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Abstract. This paper focuses on question difficulty estimation (calibra-
tion), and its applications in educational scenarios and beyond. The em-
phasis is on the use of Active Learning to bound the minimum number of
labelled samples that we need. It also explores using various SOTA meth-
ods for predicting question difficulty, with a specific focus on German
textual questions using the Lernnavi dataset. The study refines prepro-
cessing techniques for question data and metadata to improve question
difficulty estimation.
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1 Introduction

Question Difficulty Estimation (or ‘calibration’) is quite useful for educational
Scenarios. The most common use is to design adaptive Tests (next question
based on response and difficulty of the previous question) and fair test systems
(balanced composition of difficulty across sets).

The most generic use of the approaches we develop here is for any task that
needs the classification of textual sequences into ordinal classes. The most trivial
examples include the cases with 3 ordinal classes e.g., Twitter sentiment analysis
(positive, negative, and neutral), customer support ticket prioritisation (low,
medium, or high), resume shortlisting (low fit, medium fit, high fit), etc. More
advanced applications might include: essay grading (A, B, C, D, E, F grades)
and severity classification in health-care (mild, moderate, severe, critical)

Recently, the work by Benedetto et al. [1], explores using transformers for this
task. We further take a step ahead in utilising various state-of-the-art methods
(including transformers) for question difficulty estimation, parsed with our own
preprocessing for German text. On the best models and preprocessing, we use
Active Learning methods to improve the model’s performance. The benefits of
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Active Learning include learning on smaller-set, reduced computational costs
and better learning by less overfitting.

Our main contributions include: (1) Exploring and finding methods to predict
question difficulty, especially for German textual questions for our proprietary
dataset - Lernnavi, (2) Exploring and refining techniques to preprocess question
data and meta-data to question difficulty estimation using popular text classi-
fication methods, (3) Deploy Active Learning to find out the minimum number
of labelled instances needed and the strategies to use them. (4) Identify research
gaps to guide researchers in this direction further. We track the Balanced Ac-
curacy ROC-AUC score and confusion matrix - the common metrics for the
imbalance dataset (and sometimes report the losses and Accuracy if necessary).

Our code can be found here: https://github.com/epfl-ml4ed/question-difficulty.
git

2 Related Work

To come up with research work, we searched for keywords for each of the above-
mentioned contributions in top conferences such as Nature, EMNLP, and Google
Scholar and read the top results from the papers. We consulted the website pa-
perswithcode [2] for the benchmarks, which lists different datasets with various
benchmarks on them. Unlike, [3], our approach was to try both – relevant pa-
pers with the task at hand and also the top approaches/papers that excelled in
a component of the task/objective.

2.1 Question Difficulty

As mentioned in [3], there are 3 popular definitions of question difficulty:

Classical Test Theory According to CTT, Observed Score (X) is approxi-
mately equal to true score (T) with an error term (E). True Score (T) is the
expected correctness of an infinitely long run of repeated independent test ad-
ministrations.

X = T + E

We make the following assumptions: We make the following assumptions:

1. Corr(T,E) = 0
2. E ∼ N (0, σ2)
3. E from different tests are uncorrelated

The difficulty is expressed using the p-value, a continuous value ranging from
0 to 1. The p-value represents the fraction of correct responses in the population,
with higher values indicating easier items. One advantage of CTT is its simplicity
in computation and understanding. A limitation of CTT is that it does not
consider students’ skill levels when estimating item difficulty, relying solely on
the fraction of students who answer a question incorrectly.

https://github.com/epfl-ml4ed/question-difficulty.git
https://github.com/epfl-ml4ed/question-difficulty.git
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Item Test Theory IRT [5] connects latent traits to students and questions. In
its simplest form, the Rasch Model [6] pairs a skill level θ to each student and a
difficulty level b to each question. IRT’s key feature is ”invariance”: item traits
are independent of test takers’ ability distribution, and a question’s difficulty
is consistent irrespective of students’ skills. IRT assumes that (i) individuals
and (ii) their responses are independent. For question, j with trait bj , the item
response function (i.r.f.) calculates the probability (PC) that the student i with
skill level θi answers correctly. The i.r.f. Formula is:

PC =
1

1 + e−1.7·(θi−bj)

(1) where 1.7 was found to yield accurate results. If a question is too hard or
easy (i.e., bj → ∞ or bj → −∞), all students answer similarly (i.e., PC → 0 or
PC → 1). Hence, avoiding overly easy or hard questions is crucial. IRT yields
real-valued difficulties, sometimes discretized for practicality.

Manual Definitions We assume bias in our subjective definitions is mini-
mized, given that annotators are experts in their fields. If a factor greatly im-
pacts difficulty, our objective function can capture it, with model overfitting and
subjectivity-induced noise kept at bay.

We categorize calibration questions into two types:

1. Language Assessment (LA): LA can further be classified as Comprehension
and Knowledge.

2. Current Knowledge Assessment (CKA)

Benedetto et al. [1] excel in Question Difficulty Estimation compared to tradi-
tional Manual Calibration and Pretesting methods by employing transformers
like BERT and DistilBERT. We forgo wrongness, p-value, and IRT metrics, fo-
cusing solely on textual information to estimate question difficulty. The benefit
of human annotation is its comprehensive capture of question difficulty factors.
However, bias is an inherent limitation. We work exclusively with LA questions,
dismissing CKA ones. LA approaches often utilize theoretically backed metrics
like readability formulas and word complexity measures, while CKA leverages
learned features. As empirical evidence suggests, NLP techniques tend to per-
form better on LA tasks.

2.2 Metrics and Imbalance

Imbalanced data can lead to model biases. It can learn only the majority class
and thus be as good as a random model. Our approach to mitigating this, influ-
enced by the blog [38], involves selecting suitable metrics, implementing a robust
cross-validation strategy, and weighting classes to favour the minority.

Metrics that help identify data imbalance include (ordered by their decreasing
sensitivity to imbalance or increasing sensitivity to balance) reddefine



4 Active Learning for Question Difficulty Prediction

1. visual inspection,
2. Shanon entropy [39] (most reliable and sensitive to imbalance)
3. minimax ratio
4. and an imbalance calculation.

Regarding the metrics, accuracy is notorious for imbalanced classification.
The popular metrics include :

1. F1 Score: harmonic mean of precision and recall
2. Indexed Balanced Accuracy : IBA = (1 + α ∗D) ∗ (GM)
3. Dominance : D = Recall - Precision
4. Geometric Mean (GM) : GM =

√
Precision ∗ recall

5. MCC: correlation coefficient between the observed and predicted binary clas-
sifications

6. ROC-AUC (Receiver Operating Characteristic) Curve: TPR(i) vs FPR(i)
overall threshold values

We chose (Indexed) Balanced Accuracy and ROC-AUC Score for this study.
However, we do report other metrics when necessary.

For dealing with imbalanced classification, popular methods for data augmen-
tation include: 1. Undersampling the abundant class can be achieved through
random undersampling, SMOTE + undersampling [40], near sampling, cluster
centroids, and Tomek links. 2. Modifying cost functions to penalize misclassifica-
tion of the rare class more, such as by tweaking an SVM or using the Focal loss
function. 3. Hybrid approaches like downsampling and unweighting the majority
class, ensemble models, or clustering abundant classes.

Since certain models, namely Distilbert and HAHNN were not much affected
by imbalance, and the imbalance was moderate (by Shanon Entropy), we didn’t
heavily explore imbalance handling through data augmentation.

2.3 Active Learning

In this section, we provide a holistic view of Active Learning and, later on,
dive into some selected SOTA techniques for Query Strategy. The active learner
combines a model, a query strategy and (optionally) a stopping criterion. The
overall objective is to minimise the interactions between the oracle and the active
learner.

The Steps of the overall process are as follows:

1. Oracle requests the Active Learner for unlabelled instances
2. Active learner passes the batch of unlabelled instances based on the query

strategy
3. Oracle labels the instances and updates the active learner. After each update,

the model is trained.
4. Repeat the above steps until the stopping criterion is met.

There are usually 3 scenarios [7] to apply active learning :
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1. Pool-based: the learner has access to the closed set of unlabelled instances,
called the pool; usually done in batch-mode

2. Stream-based: learner receives a set of instances at a time and has options
to keep or discard it

3. Membership query synthesis, in which the learner creates the new artificial
instances to be labelled.

Despite Deep Learning being the new buzzword, Neural Networks are not
more prevalent in Active Learning applications [9]. This is because of the follow-
ing 2 factors:

1. Uncertainty in Neural Networks: Neural Networks do not provide accu-
rate estimations of uncertainty; thus, the trivial technique of uncertainty sam-
pling, and other techniques, are not straightforward to apply. Though there
have been attempts to solve this issue by ensembling, learning error estimates,
using Bayesian extensions, obtaining uncertainty estimations using dropouts,
use probabilistic NNs to estimate predictive uncertainty. However, Bayesian and
ensemble approaches quickly become infeasible on larger datasets, and NN is
generally overconfident in their predictions.

2. Contrasting Paradigms DL techniques are known to overfit small datasets
(typical use-cases of Active Learning), and are computationally expensive (train-
ing and hyperparameter-tuning stages). However, small datasets issue is handled
mostly through pre-training or transfer learning. Hyperparameter tuning is not
done explicitly; rather, results of related works are used. The Deep Learning
field inspires the recent interest in Active Learning. The recent developments
like architectures, embeddings, transfer learning, and sub-word operations by
LMs for out-of-vocabulary words make augmenting AL with DL an exciting
area of research.

Query strategies Since one of our main objectives for us is to determine
how many labelled samples we need, we discuss at length the query strategies
that we use on top of good models for text/ordinal classification. We follow the
classification done by [10]. (other classifications, such as those by Aggarwal et
al and Fu et al., are also similar).

1. Random: used as baselines, with competitive performance when labelled pool
grows larger

2. Informativeness: strategies mostly assign an informative measure to each
unlabeled instance individually

3. Representativeness: Only considering the informativeness of individual in-
stances may have the drawback of sampling bias, and the selection of outliers.
Therefore, representativeness, which measures how instances correlate with
each other, is another major factor to consider when designing AL query
strategies.

4. Hybrid: We can combine informativeness, and responsiveness can be com-
bined, for instance, querying, leading to hybrid strategies
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Fig. 1: Active Learning Query Strategies with Zhang’s classification

3 Dataset Description

Fig. 2: 1 : very easy,
2 : easy, 3 : moderate, 4
: hard

We describe the Lernnavi Dataset, a proprietary
dataset useful for learning German and Mathemat-
ics. Since we used only the German textual questions,
we described the German features. Data description
is useful for the following reasons:

1. The statistics provide a glimpse of data (we can’t
release the full proprietary data) and provide a
tentative idea of a generic setting where the results
of this study might be useful

2. The statistics give us a direction of important fea-
tures and metrics to try out.

3.1 Class Distribution and Imbalance

We find that close to half of the questions are easy and very easy, and moderate
are close to a quarter. The hard questions are in the minority (just 7.7%). The
pie-chart shows a moderate imbalance. This is confirmed by imbalance statistics
(defined in Related Work):
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1. Shannon Entropy: 0.8990
2. Range Imbalance: 0.6380
3. Minimax Ratio : 0.1766 (approx. = 1

5 )

Because of moderate imbalance, and decent performance on models, we chose
imbalance-immune metrics and did not use feature-augmentation methods.

3.2 Relation with other features

We used an Extra-tree classifier to calculate feature importance for non-numerical
features. The data is unwounded and then converted to one-hot encoding. Then
an instance of the Extra Trees Classifier fits the model to the encoded features
and target and retrieves the feature importance.

For numerical features, we used the Spearman correlation coefficient.

Fig. 3: Feature
Importance using
Extra-tree classifier

Fig. 4: Spearman correlation matrix for numerical
features

4 Preprocessing

We converted 8/12 of the types of German Questions to the Generic Question
Format (explained in Fig. 4) and preprocessed text based on data description as
follows:

Fig. 5: Generic Question Format
with tags in []

1. Empirical Form (which we found to be
good empirically)

2. Frequency order (high frequency means
that a particular substring occurs a lot of
times in the dataset, where each substring
is a cell entry in data frame)

3. Importance order (explained above)
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Since LMs like BERT truncate the text based on length, we found it useful to
use 2 forms: low to high and high to low for the above heuristics. We also tried
to experiment with the non-tagged version. Following are the preprocessing that
we came up with:

1. description in middle with surrounded by high-frequency elements.

2. low to high-frequency elements

3. high to low-frequency elements

4. plain-text version of preprocess 1

5. plain-text version of preprocess 2

6. plain-text version of preprocess 3

7. high to low importance elements

8. plain-text version of preprocess 7

Fig. 6: An example consisting of various preprocessing that we did.

5 Models and Experimental Setup

We describe SOTA models for Text classification to get an idea of the baselines
and accuracy results, and then select the best model and preprocessing to run
various Active Learning strategies.
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5.1 Normal Text Classification Methods

We use V100 GPU on Google Colab for our experiments with the following
models.

5.1.1 Distilbert (distilbert-base-german-cased) BERT [19] is a pre-trained
language model (LM) that reached state-of-the-art performance in many lan-
guage tasks. Its key technical innovation was the application of the Transformer,
a popular self-attention model [20], to language modelling. BERT is originally
trained to address two tasks: Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). However, we can stack an additional layer on top
of the original network and then retrain it on the desired task (’finetuning’),
which is less computationally expensive. BERT is a large model and therefore
requires many resources for training and fine-tuning. DistilBERT [21] is obtained
by distilling BERT and retains 95% of BERT’s performance on several language
understanding tasks using about half the number of parameters of BERT. Knowl-
edge distillation is a compression technique in which a small model is trained to
reproduce the full output distribution of a larger model [22].

We consider Distilbert pre-trained on German data. The rationale for using
the model was because of its MLM nature. By the theory of representativeness
in predicting question difficulty in grammatical tasks [1,3], the more repeated
the information, the easier it is to answer the question, especially the grammat-
ical ones. This relates to the ease of predicting the next token by MLM models.
Besides, the transformer architecture is really amazing at capturing the depen-
dencies between words in a sentence. Benedetto et al. [1] also used BERT and
DistilBERT for the task, but he used it for English text. The fact that the model
was fine-tuned in German for unsupervised learning tasks made it even more of
a choice to consider for our experiment. The 512 max length of input sequence,
enables us to see the roles of selectively using low and high-frequency features
on difficulty estimation.

Experimental Setup: We run the experiment for all preprocessing and
take the values obtained. For 25 epochs, we find that the values of Accuracy,
and Balanced Accuracy are approximately similar. The loss used is a weighted
combination of cross-entropy loss and KL divergence.

5.1.2 HAHNN Hierarchial Attentional Hybrid Neural Network (HAHNN) [23]
is the SOTA model for Yelp-5, a dataset with ordinal classes similar to ours.
It even outperformed other models on IMDB Movie Reviews Dataset. HAHNN
leverages a hierarchical architecture and attention mechanisms. This system first
decomposes input data into several levels of abstraction, each processed by a
distinct subnetwork layer in the hierarchy. The attention mechanism in each
layer selects and prioritizes salient information, enhancing interpretability and
model performance. The hybrid nature of the model signifies the combination
of different neural network types (like CNNs, RNNs, etc.) at various levels of
the hierarchy, allowing it to handle a diverse range of data complexities and
structures effectively.
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Experimental Setup: We run HAHNN with the following parameters for
each of the preprocessing by running over each preprocessing (with LSTM and
GRU) 5 times and taking the average.:

1. We generate FastText (by Meta AI) from scratch.
2. RNN type : GRU and LSTM
3. Learning rate = 0.001
4. Epochs = 20 (statistics stabilised beyond this)

5.1.3 XLNet XLNet (eXtreme-Learning Network) [24] is a SOTA model for
Amazon 5 dataset (a dataset for multi-class classification) and outperforms
BERT on 20 NLP tasks. It is based on Transformer-XL architecture, which
employs a two-stream self-attention mechanism.

BERT corrupts input with masking, suffers from pretrain-finetune discrep-
ancy (real-life data has no masked inputs), and neglects dependency between
masked positions. XLNet incorporates the following features to deal with these
issues of BERT:

1. XLNet uses autoregressive objective (unlike MLM by BERT) and Permutation-
based Training to better capture dependencies between all tokens in the
input sequence.

2. Relative Positional Encoding to capture the relationships between tokens
without relying on absolute positions.

Experimental Setup:Due to memory constraints, we used the 98 percentile
of the length for the threshold. Length threshold = 1778 (when max=3124),
approximately halving the max length.

5.1.4 Electra ELECTRA (Efficiently Learning an Encoder that Classifies To-
ken Replacements [25] Accurately) introduces a new pre-training approach that
differs from standard masked language modelling objectives used by models like
BERT. ELECTRA utilizes a discriminator model that is trained to distinguish
”real” tokens in the input from ”fake” ones that have been replaced by a gen-
erator model. Because it predicts every token rather than just masked ones,
ELECTRA can learn more efficiently than BERT, as it makes better use of the
computation in the pre-training phase. This leads to ELECTRA models per-
forming similarly to BERT but with a fraction of the computational resources.

5.2 Active Learning Methods

We use the popular Active Learning methods to determine Question Difficulty.
We mainly follow the fundamental approaches that are commonly used. The
Small-text library [26] has lots of methods implemented in it. We use some of
those to come up with various solutions.

The initial exploratory methods are helpful for us because there is less lit-
erature on traditional AL methods with DNNs as models, as mentioned in [30].
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Thus, we aim to obtain baseline results from the Small-text library using these
methods.

Note: Notation-wise, we denote instances by x1, x2, . . . , xn, the number of
classes by c, the respective label for instance xi by yi (where ∀i : yi ∈ {1, ..., c}),
and P (yi∥xi) is a probability-like predicted class distribution.

5.2.1 Random Sampling (above-described method without active learning
was random sampling. We use Random Sampling to provide us with a baseline
to compare the performance of various methodologies.

5.2.2 LeastConfidence Least Confidence [27] selects instances whose most
likely label has the least confidence according to the current model:

argmax
xi

[1− P (yi = k∗1 |xi)]

5.2.3 PredictionEntropy PE [28] selects instances with the highest entropy
in the predicted label distribution with the aim of reducing overall entropy:

argmax
xi

− c∑
j=1

P (yi = j|xi)logP (yi = j|xi)


5.2.4 BreakingTies/Margin Sampling Breaking Ties [29] takes instances
with the minimum margin between the top two most likely probabilities:

argmax
xi

[P (yi = k∗1 |xi)− P (yi = k∗2 |xi)]

; where k⋆1 is the most likely label in the posterior class distribution P (yi|xi),
and k∗2 the second most likely label respectively. In the binary case, this margin
is small if the label entropy is high, which is why BT and PE then select the
same instances.

5.2.5 EmbeddingKMeans EmbeddingKMeans [31], is an innovative way to
address the ’cold-start’ problem in active learning, which is the challenge of
selecting data samples for initial training when no labelled data is available.
Using self-supervised learning (k-means clustering), it leverages the abundant
unlabeled data to initialize the active learning process rather than starting from
a few hand-labelled samples.

5.2.6 GreedyCoreset Coreset [32] is a compact representation of data such
that models trained on coresets, are provably competitive with models trained
on the full data set. The core set is constructed by iteratively selecting instances
that are both uncertain and representative of different regions of the input space.
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To achieve this, the authors leverage a technique called k-means clustering.
Initially, a small labelled dataset is used to train a CNN model. Then, the re-
maining unlabeled data is clustered using k-means, and the most representative
instances from each cluster are selected for labelling. These newly labelled in-
stances are added to the training set, and the process is repeated iteratively.

5.2.7 BALD (time-taking)
BALD (Bayesian Active Learning by disagreement) [33] is a Bayesian active

learning framework that allows for efficient data selection in both classification
and preference learning tasks. They present algorithms that leverage Bayesian
models to estimate the uncertainty of the model’s predictions and select the most
informative instances for labelling. In the classification setting, the framework
proposes two different active learning algorithms. The first algorithm selects
instances based on the expected reduction in uncertainty, while the second algo-
rithm incorporates diversity by considering the representation of different regions
of the input space.

5.2.8 LightweightCoreset Coresets are compact representations of data sets
such that models trained on coresets, are provably competitive with models
trained on the full data set. The lightweight coreset approach [33] relaxes the
traditional core-set approach by introducing an additive term (to scale with
variance) in addition to the multiplicative term in traditional coresets. This
coreset is then used to perform k-means clustering.

5.2.9 ContrastiveActiveLearning (time-taking) Contrastive Active Learning
[34] selects instances with the maximum mean Kullback-Leibler (KL) divergence
between the predicted class distributions (“probabilities”) of an instance and
each of its m nearest neighbours:

argmax
xi

 1

m

m∑
j=1

KL(P (yj |xknn
j )∥P (yi|xi)


; where the instances xknn

j are the m nearest neighbours of instance xi

As pointed out in [35], transformers are not suitable for most of the query
strategies, DL ensembles are too expensive and prediction entropy is too overcon-
fident [36] Exceptions are flat architectures eg FastText [37]. Before transformers,
QS based on Expected Gradient length was norm, but they scaled with a vast
number of transformer parameters and needed computations per instance wise
(and not per batch wise).

Experimental Setup We run Active Learning strategies with on prepro-
cess 5 (best performing for distilbert). We use GPU A100 on Google Colab (for
faster execution). We set the batch to 20 samples for each query and run till 35
queries.
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6 Results

6.1 Normal Text Classification Methods

Before using applying, it would be helpful to get an idea of the regular text
classification methods that are used. This analysis will also enable us to select a
base model for Active Learning strategies. We use V100 GPU on Google Colab
for our experiments.

(1) Acc : 65.91%, BA :
57.75 ± 1.11%, AUC-ROC :
0.8126 ± 0.0047

(2) Acc : 65.58%, BA :
58.36 ± 0.76%, AUC-ROC :
0.8214 ± 0.0097

(3) Acc : 63.64%, BA :
55.31 ± 0.14%, AUC-ROC :
0.8154 ± 0.0021

(4) Acc : 67.53%, BA :
58.74 ± 0.70%, AUC-ROC :
0.8188 ± 0.0022

(5) Acc : 69.48%, BA :
63.51 ± 0.01%, AUC-ROC :
0.8147 ± 0.0001

(6) Acc : 67.53%, BA :
59.81 ± 0.01%, AUC-ROC :
0.8113 ± 0.0001

(7) Acc : 64.29%, BA :
57.32 ± 0.01%, AUC-ROC :
0.8009 ± 0.0001

(8) Acc : 66.56%, BA :
60.00 ± 0.15%, ROC-AUC :
0.8287 ± 0.0003

Fig. 7: Output Scores of DistilBERT along with Accuracy (from the last run),
Balanced Accuracy (averaged over 5 runs) and ROC-AUC Scores (averaged over
5 runs)

Distilbert (distilbert-base-german-cased) Results: We conclude the fol-
lowing from the results shown above:

1. The untagged preprocessing (plain-text) performs better than tagged pre-
processing (possibly because distilBERT was neither trained nor fine-tuned
to german-base-cased using similar tags)

2. The difference among various preprocessing is not much. For tagged prepro-
cessing, the difference in BA is approximately 2.26% and for ungagged, it is
around 2.92% points.

3. Different runs give slightly different results. Owing to different initialisations
and dropouts.

4. Though it is difficult to generalise the results from different runs since the
difference in BA is very less, we can still deduce the following about order-
based preprocessing :
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– The Empirically found order (preprocessing 1,4) and low-to-high order
(preprocessing 2,5) result in a higher BA.

– The high-to-low order and order of importance generated by Extra-trees
classifier do not work well distilBERT.

Table 1: HAHNN with GRU
PP BA ROC-AUC

1 50.66± 1.85% 0.7594± 0.0070
2 48.47± 1.37% 0.7686± 0.0132
3 50.60± 1.17% 0.7809± 0.0104
4 50.70± 1.18% 0.7724± 0.0094
5 47.73± 1.28% 0.7448± 0.0057
6 47.87± 2.53% 0.7633± 0.0074
7 53.79± 1.33% 0.7858± 0.0029
8 47.92± 3.83% 0.7660± 0.0165

Table 2: HAHNN with LSTM
PP BA ROC-AUC

1 45.78± 3.66 0.7443± 0.0195
2 49.67± 1.19 0.7681± 0.0053
3 50.11± 3.12 0.7728± 0.0209
4 55.46± 3.23 0.8060± 0.0128
5 49.16± 2.51 0.7613± 0.0093
6 54.89± 0.67 0.8011± 0.0118
7 50.92± 1.95 0.7820± 0.0141
8 53.31± 2.35 0.8012± 0.0075

HAHNN Results: We present the results in Table 1 and the confusion matrix
in Figure 9 (a). We notice the following trends here:

1. Scores for LSTM are in general slightly higher than those of GRU.

2. Preprocessing with tags clearly outperforms the preprocessing without tags
(at least by 2% difference) for GRU. However, this is reversed for LSTMs.

3. The preprocessing 7 (tagged and ordered by decreasing importance) clearly
outperforms other preprocessing for GRU. For, LSTM it achieves good enough
performance.

4. Overfitting to train data (Figure 9 (b)).

5. HAHNN first learns to assign the majority class, then it gradually learns
other classes. It would be interesting to study why this happens and maybe
use it to handle other methods which were affected by imbalanced data.

(1) Confusion Matrix on preprocess 7 for HAHNN
(GRU) on test set.

(2) BA vs epoch curve for a run on preprocess 7 for test
set

Fig. 8: Results of HAHNN for preprocess 7 and the plot of Balanced Accuracy
showing overfitting
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XLNet After running the model on the A100 GPU on Colab Pro, we found
that XLNet is not actually suitable for the dataset with a moderate imbalance.
As seen from the confusion matrix obtained by running preprocess 1, the model
essentially learned the majority class, and consequently, the balanced accuracy
is close to 0.25 and the ROC-AUC score is 0.4963 (no better than a random
classifier). We found that, unlike HAHNN, XLNet learns to assign the majority
class to all classes and this does not change with epochs. This leads us to abandon
the model. The unsuitability of XLNet to imbalanced data is well documented
in the literature.

Fig. 9: Confusion Matrix on
XLNet or Electra

Electra We thought that the model might be
better at learning contextual relations given the
same computational resources as Distilbert. How-
ever using V100 GPU and full-length text, we
found that the model ends up learning only the
majority class (similar to XLNet).

6.2 Active Learning Methods

Fig. 10: Balanced Accuracy plots obtained for preprocessing 5 (best output for
distilbert)

We observe the following about the various discussed methods:
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1. the trend for almost all curves is steeper at the start and converging to-
wards the end. (the 4-median-smoothening makes the curve a bit more linear
though)

2. Random Sampling starts catching up and is able to outperform some other
query strategies later on

3. Prediction Entropy is expected to perform suboptimally since it’s based on
uncertainty estimates (logits) and neural networks are notorious for their
uncertainty estimates.

4. BALD, Least Confidence and EmbeddingKMeans are top-performing query
strategies for the most part

5. Coreset-based methods (GreedyCoreset and LightweightCoreset) provide de-
cent enough performance (with Lightweight corset giving better performance
due to an additional additive error term in its objective).

6. We can quantify the minimum size of the labelled pool based on the top-3
query strategies: BALD, Least Confidence and Embedding-K-Means

Balanced Accuracy Num. of Queries % of training data

45% 10 16.58%
50% 20 33.17%
55% 25 41.46%
60% 35 58.04%

Table 3: Bounding the minimum size of the labelled pool for top 3

7 Conclusion

From the above experiments, we can conclude that we can get 63% Balanced
Accuracy using Normal Classification methods (BERT, DistilBERT, HAHNN).
The most optimal pre-precessing turns out to be low-to-high frequency untagged
concatenation of textual-features.Using Active Learning, we can get close to
45% Balanced Accuracy by labelling just 17% data points and 60% Balanced
Accuracy (close to full dataset) by labelling 60% data points.

8 Future Works

We propose the following future directions :

On objectives: Using similar techniques, we might predict the estimated
duration.

On preprocessing and Data-handling

1. We missed out on 4 forms : SEPERATE TEXT, DND ORDER, DND IN TEXT
and OPEN. Among all 4, the OPEN type needs special emphasis to be in-
cluded in the processing because it consists of a lot of examples.

2. Explore using NLP to predict difficulty of mathematical questions (by form).

On approaches: The following aspects could be further explored as an
extension of approaches presented in the above work:
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1. Imbalance-handling methods to render models like XLnet and Electra useful.
2. Ordinal regression to reduce the number of queries (information in unlabelled

instances based on metrics such as similarity).
3. Using full-text models like BigBird, or averaging in instead of chunking
4. Incorporating Ordinal Regression in Model for Active Learner
5. Design research based on Argilla interface
6. Dynamic AL strategies eg DUAL, GraDUAL and frameworks like AcTune
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