity.

val(z + l) = val(z) + 1 ∀z ∈ ZC

par(z + l) = par(z) ∀z ∈ ZC

Now we can link integers and dis-integers

Lemma 4 (Dis-integer as integer plus even unit).
Each dis-integer can be written as the sum of an
integer with l.

∀ z ∈ ZD ∃ y ∈ Z : z = y + l
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Proof. We can write z =

[
v

par(v)

]
, since dis-

integers have parity different from the parity of the
value and in F2 we have only two elements.

Picking y =

[
v − 1

par(v − 1)

]
∈ Z we have

par(v − 1) = par(v)⊕ par(−1) = par(v)⊕ 1 = par(v)

∴

y + l =

[
v − 1

par(v)

]
+

[
1
0

]
= z

4 Real powers

In this section we will define an exponentiation
function with real bases and complete integer ex-
ponents.

To help us come up with a good definition we
can split on the exponent z:

1. If z is an integer, this operation is already de-
fined as xz for x ∈ R;

2. If z is a dis-integer, we know from Lemma 4
that there exist an integer y s.t. z = y + l;
supposing that our function respects exponent
rules (which we will prove in Theorem 4), we
can write xz = zy+l = zy · zl.

So all we have to do is to define the value of xl.
If we pick an x ∈ R we can intuitively say that xl

should be equal to |x| because:

1. being the parity of l even, xl should be an even
function of x;

2. being the value of l one, xl should be a some-
what linear function.

So our definition, for x ∈ R and z ∈ ZC , would
be:

xz =

{
usual xz z ∈ Z
xy · xl = xy · |x| z ∈ ZD

with y = z − l ∈ Z
We will instead use another definition, which

could be proven to be equal.

Definition 9 (Real exponentiation to complete in-
tegers). For x ∈ R and z ∈ ZC , we define

xz = xval(z)−k|x|k

with k = par (val(z))⊕ par(z).

Remark 3. Integers have a value of k = 0, while
dis-integers have a value of k = 1. So we can call k
the dis-integerness of a complete integer.
Remark 4. We can easily see how the squared norm
of the vector representing a complete integer in
the Cartesian plane has the same parity of its dis-
integerness k.

In other words given
[
v
p

]
∈ ZC

par

(∥∥∥∥( v
p+ 2a

)∥∥∥∥2
)

= par (v)⊕ p = k ∀a ∈ Z

Lemma 5 (Dis-integerness of sum). The dis-
integerness kz+w of the sum of two complete in-
tegers is the sum modulo two of the correspond-
ing dis-integernesses: given z, w ∈ ZC and ky =
par(val(y))⊕ par(y)

kz+w = kz ⊕ kw = kz + kw − 2kzkw

Remark 5. We can also prove the parity of the dot
product of two vectors representing complete inte-
gers to be the dis-integerness kzw of the product of
the two complete integers.

In other words given z =

[
vz
pz

]
, w =

[
vw
pw

]
∈ ZC

par

((
vz pz + 2a

)( vw
pw + 2b

))
=

= par (vzvw)⊕ pzpw = kzw ∀a, b ∈ Z

Remark 4 and 5 suggest another reading of the
dis-integerness: it is the parity of the energy of
a vector, or of the mutual energy of two vectors
[EL07], representing a complete integer.

Theorem 4 (Exponent rules). Definition 9 re-
spects exponent rules, i.e. for x, y ∈ R and z, w ∈
ZC

xz+w = xz · xw; (x · y)z = xz · yz; (xz)w = xzw

Proof. With
[
vz
pz

]
= z,

[
vw
pw

]
= w and ky =

par(vy)⊕ py
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• xz+w = xz · xw

xz+w = xz+w−kz+w |x|kz+w

Which, using Lemma 5, becomes

xz+w−kz−kw+2kzkw |x|kz+kw |x|−2kzkw =

= xz+w−kz−kw+���2kzkw |x|kz+kw����x−2kzkw =

= xz−kz |x|kzxw−kw |x|kw = xzxw

• (x · y)z = xz · yz

(xy)z = (xy)vz−kz |xy|kz =

= xvz−kz |x|kzyvz−kz |y|kz = xzyz

• (xz)w = xzw

(xz)w = x(vz−kz)w|x|kzw

and calling y := vz − kz we have

xvyw−kyw |x|kyw |x|vkzw−��kkzw����|x|kkzw =

= xvyw−kyw |x|kyw+vkzw =

= xvyw−kyw |x|kyw+vkzw−kzw |x|kzw

Knowing kyw + vkzw − kzw is even we obtain

xvyw(((((−kyw+kyw+vkzw−kzw |x|kzw =

x((vz−��kz)+��kz)vw−kzw |x|kzw = xzw

Finally kyw + vkzw − kzw is indeed even, since
its parity is zero:

par(kyw + vkzw − kzw) =

= pypvw
⊕ pypw︸ ︷︷ ︸

pykw

⊕ pkzpvw ⊕ pvzpvw︸ ︷︷ ︸
pzpvw

⊕pzpw =

= pykw ⊕ pzkw = (py ⊕ pz)kw = 0kw = 0

We will now see how two well known functions,
which are not C∞, can be written as a real expo-
nentiation to the power of a complete integer.
Remark 6 (Absolute value). As defined above, a
real elevated to the power of the even unit is its
absolute value: xl = |x|. This function is C0, but
not C1, hence cannot be expressed by a polynomial.
Remark 7 (Sign function). A real number elevated
to the power of the odd zero is the sign function:
xo = sgn(x). This function, being the derivative
of |x|, is not C0 (continuous), and so cannot by
written as a polynomial.

4.1 Calculus
Now we will briefly see how to differentiate and
integrate the aforementioned function

f : R → R
x 7→ xz z ∈ ZC

Lemma 6 (Derivative).

d

dx
xz = val(z)xz−1 ∀z ∈ ZC

Proof. With
[
v
p

]
= z and k = par(v)⊕ p

d

dx
xz =

d

dx
xv−k|x|k

• k = 0

d

dx
xv−0|x|0 =

d

dx
xv = vxv−1

From Remark 3 we know z to be an integer,
and so, by definition, z = v

∴ vxv−1 = val(z)xz−1

• k = 1

d

dx
xv−1|x| = |x| d

dx
xv−1 + xv−1 d|x|

dx
=

= (v − 1)xv−1−1|x|︸ ︷︷ ︸
xz−1

+xv−1 sgn(x)

which, for Remark 7, becomes

(v − 1)xz−1 + xv−1xo = (v − 1)xz−1 + xv+o−1

Finally, by Remark 3 and Lemma 2, z = v+o.
In facts z is a dis-integer, so par(v) = p, but
val(v + o) = v and par(v + o) = par(v) = p.

Lemma 7 (Antiderivative).∫
xz dx =

xz+1

val(z) + 1
+ c with c ∈ R; ∀z ∈ ZC

Proof. By Lemma 6 we have

d

dx

(
xz+1

val(z) + 1
+ c

)
= val(z + 1)

xz

val(z) + 1
=

=(((((((val(z) + 1)
xz

�����val(z) + 1
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We can happily observe how those two power
rules are very similar to the power rules for inte-
ger exponents [Lan51]. The only difference is that
as coefficient we have to take the value of the expo-
nent. This make sense since in real numbers talking
about parity is meaningless.

5 Conclusions

We have defined the field of complete integers over
a set containing integers and dis-integers: the dual
of integers along parity. To understand better what
we have done we defined the concepts of value and
parity and showed the analogy between absolute
value and value and that between sign and parity
to compare the extension of naturals into integers
to our extension from integers to complete integers.
As in natural numbers there is already the concept
of sign, but we don’t have all combinations of ab-
solute value / sign (i.e. we have only positive num-
bers), also in integers we have already the concept
of parity, but not all combinations of value / parity
(i.e. we have only the even zero, the odd one, and
so on). So the complete integers cover the missing
combinations.

The aim of this extension is to define an expo-
nentiation of the real numbers which allows discon-
tinuities in zero: in this way we can easily study
some functions like the sign and the absolute value,
which are not C∞, as they were classical powers.
In fact the differentiation and integration rules are
very similar to classical power rules. As we will see
in the first proposed future work (subsection 6.1)
this could be further extended to all the functions
by cases for which each case could be represented
by a polynomial.

In the meanwhile we also showed how to repre-
sent complete integers on a Cartesian plane and
took note of the relation between the dot product
of the vectors induced by this representation and
the dis-integerness of the complete integers repre-
sented.

6 Future work

The contents presented in this paper have no prac-
tical utility by themselves, but could be a trampo-

line for other studies. In this section two possible
future works are presented.

6.1 Functions by cases in a
polynomial-like form

Remark 7 tell us that using complete integers as ex-
ponents we can write functions with a discontinuity
in zero. We can use this fact to define an extension
of polynomials, which have complete integer expo-
nents. With those “polynomials” we could write all
functions which are interpolable with a polynomial
for x ⩽ 0 and with another for x ⩾ 0.

We can further extend this concept summing
some of those extended “polynomials”, translated
on the x axis (evaluated in x − x̄): every of those
“polynomials” has a different discontinuity point x̄.
So those hyper “polynomials” could represent all
functions by cases for which each case can by rep-
resented with a polynomial.

For example, as can be seen in Figure 5,
(x−a)o−(x−b)o

2 is always zero, except in the inter-
val (a, b), and so can be used as a "mask" for that
case.

xa b

1

Figure 5: Selector function (x−a)o−(x−b)o

2 .

6.2 Complete rationals
As we have defined the commutative ring ZC =
Z×F2, we can define also a commutative ring over
QH = Q × F2. In this case however we cannot
prove Q ⊂ QH . Defining QH̄ =

{
q
l : q ∈ QH

}
and

QC = QH ⊔QH̄ we could prove:

1. Q ⊂ QC ;

2. The division of two complete integers is in QC ;

3. QC = {x/y : x, y ∈ ZC ; y ̸= 0}.
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