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Abstract

Let O ⊂ Rd be a bounded domain of class C1,1. In L2(O;Cn),
we consider a matrix elliptic second order differential operator AD,ε

with the Dirichlet boundary condition. Here ε > 0 is a small parame-
ter. The coefficients of the operator AD,ε are periodic and depend on
x/ε. The principal terms of approximations for the operator cosine
and sine functions are given in the (H2 → L2)- and (H1 → L2)-
operator norms, respectively. The error estimates are of the precise
order O(ε) for a fixed time. The results in operator terms are derived
from the quantitative homogenization estimate for approximation of
the solution of the initial-boundary value problem for the equation
(∂2

t +AD,ε)uε = F.

Key words: periodic differential operators, homogenization, conver-
gence rates, hyperbolic systems.

Introduction

The paper is devoted to homogenization of periodic differential operators
(DO’s). More precisely, we are interested in the so-called operator error
estimates, i. e., in quantitative homogenization results, admitting formulation
as estimates in the uniform operator topology.

For elliptic and parabolic problems, estimates of such type are very well
studied, see, e. g., books [CDaGr, Chapter 14] and [Sh], the survey [ZhPas2],
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the papers [BSu1, Su2] and references therein. The hyperbolic problems and
the non-stationary Schrödinger equation were considered in [BSu4]. See also
very resent results [DSu2, Su5].

0.1 The class of operators

Let Γ ⊂ Rd be a lattice. For a Γ-periodic function ψ in Rd, we denote
ψε(x) := ψ(x/ε), where ε > 0.

Let O ⊂ Rd be a bounded domain of class C1,1. In L2(O;Cn) we study a
wide class of matrix strongly elliptic operators AD,ε given by the differential
expression b(D)∗gε(x)b(D), ε > 0, with the Dirichlet boundary condition.
Here g is a Hermitian matrix-valued function in Rd (of size m×m), positive
definite and periodic with respect to the lattice Γ. The operator b(D) is an
(m× n)-matrix first order DO with constant coefficients. It is assumed that
m > n; the symbol of b(D) has maximal rank. This condition ensures strong
ellipticity of the operator AD,ε.

The simplest example of the operator under consideration is the acoustics
operator −div gε(x)∇. The operator of elasticity theory also can be written
in the required form. These and other examples are considered in [BSu1] in
detail.

Let A0
D be the effective operator b(D)∗g0b(D) defined on H2(O;Cn) ∩

H1
0 (O;Cn). Here g0 is the constant positive definite effective matrix.

0.2 Known results in a bounded domain

The broad literature is devoted to the operator error estimates in homoge-
nization. In the present subsection, we concentrate on problems in a bounded
domain.

Operator error estimates for the Dirichlet problems for second order ellip-
tic equations in a bounded domain with sufficiently smooth boundary were
studied by many authors. Apparently, the first result is due to Sh. Moskow
and M. Vogelius who proved an estimate

∥A−1
D,ε − (A0

D)
−1∥L2(O)→L2(O) ⩽ Cε, (0.1)

see [MoV, Corollary 2.2]. Here the operator AD,ε acts in L2(O), where O ⊂
R2, and is given by −div gε(x)∇ with the Dirichlet condition on ∂O. The
matrix-valued function g is assumed to be infinitely smooth.

For arbitrary dimension, homogenization problems in a bounded domain
with sufficiently smooth boundary were studied in [Zh1, Zh2], and [ZhPas1].
The acoustics and elasticity operators with the Dirichlet or Neumann bound-
ary conditions and without any smoothness assumptions on coefficients were
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considered. The analog of estimate (0.1), but of order O(
√
ε), was ob-

tained. (In the case of the Dirichlet problem for the acoustics equation,
the (L2 → L2)-estimate was improved in [ZhPas1], but the order was not
sharp.) Similar results for the operator −divgε(x)∇ in a smooth bounded
domain O ⊂ Rd with the Dirichlet or Neumann boundary conditions were
obtained by G. Griso [Gr1, Gr2] with the help of the “unfolding” method. In
[Gr2], sharp-order estimate (0.1) (for the same operator) was proven. For el-
liptic systems similar results were independently obtained in [KeLiSh] and in
[PSu, Su1]. Further results and a detailed survey can be found in [Su3, Su4].

The (L2 → L2)-approximation for the parabolic semigroup e−tAD,ε was
proven in [MSu].

The first initial-boundary value problem for the hyperbolic systems were
studied in [M1]. By using the inverse Laplace transformation and a known
result on homogenization of the resolvent in dependence on the spectral pa-
rameter, for the operator including the lower order terms it was obtained
that∥∥∥(cos(tA1/2

D,ε)− cos(t(A0
D)

1/2)
)
(A0

D)
−2
∥∥∥
L2(O)→L2(O)

⩽ Cε(1 + |t|5), (0.2)∥∥∥(A−1/2
D,ε sin(tA

1/2
D,ε)− (A0

D)
−1/2 sin(t(A0

D)
1/2)
)
(A0

D)
−2
∥∥∥
L2(O)→L2(O)

⩽ Cε|t|(1 + |t|5).
(0.3)

According to the known results in the whole space Rd, see [BSu4, M2, DSu1],
these estimates do not look optimal with respect to the type of the norm and
to the rate of growth with respect to the time t.

0.3 Main results

The main result of the paper is the improvement of estimates (0.2), (0.3)
with respect to the time growth and to the type of the operator norm: for
0 < ε ⩽ 1 and t ∈ R,∥∥∥cos(tA1/2

D,ε)− cos(t(A0
D)

1/2)
∥∥∥
H2(O)∩H1

0 (O)→L2(O)
⩽ Cε(1 + |t|), (0.4)∥∥∥A−1/2

D,ε sin(tA
1/2
D,ε)− (A0

D)
−1/2 sin(t(A0

D)
1/2)
∥∥∥
H1

0 (O)→L2(O)
⩽ Cε(1 + |t|).

(0.5)

Here the space H2(O;Cn) ∩H1
0 (O;Cn) is equipped with the H2-norm. For

the operators, acting in Rd, in [DSu1] it was shown that estimates of the form
(0.4), (0.5) are optimal with respect to time t and to the type of the operator
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norm in the general case. While in Rd it is possible to refine such estimates
with respect to the type of the operator norm under additional assumptions
on the operator (see [DSu1]), for the problems in a bounded domain such
a refinement was not obtained in the present paper.

Note that the operators (A0
D)

−1 : L2(O;Cn) → H2(O;Cn) ∩ H1
0 (O;Cn)

and (A0
D)

−1/2 : L2(O;Cn) → H1
0 (O;Cn) are isomorphisms, so estimates (0.4),

(0.5) can be reformulated as∥∥∥(cos(tA1/2
D,ε)− cos(t(A0

D)
1/2)
)
(A0

D)
−1
∥∥∥
L2(O)→L2(O)

⩽ Cε(1 + |t|),∥∥∥(A−1/2
D,ε sin(tA

1/2
D,ε)− (A0

D)
−1/2 sin(t(A0

D)
1/2)
)
(A0

D)
−1/2

∥∥∥
L2(O)→L2(O)

⩽ Cε(1 + |t|).

The L2-operator error estimate for homogenization of the solution to the
first initial-boundary value problem for the hyperbolic system is also ob-
tained.

0.4 Method

The proof is a modification of the method of [PSu, Su1]. Consider solution
uε of the first initial-boundary value problem for the hyperbolic equation
(∂2t +Aε)uε = F and the solution u0 of the corresponding effective problem.
Introduce the first order approximation vε = u0 + εK(ε)u0 to the solution,
where the term K(ε)u0 is the corrector, and ∥εK(ε)u0∥L2(O) = O(ε). The
function K(ε)u0 does not satisfy the Dirichlet boundary condition, so we
consider the corresponding boundary layer discrepancy wε and estimate the
difference wε − εK(ε)u0 in L2. This estimation crucially relies on the L2-
boundedness of the operator A−1

D,εAε. To estimate ∥uε−vε+wε∥L2(O) we use
the approximation

∥Aε(I + εK(ε))− A0∥H2(O)∩H1
0 (O)→ H−1(O) ⩽ Cε, 0 < ε ⩽ 1, (0.6)

which is a direct consequence of [PSu, Lemma 7.3].

0.5 Plan of the paper

The paper consists of two sections and Introduction. In Section 1, we define
the class of operatorsAD,ε, introduce the effective operatorA

0
D, and formulate

the known auxiliary result (0.6). In Section 2, we formulate and prove the
main results of the paper.
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0.6 Notation

Let H and H• be complex separable Hilbert spaces. The symbols (·, ·)H and
∥ · ∥H denote the inner product and the norm in H, respectively; the symbol
∥ · ∥H→H• means the norm of the linear continuous operators from H to H•.

The symbols ⟨·, ·⟩ and | · | stand for the inner product and the norm in
Cn, respectively, 1n is the identity (n×n)-matrix. If a is an (m×n)-matrix,
then the symbol |a| denotes the norm of the matrix a as the operator from
Cn to Cm.

We use the notation x = (x1, . . . , xd) ∈ Rd, iDj = ∂j = ∂/∂xj, j =
1, . . . , d, D = −i∇ = (D1, . . . , Dd). The classes Lp of vector-valued func-
tions in a domain O ⊂ Rd with values in Cn are denoted by Lp(O;Cn),
1 ⩽ p ⩽ ∞. The Sobolev spaces of Cn-valued functions in a domain O ⊂ Rd

are denoted by Hs(O;Cn). For n = 1, we simply write Lp(O), Hs(O) and
so on, but, sometimes, if this does not lead to confusion, we use such sim-
ple notation for the spaces of vector-valued or matrix-valued functions. The
symbol Lp((0, T );H), 1 ⩽ p ⩽ ∞, denotes the Lp-space of H-valued functions
on the interval (0, T ).

By C and c (possibly, with indices and marks) we denote various constants
in estimates.

1 Class of the operators

1.1 Lattice in Rd

Let Γ ⊂ Rd be a lattice generated by a basis a1, . . . , ad ∈ Rd, i. e.,

Γ =

{
a ∈ Rd : a =

d∑
j=1

νjaj, νj ∈ Z

}
,

and let Ω be the elementary cell of Γ:

Ω =

{
x ∈ Rd : x =

d∑
j=1

τjaj, −
1

2
< τj <

1

2

}
.

By |Ω| we denote the Lebesgue measure of Ω: |Ω| = measΩ.
If f(x) is a Γ-periodic function in Rd, we denote

f ε(x) := f(ε−1x), ε > 0.
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1.2 Operator AD,ε

Let O ⊂ Rd be a bounded domain of class C1,1. In L2(O;Cn), we con-
sider the operator AD,ε formally given by the differential expression Aε =
b(D)∗gε(x)b(D) with the Dirichlet boundary condition. Here g(x) is a Γ-
periodic (m×m)-matrix-valued function (in general, with complex entries).
We assume that g(x) > 0 and g, g−1 ∈ L∞(Rd). Next, b(D) is the differential
operator given by

b(D) =
d∑

j=1

bjDj, (1.1)

where bj, j = 1, . . . , d, are constant (m× n)-matrices (in general, with com-

plex entries). It is assumed thatm ⩾ n and that the symbol b(ξ) =
∑d

j=1 bjξj
of the operator b(D) has maximal rank:

rank b(ξ) = n, 0 ̸= ξ ∈ Rd.

This condition is equivalent to the estimates

α01n ⩽ b(θ)∗b(θ) ⩽ α11n, θ ∈ Sd−1, 0 < α0 ⩽ α1 <∞, (1.2)

with some positive constants α0 and α1. So,

|bl| ⩽ α
1/2
1 . (1.3)

The precise definition of the operatorAD,ε is given in terms of the quadratic
form

aD,ε[u,u] =

∫
O
⟨gεb(D)u, b(D)u⟩ dx, u ∈ H1

0 (O;Cn).

This form is closed and positive definite. Indeed, extending u by zero to
Rd \ O, using the Fourier transformation and taking (1.2) into account, it is
easy to check that

α0∥g−1∥L∞

∫
O
|Du|2 dx ⩽ aD,ε[u,u] ⩽ α1∥g∥L∞

∫
O
|Du|2 dx,

u ∈ H1
0 (O;Cn). It remains to note that due to the Friedrichs’s inequality

the functional ∥Du∥L2(O) determines the norm in H1(O;Cn) equivalent to
the standard one. We have

∥A1/2
D,εu∥L2(O) ⩾ 2−1/2(1 + (diamO)−2)1/2α

1/2
0 ∥g−1∥1/2L∞

∥u∥H1(O)

=: c−1
∗ ∥u∥H1(O), u ∈ H1

0 (O;Cn).
(1.4)

Hence,
∥A−1/2

D,ε ∥L2(O)→H1(O) = ∥A−1/2
D,ε ∥H−1(O)→L2(O) ⩽ c∗. (1.5)
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Lemma 1.1. The operator A−1
D,εAε is bounded in L2(O;Cn) and

∥A−1
D,εAε∥L2(O)→L2(O) ⩽ 1. (1.6)

Proof. Let f ,h ∈ C∞
0 (O;Cn). We have

(A−1
D,εAεf ,h)L2(O) = (Aεf , A

−1
D,εh)L2(O)

=
(
(gε)1/2b(D)f , (gε)1/2b(D)A−1

D,εh
)
)L2(O) = (A

1/2
D,εf , A

1/2
D,εA

−1
D,εh)L2(O)

= (A
1/2
D,εf , A

−1/2
D,ε h)L2(O) = (f ,h)L2(O).

So,
|(A−1

D,εAεf ,h)L2(O)| ⩽ ∥f∥L2(O)∥h∥L2(O).

Since h belongs to the set C∞
0 (O;Cn) which is dense in L2(O;Cn), by con-

tinuity,
∥A−1

D,εAεf∥L2(O) ⩽ ∥f∥L2(O), f ∈ C∞
0 (O;Cn).

By continuity, this inequality is valid for any f ∈ L2(O;Cn). We arrive at
estimate (1.6).

1.3 The effective operator

Suppose that a Γ-periodic (n×m)-matrix-valued function Λ(x) is the (weak)
solution of the problem

b(D)∗g(x)(b(D)Λ(x) + 1m) = 0,

∫
Ω

Λ(x) dx = 0.

As Λ is the weak solution, its H1(Ω)-norm is bounded. We will use estimate

∥Λ∥L2(Ω) ⩽ |Ω|1/2M. (1.7)

The constant M can be written explicitly (see [BSu2, Subsection 7.3]) and
depends only on m, α0, ∥g∥L∞ , ∥g−1∥L∞ , and the parameters of the lattice Γ.

The effective matrix is given by

g0 = |Ω|−1

∫
Ω

g(x)(b(D)Λ(x) + 1m) dx.

It can be checked that g0 is positive definite. Due to the Voight-Reuss brack-
eting (see, e. g., [BSu1, Chapter 3, Theorem 1.5]), the matrix g0 satisfy
estimates

|g0| ⩽ ∥g∥L∞ , |(g0)−1| ⩽ ∥g−1∥L∞ . (1.8)
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The effective operator A0
D for AD,ε is given by the differential expression

A0 = b(D)∗g0b(D) (1.9)

with the Dirichlet condition on ∂O. The domain of this operator coincides
with H2(O;Cn) ∩ H1

0 (O;Cn). Indeed, the operator (1.9) is strongly ellip-
tic and due to the assumption ∂O ∈ C1,1, we can apply the ”additional
smoothness” theorems for solutions of strongly elliptic systems (see, e. g.,
[McL, Chapter 4]). Thus, (A0

D)
−1 is a continuous operator from L2(O;Cn)

to H2(O;Cn):
∥(A0

D)
−1∥L2(O)→H2(O) ⩽ ĉ. (1.10)

The constant ĉ depends only on α0, α1, ∥g∥L∞ , ∥g−1∥L∞ , the parameters of
the lattice Γ, and the domain O.

Remark 1.2. Instead of the condition ∂O ∈ C1,1 one can impose the follow-
ing implicit condition: a bounded domain O ⊂ Rd with Lipschitz boundary
is such that estimate (1.10) holds. The results of the paper remain true for
such domain. In the case of the scalar elliptic operators, wide sufficient con-
ditions on ∂O ensuring (1.10) can be found in [KoE] and [MaSh, Chapter 7]
(in particular, it suffices that ∂O ∈ Cα for α > 3/2).

Similarly to (1.4), by (1.2) and (1.8),

∥(A0
D)

1/2u∥L2(O) ⩾ c−1
∗ ∥u∥H1(O), u ∈ H1

0 (O;Cn).

Hence,
∥(A0

D)
−1/2∥L2(O)→H1(O) ⩽ c∗. (1.11)

Lemma 1.3. For any h ∈ H2(O;Cn) ∩H1
0 (O;Cn) we have

∥A0
Dh∥L2(O) ⩽ α1d∥g∥L∞∥D2h∥L2(O).

Proof. By (1.1), (1.3), and (1.8),

∥A0
Dh∥L2(O) ⩽

d∑
l=1

∥b∗lDlg
0b(D)h∥L2(O) ⩽

(
d∑

l=1

|bl|2
)1/2

∥Dg0b(D)h∥L2(O)

⩽ α
1/2
1 d1/2∥g∥L∞∥b(D)Dh∥L2(O) ⩽ α1d∥g∥L∞∥D2h∥L2(O).

8



1.4 Steklov smoothing operator

Let Sε be the Steklov smoothing (or Steklov averaging) operator [St] in
L2(Rd;Cm):

(Sεu)(x) = |Ω|−1

∫
Ω

u(x− εz) dz.

We need the following property of the operator Sε (see [ZhPas1] or [PSu,
Proposition 3.2]).

Proposition 1.4. Let f be a Γ-periodic function in Rd such that f ∈ L2(Ω).
Let [f ε] be the operator of multiplication by the function f ε(x). Then

∥[f ε]Sε∥L2(Rd)→L2(Rd) ⩽ |Ω|−1/2∥f∥L2(Ω), ε > 0.

1.5 Auxiliary result

We fix a linear continuous extension operator

PO : H l(O;Cn) → H l(Rd;Cn), l = 1, 2. (1.12)

Let
CO := ∥PO∥H1(O)→H1(Rd). (1.13)

By RO we denote the operator of restriction of functions in Rd onto the
domain O.

The following result was obtained in [PSu, Lemma 7.3].

Lemma 1.5 ([PSu]). Let Φ ∈ L2(O;Cn). When for 0 < ε ⩽ 1 we have

∥Aε(I + εRO[Λ
ε]Sεb(D)PO)(A

0
D)

−1Φ− A0(A0
D)

−1Φ∥H−1(O)

⩽ C1ε∥(A0
D)

−1Φ∥H2(O).
(1.14)

The constant here depends only on m, d, α0, α1, ∥g∥L∞, ∥g−1∥L∞, the pa-
rameters of the lattice Γ, and the domain O.

Since (A0
D)

−1 : L2(O;Cn) → H2(O;Cn) ∩H1
0 (O;Cn) is an isomorphism,

the following analogue of estimate (1.14) holds.

Corollary 1.6. Let f ∈ H2(O;Cn) ∩ H1
0 (O;Cn). When for 0 < ε ⩽ 1 we

have

∥Aε(I + εRO[Λ
ε]Sεb(D)PO)f − A0f∥H−1(O) ⩽ C1ε∥f∥H2(O).
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2 Hyperbolic systems. Main result

2.1 Problem setting

Let uε be the solution of the first initial-boundary value problem for the
hyperbolic system:

(∂2t + Aε)uε(x, t) = F(x, t), x ∈ O, t ∈ (0, T ),

uε|∂O = 0,

uε(x, 0) = ϕ(x), (∂tuε)(x, 0) = ψ(x), x ∈ O.
(2.1)

Here the initial data ϕ ∈ H2(O;Cn) ∩H1
0 (O;Cn), ψ ∈ H1

0 (O;Cn), and the
right-hand side F ∈ L1((0, T );H

1
0 (O;Cn)) for some 0 < T ⩽ ∞. When

uε(·, t) = cos(tA
1/2
D,ε)ϕ+ A

−1/2
D,ε sin(tA

1/2
D,ε)ψ

+

∫ t

0

A
−1/2
D,ε sin((t− s)A

1/2
D,ε)F(·, s) ds.

(2.2)

2.2 The effective problem

The effective problem has the form
(∂2t + A0)u0(x, t) = F(x, t), x ∈ O, t ∈ (0, T ),

u0|∂O = 0,

u0(x, 0) = ϕ(x), (∂tu0)(x, 0) = ψ(x), x ∈ O.
(2.3)

We have

u0(·, t) = cos(t(A0
D)

1/2)ϕ+ (A0
D)

−1/2 sin(t(A0
D)

1/2)ψ

+

∫ t

0

(A0
D)

−1/2 sin((t− s)(A0
D)

1/2)F(·, s) ds.
(2.4)

So,

∥u0(·, t)∥H2(O) ⩽ ∥ϕ∥H2(O) + ∥(D2 + I)(A0
D)

−1/2ψ∥L2(O)

+

∫ t

0

∥(D2 + I)(A0
D)

−1/2F(·, s)∥L2(O) ds.
(2.5)

By (1.11),

∥(D2 + I)(A0
D)

−1/2ψ∥L2(O) ⩽ ∥(D2 + I)1/2(A0
D)

−1/2∥L2(O)→L2(O)

× ∥(D2 + I)1/2ψ∥L2(O) ⩽ c∗∥ψ∥H1(O).

The summand with F in (2.5) can be estimated in the same manner. Com-
bining this with (2.5), we get

∥u0(·, t)∥H2(O) ⩽ ∥ϕ∥H2(O) + c∗∥ψ∥H1(O) + c∗∥F∥L1((0,t);H1(O)). (2.6)
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2.3 Homogenization of solutions of the first initial-
boundary value problem for hyperbolic systems

Our main result is the following theorem.

Theorem 2.1. Under the assumptions of Subsections 1.1–1.3 and 2.1, 2.2,
for 0 < ε ⩽ 1 and t ∈ (0, T ), we have

∥uε(·, t)− u0(·, t)∥L2(O)

⩽ C2ε(1 + |t|)
(
∥ϕ∥H2(O) + ∥ψ∥H1(O) + ∥F∥L1((0,t);H1(O))

)
.

(2.7)

The constant C2 depends only on m, d, α0, α1, ∥g∥L∞, ∥g−1∥L∞, the param-
eters of the lattice Γ, and the domain O.

Remark 2.2. Since the class of operators AD,ε under consideration includes
the acoustics operator, the system of elasticity theory, and the model equation
of electrodynamics (see examples in [BSu1, Chapters 5 and 7]), one can tau-
tologically rewrite Theorem 2.1 as a homogenization result for the acoustics
equation, for the system of elasticity theory, and for the model equation of
electrodynamics.

2.4 Main results in operator terms

Since functions ϕ ∈ H2(O;Cn)∩H1
0 (O;Cn) and ψ ∈ H1

0 (O;Cn) in (2.2) and
(2.4) are arbitrarily and one can take F = 0, Theorem 2.1 admits formulation
in operator terms.

Theorem 2.3. Let O be a bounded domain of class C1,1. Let the assumptions
of Subsections 1.1–1.3 be satisfied. For 0 < ε ⩽ 1, t ∈ R, we have

∥ cos(tA1/2
D,ε)− cos(t(A0

D)
1/2)∥H2(O)∩H1

0 (O)→L2(O) ⩽ C2ε(1 + |t|),

∥A−1/2
D,ε sin(tA

1/2
D,ε)− (A0

D)
−1/2 sin(t(A0

D)
1/2)∥H1

0 (O)→L2(O) ⩽ C2ε(1 + |t|).

Here the space H2(O;Cn) ∩ H1
0 (O;Cn) is equipped with the H2-norm. The

constant C2 depends only on m, d, α0, α1, ∥g∥L∞, ∥g−1∥L∞, the parameters
of the lattice Γ, and the domain O.

2.5 Start of the proof of Theorem 2.1. Discrepancy

Let vε be the first order approximation to the solution uε:

vε = u0 + εROΛ
εSεb(D)ũ0. (2.8)
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Here ũ0 := POu0, where PO is the extension operator (1.12).
The function uε − vε does not satisfy the Dirichlet boundary condition.

It is convenient to introduce the discrepancy wε as the weak solution of the
problem

(∂2t + Aε)wε = εROΛ
εSεb(D)∂2t ũ0 inO,

wε|∂O = εΛεSεb(D)ũ0|∂O,
wε(·, 0) = εROΛ

εSεb(D)POϕ, (∂twε)(·, 0) = εROΛ
εSεb(D)POψ.

(2.9)
Let us write (2.9) as
(∂2t + Aε)(wε − εΛεSεb(D)ũ0) = −AεεROΛ

εSεb(D)ũ0 inO,
(wε − εΛεSεb(D)ũ0)|∂O = 0,

(wε − εROΛ
εSεb(D)ũ0)(·, 0) = 0, ∂t(wε − εROΛ

εSεb(D)ũ0)(·, 0) = 0.

So,

(wε − εΛεSεb(D)ũ0)(·, t) =

−
∫ t

0

A
−1/2
D,ε sin((t− s)A

1/2
D,ε)AεεROΛ

εSεb(D)ũ0(·, s) ds =: I(ε, t).

(2.10)

Lemma 2.4. Let u0 be the solution of effective problem (2.3). Let the dis-
crepancy wε be the solution of problem (2.9). For 0 < ε ⩽ 1 and t ∈ (0, T )
we have

∥wε(·, t)− εΛεSεb(D)ũ0(·, t)∥L2(O)

⩽ C3ε(1 + |t|)(∥ϕ∥H2(O) + ∥ψ∥H1(O) + ∥F∥L1((0,t);H1(O))).
(2.11)

The constant C3 depends only on m, d, α0, α1, ∥g∥L∞, ∥g−1∥L∞, the param-
eters of the lattice Γ, and the domain O.

Proof. Integrating by parts, we have

I(ε, t) = −
∫ t

0

d cos((t− s)A
1/2
D,ε)

ds
A−1

D,εAεεROΛ
εSεb(D)ũ0(·, s) ds

= −A−1
D,εAεεROΛ

εSεb(D)ũ0(·, t)

+ cos(tA
1/2
D,ε)A

−1
D,εAεεROΛ

εSεb(D)ũ0(·, 0)

+

∫ t

0

cos((t− s)A
1/2
D,ε)A

−1
D,εAεεROΛ

εSεb(D)∂sũ0(·, s) ds.
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By Lemma 1.1 and (2.3),

∥I(ε, t)∥L2(O) ⩽ ε∥ΛεSεb(D)ũ0(·, t)∥L2(O) + ε∥ΛεSεb(D)POϕ∥L2(O)

+ ε

∫ t

0

∥ΛεSεb(D)∂sũ0(·, s)∥L2(O) ds.

Using (1.2), (1.7), (1.13), and Proposition 1.4, we derive that

∥I(ε, t)∥L2(O) ⩽ εMα
1/2
1 CO∥ũ0(·, t)∥H1(O) + εMα

1/2
1 CO∥ϕ∥H1(O)

+ εMα
1/2
1

∫ t

0

∥D∂sũ0(·, s)∥L2(O) ds.
(2.12)

By (1.3), (1.8), (1.13), and (2.4),

∥D∂sũ0(·, s)∥L2(Rd)

=
∥∥∥DPO

(
−(A0

D)
1/2 sin(s(A0

D)
1/2)ϕ+ cos(s(A0

D)
1/2)ψ

+

∫ t

0

cos((t− s)(A0
D)

1/2)F(·, s) ds
)∥∥∥

L2(Rd)

⩽ CO

(
α
1/2
1 d1/2∥g∥1/2L∞

∥ϕ∥H2(O) + ∥ψ∥H1(O) + ∥F∥L1((0,t);H1(O))

)
.

(2.13)

(We assumed that ϕ ∈ H2(O;Cn)∩H1
0 (O;Cn), so we can apply the operator

(A0
D)

1/2 to ϕ.)
Combining (2.6), (2.12), and (2.13), we get

∥I(ε, t)∥L2(O) ⩽ C3ε(1+|t|)(∥ϕ∥H2(O)+∥ψ∥H1(O)+∥F∥L1((0,t);H1(O))), (2.14)

where C3 := Mα
1/2
1 CO max{2; c∗;α1/2

1 d1/2∥g∥L∞}. Taking (2.10) into ac-
count, we arrive at estimate (2.11).

2.6 End of the proof of Theorem 2.1. L2-estimate for
the function uε − vε +wε

We have
(∂2t + Aε)(uε − vε +wε) = A0u0 − Aε (I + εROΛ

εSεb(D)PO)u0 inO,
uε − vε +wε|∂O = 0,

(uε − vε +wε)(·, 0) = 0, ∂t(uε − vε +wε)(·, 0) = 0.

So,

(uε − vε +wε)(·, t)

=

∫ t

0

A
−1/2
D,ε sin((t− s)A

1/2
D,ε)

(
A0u0 − Aε (I + εROΛ

εSεb(D)PO)u0

)
(·, s) ds.
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By Corollary 1.6,

∥(uε − vε +wε)(·, t)∥L2(O) ⩽
∫ t

0

∥A−1/2
D,ε ∥H−1(O)→L2(O)C1ε∥u0(·, s)∥H2(O) ds.

(Our assumptions on ϕ, ψ, and F guarantee that u0(·, t) ∈ H2(O;Cn) ∩
H1

0 (O;Cn).) Together with (1.5) and (2.6) this implies

∥(uε − vε +wε)(·, t)∥L2(O)

⩽ c∗C1ε|t|(∥ϕ∥H2(O) + c∗∥ψ∥H1(O) + c∗∥F∥L1((0,t);H1(O))).

We arrive at the following result.

Lemma 2.5. Let uε be the solution of the problem (2.1). Let vε be the first
order approximation (2.8) to the solution uε, where u0 is the solution of the
effective problem (2.3). Let the discrepancy wε be the solution of the problem
(2.9). When for 0 < ε ⩽ 1 and t ∈ (0, T ) we have

∥(uε−vε+wε)(·, t)∥L2(O) ⩽ C4ε|t|(∥ϕ∥H2(O)+ ∥ψ∥H1(O)+ ∥F∥L1((0,t);H1(O))).

The constant C4 = c∗C1max{1; c∗} depends only on m, d, α0, α1, ∥g∥L∞,
∥g−1∥L∞, the parameters of the lattice Γ, and the domain O.

Together with identity (2.8) and inequality (2.11), this result imply esti-
mate (2.7) with the constant C2 := C3 + C4. The proof of Theorem 2.1 is
complete.
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