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Abstract - Understanding the Mathema!cs of the CMB Power Spectrum  

The CMB Power Spectrum is one of the most important concepts in Big Bang theory.  However, 

the mathema!cs of power spectrum analysis are complex and less than intui!ve.  This paper 

discusses the mathema!cs of the power spectrum analysis for CMB, with a focus on bringing 

clarity to this topic.  We discuss the concepts involved and provide examples of the calcula!ons 

that build towards the CMB power spectrum chart.  We examine topics such as the !" angular 

power spectrum calcula!on and associated #"$ calcula!on.  We discuss the %"$ and %"$&spherical harmonic equa!ons and the '"$ Legendre func!ons.  We provide example 

calcula!ons to assist readers in understanding the mathema!cs behind developing the power 

spectrum chart.  

Our audience is those individuals that are interested in cosmology and the Big Bang, and who 

want to have a be"er understanding of the mathema!cs behind the CMB power spectrum 

analysis.  

  

David Selig
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Understanding the Mathema!cs of the CMB Power Spectrum  

One of the most important concepts in Big Bang theory is the CMB power spectrum.  It is an 

analy!cal concept, founded on complex mathema!cs that are not intui!ve.  This ar!cle will 

a"empt to shed some light on the mathema!cs of the power spectrum for CMB.   

Let’s start with what the CMB power spectrum represents.  The CMB power spectrum is an 

analysis of the CMB temperature data.  It looks at the temperature anisotropies, examining the 

temperature fluctua!ons across progressively smaller regions on the surface of last sca"ering 

sphere.  The familiar power spectrum chart below is a plot of this analysis.  Looking at this chart, 

we observe that the x-axis is labelled Mul!pole moment (.  The parameter )( is associated with 

the size of the regions being examined, with the region size inversely propor!onal to the value 

of (,)although the rela!onship is not precise.  Note that)( has a posi!ve integer value.   

The power spectrum in the chart has data points for progressively larger values of)( .  Note that 

the x-axis is presented in log form.  The y axis is the measured angular power spectrum for a 

given value of)(.  This is designated as)!".  The actual scale in the chart is   
"*"+-./0 !"1   You should 

also note that !" is measured in *23./ or micro-Kelvin degrees, squared. 

1
 

                   CMB Power Spectrum 

 

 

 

1 Source – Wikipedia Cosmic microwave background ar!cle 
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Spherical Harmonics 

As you read the literature about the CMB power spectrum, you will see references to spherical 

harmonics analysis.  We will expand on this topic below, but for now, the format of the spherical 

harmonic equa!on is.  

 %"$*4, 5. = *67.$8/"+-90 *":$.;*"+$.;'"$*cos 4. <>$? 

%"$*4, 5. is used in conjunc!on with a func!on that maps values on a sphere. Spherical 

harmonics is a form of data analysis that is analogous to Fourier analysis.  If we were examining 

a musical tone, for example, we would be able to use Fourier analysis techniques to determine 

the specific notes that are in a musical chord, and we could also determine the strength of the 

individual notes.   

Spherical harmonics analysis examines data mapped on a sphere by an associated func!on of 

two variables, @*4, 5..  In the CMB analysis, spherical harmonics techniques are used to iden!fy 

the region sizes that exhibit the greatest fluctua!on in temperature.  Spherical harmonic 

analysis examines the impact of increasing values of (, with the sphere divided into increasingly 

smaller regions.   

The ()and)A)subscripts (superscripts) of %"$*4, 5. are integer values that define the region size 

that is examined. All values of ( with their associated A values are calculated to produce the 

power spectrum value associated with a par!cular)( .  We note that in Fourier analysis there is 

an equivalent A parameter as in spherical harmonics, but it can be any value.  In spherical 

harmonics analysis A is an integer value, and this difference leads to the concept of regions in 

spherical harmonic analysis.  The spherical harmonic equa!on generates complex numbers, 

with a complex number for each unique *4, 5. and *(,A..  
%"$*4, 5. has a scalar component B*67.$8/"+-90 *":$.;*"+$.;C,) a Legendre  '"$*cosD. )func!on, and a 

complex exponen!a!on component  <>$? 1))) The <>$?component is a complex number in the 

format EFGA5 + HGHIA51 
)'"$*cos*4.)is a Legendre func!on in terms of  EFG4)#IJ)GHI41  Adrien-Marie Legendre was a 

French mathema!cian who lived from 1752-1833. He was a contemporary of Piere-Simon 

Laplace and Joseph Fourier.  He developed Legendre polynomials as a two variable solu!on that 

is similar to a Taylor series expansion.  Assuming the two variables are 4 and 5, Legendre 

polynomials allow for the crea!on of an infinite series of terms with coefficients in 4 and 

powers in 51  In subsequent work he expanded his Legendre polynomial concept into Legendre 

func!ons.   Much later, Lord Kelvin u!lized Legendre func!ons in the development of the 

spherical harmonics’ equa!on. 
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Appendix A discusses Legendre polynomials and Legendre func!ons.   There are well defined 

Legendre func!ons for each (, A combina!on. Examples of Legendre func!ons are listed, and 

we will use these func!ons in our calcula!ons.  The combina!on of Legendre func!ons in one 

variable *4. and the complex exponen!a!on in another *5. provides for separa!on of 

variables, simplifying calcula!ons.  In spherical harmonic calcula!ons, K L 4 L M and K L5 L NM1
The ( parameter in spherical harmonics is a posi!ve integer that represents the total number of 

nodes for a par!cular analysis.  Nodes divide the sphere into different regions.  A node is either 

a longitudinal line, or a la!tudinal line on the sphere.  ( is the total count of nodes for a 

par!cular calcula!on.  A is a subset of (, and so 6 ( L A L (1 A is the number of 

longitudinal nodes, and ( 6 A is the number of la!tudinal nodes.  For example, if ( = N, A = 7
the sphere is divided by 1 longitudinal line through the poles, and 1 la!tudinal line through the 

equator, for a total of 2 nodal lines that divide the sphere into 4 regions.  If ( = O,A = N then 

the sphere has 2 longitudinal nodes, and 1 la!tudinal node, dividing the sphere into 8 regions. 

Note that A can have a nega!ve value.  If A = 6N for example, there are s!ll 2 longitudinal 

nodes, but the 5 computa!on orienta!on switches from counterclockwise to clockwise.  

The graphic below illustrates how ( and A values divide the sphere into regions for analysis.  

Points on a nodal band have %"$*4, 5. values of zero.  In the illustra!on, points in + regions have 

posi!ve values, and in – regions have nega!ve values. You may also see illustra!ons of this 

concept with regions of various colors, with red indica!ng posi!ve values and blue indica!ng 

nega!ve values.

2

2 Source Wikipedia Spherical Harmonics ar!cle
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Spherical Harmonics – Nodal Bands 

 

Nodes are bands with zero values for either the '"$ component or the <>$? component.  For 

example, if ( = O,A = N we have 2 longitudinal nodes and 1 la!tudinal node.  Since 'P/*EFG4. =) 7QGHI/4EFG4)*from Appendix A) we have a zero value la!tudinal band at 4 = RK)1 
We also see that we have two longitudinal bands for (EFGN5 ± HGHIN5. at either)5 =SQ°)FT)7OQ°)for the real component, or at 5 = RK°)FT)7UK° for the imaginary component. If  ( = S,A = N then )'9/*EFG4. = 7QVNGHI/*WEFG/4 6 7.  (from Appendix A) and we have 2 

longitudinal nodal bands for the 4 values that are the solu!ons for  WEFG/4 6 7 = K,) and we 

again have 2 longitudinal bands for (EFGN5 ± HGHIN5. at either)5 = SQ°)FT)7OQ°)for the real 

component, or at 5 = RK°)FT)7UK° for the imaginary component. 

A common alternate depic!on of spherical harmonics is the following set of images.  We include 

this for your informa!on but have focused on the previous images which we believe are more 

intui!ve.  The two sets are equivalent. 

 

 

Visual representations of the first few real spherical harmonics.  

Blue portions represent regions where the function is positive,  

and yellow portions represent where it is negative. 3 

 

  

 

3 Source – Wikipedia Spherical Harmonics ar!cle 
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The Mathema!cs of Power Spectrum Analysis 

We will approach this discussion by star!ng with the above Power Spectrum chart and working 

from there to provide insight into the mathema!cs, one layer at a !me.  !" is computed for each 

integer value of (. )!")is)referred)to)as)the)angular)power)spectrum1    !" =  X|#"$|/Y = -") *Z |#"$|/."$[):"  where  A is also an integer, ranging from -)( L A) L (1))\o)get)a)particular)!")you)would)compute  *N( ] 7.  #"$ equa!ons, one for each value of A in the range, and then 

take the average of the squared absolute values of each computed #"$ .  

The #"$ func!on measures the amplitude of the temperature fluctua!ons.  It is used to 

determine the region sizes that produce the greatest fluctua!on in amplitude.  In the power 

spectrum above we see peaks in amplitude at approximately ( = )NNK, QQK, and)UQK. 

In the literature, #"$ is defined as #"$ =)^ _`̀ *4, 5.%"$&*4, 5.GHI4J4J51  Here (4, 5. defines a 

point on the sphere that is the surface of last sca"ering.  
_`̀ *4, 5. is the temperature func!on, 

with a value at *4, 5.)that equals the difference between the CMB temperature at the point *4, 5.,)and the CMB average temperature of 2.7255 K, with this value divided by the CMB 

average temperature of 2.7255 K.   CMB temperatures deviate is in a very narrow range of ±1KKKj° K from the average CMB temperature od N1WNQQ°)K.   #"$ is the amplitude of the 

temperature varia!ons for a par!cular (, A pair, and  !" is the average of the squares of the 

absolute values of all the #"$ calcula!ons for a specific (1 
Spherical Harmonic Equa!on Conjugate form 

Note that the #"$ equa!on above includes  %"$&*4, 5..  This is referred to as the conjugate form 

of %"$*4, 5..   In the literature you will see %"$&*4, 5. equated with *67.$%":$*4, 5. and so if 

 %"$*4, 5. = *67.$8/"+-90 *":$.;*"+$.;'"$*cos*4. <>$? )then 

%"$&*4, 5. = *67.$8/"+-90 *"+$.;*":$.;'":$*cos*4. <:>$? =) *67.$%":$*4, 5. 
The conjugate format has several differences from the basic spherical harmonic equa!on.  Note 

that the factorial term is inverted.  '"$ becomes '":$.  We also note that <>$?)becomes <:>$? ,)changing the orienta!on of the)5)calculation)from)counterclockwise)to)clockwise1) 
As an example,  %P/&*4, 5. = ) *67./8 q90 v;-; )'P:/*cos 4.<:/>$     

    = *67./8 q90 v;-;1/8)GHI/4EFG4*EFGN5 6 HGHIN5. 
    = )8-xvP/0 ))GHI/4EFG4*EFGN5 6 HGHIN5. 
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Calcula!ng z{} 

As stated above,  #"$ =)^ _`̀ *4, 5.%"$&*4, 5.GHI4J4J51  
~n)the)literature)you)will)see   

_`̀ *4, 5. defined as   
_`̀ *4, 5. = Z Z #"$"$[):"�"[x %"$*4, 5.) 

and that  #"$ =)^ _`̀ *4, 5.%"$&*4, 5.GHI4J4J5.   

We see this as a circular defini!on, for which we have no explana!on.  You will also see 
_`̀ *4, 5. 

defined as the variance from the CMB average temperature for the point *4, 5.)on the surface 

of last sca"ering temperature, divided by the average CMB temperature.   

To illustrate the)#"$ calcula!on we will propose a temperature func!on for)_`̀ *4, 5.1))\he CMB 

temperature data set can be viewed as an isotropic Gaussian random distribu!on.  Addi!onally, 

we note that ^ _`̀ *4, 5.%"$&*4, 5.GHI4J4J5 = 0, unless the temperature func!on contains a 5 

factor that prevents this from happening. This is true since ^ �cos*A5. 6 HGHI*A5.�/0x J5 = 0 

for all integer values of A1 Therefore we must have a 5)based component.   

Considering the above comments, we propose that we set the temperature equa!on to) 
 

_`̀ *4, 5. = 1xxx/°/1q/vv) )cos �0�/ � GHIP*M5.1) 
This honors the temperature devia!on range, and emphasizes differences close to the average. 

This equa!on also leads to integrals for 4)and 5 that are non-zero. This allows us to see the full 

impact of the spherical harmonic calcula!on.  We simplify the coefficients and use W1OOU7�7K:v )cos �0�/ � GHIPM5 as our temperature equa!on.  

We will show the calcula!on for several of the A values and then provide a table that 

summarizes the full set of calcula!ons for !P1  We emphasize that this equa!on is used solely to 

facilitate the calcula!on of a sample angular power spectrum value, and in no way do we imply 

that this is the “correct” temperature func!on for CMB.   

��.    

We will calculate !P.   Since  !" =  �|#"$|�)/ = 
-") *Z |#"$|/."$[):" )we will need to calculate #P,P, #P,/, #P,-, #P,x, #P,:-, #P,:/, and #P,:P 

#P$)=^ _`̀ *4, 5.%P$&*4, 5.GHI4J4J5)= 

= ^ W1OOU7�7K:v cos �0�/ � GHIP*M5.*67.$8 q90 *P+$.;*P:$.;'P:$<:>$?GHI4J4J5  
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This integral can be rearranged as a scalar component outside the integral, an integral of the 4 

components, and an integral of the 5 components.  We note that we have used an integral 

calculator for the integra!on calcula!ons.  

We define the scalar component as the product of  8 q90 *P+$.;*P:$.;), the co-efficient W1OOU7�7K:v 

from the temperature equa!on, and the co-efficient of the '"$ Legendre func!on. 

Calcula!ng z�,�,  z�,� and z�,:� 

We will calculate #P,x,  #P,/ and #P,:/) to illustrate the mathema!cs involved in spherical 

harmonics. 

In the case where ( = O)#IJ)A = K)we have 

#Px =)^ _`̀ *4, 5.%Px&*4, 5.GHI4J4J5 and so 

#P,x) = ^ ^ )W1OOU7�7K:v cos �0�/ � GHIP*M5.*67.x8 q90 *7VN*Q cosP 4 6 O cos 4..)0x/0x GHI4J4J5  

=)1W1OOU7�7K:v8 q90 -/^ ^ �cos �0�/ �� *Q cosP 4 6 O cos 4.* GHI4.*GHIP*M5.0x/0x J4J5 

Calcula!ng the scalar component, the integral of the 4 components, and the integral of the 5 

components, gives us.  

7.3381x1K:v8 q90 -/ )= ) 1KKKKNWS   

^ *)cos �0�/ �.*Q cosP 4 6 O cos 4.* GHI4.J40x  =)6177KO 

^ GHIP*M5./0x J5 = .0383 

Consequently  #P,x = .0000274 x -.1103 x .0383 = -.00000012 or .12 in 2Kelvin and |#Px|/ = .01 

z�,� 

For the case where ( = O)#IJ)A = N)we have 

#P/ =) ^ ^ )W1OOU7�7K:v)*cos 0�/ .*GHIP*M5.. *67./8 q90 v;-; *)-� GHI/4EFG4.)*cos*N5. 60x/0xHGHI*N5.. GHI4J4J5   

= W1OOU7�7K6Q� WSM Q;7; 7U� � *cosM4N .*GHIP4EFG4.*GHIO*M5..*cos*N5. 6 HGHI*N5..0
x

/0
x J4J5 

Calcula!ng the individual segments, we get 
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 7.3381x1K:v8 q90 v;-; -� =) 1KKKKWQKO 

 ^ *cos 0�/ .*GHIP4EFG4.J40x  =) 1NNQQ   

^ *GHIP*M5..*cos*N5. 6 HGHI*N5../0x J5 =))1KRj7Q) ]) 17RQUH 
This gives us  #P/ = )71jNW ] O1O7OH in 2Kelvin and |#P/|/ = 13.6 

z�,:� 

In the case where ( = O)#IJ)A = 6N)we have 

#P,:/) = ^ ^ W1OOU7�7K:v)*cos 0�/ GHIP*M5..*67./8 q90 -;v; *7QGHI/4EFG4.)*cos*N5. ]0x/0xHGHI*N5.. GHI4J4J5 = 

 7.3381x1K:v8 q9� -;v; 7Q^ ^ *cos 0�/ .*GHIP4EFG4.*GHIP*M5..)*cos*N5. ] HGHI*N5..0x/0x J4J5 

  

Calcula!ng the individual segments, we get  

7.3381x1K:v8 q90 -;v; 7Q = ) 1KKKKWQKO   

^ *cos 0�/ .*GHIP4EFG4.J40x  =))1NNQQ  

 ^ *GHIP*M5..*cos*N5. ] HGHI*N5../0x J5 = .09615 - .1958i 

 

Giving us #P,:/ = 1.627 -3.313i in 2Kelvin and |#P,:/|/ = 13.6.   

Note that the calcula!on of #P/ an)#P,:/)produce the same result.   This holds in all cases of ±A1  
Also note that !" is measured in 23 or micro-Kelvin degrees squared.   
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Table of Values 

The following table contains all the calcula!on results for ( = O, given our temperature equa!on 

of  
_`̀ *4, 5. = )W1OOU7�7K:v cos �0�/ � GHIP*M5..   

  

A Scalar 4 

 

integral 

5) 
integral 

raw)#P$value in 2Kelvin 

|#P$|/  

0 .00002740 -.1103 .0383 -.1157 .01  

1 -.00002373 .3515 .04766 + .0644i -.3975 - .5371i .45  

-1 -.00002373 .3515 .04766 - .0644i -.3975 + .5371i .45  

2 .00007503 .2255 .09615 + .1958i 1.627 + 3.313i 13.62  

-2 .00007503 .2255 .09615 - .1958i 1.627 - 3.313i 13.62  

3 -.00003063 -.7185 .9476 + 2.006i +20.854 + 44.14i 2383.2  

-3 -.00003063 -.7185 .9476 -2.0057i +20.854 - 44.14i 2383.2  

    C3 = 685 

    (*( ] 7.!OVNM = 1309 

   

!" =  �|#"$|�)/ and so !P =))-q *)NOUO1N ] 7O1jN))]1SQ)])1K7)])1SQ)]7O1jN)])NOUO1N.)=)jUQ1))!
�ince)the)�ertical)scale)of)the)�ower)�pectrum)is  "*"+-./0 !")the plot value at ( = O)would be 

1309. We also calculated the !9 value to be 288, and that the (20/2M.!9 plot value is 918.  We 

see that these values are in reasonable agreement with the power spectrum chart. We leave 

the !9 calcula!on as an exercise for our readers.   

The work above has been done to show the process of calcula!ng the CMB Power Spectrum.  

We reiterate that our temperature equa!on is not represented as an accurate CMB temperature 

equa!on, but rather is used to facilitate the above calcula!on process.  We hope this has 

clarified Power Spectrum analysis.   

Looking back at the Power Spectrum chart above we see peaks in amplitude at approximately ( = )NNK, QQK, and)UQK.  Calcula!ng !")for these values would require 441, 1101, 1701 )#"$ 

calcula!ons respec!vely, making this a great candidate for supercomputer processing power.  
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Conclusion 

Our goal in this paper was to clarify the mathema!cs behind the CMB power spectrum analysis.  

In the process we discussed the power spectrum chart, spherical harmonics, and the 

calcula!ons of angular power spectrum values, among other topics.  To facilitate our discussion, 

we proposed a CMB temperature equa!on to illustrate the calcula!ons and we then walked 

through examples of the calcula!ons.   

We hope that we bring clarity to the mathema!cs behind the CMB power spectrum.  The 

mathema!cs involved here was developed over several hundred years, with major contribu!ons 

from Legendre, Fourier, Kelvin, and others.  The resul!ng spherical harmonics analysis provides 

a method for analyzing data mapped on a sphere.  Spherical harmonics analysis is an objec!ve 

analysis that knows nothing about the source of the data being analyzed.  The calcula!on of the 

power spectrum for CMB does not tell us why the power spectrum chart has the specific shape 

that it does.  That is le' to theore!cal physicists who propose factors such as the curvature of 

space !me, the percentage of baryonic ma"er in the universe, or the percentage of dark ma"er 

as determining factors.   These factors are used in the development of models that try to 

replicate the shape of the raw data power spectrum curve, to understand why the power 

spectrum has its par!cular shape that it does.  We have not a"empted to explain the shape of 

the curve but have merely focused on the mathema!cs used to create the power spectrum 

chart. 

We hope we have helped clarify the mathema!cs and concepts involved in this topic.  We invite 

your ques!ons and comments. 
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Just for Fun 

The following is a whimsical 1820 watercolor portrait of French mathema!cians Adrien-Marie 

Legendre and Joseph Fourier, created by Julien-Leopold Boilly in (1820). Perhaps we will end up 

looking like these two if we spend too much !me trying to understand the mathema!cs of 

Cosmology. 

 

    4 

1820 watercolor portrait of French mathematicians Adrien-Marie Legendre and Joseph Fourier 

  

 

4 Reference Boilly, Julien-Leopold. (1820). Album de 73 Portraits-Charge Aquarelle’s des Membres de 

I’Institute (watercolor portrait #29). Biliotheque de l’Institut de France 
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Appendix A 

Adrien-Marie Legendre developed Legendre polynomials as a two-variable solu!on, similar to a 

Taylor series expansion.  Legendre polynomials allow for the crea!on of an infinite series of 

terms with coefficients in one variable, and powers in the second variable.  Chapters 3-4 of the 

University of Guelph PHYS*3130 Mathema!cal Physics Lecture Notes provide an excellent 

introduc!on to Legendre polynomials. 

Legendre polynomials are the coefficients men!oned above, with EFG4 as the variable. They are 

denoted as '"*EFG4. where ( is an integer form 0 to �1) 
The first 5 Legendre polynomials in trigonometric form are. 

 'x*EFG4. = 7 

 '-*EFG4. = EFG4 

 '/*EFG4. = 7VN*OEFG/4 6 7. 
 'P*EFG4. = 7VN*QEFG/4 6 O. 
 '9*EFG4. = 7VU*OQEFG94 6 OKEFG/4 ] O. 
Legendre func!ons are derived from Legendre polynomials.  The following rela!onship allows 

for the calcula!on of Legendre func!ons. 

 '"$ = GHI$*4. ���*����.� )'"*EFG4. 
As an example 

 '-- = GHI*4. ��*����. )'-*EFG4. = GHI*4. ��*����. )EFG4) = GHI4 

 '/- = GHI*4. ��*����. )'/*EFG4. = GHI*4. ��*����. )7VN*OEFG/4 6 )7. = OGHI4EFG4 

 

The following is a list of the Legendre func!ons for ( = 7)�F)S  

'-x*EFG4. = ) cos 4 

 '--*EFG4. = ) sin 4 

 '/) *EFG4. = )7VN*OcoG/ 4 6 7. 
 '/-*EFG4. = OGHI4EFG4 

 '//*EFG4. = OGHI/4 

 'P) *EFG4. = 7VN*QEFGP4 6 OEFG4. 
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 'P-*EFG4. = OVNGHI4*QEFG/4 6 7. 
 'P/*EFG4. = 7QGHI/4EFG4 

 'PP*EFG4. = 7QGHIP4 

 '9)*EFG4. = 7VU*OQEFG94 6 OKEFG/4 ] O. 
 '9-*EFG4. = QVNGHI4*WEFGP4 6 OEFG4. 
 '9/*EFG4. = 7QVNGHI/4*WEFG/4 6 7. 
 '9P*EFG4. = 7KQGHIP4EFG4 

 '99*EFG4. = 7KQGHI94 

 

The '":$*EFG4. Legendre func!ons can be derived from the Legendre func!ons above using 

the following rela!onship. 

 '":$*EFG4. = *67.$ *":$.;*"+$.;'"$*cos*4.   
 

The following are the 6A Legendre func!ons for ( = O, S. We will use these in our calcula!on 

examples. 

 

 'P:-*EFG4. = *67.- /;9; )'P-*EFG4. = 6 /;9;(OVNsin)*QEFG/4 6 7. = )6 -� )GHI4EFG4 

'P:/*EFG4. = *67./ -;v;'P/*cos*4. = 
-;v; 7QGHI/4EFG4 = 1/8)GHI/4EFG4!

'P:P*EFG4. = *67.P x;�;'PP*EFG4. = )6 -�; 7QGHIP4 = 6 -9� )GHIP4 

'9:-*EFG4. = *67.- P;v;'9-*EFG4. = 6 -� GHI4*WEFG/4 6 OEFG4. 
'9:/*EFG4. = *67./ /;�;'9/*EFG4. = 

-9� GHI/4*WEFG/4 6 7. 
'9:P*EFG4. = *67.P -;q;'9P*EFG4. = 6 -9� GHIP4EFG4 

'9:9*EFG4. = *67.9 x;�;'99*EFG4. = 
-P�9 GHI94 


