A postulate-free treatment of Lorentz boosts in Minkowski space

Archan Chattopadhyay*

Abstract

Fundamental results of special relativity, such as the linear transformation for Lorentz boosts, and the invariance of the spacetime interval, are derived from a system of differential equations. The method so used dispenses with the need to make any physical assumption about the nature of spacetime.

1 Introduction

In his original work, A. Einstein [1] derived the Lorentz transformation based on the postulates of the principle of relativity and the invariance of the speed of light c. The transformation in $(1+1)$-dimensional Minkowski space (in units where $c=1$) is given by

$$
\begin{align*}
\bar{t} & =t \cosh \phi-x \sinh \phi, \tag{1a}\\
\bar{x} & =x \cosh \phi-t \sinh \phi, \tag{1b}
\end{align*}
$$

where ϕ is the rapidity. A central assumption in special relativity is the invariance of the spacetime interval under any transformation between inertial frames. This is instated (for the interval from the origin) by the relation

$$
\begin{equation*}
\bar{t}^{2}-\bar{x}^{2}=t^{2}-x^{2} \tag{2}
\end{equation*}
$$

In $(3+1)$-dimensional Minkowski space, the transformation for a boost along the direction specified by the unit vector $\left(n_{1}, n_{2}, n_{3}\right)$ is
$\left[\begin{array}{l}\bar{t} \\ \bar{x} \\ \bar{y} \\ \bar{z}\end{array}\right]=\left[\begin{array}{cccc}\cosh \phi & -n_{1} \sinh \phi & -n_{2} \sinh \phi & -n_{3} \sinh \phi \\ -n_{1} \sinh \phi & 1+n_{1}^{2}(\cosh \phi-1) & n_{1} n_{2}(\cosh \phi-1) & n_{1} n_{3}(\cosh \phi-1) \\ -n_{2} \sinh \phi & n_{1} n_{2}(\cosh \phi-1) & 1+n_{2}^{2}(\cosh \phi-1) & n_{2} n_{3}(\cosh \phi-1) \\ -n_{3} \sinh \phi & n_{1} n_{3}(\cosh \phi-1) & n_{2} n_{3}(\cosh \phi-1) & 1+n_{3}^{2}(\cosh \phi-1)\end{array}\right]\left[\begin{array}{c}t \\ x \\ y \\ z\end{array}\right]$,
and the preservation of the spacetime interval is expressed by stating that

$$
\begin{equation*}
\bar{t}^{2}-\bar{x}^{2}-\bar{y}^{2}-\bar{z}^{2}=t^{2}-x^{2}-y^{2}-z^{2} \tag{4}
\end{equation*}
$$

In more recent approaches [2, 3, 4], only Einstein's first postulate is used, and in addition, spacetime is assumed to be homogeneous and

[^0]isotropic in nature. In this work, these assumptions are relaxed, and the four spacetime coordinates t, x, y and z are taken to be functions of the rapidity ϕ. In this process, the physical assumptions regarding spacetime are replaced by mathematical conditions. An event in an inertial frame (in $(3+1)$-dimensional Minkowski space) is then given by $(t(\phi), x(\phi), y(\phi), z(\phi))$. The choice of ϕ for the initial frame is arbitrary (in this work, it is chosen to be 0), since there exists no preferred frame. Since distinct values of ϕ result in boosted frames with distinct rapidities, ϕ may be said to "label" an inertial frame.

2 Boosts in (1+1)-dimensional Minkowski space

Consider the system of equations (with primes denoting differentiation with respect to ϕ)

$$
\begin{align*}
t^{\prime} & =-x, \tag{5a}\\
x^{\prime} & =-t . \tag{5b}
\end{align*}
$$

Successive differentiation yields

$$
\begin{align*}
t^{\prime \prime} & =t \tag{6a}\\
x^{\prime \prime} & =x \tag{6b}
\end{align*}
$$

The solutions for t and x are

$$
\begin{align*}
t(\phi) & =t(0) \cosh \phi+t^{\prime}(0) \sinh \phi \tag{7a}\\
x(\phi) & =x(0) \cosh \phi+x^{\prime}(0) \sinh \phi \tag{7b}
\end{align*}
$$

Noting that $t^{\prime}(0)=-x(0)$ and $x^{\prime}(0)=-t(0)$, we get

$$
\begin{align*}
t(\phi) & =t(0) \cosh \phi-x(0) \sinh \phi, \tag{8a}\\
x(\phi) & =x(0) \cosh \phi-t(0) \sinh \phi . \tag{8b}
\end{align*}
$$

Equations (8) are strikingly similar to (1), and describe a boost of rapidity ϕ, relative to the frame $\phi=0$.

We also obtain from (5)

$$
\begin{equation*}
t t^{\prime}-x x^{\prime}=0 \tag{9}
\end{equation*}
$$

which on integrating gives

$$
\begin{equation*}
t(\phi)^{2}-x(\phi)^{2}=\text { constant } \tag{10}
\end{equation*}
$$

This proves the invariance of the (squared) spacetime interval under boosts. Setting $x(\phi)=0$, we get from (10)

$$
\begin{equation*}
t(\phi)^{2}=t(0)^{2}-x(0)^{2} \tag{11}
\end{equation*}
$$

Defining $\beta(\phi)=\tanh \phi$, we have from (8b)

$$
\begin{equation*}
x(0)=\beta(\phi) t(0) . \tag{12}
\end{equation*}
$$

$\beta(\phi)$ is thus identified as the velocity of the frame ϕ with respect to the frame $\phi=0$. Substituting (12) in (11) and taking the positive square root, we obtain

$$
\begin{equation*}
t(\phi)=t(0) \sqrt{1-\beta(\phi)^{2}} \tag{13}
\end{equation*}
$$

Equation (13) describes the time dilation of the frame ϕ with respect to the frame $\phi=0$. The quantity $t(\phi)$ is identified as the proper time of the frame ϕ.

Now, on setting $x(0)=0$, we get from (8)

$$
\begin{align*}
t(\phi) & =t(0) \cosh \phi, \tag{14a}\\
x(\phi) & =-t(0) \sinh \phi, \tag{14b}
\end{align*}
$$

which results in

$$
\begin{equation*}
x(\phi)=-\beta(\phi) t(\phi) . \tag{15}
\end{equation*}
$$

Here, $-\beta(\phi)$ is the velocity of the frame $\phi=0$ with respect to the frame ϕ.

Now, let $t(\phi)=0$. Returning to (10), we obtain

$$
\begin{equation*}
-x(\phi)^{2}=t(0)^{2}-x(0)^{2} \tag{16}
\end{equation*}
$$

where from (8a),

$$
\begin{equation*}
t(0)=\beta(\phi) x(0) . \tag{17}
\end{equation*}
$$

Substituting in (16) and taking the positive square root again, we have

$$
\begin{equation*}
x(\phi)=x(0) \sqrt{1-\beta(\phi)^{2}} . \tag{18}
\end{equation*}
$$

Equation (18) describes the spatial contraction of the frame ϕ with respect to the frame $\phi=0$. The quantity $x(0)$ is identified as the proper length of the frame $\phi=0$.

Now, let the event $(t(0), x(0))$ be simultaneous with the origin. In that case, $t(0)=0$ and we get from (8)

$$
\begin{align*}
t(\phi) & =-x(0) \sinh \phi, \tag{19a}\\
x(\phi) & =x(0) \cosh \phi, \tag{19b}
\end{align*}
$$

from which

$$
\begin{equation*}
t(\phi)=-\beta(\phi) x(\phi) . \tag{20}
\end{equation*}
$$

Equation (20) expresses the relativity of simultaneity of the two events.

3 Boosts in (3+1)-dimensional Minkowski space

Let n_{1}, n_{2} and n_{3} be real numbers such that $n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1$. Consider now the system of equations

$$
\begin{align*}
t^{\prime} & =-n_{1} x-n_{2} y-n_{3} z, \tag{21a}\\
x^{\prime} & =-n_{1} t, \tag{21b}\\
y^{\prime} & =-n_{2} t, \tag{21c}\\
z^{\prime} & =-n_{3} t . \tag{21d}
\end{align*}
$$

Successive differentiation yields

$$
\begin{equation*}
t^{\prime \prime}=t, \quad x^{\prime \prime \prime}=x^{\prime}, \quad y^{\prime \prime \prime}=y^{\prime}, \quad z^{\prime \prime \prime}=z^{\prime} . \tag{22}
\end{equation*}
$$

The solution for t is

$$
\begin{equation*}
t(\phi)=A_{1} \cosh \phi+A_{2} \sinh \phi, \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{1}=t(0), \tag{24a}\\
& A_{2}=t^{\prime}(0)=-n_{1} x(0)-n_{2} y(0)-n_{3} z(0) . \tag{24b}
\end{align*}
$$

The solution for x is

$$
\begin{equation*}
x(\phi)=B_{1} \cosh \phi+B_{2} \sinh \phi+B_{3}, \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
B_{1}+B_{3} & =x(0) \tag{26a}\\
B_{2} & =x^{\prime}(0)=-n_{1} t(0), \tag{26b}\\
B_{1} & =x^{\prime \prime}(0)=n_{1}^{2} x(0)+n_{1} n_{2} y(0)+n_{1} n_{3} z(0) . \tag{26c}
\end{align*}
$$

The solutions for y and z may be obtained in a way similar to that of x. The solution to (21) is

$$
\left[\begin{array}{l}
t(\phi) \tag{27}\\
x(\phi) \\
y(\phi) \\
z(\phi)
\end{array}\right]=\left[\begin{array}{cccc}
\cosh \phi & -n_{1} \sinh \phi & -n_{2} \sinh \phi & -n_{3} \sinh \phi \\
-n_{1} \sinh \phi & 1+n_{1}^{2}(\cosh \phi-1) & n_{1} n_{2}(\cosh \phi-1) & n_{1} n_{3}(\cosh \phi-1) \\
-n_{2} \sinh \phi & n_{1} n_{2}(\cosh \phi-1) & 1+n_{2}^{2}(\cosh \phi-1) & n_{2} n_{3}(\cosh \phi-1) \\
-n_{3} \sinh \phi & n_{1} n_{3}(\cosh \phi-1) & n_{2} n_{3}(\cosh \phi-1) & 1+n_{3}^{2}(\cosh \phi-1)
\end{array}\right]\left[\begin{array}{l}
t(0) \\
x(0) \\
y(0) \\
z(0)
\end{array}\right] .
$$

Equation (27) describes a boost of rapidity ϕ in the direction specified by the unit vector (n_{1}, n_{2}, n_{3}) (note the similarity with (3)). It may be checked that (21) reduces to (5) for $\left(n_{1}, n_{2}, n_{3}\right)=(1,0,0)$. Eliminating n_{1}, n_{2} and n_{3} from (21) results in

$$
\begin{equation*}
t t^{\prime}-x x^{\prime}-y y^{\prime}-z z^{\prime}=0 \tag{28}
\end{equation*}
$$

which on integrating gives

$$
\begin{equation*}
t(\phi)^{2}-x(\phi)^{2}-y(\phi)^{2}-z(\phi)^{2}=\text { constant } . \tag{29}
\end{equation*}
$$

This proves the invariance of the (squared) spacetime interval under boosts.

References

[1] A. Einstein, Ann. Phys. (Leipzig), 17, 891 (1905). https://doi.org/ 10.1002/andp. 19053221004
[2] A. R. Lee and T. M. Kalotas, Am. J. Phys., 43, 434 (1975). https: //doi.org/10.1119/1.9807
[3] J.-M. Lévy-Leblond, Am. J. Phys., 44, 271 (1976). https://doi.org/ 10.1119/1. 10490
[4] P. B. Pal, Eur. J. Phys., 24, 315 (2003). https://doi.org/10.1088/ 0143-0807/24/3/312

[^0]: *archanc@alum.iisc.ac.in

