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Abstract

This is a rendition of [2]. We study stringy motivic structures. This
builds upon work dealing with Fp-modives for a suitable prime p. In our
case, we let p be a long exact sequence spanning a path in a pre-geometric
space. We superize a nerve from our previous study.

0.0 Prologue

Note: If there any typos in this memo, kindly let me know! rjbuchanan2000@gmail.com

Let S∞
/s be an infinite slice tower. Then, in the following burger diagram:

S0
/s ... Sn

/s ... Sℵ0

/s

ΩS0
/s ΩSn

/s ΩSℵ0

/s

N 1
kosz

N−1
kosz

ℵ0 is the zero object of the diagram Sℵ0

/s −→ S∞
/s . The nerve

N±1
Kosz

is a regular cardinal in the field K which is spanned by the collection of transition
maps in the below Ω-spectra. Denote by

N±1
/τ≤∞

the Koszul complex associated with the nerve by the flag

Fl0 ⊔∞i N∞
/τ=i

which is the colimit
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Fl0
ni−→∞

n ∈ N

Definition 0.1. By Ω-spectrum, we mean a collection of deloopings

Σωi−→1 i ∈ [0, 1]

acting upon a stabilizer n times; n being the degree of the Koszul nerve which
strikes both at the source and target. This means that the isotropy group of
the point realized by the contraction around the target has an isotropy group
of order n as well. Thus, we are given the following sequence:

G ⊃ ... −→ n −→ ∗ −→ n+ −→ ...

with n = sup(K) is the maximal idea of the field K, and where n+ is given by
fusion with an additive map.

Recall [1] that the Koszul dual of a space S is given by

H∗(BA) ∼= Ext∗BA(k, k)

with (k, k) ∈ A×K◦ and BA the classifying space of some immersed subalgebra
A of the motivic spectrum.

Remark 0.1. The Koszul nerve should be thought both to be a fibrant object,
and a motivic one. It is effectively geometric as well, in the sense that

N eff ≃ N \ shad
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1 Superization of the nerve

Let A± be a superalgebra. Let us impose the following condition:

a ∈ A± =

{
+ if a /∈ shad

− if a ∈ shad

Therefore,

Proposition 1.1. N eff = A+

1.1 Preliminary remarks

I would like to paint a rather geometric picture here. Imagine a light-cone, L4,
which is stratified into positive and negative (odd or even) parts, such that, for
all a, there is a− ⊢ a+. Our nerve here is

N ∼= ∆(L4)

and is closed, symmetric monoidal.
Let PT be a potential theory for a holomorphic space. The question of

this article is the following: “what is PT (N ), and how does it differ from
PT (N eff )?” For the purposes of easing this question, I would like to reduce
this question to the familiar special case: “let N eff ⟨W ⟩A−, where W is a
bordism. Assume that the bordism is an EPR bridge. What are the transport
properties of W?

To understand the physical side of this question, we need to induce some
sort of torsion into PT , such that

τ(tors ↪→PT ) = 1

is a proper truth value in the meta-theory. We would want some families of maps
ρa : τ(a±) −→ Top, and examine each possible gradation over τ individually. In
order to make this problem tractable, we specify which τ -values are admissible
by imposing an ultrafilter on a field. For shadow objects, this might involve
a choice of functor sending the object to the desired admissible category. For
example, one could select a good motivic representation of Fp 7→ K/r to be
the qualifying criterion for an object to be embedded flatly into our topological
space.

In general, a Reidemeister move on the boundary of a lightcone induces
a torsor in the bi-category sch2 of 2-schemes, which consists of all operations
sch×sch, such that sch2 = sch2. The functors of this category are pre-geometric
“quasi-translation” functors which act microlocally on sheaves via operators
which act on residues of the ground field. By ground field, we mean the field
whose elements are the chosen basis of pointed spaces generated by blow-ups of
varieties on the sheaf.
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1.2 Calculus with balls

Let B be an open ball, and B̄ a closed ball, denoting by B◦ the group completion
(closure) of B. In our model, the openness of a ball is not determined locally. As
an example, the collar of the EPR bridge connecting balls is the closure of some
hole or particle, but the ball itself is open in the total space. The non-locality of
the ball in this case means a real-world, bonafide physical partical non-locality.
This means that each particle is locally closed, but stably speaking, this closure
is not transitive under a map B −→ B ∪B◦.

The corresponding notion of a Reidemeister move on the boundary of a
lightcone here is the corresponding Reidemeister move on the boundary of B̄,
which is locally a 5-brane, B5AdS . The wall-crossing morphisms [2]

Walls : Dm −→ int(Dm)

is used for discretely traversing an element in the isotropy group of a point
on the infinitesimally thickened boundary of B◦ ∈ Dm, where here m can be
any chosen sup-pole. The Sati-Schreiber tadpole cancellation [3] occurs at this
point, but it is not yet a genuine fixed point without the supplement of at least
an orbifold structure. This is why the induction of an equivariant cohomotopy
theory becomes important.

Locally, some small structures may appear discrete, but microlocally appear
quite smooth. Such is the case as when an object in the one object category
of spt∗ is blown-up into a lens space. Keep in mind that most of the familiar
specialization functors terminate in spt∗, so that we have:

spt∗ −→ Fp −→ Fp ⊃ K ′ −→ ... −→ spt∗

This makes this a very useful, and quite fundamental, object for studying
GUT baryogenesis. The unwrapping of a motive over a brane results in the
annihilation of Walls.1 Specifically, every weighted object in Walls is sent to
the empty set via the deletion of a single point.

spt∗ \ ∗ −→ {∅}

Imagine that this point is the crepant resolution of an orbifold O. This
functor kills the homotopy type of some distinguished subset Sn ⊂ O via a
Postnikov tower:

Oτ≤n
∼= Spt∗0

−→ ... −→ Spt∗n

where

Oτ≤n
∼= inf(∆) −→ sup(∆)

Applying the etale realization functor to every slice in O results in the annihilation
of a quasi-periodic object of the ω-spectrum ωO < ΩO.

1I had to restrict myself from entering the pun: “breaking the 4thWalls= ̸ τ(W4). Terrance
Tao says not to make notation too cheeky, however.
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δi≤k(O) δ∞(O) ≃ spt∗ ... spt∗

+

−

Remark 1.1. The above diagram depics the spin of a grvitino, which is 2/3.
This is the ind-object of the loop qℓ : spt∗ −→ ... −→ spt∗. We can write δin
and δout for the initial and terminal object in the above sequence. Our survey

then reduces to studying the maps ℓ : (δin
Σ7→ δout) ∈ L4. For simplicity here,

Σ = ∪n0 δi(x̃)

where Σ ∈Man and δi(x̃) ⊂ δi<kO. We will regard each δi<kO as Hermitian.

Definition 1.1. Let BunCk be a Ck-bundle. By this, we mean that connections

in End(BunCk) form k-maps δi(x̃)
k7−→ δi+k(x).

2 The subscript on δ• is essentially
the level of the map i 7→ i+ k.

Remark 1.2. The above definition assumes End(BunCk) yields only pointed
sets. With respect to a derivative over time, a Ck space will always yield

∂k−1n ∼ ε ∼ π0(x) ≃ x0

Let each x0 have a Z2-grade. Then, one obtains

E/H =

1∑
i=0

x±i

where H denotes the unit quaternion, and E is a presheaf of motives over K.
Let E be the principle energy number of a photon, and H, again, the unit

quaternions. Then, E splits once into each of its principle hypercharge directions.
Since we are working with pointed spaces, each hypercharge direction takes a
motivic object and transforms it into a point via the map

E/H 7−→ ∗

For a hyperkaehler manifold, this can be used as a model of a wormhole
between pathwise disjoint, but non-trivially globally simply connected towers
of sums. The Ω-spectrum of H encodes cohomological data about the moment
up of schemes in the sheaf E. Specifically, we obtain information (in Bredon
cohomology) about a G-CW complex. If we work with a Sl3Z-local parameter
space, we gain a rational index of some open fiber frame. See [4] for more
information. Our classifying space is BΓq, a twist on the classical Haefliger
space. Observe that for two neighborhoods

(U(x),U(y)) ∈ BΓq

2The above definition greatly reduces the complexity of Ck-spaces for the k-theoretically
minded.
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we have a codimension 2 foliation, which manifests itself covariantly as a bordism.
There is a superconformal stringy spectrum

Ω2BpΓq

which we will discuss later. Here,

Ω2(•) = Ω1(•) ∪ LΩ1(•′)

where each • is a monopole.
We have the following correlation:

(qnℓ ∝ Ωn) = Corn(qℓ,Ω)

with n ∈ Sl3N, which is a concrete instantiation of a page of a Segal/Atiya/Hirzebruch
spectral sequence. Ωn can be made by tensoring qnℓ with a trivial OX̃ -module,

where X̃ is a Koszul complex. Recall that a Koszul complex is a diagram with
commutative pushouts

T 1
/c

T 1
/c T 0

/c T 1
/c

T 1
/c

sending each n to n+, where

n+ = n ∨ ⨿iSp(n)

which smashes a copy of n with an Aq-local structure. Every germ that survives

this operation is sent to an associative additive map by
+ε7−→. In our case, we

have normalized ε to 1, inducing a cycle on End(n∪)0,1(n+) ⊂ ∆ ⊃ n×n+ This
means n × n+ is nullhomotopic, or in other words the Euclidean realization is
nilpotent.

2 Spectral fibers

Our main result is the following:

ℓq ∈ fib(q, p)

≃ ℓp,q − pad

≃ Ωq(p)
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where p is a long exact sequence of motives

p : ... −→Mot/K −→ ...

and where ℓq = Xpq
is a fiber spectrum of a period-preserving transition map,

and where pq =Mot/K′ for some K’.
Spectra are not necessarily equipped (by default) with a metric structure,

but they may be assigned one by a representative topological invariant of a
pointed space E∗. That is to say, for o ∈ E∗, there is a corresponding metric µ,
where o is the evaluation map:

X X ′

x ∈ X x ∈ X ′

o=ev(X) o=ev(X′)

sending each space to its pointed one-object category along the nerve N ε
Kosz,

with ε being the canonical group completion:

X =⇒ X◦

where X is given by the pre-ordered set

X =

{
SetK◦ K◦ ∈ qℓ ∈ (ΩX)

SetK◦′ K◦ /∈ qℓ ∈ (ΩX)

and where Ω = H0(G-CW) is simply connected.

2.1 Change of basis

Let Σg,n be a based space with crossing number n and genus g, and let there be
a bundle E : Σ 7−→ b, which lifts fiber spectra to a motive over some scheme,
Xb 7−→Motsch. Let m0 be a marked point of Σg,n. The ideal goal is to have a
complete geometric interpretation of the flow around m0.

To do so, we substitute the base space (indexed by x) of a Cartesian square
by a time-evolved dissipative system. We do so by forcing a metric (in the
canonical sense) on the underlying stack of X, giving us the following H-space:

X X′

X X ′

ΩX ′
µ ΩXµ

pr0

θ◦µµ◦θ

θ µ

The projection X
pr0−−→ X ′ is faithful and full. Actually, this space is a heart; in

fact, it is X♡
bq
.
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Definition 2.1. We call here a “stabilizer” what Bachmann [5] calls the image

of a “motivic Tambara functor.” We call a SHA1

-realization of this image a
“stable realization” at A1.

We have:

X1∏
X0

: 0 −→ ... −→ X −→ X′ −→ X′′ −→ ... −→ 1

such that
π0(PShv(X)) = ΠX

where
[0, 1] ⊂ X◦

Newt

is an edge of a Newton polygon.
The stabilizers in stringy motivic spectral theory are Quillen equivalent to

the third element in a triangle containing GProj(A) and GInj(A), where A is
an abelian category.3

2.2 Koszul duality

Write Λ$(X) once and for all to mean the Koszul dual of X.
We will be discussing Koszul duality on an AdS5 brane. Let Owhite be a

white hole. The Koszul dual

Λ$(X)(Owhite) = Oblack

Recall that, from a white hole, any information may be radiated outwards,
but that no information may enter. In this way, it is the opposite of a black hole.
The point of view I’m taking, is that in AdS5, three dimensions are conserved
for white holes and two for black holes, giving us a 2/3 spin for the gravitino.

There is an equivalence between dgas in Λ$(X), and cofibrant objects in
Bp,qAdS5

. This is technically an equivalence of Waldhausen categories:

X X ′ ≃ Y Y ′

X ′′ X ′ ∪X X ′′ Y ′′ Y ′ ∪Y Y ′′cof

cof cof

where the map X ′ ∪X X ′′ 7−→ Y ′ ∪Y Y ′′ is the diagonal of the brane. Letting
each side of the above isomorphism be two dimensional gives us a hyperkaehler
manifold Mhyp

X,Y , where X,Y means fib((X ′, X ′′), (Y ′, Y ′′)) ∼= fib(∆α,∆β).

3See [6]
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3 Work Locking and Holes

A work lock acting on a parton in 3-space gives us a 2-dimensional black hole,
O2

black. This gives us a globally stable, but locally unstable pure state.

Definition 3.1. A work lock, WL, is an obstruction to the long exact sequence:

... −→ EO1
black

−→ ..

which prevents us from promoting it to the solution of a Klein-Gordon equation.

A work-locked object only exhibits local interactions. This is why, for
instance, we have two equations to calculate air resistance at different velocities,
one small and one large. Take the space of a non-singular orbifold for which the
map

O 7−→Man

fails to be effective. The span of the orbifold is reduced to

o←− O −→ o+ k

which forces the effective equivalence of k ∼= o, so that k belongs to the sheaf
OX .

Let Σg,n be a manifold with genus g and crossing number n. Let this space
be generated by ρmn = ⟨ϕi(m)|ϕj(n)⟩. Let there be a collection of transition
maps ψΣ : i −→ j, such that ψ ◦ ϕk=i,j is a quasi-fibration for all k. The
truncation

Σg,n=τ≤k

yields us the effective wall-crossing fuctor

WallsEff = τ −→ τ > k

which describes the black-white transition. This lifts a (possibly wild) harmonic
bundle over a brane to the sl2 × SU(2) frame.

...

Bd+1(Πi(p))

Bd(Πi(p))

Bd−1(Πi(p))

...
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This diagram is commutative up to all coherent isomorphisms. For every object
in the above category, there is a Galois connection

Galp : Πi(p) 7−→ B•

which truncates the Ω-spectrum

ΩB•τ<k 7−→ ΩB•τ∼k

This “truncation” is, physically speaking, the reversal of a work-lock on a
hole, or in other words, the transitions

T : Owhite ⇆ Oblack

Here, T stands both for truncation and transition. This is an inclusion

∗ ∈PT

where ∗ is a critical point, and where PT is our potential theory. It is
understood here that the correct way of thinking about this point is as a
topological hole, B3(O); it has a third Betti number of 1.

3.1 Corn functors

Recall the correlation given by Corn(qℓ,Ω):

qnℓ ∝ Ωn

Let S(Corn(∗)) denote the category of sheaves: ∗ ∝ Ω∗ with an action g̃ :
∗ 7−→ S(Corn(∗)). The category S(Corn(∗)) is evidently the target of a Galois
functor:

Galp : Πi(p) 7−→ S(Corn(∗))

(for p a good prime), which has the right-lifting property against all (α ∩ β) ∈
Galp. We have, for all (α, β, γ) ∈ Galp:

(α ∩ β) ∩ γ = α ∩ (β ∩ γ) = α ∩ β ∩ γ

so that the relationship R given by αRγ : α −→ β −→ γ −→ ... becomes
transitive, and obeys the generalized cocycle condition

αi ∩ βj ∩ γk ∼= i 7−→ k

A functor Corn(•, •′) is effectively a Galois connection Galn : • 7−→ •′ which
sends every closed set in • to an open in •′. That is to say, if there is a connective
section (say, a triangle) in the preimage, it will be preserved by the projection.

Suppose we are given the functor Corn(qℓ,Ω). Let qℓ be given by a set of
paths Σℓ. Then, we obtain a delooping Ωn−1q for every point l ∈ ℓ. This is the
theme of Corn
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