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Abstract. STNs are highly efficient in warping the input image for a
downstream task. However, cascaded STNs are found to be able to learn
more complex transformations. We attempt to leverage the multistep
process of diffusion models to produce module(s) that has a similar effect
to cascaded STNs.
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1 Introduction

In this paper, we aim to combine Diffusion Models into the STN architecture to
predict better the affine transformation applied to an image on-the-fly. Though
there are many ways to combine diffusion models with STNs, we specifically
focus on combinations that result in a single module that can be suited for any
downstream task.

It has been shown that a series combination of STNs is quite useful for
learning complex transformations. Motivated by this, we explore ways to combine
STN and Diffusion Models. We also explain the process of diffusion models and
STNs and suggest possible future directions and extensions of the work.

2 Diffusion Models

There are several types of generative models popular now (as shown in Figure
1), but none is without its flaws:

1. Generative Adversarial Networks (GANs): suffer from unstable training and
limited diversity (mode collapse).

2. Variational Autoencoders (VAE) [8,9,23]: relies on a surrogate loss.
3. Flow-based models: need specialized architectures to construct reversible

transforms.

⋆ Supported by organization CV Lab, EPFL.
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Fig. 1: Summary of Generative Models

4. Diffusion Models: inspired by non-equilibrium thermodynamics. Despite be-
ing slow at sampling, diffusion models outperform other generative models;
specifically, they are free from the issues of these models.

Below, we explain the common perspectives to understand of diffusion mod-
els, specifically the ones that are needed to understand our architectures.

Markov Chain Perspective We touch upon the necessary mathematical de-
tails of the diffusion models without diving into the proofs much (More detailed
treatment can be found in [1,2,3,4]). Our approach will mostly be like Denois-
ing Diffusion Probabilistic Model (DDPM) [5,6,7] with some improvements sug-
gested in papers published by OpenAI later on [11,12].

Diffusion Models are latent space models that involve adding noise to a sam-
ple as a Markov chain and then denoising the noisy image using a neural network.
During training, noise is added (according to a variance schedule), and a model
is used to denoise the image in multiple steps. During inference, denoising is
applied to an isotropic noisy sample. Noising and denoising in steps, as opposed
to single steps like GANs, leads to more tractable computations [10].

The forward process is defined as follows:

x0 ∼ q(x)

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)

As t → ∞, xt approaches an isotropic Gaussian.
For the forward process, xt can be computed in closed form from x0 by using

a reparametrization trick involving the sum of two Gaussian.
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Defining two new variables:

αt = 1− βt

ᾱt =

t∏
i=1

αi

q(xt|x0) = N (xt;
√
ᾱtxt−1, (1− ᾱt)I)

Since βt is small, q(xt−1|xt) is also Gaussian. However, estimating this quan-
tity would require using the entire dataset, so we learn a model pθ to approximate
the conditional probabilities.

We run the reverse diffusion process:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

We use simple likelihood for the loss: − log pθ(x). Similar to VAEs, we use
the variational lower bound to upper bound of the objective [8,9,?]. Upon sim-
plification and additional conditioning on x0 (for better sampling), and ignoring
pure q(xt) terms (since they have no learnable parameters), we come up with
the following objective:

Lreduced =

T∑
t=2

DKL(q(xt|xt, x0)||pθ(xt−1|xt))− log(pθ(x0|x1))

pθ(x0|x1) ∼ N (xt−1;µθ(xt, t);σθ(xt, t))

qθ(xt−1|x1, x0) ∼ N (xt−1; µ̃t(xt, x0); β̃I)

By observing that βt is fixed (as per the schedule), as an objective, we can
minimize the MSE between µ̃t(xt, x0) and µθ(xt). After simplification, this re-
duces to the MSE between the error at time t and the predicted error for time
t predicted by the model, with a scaling term that improves sample quality.

Lsimple = ||ϵt − ϵθ(
√
ᾱtx0 +

√
¯1− αtϵ, t)||2

Langevin Dynamics Perspective (Noise-conditioned score networks)
This perspective enables us to understand Conditional image generation. Again
we touch upon the results (more can be followed from [13,19,20,21,24]) Stochas-
tic Gradient Langevin Dynamics [26] can generate samples from a probability
density p(x) using only the gradients ∇x log p(x) in a Markov chain of updates.

xt = xt−1 +
δ

2
∇x log p(xt−1) +

√
δϵt, where ϵt ∼ N (0, I)
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Fig. 2: Diffusion Models demystified

Here, δ represents the step size. As T → ∞, ϵ → 0, and xT converges to the
true probability density p(x).

Compared to standard SGD, stochastic gradient Langevin Dynamics injects
Gaussian noise into the parameter updates to avoid collapsing into local minima.

Song and Ermon (2019) [13] proposed score-based generative modelling meth-
ods where samples are produced via Langevin dynamics using gradients of the
data distribution estimated with Stein score-matching.

To scale with high-dimension, they add a pre-specified small noise to the data
and estimate the data point with score matching. According to the manifold
hypothesis, most data is expected to lie on a low-dimensional manifold, even
though the data might seem to be in high dimension. Thus, the data does not
cover the entire space, and estimation is unreliable in sparse regions. Adding a
small perturbation in steps to cover the entire space offers more stable training.

sθ(xt, t) ≈ ∇xt log q(xt) = Eq(x0) [∇xtq(xt | x0)] = Eq(x0)

[
− ϵθ(xt, t)√

1− ᾱt

]
= − ϵθ(xt, t)√

1− ᾱt

Architecture and Algorithm The original implementation of DDPMs used
U-Net architecture consisted of Wide ResNet blocks, group normalisation as
well as self-attention blocks. The diffusion time step t is specified by adding a
sinusoidal position embedding into each residual block. Various other approaches
and architectures are covered in [15,18]

The training and Sampling algorithms are shown in Figure 4.

2.1 Conditioned Generation

To turn a diffusion model into a conditioned model [22], we can add conditioning
information (y) at each step with a guidance-scalar s as :

pθ(x0:T |y) = p(xT )

T∏
t=1

pθ(xt−1|xt, y)

∇xt
log pθ(xt|y) = ∇xt

log pθ(xt) + s.∇xt
log pθ(y|xt)
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(a) Without Noise, predictions of sparse regions are inaccurate

(b) Adding noise increases the base of predictions to sparse regions closer to the low-
dimensional manifold.

Fig. 3: Role of Noise in Score-matching approach

Fig. 4: Training and Sampling algorithms for DDPM
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Using ∇xt
log q(xt) = − 1√

1−ᾱt
ϵθ(xt, t)

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt∇xt

log pθ(y|xt))

The above score-based formulation eliminates the term using pθ(y), which
needs knowledge of all data points.

The following are the popular ways to condition the diffusion model

Classifier Guided Diffusion The score of y wrt x can be estimated using a
classifier [11]. Setting ∇xt

log q(y|xt) = ∇xt
log fϕ(y|xt)

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt log fϕ(y|xt)

The resulting ablated diffusion model (ADM) and the one with additional
classifier guidance (ADM-G) can achieve better results than state-of-the-art gen-
erative models (e.g., BigGAN).

Classifier-free guidance Conditioning is also possible without a classifier [17].
Let unconditional denoising diffusion model pθ(x) parameterized through a score
estimator ϵθ(xt, t) and the conditional model pθ(x|y) parameterized through
ϵθ(xt, t, y). These two models can be learned via a single neural network. Pre-
cisely, a conditional diffusion model pθ(x|y) is trained on paired data (x, y),
where the conditioning information y gets discarded periodically at random
such that the model knows how to generate images unconditionally as well,
i.e. ϵθ(xt, t) = ϵθ(xt, t, y = ϕ).

The gradient of an implicit classifier can be represented with conditional and
unconditional score estimators. Once plugged into the classifier-guided modified
score, the score contains no dependency on a separate classifier.

∇xt
log p(y|xt) = ∇xt

log p(xt|y)−∇xt
log p(xt)

= − 1√
1− ᾱt

(
ϵθ(xt, t, y)−

√
1− ᾱt w∇xt log p(y|xt)

)
i.e.

ϵ̄θ(xt, t, y) = ϵθ(xt, t, y)+w
(
ϵθ(xt, t, y)−ϵθ(xt, t)

)
= (w+1)ϵθ(xt, t, y)−wϵθ(xt, t)

ControlNets Zhang et al., 2023 [27] developed ControlNet, a separate module
that can be added to an unconditional model for conditional image generation.
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2.2 Improvements to Diffusion Model

We now discuss some popular improvements to the diffusion models:

1. Ho et al. (2020) [5] used a linear schedule from β1 = 10−4 to βt = 0.02.
Nichol and Dhariwal (2021) [11] proposed a cosine-based variance schedule
(any arbitrary schedule will work as long as it offers a near-linear drop in
the middle of training and subtle changes around t = 0 and t = T ).

2. The DDPM paper [5] also introduced a positional time step embedding,
where half of the dimensions encode sine embedding and the other half en-
code cosine embedding.

3. They also proposed learning the reverse process variance Σθ as an interpo-
lation between βt and β̃t, which gives:

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t)

Song et al., 2021 [28] proposed using deterministic sampling (Denoising Dif-
fusion implicitly model - DDIM 2020), which has the same marginal noise
distribution but deterministically maps noise back to the original data sam-
ples. Compared to DDPM, DDIM has higher sample quality for small steps,
consistency of high-level features on conditioning and thus, the semantically
meaningful representation of a latent variable.

4. Nicol and Dhariwal (2021) [11] also proposed speeding up diffusion process
by strided sampling.

5. Latent Diffusion [27] runs the diffusion process in latent space instead of pixel
space, thus lower training cost and faster inference. The encoder downsam-
ples to latent space, and the decoder is used to recover back the generated
image.

6. Cold Diffusion [14], generalises the notion of noise by applying various trans-
formations to the image. and uses a modified sampling algorithm to make
the degradation function independent of the restoration operator up to first-
order terms.

3 Spatial Transformer Networks

Much of this section is inspired by the original paper on Spatial Transformer
Networks [30,31]

STNs (Spatial Transformer Networks) are learnable modules to actively ma-
nipulate spatial information and make the model more robust to warping. before
STNs, this could only be achieved by a long hierarchy of Max-Pooling layers.
Unlike pooling layers, where the receptive fields are fixed and local, the spatial
transformer module is a dynamic mechanism that can actively spatially trans-
form an image (or a feature map) by producing an appropriate transformation
for each input sample. The transformation is performed on the entire feature map
(non-locally) and can include scaling, cropping, rotations, and non-rigid defor-
mations. This allows networks to select regions that include spatial transformers
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Fig. 5: The figure shows the working of the STN module

to not only select regions of an image that are most relevant (attention) but also
to transform those regions to a canonical, expected pose to simplify recognition
in the following layers. They are a generalisation of differential attention modules
on spatial transformation. They can be trained with standard back-propagation,
allowing for end-to-end training of the models they are injected in. They are use-
ful for various tasks, including image classification, co-localisation, and spatial
attention

The STN Consists of the following 3 parts:

1. Localisation Net
2. Grid Generator
3. Sampler

Localisation Network It takes the input feature map U ∈ RH∗W∗C , and
outputs the parameters of transformation (θ = floc(U)). It can take any form but
should include a final regressor layer to produce the transformation parameters
θ

Parametrised Grid Sampling The output pixels are computed by applying
a sampling kernel centred at each location of the input feature map. The only
constraint is that the transformation should be different wrt the parameters to
allow for back-propagation. A good heuristic is to predict the transformation
parametrised in a low dimensional way so that the complexity of the task as-
signed to the localisation network is reduced, and it can also learn about the
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target grid representation. e.g. if τθ = MθB, where B is the target representa-
tion. Thus, it is also possible to learn θ and B.

In our case, we analyze 2D transformations, which the following equation can
overall summarise:

(
xi
s

yis

)
= τθ(Gi) = Aθ

xi
t

yit
1

 =

[
θ11 θ12 θ13
θ21 θ22 θ23

]xi
t

yit
1


Here, (xi

t, y
i
t) are target coordinates of the regular grid in the output feature

map, and (xi
s, y

i
s) are the source coordinates. We use height and width normalised

coordinates.

Differentiable Image Sampling Differentiable Image Sampling

To perform a spatial transformation of the input feature map, a sampler must
take the set of sampling points Tθ(G), along with the input feature map U , and
produce the sampled output feature map V . Each (xs

i , y
s
i ) coordinate in τθ(G)

defines the spatial location in the input where a sampling kernel is applied to
get the value at a particular pixel in the output V . This can be written as

V c
i =

H∑
n=1

W∑
m=1

U c
nmk(xsi −m;Φx)k(y

s
i − n;Φy) ∀i ∈ [1, H ′W ′] ∀c ∈ [1, C]

where Φx and Φy are the parameters of a generic sampling kernel k() which
defines the image interpolation (e.g. bilinear), U c

nm is the value at location (n,m)
in channel c of the input, and V c

i is the output value for pixel i at location
(xt

i, y
t
i) in channel c. Note that the sampling is done identically for each channel

of the input, so every channel is transformed identically (this preserves spatial
consistency between channels).

In theory, any sampling kernel can be used, as long as (sub-)gradients can
be defined with respect to xs

i and ysi . For example, using the integer sampling
kernel reduces the above equation to

V c
i =

H∑
n=1

W∑
m=1

U c
nmδ([xs

i + 0.5]−m)δ([ysi + 0.5]− n)

where [x+0.5] rounds x to the nearest integer and δ() is the Kronecker delta
function. This sampling kernel equates to just copying the value at the nearest
pixel to (xs

i , y
s
i ) to the output location (xt

i, y
t
i). Alternatively, a bilinear sampling

kernel can be used, giving

V c
i =

H∑
n=1

W∑
m=1

U c
nm max(0, 1− |xsi −m|)max(0, 1− |ysi − n|)
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To allow backpropagation of the loss through this sampling mechanism, we
can define the gradients with respect to U and G. For bilinear sampling above
equation, the partial derivatives are

∂V c
i

∂U c
nm

=

H∑
n=1

W∑
m=1

max(0, 1− |xsi −m|)max(0, 1− |ysi − n|)

∂V c
i

∂xs
i

=

H∑
n=1

W∑
m=1

U c
nm max(0, 1− |ysi − n|)


0 if |m− xs

i | ≥ 1

1 if m ≥ xs
si

−1 if m < xs
i

and above equation for ∂Vci

∂ysi
.

This gives us a (sub-)differentiable sampling mechanism, allowing loss gradi-
ents to flow back not only to the input feature map but also to the sampling grid
coordinates and, therefore, back to the transformation parameters θ and local-

ization network since
∂xs

i

∂θ and
∂ys

i

∂θ can be easily derived. Due to discontinuities in
the sampling functions, sub-gradients must be used. This sampling mechanism
can be implemented very efficiently on GPU by ignoring the sum over all input
locations and instead just looking at the kernel support region for each output
pixel.

For better warping, the STNs can be cascaded by passing the output of one
STN to the next (as in [30]) and with additional input to condition (as in [29])

Overall analysis of STNs The overall pros of STNs are :

1. STNs are very fast, and the application does not require making many mod-
ifications to the downstream model

2. They can also be used to downsample or oversample a feature map (down-
sampling with fixed, small support might lead to an aliasing effect)

3. Multiple STNs can be used. The combination can be in Series (for more
complex feature learning, with the input of one STN going into another,
with or without an unwarped conditional input.

4. Parallel combinations are effective when there are more than one parts to
focus on in images (It was shown that of 2 STNs used on the CUB-200-2011
bird classification dataset, one became head-detector and the other became
body-detector)

However, STNs are notoriously known to suffer from the following 2 defects
:

1. Boundary effect arises as the image is propagated and not the geometric
information (e.g. if an image is rotated, STNs can fix the rotation, but they
do not fix the degraded boundary effects like cut corners etc.)

2. Single STN application is insufficient to learn complex transformations
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4 Model 1 : Diff-in-STN Architecture (predicting θ from
diffusion model based on localisation network

In this experiment, we use a conditional diffusion model to learn the parameters
of the matrix θ by just utilising the transformed image.

4.1 Model architecture and Algorithm

The model architecture is defined in the following image. It essentially takes the
transformed image and passes it to the image encoder. The encoder generates
an embedding of the image, which is used as conditioning to the DDPM Mod-
ule. The diffusion model takes encoded θ as input and learns it by noising and
denoising it based on the image conditioning. This generated θ is used for the
further processes of the model, like grid generation and sampling and, finally,
downstream tasks (her image classification).

For the theta-encoder, we used 2 layers fully connected network, which in-
creases the dimensions of theta from 6 to 20. We found that using Latent Space
with higher dimensions allows us to learn and better generate θ. The Diffu-
sion layer comprises 3 fully connected layers with dimensions remaining 20 for
both input and output. The regressor is the dimension decoder and comprises 2
fully connected layers that reduce dimension from 20 to 6. The result from the
regressor is passed to the grid generator.

For the training, we replaced algorithm 1 (in original DDPM paper) with
algorithm 2 where noise steps is chosen from a uniform distribution for the
batch. This is because we are developing a module and algorithm 1 is suited for
seperate training of diffusion model than the downstream task. We proceed with
noise predicted by neural network to denoise and predict theta, which is used
to generate the image. The final objective function is the negative log likelihood
loss for the classification downstream.

4.2 Data description and Augmentation

We augment the MNIST dataset from torch vision based on the affine transfor-
mation. We use the standard 2D Affine Matrix defined above. We use rotation,
translation and individual dimension scaling (shear). We provide the sample
with a range and sample from that range to generate the parameters for the
transformation. The Affine matrix Aθ can be represented as follows:[

kx. cos(ϕ) −ky. sin(ϕ) tx
kx. sin(ϕ) −ky. cos(ϕ) ty

]
; where ϕ represents rotation (degrees), tx and ty represent translation of coor-
dinates and kx and ky represent the rotational scaling. We generate train and
test loaders to return the transformed image, the correct classifier label y and
the transformation matrix Aθ.
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Fig. 6: The figure describes the model architecture during training. The learnable
modules are represented in rectangles. During the testing, we could replace the
output of Theta encoder with a theta-shaped matrix sampled from an isotropic
Gaussian

4.3 Tuning and Results

Out of the various things we tried, we present some of them which led to im-
provement of the model’s performance. The base performance of the model was
close to 20% (random is 10%). Since the search space was huge for trying out
various things, we followed a heuristic-based approach, which means that we
tried something if we found some mention of it in the literature that led to im-
provement in a similar setting. As a baseline, STNs are quite fast and have an
accuracy of 84% using SGD and learning rate = 0.01. Since SGD has a stochastic
component, we report an average of 3 runs.

We also note that the Differential Attention of STNS enables not to shrink
the final images, whereas the final transformation of Diff-in-STN is shrunk; in
general, the images corrected have a small transformation applied to them de-
pending on the mean of transformation extremes at data-warping/augmentation
stages. Also, we find that the Diff-in-STN essentially learns mostly scaling and
not many other transformations, this might be because the classifier downstream
might be good enough for classification, and diff-in-stn is slower to learn than
the classifier. We might need to deploy a highly selective classifier downstream to
train the diff-in-stn properly. Since we wished to develop a self-contained module
that could be added on top of other modules, we did not explore this direction
much.

ImageEncoder We considered 2 choices for ImageEncoder, on of fully con-
nected layers and the other of CNNs. The fully connected Encoder (image-
classifier type) resulted in the model being random, no matter whatever other
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(a) Visualisation of STN output wrt input dataset

(b) Visualisation of Diff-in-STN output wrt input dataset

Fig. 7: Comparison of Output Map of STN (Figure 6) and Diff-in-STN (Figure
7)
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(a) Visualisation of STN loss (b) Visualisation of Diff-in-STN loss

Fig. 8: Comparison of Test loss in STN vs Diff-in-STN

(a) Visualisation of STN accuracy (b) Visualisation of Diff-in-STN accu-
racy

Fig. 9: Comparison of test Accuracy in STN vs Diff-in-STN
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tuning we do. This makes sense, as the image is already classified at the Im-
ageEncoder step, and the downstream classifier can’t do much about it. The
other choice was using a CNN-based down-sampler (similar to the original lo-
calisation block used in STN). This leads to improvement in accuracy (up to
23%). With this type of ImageEncoder, the DDPM model essentially acts to
improve upon the estimated Transformation predicted by the localisation net-
work in a higher dimensional space, followed by a regressor. We considered only
2 types of Encoders. However, any other types of encoders that generate iden-
tity+transformation representations of images could be used.

Optimizer We found using SGD (Stochastic Gradient Descent) as an Optimizer
outperformed other optimizers like Adam, RMS etc. The SGD was the optimiser
used in the original STN paper. It leads to noisy and slow training, but it leads
to better classifier accuracy (close to 40%)

Hyperparameters tuning Adding weight decay and setting the learning rate
to 0.1 helped better generalise the model. This reduced the loss to 1.6 from 1.8,
and accuracy jumped from 30% to 45%. Paradoxically, lr=0.1 led to overshooting
for STNs and thus poor training with very little accuracy (25% initially, after
which STNs performed just like a random model with 10% accuracy)

Variance Schedule and Moving Averages Motivated by Improved DDPM,
we tried to incorporate a Cosine schedule for slowly noising the images and
used expected moving averages for smoother training free from outliers. This,
with SGD(lr=0.1 and weight-decay=0.001), led to 50% accuracy. This is the
maximum accuracy that we found from this architecture.

Fig. 10: Linear (top) vs Cosine variance schedule (bottom), Credits – Nicol and
Dhariwal, 2021

Using a feature extraction technique We tried to use Canny edge detector
from cv2 (OpenCV) but found that using this really degrades the result. This
lead to a higher loss for Diff-in-STNs.
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Latent Space running DDPM on higher dimension than θ enabled the model
to learn complex parameters at the cost of time. Thus, the model was better at
estimating the parameter but took longer to train and infer.

Passing time embedding Passing time-embedding to each layer of the DDPM
layer leads to slightly faster convergence (however the convergence is to the
barrier of 50%)

5 Model 2 : STN-in-Diff Architecture (predicting
untransformed image from diffusion model based on
localisation network

In this model architecture, we predict the most suitably oriented image for clas-
sification. The UNet is used as the model for diffusion model and we use locali-
sation based conditioning for the diffusion model.

Model Architecture and Algorithm The model comprises of DDPM with
unet conditioned on the output of image encoder. The image encoder is a double
downsample block with maxpooling layers and activation function. This is just
like the localisation network in the original STN paper.

Just like Architecture 1, we use Modified Algorithm 2 for Sampling. Since
there are relatively few learnable parameters, there is not much to tune in this
architecture.

We did not optimise much on the inferences nor try to encode the images to
a different space since there are algorithms that can do this. For fast inference
and training, we could use eg Exponential Integrator [16], and to reduce the
dimensionality of model (and the parameters), we could explore running Latent
Diffusion [27], or simply use fixed Encoders (or other learnable modules).

5.1 Results

We found that the model was highly inefficient and could not learn well in 30
epochs. This is the known characteristic of diffusion models. This observation
renders this model useless without other optimisation in algorithms (training
and sampling) and dimensions (latent space)

6 Conclusion

We found that the Diff-in-STN is actually a potential model, with the optimi-
sations. The classifier accuracy was close to 50% for our runs, and we hope that
we could reach it to 80% or more, than the STNs.

We found that the second architecture was highly inefficient and, for the given
30 epochs, was both slow and as bad as random. This suggests that our original
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Fig. 11: The figure describes the model architecture for STN-in-Diff during train-
ing. The learnable modules are represented in rectangles. During the testing, we
directly sample from an isotropic Gaussian instead of original untransformed
image

model was good enough as compared to a plain diffusion model, guided by a
double downsampler. However, there is now free-lunch. The first model (Diff-in-
STN) needed an additional parameter θ, i.e. it needed to know the transforma-
tion beforehand, which is usually hard to get in real settings. The only possible
benefits of STN-in-Diff model are :

1. It does not need the transformation knowledge, just the original images
during the training.

2. With just a linear approximation of some higher order transformation, we
can directly predict a better transformed image without actually estimating
the transformation parameter.

However, the Diff-in-STN model is quite light and fast with a reasonable
performance.

Applications We now enumerate the following applications of our research:

1. We can predict the transformations applied to an image. This is till now
done using approximate algorithms,

2. The problem can be modelled to finding an inverse of a matrix. This usu-
ally needs O(n3) Complexity. If we could make the models efficient, we can
estimate matrix inverses with just small knowledge about the inverse.

3. We could conclude from the transformations which orientations/transformations
are suited to classifiers. Once this generalisation is made, we could apply
these to increase the efficiency of classifiers (or other downstream modules).

7 Future Directions

During the research, we found several interesting directions:
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1. The (STN-in-Diff) is quite simple to implement. However, it is not sure
though if the only transformation to the output image is an affine trans-
formation, and we whether algorithms like RANSAC, DLT could predict
the first-order linear approximation to the transformation accurately. How-
ever, such a model is useful to get insights to the kind of transformation on
dataset, which is easier for classifer to learn. We could use Latent Diffusion
[27] to develop this.

2. We can also model the error to θ as distributions other than Gaussian. In
this case, we might now be able to use the same algorithm for sampling,
BUT we could use the modified algorithm proposed in cold-diffusion paper.

3. We could explore the use of Affine Invariants for Image Encoders(models
like SymmNets an Scatter Nets [36]). Lenc et al., 2015 characterised a linear
method to characterise equivariance, equivalance and invariance of affine
transformations [32] .

4. Though using classifier type models for Image Encoders seemed to be a
bad idea, we do not negate the possibility of utilising the top-k logits for
classification. Seeing at a superficial level, this information greatly reduces
the search-space of the model and hence however bad the diffusion model
is, we can get accuracy of classification to be more than 10% (random). A
variation could be dynamically vary the result of ImageEncoder (and hence
the top-k) values for the output.

5. Utilising Feature Extraction methods (e.g. retaining low frequency features)
might help the model learn betters given the same number of parameters,
owing to the fact that the low-frequency features are more correlated to
classes-identity

6. Utilising ensemble of diffusion models for better conditioning and image
generation.

7. Above all, training the network for different datasets like CIFAR, and with
higher order transformations (possiblity non-linear) transformations could
be more conclusive about the working of architecture.

8. We could sample in fewer steps using aporoaches like Exponential Integrator
[16]

8 Our Code

Our code can be found at https://drive.google.com/drive/folders/1Y_

Rw5K0JW-2oveibcuX1PSYDdZWqXPDy. Most of the elementary modules and blocks
are taken from : [33,34,35].

It contains the following files (preferable to run in this very order):

1. STN on Affine Transformations : https://colab.research.google.com/
drive/1DvMIaID1iGxcBl9qFB5VK_BE35-3KO8R#scrollTo=rZCCgO288q2t

2. Diff-in-STN : https://colab.research.google.com/drive/17ir9Eq4U6o3GHwMzNlvR83xO7eN4amtZ#
scrollTo=9JcVQvvPLPih&uniqifier=1

3. STN-in-Diff : https://colab.research.google.com/drive/1_XJ_Dd0_dXBGGd85cYvVRSshQmwYmU34#
scrollTo=LdbWDjvVn0ji

https://drive.google.com/drive/folders/1Y_Rw5K0JW-2oveibcuX1PSYDdZWqXPDy
https://drive.google.com/drive/folders/1Y_Rw5K0JW-2oveibcuX1PSYDdZWqXPDy
https://colab.research.google.com/drive/1DvMIaID1iGxcBl9qFB5VK_BE35-3KO8R#scrollTo=rZCCgO288q2t
https://colab.research.google.com/drive/1DvMIaID1iGxcBl9qFB5VK_BE35-3KO8R#scrollTo=rZCCgO288q2t
https://colab.research.google.com/drive/17ir9Eq4U6o3GHwMzNlvR83xO7eN4amtZ#scrollTo=9JcVQvvPLPih&uniqifier=1
https://colab.research.google.com/drive/17ir9Eq4U6o3GHwMzNlvR83xO7eN4amtZ#scrollTo=9JcVQvvPLPih&uniqifier=1
https://colab.research.google.com/drive/1_XJ_Dd0_dXBGGd85cYvVRSshQmwYmU34#scrollTo=LdbWDjvVn0ji
https://colab.research.google.com/drive/1_XJ_Dd0_dXBGGd85cYvVRSshQmwYmU34#scrollTo=LdbWDjvVn0ji
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There is a folder called Unfinished which includes some of the code that we
tried for other things such as Future Directions (Specifically - Cold Diffusion to
try out modelling transformations with noise other than Gaussian, and Latent
Diffusion, to work on the reducing sampling time and model parameters)

Then the Folder Experiments contains the code that I used for learning (tu-
torials and snippets).
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