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Abstract

We consider strings from the perspective of stable motivic, homotopical
QFT. Some predictions for the behavior of gauginos in both a Minkowski
light cone and 5-dimensional AdS5-space are given. We show that there is
a duality between working locking in a system of dendrites, and threshold
edging at the periphery of a manifold.

This work extends the work of [4] and [7] by providing a more mathematical
interpretation of the realization of quasi-quanta in open topological dynamical
systems. This interpretation incidentally involves the category of pure
motives over C, and projections of fiber spectra to the category of stable
homotopies.

1 Prologue

In the weeks following up to this document, it had become increasingly necessary
to me that I write a paper with the present title. A few facts have emerged
recently which cemented this. Firstly, Haine’s recent and beautiful paper [22],
convinced me that the Betti realization was a manifestation of a perturbative
kink in the noosphere, and secondly, the importance of Bettie realization in
general has been reaffirmed by S. Mochizuki [23].

In this paper, I wanted to present an A1-local homotopical restriction of
pre-brane in an unknowable vacuum space to ordinary cosmology. Along the
way, the semantic realization that I had when working simultaneously with the
words “brane” and “nerve” was by no means a coincidence. This quasi-biological
metaphor is expected to be what Witten, Green, etc. must have at least partially
felt as an intention. If no string theorist has exploited this coincidence yet, then
I would be colored impressed.1 It is only right to me that I can give at least a
somewhat satisfactory case study of the technics at play by investigating what
I have called here a “dendrite,” but what is really a mathematical analogue of
the nerve adjoining an AdS5-brane to the category shad of shadows.

1Depressed, moreso
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The shadows I have considered so far have been specifically target groupoids
of a representable functor out of an underlying category A of pre-real quasi-
intentities. These int-entitaties take as their motivic pre-structure, meta-stable
urelements in an encrypted (locked of some kind2) data structure, which encodes
the homotopy types of images of Dennis traces. These are not fully mathematically
rigorous as of yet. Physically, it is plausible that Dennis traces are the fermionic
realization of a magnetic ghost field in quantum flux.3 These are the non-nervous
interactions at the stable range, which I approximate to be ℏ× .99823MJ , the
work needed to move a unit of thermodynamic energy of a quark.

The nervous model presented here is a measured response to [24]. Here,
the Koszul duality is between a nerve of a selectively permeable brane, and a
category of ineffective shadows which permute as intensifiers for nouns out of
a language L A of A . This is, again, a non-mathematically precise linguistic
description of the biological metaphor. Mathematically, however, we do have
the option of thinking of A as a connective algebra, which simplifies many of
the calculations involving simplicial sets. These calculations are combinatorial
by nature, but no way do they have the flavor of a combinatorial problem.

Indeed, the present paper is mainly abstract (quasi-super)-algebraic. It
consists in deriving functors

(spt∗ −→ SHMU (X)) ≃ µ†0

which annihilate the motivic spectra of homotopy types of the free loop space
over S1. This does bear some similarity to Schreiber’s “pre-quantum line
bundle,” and in fact his tadpole cancellation principle was a key guiding philosophy
in my meditation on these topics.

By “annihilate,” I mean specifically P-annihilation of germs, or in other
words, the adjoint of the creation map Cr(♡) ⇝ M. This is annihilation in
the appropriate metaphysical sense. One bizarre and unexpected behavior of
our regime is that the annihilation q† of a quantum q does not result in the
annihilation of every quasi-quantum q̂ which lies within q. This anomaly can be
accounted for by fixing a prescribed number of hypercharge directions, namely
32 in type II string theories.

1.1 Arithmetic invariants

Every number n can be endowed with any given property P in the appropriate
context C. The Connes fusion of n with a topological invariant ρ gives us an
entire family ρn of slice towers.

Developing the adequate context for a complete theory of ρn is an extremely
demanding task. For starters, would need to compute trillions of homotopy
types for arbitrary setoids equipped with binary operations. This would involve

2Perhaps work locked
3It is almost tempting to say pre-flux, but that would seem to imply that the flux is in

a state of non-existence. Rather, it is in a state of meta-unstable (pseudo-non-degenerate)
quasi-fluxes, cycling at a ratio of K/A1 : [♡].
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performing isogeny computations for countless Lie group adjunctions, where by
Lie groups we mean even the general flavor of a groupoid. As of the time of this
writing, it is not even known whether quantum computations might simplify
this problem at all.4
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2 Introduction

Let L4 denote the Minkoski lightcone. Recall that L4 admits a construction in
the form of a modal diagram:

⋄2 ⋄2 ⋄2

⋄ ⋄

□

⋄−1 □−1

⋄−2 □−2 ⋄−2
pp

4The canonical mantra is ”they might.”
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such that the worldline Wp of a particle p ∈ □ is a proper subset of the path
... −→ □−2 −→ □−1 −→ □ consisting of solid arrows. Further, this diagram
may be twisted and folded into a closed dynamical system P̂ represented by
the pants diagram, which is effectively a brane of dimension d > 3. For more
information on this construction, please skim [4] for the relevant details.

Let Bd be an arbitrary brane of dimension d, and let there be a Galois
connection

GalΓ(d) ≡
∫
L4

I 7−→ Bd

where I is the Dirac index of a parton in L♯X ⊂ L4
∧

Gm. Recall that L♯X is
constructing by replacing the free loop space LX of a space X consisting of all
fibers S1 −→ X by the set of maps

Sp|q
p

⇄
q
LX

where Sp|q is the supercircle [see 4], and is called the “free loop superspace.”
For simplicity, let I =

∑n
ω=0

dω
dt . This allows us to easily construct a group

completion, I◦ : n −→ sup(J), where J is a proper subcategory of I, by the
formula:

I◦ = colim
n→sup(I)

n∑
ω=0

dω

dt

where I is locally identified with a field K, such that sup(I) is the maximal ideal
of K.

Using a theorem of Stasheff [3], one can show that if M is a monoid, the
canonical map E −→ ΩBM is an equivalence if, and only if, M is an E1-
group. Recall that an E1 monoid is a space with a multiplication map which
is associative up to coherent homotopy [1], and an E1 group is the underlying
group of such a monoid. We can extend this theorem as such.

Theorem 2.1. If E is a topological stack (E ∼= X), then the map E −→ L4 is
an equivalence if and only if:

1. E is singular, with singularity b.

2. L4 has the homotopy type of an Ω-spectrum.

This is effectively the main conjecture of this paper. A further conjecture is
the following:

Theorem 2.2. Assume that [Theorem 1.1] holds. Then, given the spectrum
ΩBL4 of a classifying space BL4, there is an equivalence of homotopy types:

Hn(ΩBL4) ∼= Hn(BBd)
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for some brane Bd, induced by the map

TwL4

∧
TwL4 : L4 −→ Bd

which we will call the “twist-and-fold” map.

Remark 2.1. For short, we will write Twfld(X) for the twist-and-fold map of
an arbitrary object X. Our primary problem is finding a suitable twist (e.g.,
Dehn, etc.) for our model. In some sense, a twist may be thought of as a
restriction on a sheaf; i.e., “twisting twice is the same as twisting all at once.”

Remark 2.2. Recall that L4 has a nodal singularity b which stratifies it into
“past” and “future” components. We have effectively two options for working
with this fact; firstly, we can treat (the inclusion of) b as the group completion
of some underlying index group, or we can treat b itself as a virtual particle
(e.g., instanton, parton, gaugino). We remain ambivalent as to our preferred
choice of resolving the singularity.

2.1 Realization

We should formalize our notion of a topological realization just a bit more here.
As a proposal, let us examine one example of a realization functor.

Example 2.1. The Betti realization functor

SHA1

(C) −→ SH

where SHA1

(C) denotes the triangulated category of A1-stable homotopies
over the complex number field, and SH is the classic stable motivic homotopy
category, is a topological realization in case its image is homeomorphic to the
image of a projective functor

X↠ BΩX

with BΩX denoting the classifying loop space generated by the idempotents of a
topological stack.

For every E1-group, there is an implied derived functor

E1 × X ∈ Stk 7−→MapK(X,X · E1) ∈ Stet

to the category of etale stacks.

Remark 2.3. The realization we are working with here is of a categorically
different nature than the one we worked with in [7], where we dealt with quasi-
quanta. Notice that in that case, the appropriate choice of category for the
submersion is technically a brane (perhaps in, say, □), and is a map out of the
canonical frame A . This is somewhat akin to our Galois connection GalΓ(d)
onto a brane. Our realization is instead a refinement of the the category of pure
motives over C.
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Proposition 2.1. There is an equivalence

En × X ∼= MotPurC

between the abelian multiplication of an En group (n < p for some small prime
p) with a topological stack, and the category of pure motives over C.

Proof. Since there is an equivalence of bundles:

BunEn<p×X
∼= BunMotPurC

ad

such that the right-hand-side is the adjoint bundle of the left, we have

(En × X)/Bun∼ = 1En×X,MotPurC

which means the two categories are equivalent modulo an adjunction.

In [8], an equivalence between the homotopy categoryMZ−mod and Voevodsky’s
big category of motives DMk for k a field of characteristic zero, was proven.
Furthermore, it was shown that this equivalence preserves the monoidal and
triangulated structures. Thus, if

x0 −→ ExtA
1

i x0 −→ x0
ad −→ ...

is a triangle in MZ−mod, then

x0
′ −→ ExtA

1

i −→ x0
′ad −→ ...

is in DMk. Thus, x′ ∈ (x/ ∼=), where ∼= means the fiber spectrum is preserved
across the transition maps x⇆ x′.

2.1.1 Nervous Realization

We define once and for all the nervous realization

|| ∗ || : ∗ −→ Nm
∗ + n

once and for all. Let G be the isotropy group of the point ∗. Then the above
map may be written (substituting ∗ for a Lie groupoid):

|| ∗ || : Gs ×t G −→ SHMU (Xet)

This is a form of etale realization which sends n ≤ 1-cells to the stable homotopy
category of Thom spectra.

Axiom 2.1. If

X X ′

Y Y ′
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is a commutative square in G , then there is a corresponding square

X Xet

Y Yet

N 0
Kosz

N 1
Kosz

Cr Cr

in SHMU (Xet), where Cr = Crfib(Xet, Yet) ∨ Crfib(X
′
et, Y

′
et).

Remark 2.4. This applies the creation map to a block matrix consisting of

permutations of M =

[
X Xet

Y Yet

]
. The function diag(M) gives an inverse of the

spectral specialization map SH ⇝ ΩX.

2.1.2 Etale realization

We describe the minimal case for the etale realization functor:

||x̃||et : x̃ −→ sSets

which is by no means canonical.
Let us consider an exit path

Pur ↠ SH

which takes quasi-simplicial objects in Pur and maps them directly and faithfully
onto the stable homotopy category.

Morally,
Σ∞(SH) = min(sSets)

where sSets is taken to be a graph of a quasi-category. Let us construct a nerve

N 1
et
∼= ||x̃||et

which descends to a degenerate open.
We can see from [21] that if

x̃0 x̃ x̃

x x

is a “frying pan,” then x̃0 is a non-degenerate closed subscheme of the chain
complex

... x̃0 x̃0 x̃0 ...

... x̃ x̃ x̃ ..
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2.2 Jet Bundles

We will prove the following facts now for later convenience:

Proposition 2.2. Let I admit a smooth embedding I ⊂
−→
J∞ of infinite jet

bundles. Then, there is a smooth embedding I ↪→ J∞, which is a submersion.

Proof. Assume that I is presentable as a category. Using Ehresmann’s lemma,
and Halmos’ axiom of extension, it is almost tautological to say that if J ⊂ I is
proper.

Let J∞ be representable as a topological space. Then, the topological
realization

||C|| : C −→ Top

is an immersion, and since the map |J| ↪→ J∞ is a monorphism (i.e., is injective),
we have that the realization functor is a submersion for all α ∈ I. We extend
this to all proper subcategories (specifically, all proper subsets) of I, such that
I ⊃ J ∋ α.

Proposition 2.3. If C is an ∞-category, then topological realization functor

||C|| : C −→ Top

is a totally lossless projection.

Proof. Let C be an∞-category. Then, ||C|| ∼= C∞• is a homomorphism. Assuming
C is a perfect category gives us a perfect inverse:

TopopC
Perf−−−→ C

On an abstract level, there is an intimate connection between the infinite
jet bundle, and an OX -module. Indeed, in the etale realization, OX -modules
of a perfect space are presheaves of the etale infinite jet bundle; viz., for OX ∈
sm/K5:

|PshvOX
| = J∞et

The physical interpretation of this fact may be that there is a ghost superstring:

colim
xi−→ℵ0

xi ∈ OX

arising from a blow-up around a crepant resolution (modeled as the appropriate
vacuum) of the OX -module.

5sm/K being the category of smooth, separated schemes over K
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Remark 2.5. Notice that there is also a rich link between J k and Ck spaces;
we obtain this isomorphism by localizing the adjunction J∞ ⊣ C∞• at a finite
integer k ∈ K. We shall call this k-localization. This is effectively a map:

MotC
k7−→MotD

where the elements of D form a proper subset of the elements of C.

Remark 2.6. Note that the functor k, as above, is essentially a specialization
of the homotopy category of MU to a homotopy type Hn(MU) of MU .

A proof that MotD ∈MotC\(C∩Pur) is possible, but tedious, and therefore
outside the scope of this paper.6

2.3 Gauginos

This part is purely speculative, and so may be skipped at a first reading, and read
at a later, more convenient time.

A completely satisfactory theory of gauginos has not been fully worked out.
Ideally, one would want to understand the cosmic Galois connection as a string-
to-blackhole transition of sorts.

6For clarity, C ∩ Pur = MotC ∩ MotPurC; in other words, we take the intersection
universe-wise, where, for a Grothendieck universe V, we restrict ourselves to V-small
refinements. Geometrically these may be thought of as convex sets, as they lie in the interior
of the universe and are therefore δi-small with respect to □̂ = (□ ∋ V) ∪ Pur.
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Let G♯ be a supergroup. Let L4 = L1,3, Bd, and P̂ be as before. There is a
diamond:

G♯

L4 Bd

P̂

OX Map

∼

Fun(QCoh(Ho(L4))) Fun(QCoh(Ho(Bd)))

We have
Hn(L4

k)
∼= Hn(Bd)

∼= Hn(TwP̂k)

and

and

∞∏
k=0

Coho(L4
k)

= L∞ − ℏq

where
qα ≤ i ≤ (k ∼ ℵ0) ≤ ∞ ≤ qβ

ℏ = 1i = Idi ∀i ∈ H

We define a q-loop by

qℓ = [q,∞)× (∞, q]

q2ℓ = (C⊗ [q,∞))× ((q,∞]× C)

q3ℓ = (H ∧ [q,∞))⊗∧
2

[[q,∞]]⊗∧
2

((q,∞] ∧H)

Complexification is then defined by the functor qℓ 7−→ q2ℓ ≃ Sn 7−→ Sn+q

= Sn 7−→ LSn

= Sn 7−→ ΩSegS
n

where ΩSeg is Segal’s classical loop classifying space

(∼= Hn(BLSn)) = Map(Hn(BLSn), Sn)/ ∼=

, where, in this context, ∼= is all the cofibrations and weak equivalences. The
following question arises: “how does a gaugino with a non-vanishing worldline
behave under complexification?”
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The answer to this question is actually quite subtle, and rather involved.
One obtains a superalgebra

L4,± = ℓ 7→ End(ℓ2)

which gives us a Yukawa coupling at the singularity b̂, which now becomes a
bordism. The associated crepant resolution can then be used to model a string-
blackhole transition. This duality trivializes the ghost fields over the brane
containing the topological realization of ℵ0, which is thus adjoint to the U(1)-
bundle7 containing inf(X) = q.

A very interesting potential future direction is to explore gauge connections,
and higher holonomy on the brane associated with the pre-quantum line bundle,
which is isomorphic to the restriction of the principle geodesic containing q to
a closed planar disc. I can imagine that if one brings equivariant homotopy and
torsion theories into the mix, with a dash of Virasoro algebra, one could model
each pair of branes of opposing charge or chirality as a dual set of categories
with one trivial isomorphism (bijection on fibers), and a non-trivial symplectic
connection of some kind.

In the Z2-graded case, there is a rough correspondence between p-torsion
theories on the bulk and Reidemeister moves on the boundary. That is to say,

TorKk,q
∼= torsk,q K◦

The hypercharge directions of the gaugino are parameterized by 32 possible
states, which are graded by a symmetric bi-monoidal category C2. This is an
e⃗n · e⃗n+1 theory; see, e.g. [13]. One obtains, in the passage to a localization over
the algebra of observables, a map

K◦

simk

for sheaves simplicially enriched over k.

3 Dendrites

I will attempt to define here an original construction of dendrites, consisting of
the pre-established notion of the Koszul nerve8.-

Let Nn
Kosz denote an nth degree Koszul nerve. Then, the map

Nn
Kosz ↪→ Nn+1

Kosz

restricts to an epimorphism in the category of spectra. Write µ0 = MU |0 for
the vacuum of a dendrite9. Then, we have µ0 ↠ (µ1)

−1, where (µ1)
−1 is a

7Here isomorphic to a simple copy of the closed disc S1 × A1 = S̄1.
8A Koszul nerve is an nth-order restriction on the set of sections that admits a stratification

into singleton sets, which represent arrows in their respective diagram.
9I.e., the finest calcite of a skeleton such that calℏ ∈ skH holds
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section of the adjoint bundle of a space which is enriched with the structure of
a superalgebra fibered in groupoids.

Let Dm denote the maximal dendrite; i.e., the dendrite corresponding to
sup(n + 1) ∝ sup(Nn+q

Kosz) for q ≥ 1. This dendrite is a graph (not necessarily
commutative), in which the range of all interactions are spanned by Ψ(q♡).10

Lemma 3.1. Promotion of any given creation map Crq : || − || −→ q to a
genuine creation operator results in an unwellfounded set theory in the image of
the projection from A .

That is to say, the class of fiber spectra becomes unpresentable as a set, and
the map

q̃ ∈ Pur −→ q̃Set

ceases to exist. This may be a form of spontaneous symmetry breaking. The
analogous case in the gaugino picture we have painted here, is that a q-loops
splits under the map qmℓ 7→ qm+k

ℓ . This gives us the span (in the sense of Segal)

qm+k
ℓ ←− qmℓ −→ qmn+k

ℓ

where n and k are Pauli matrices.

3.1 Work Locking

Motivic invariants may be projected as cardinals. A recent example of this
is the phenomenon of “work locking:”11 a finite member of the superalgebra
generating the (quantum) field of a ghost mode may be measured as a set of
internal directional energy (work) elements. It is thought that particles typically
live in “topologically protected” states, where the transition from vacuum phase
expectation to a relative cohomological invariant is “shielded” (e.g. Faraday)
from external cofibrant objects. Presumably, these states involve some knot
invariants like the Khovonov invariant, or the Jones polynomial.

Defects of work-locking mechanisms may manifest themselves in circuits, by
the induction of a twisted bi-category over a Cartesian prism.

D

px x

x x̄

In the above diagram, the ray emanating from D induces a stable equivalence
of fiber spectra in a sufficiently small neighborhood U(px) ∈ EN . This creates a

10Here, Ψ(q♡) consists of all of the suitable motives for the class of all isotopy groups of a
singular Serre fibration; i.e., the set of all diffeomorphisms of internal homs for an arbitrarily
chosen Hopf bimonad. This amounts to all of the creation maps in [4].

11see 15
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short trip (specialization) px ⇝ x̄, in which the residue field of N is represented
by the ambient topology of a generic torus. This representation is given by the
moment map12

px 7−→ (px)
′

which is realized as the Dennis trace map of Dendrites:

D
Den7−→ DH

sending each pair of Hn-constructible faces to a single Hn+2 constructable
hypermanifold,Mhyp

const, which consists of a collection of pencils emanating from
a source S. Viz.:

S ↪→Mhyp
const

∼=
∫
Lp,q

Pξ

3.1.1 Work Locking in Maximal Dendrites

Let Dm denote the maximal dendrite, whose definition we gave earlier. Let

C̃obm be the multicategory constructed in [16, lemma 3.5].
We define the “work locking functors

Walls : Dm −→ int(Dm)

and

Dm × C̃obm : m −→ n

for a gaugino inhabiting a complex of dendrites in the neighborhood U(Dm) =
U(m) ⊚

∫
Em+n

Nm−n
Kosz . Notice that Walls is just the classical “wall crossing

functor” acting on the sum of internal fiber spectra
∑m+n

i=0 Xbi ∈ int(Dm),
where Xbi = 1bi for all (b, i) ∈ X.

Let n ≤ m. Then, the map m −→ n as above becomes a specialization

m̃⇝ ñ

. We have
colim
n←m

= ñ

where ñ is the nervous realization of n.13 In the Z2-graded case (i.e., the
superalgebraic case), whence m̃ and ñ are of the same grade (polarity), we
obtain the annihilation map. In this special case,

Proposition 3.1. the annihilation map is the moment for one of the following
sequences of fiber spectra:

(Xbi −→ Ybi −→ Y et
bi ) ∨ (Xbi −→ Xbi −→ Y et

bi )

.

12The construction is unique to this document, and is in no sense canonical
13See section 1.1.1
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or

(Ybi −→ Xbi −→ Xet
bi ) ∨ (Ybi −→ Y et

bi −→ Xet
bi )

Proof. This follows from the diagram of fibers in [section 1.1.1]. These are the
four possible paths in the preimage of a nervous realization. We shall call our
choice of sequence Path(fib(b, i)).

Remark 3.1. It is a good question as to which category these sequences shall
live in. I am fond of SHFin∗ , where Fin∗ denotes the category of finite pointed
sets.

3.2 Perverse sheaves over Dm

Proposition 3.2. Let Σg,n be a manifold with genus g and crossing number n.
Let T be a torsion theory. Then, T ◦ Σg,n ≃ Path(fib(b, i)).

Alternatively, we can give a description in terms of the underlying motive
by which the manifold is generated:

Proposition 3.3. For a motive Motg,n consisting of the ring Gm ⊔N, there is
a unique left action sending the germs of Gm to a perverse sheaf over N.

A proof of the above proposition would involve showing that for all perverse
sheaves over N (denote by PervN), the homeomorphism

PervN 7→ Perv′N

is the only one in Aut(N), and is trivial. A sketch of this proof would likely
involve some telescopic descent condition imposed over the original perverse
sheaf which reduces PervN/ ∼= to spt(PervN).

Proposition 3.4. Let Σg,n be as above, and hyperkaehler. Then, there is a
unique pyknotic object lying in PervN whose image under any map is the identity
on Σg,n

Proof. Since Sigmag,n, this means that the dimension of the space becomes 4n.
Allowing each dimension to serve as a basis vector for a complex copy P× A1,
we obtain a representative ℘ ∈ P such that ℘ · πn(A1) is reduced to a rational
point at ∞.

This point is then the crepant resolution for our manifold, which is unique.

The above proof rests upon a hitherto uninvestigated correspondence between
the pyknoticity of [17], the exodromy of [18], and the theory of Hyperkaehler
manifolds. Essentially, for any Hyperkaehler manifold H, one can assign a Serre
fibration:

Hd −→ Hd−2

which is represented by a contraction of the mapping class group to a point:

MCG(H)⇝ ∗
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3.2.1 Physical interpretation

Conceptually, the above map may be conjectured as the equivariant (with
respect to the fiber spectrum group Gspt) instantiation of a hypercharged parton
(say, a gaugino) on a real AdS5-brane.

The brane in this specific case is:

Bd,d−2 ⊗
[
1 0
0 1

]
× SU(2)

= sep∗ ⋉ L4

Where sep∗ denotes the category of separated, pointed spaces. However, we may
substitute SU(2) for an finite, simple Lie group and obtain the same effects,
up to a wrapping of the world-brane of the parton around a gravitationally
significant neighborhood of appreciable weight. This gives us the canonical
Sati-Schreiber tadpole cancellation, ̸ T :14

πn(Hom(∗,A ) Ωπn(H) πn(∗)

The set of all blow-ups of ∗ is given by the frequency spectrum of a real
Hermitian quantum embedded flatly in ordinary Euclidean space. This is represented
in our actual world as a coherency class of quasi-quanta being transformed into
unlocked work; i.e., outwards projective, directed currents of energy. In steady-
state terms, the Liousville current of a contracted body is “effective enough” for
the body to either expand or radiate thermal energy.

Remark 3.2. The cancellation of work locking may be written

⋄□ −→ (E□− 1

n
Ek(∗))

where Ek(∗) is the energy required to lower a representative point on the body
by a single degree Kelvin:

Ek(∗) = ∂nLv

∂n−mt

where Lv is the Liousville current of the atom containing the point.

The map Ek(∗) +2d−−→ Ek(U(∗)) is given for the transition of the electromagnetic
field in +2 dimensions. This represents the inflation of a pyknotic δ∅-small object
in the category A of absolute frames to a 2-dimensional conformal slice of an
AdS5 × π1(U(1))-brane.

Axiom 3.1. The map out of a δ∅-small object is the creation map of a fiber
spectrum:

δ∅ 7→ δi = Cri(Xbi)

which is the Betti realization of some δ0 ≁ δ∅.

14See [19] for the full scoop. Also [20], in a paper describing the tadpole cancellation as a
nonabelian anomaly on a probe, the wrapping gets discussed.
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Remark 3.3. There is something to be said for including δ∅-small objects in
Pur. Firstly, note that a projection from Pur does not necessarily preserve the
homotopy type of the subclass of Pur from which it is derived. In fact, this
subclass itself may not even have a homotopy type. In that case, the homotopy
type is instantaneously generated by the transformation of δ∅ along a motive.
This describes the case of unfaithful maps.

3.3 Shadows of dendrites

For any dendrite D, construct a map

D 7→ shad

the symmetric monoidal category of shadows of [22], consisting ofN 1-homotopies
of perverse sheaves. Explicitly:

πad
1 (Π∞(D) ⊃ shad) = shad

= N 1(Deff )

gives the shadow nerve of a brane. This is to be thought of as a Koszul dual for
the pre-triangulated category Υ of pure motives over unramified groups.

A direct computation of the homotopy type of Υ would be impossible, but
one can estimate its homology class by observing log Fano varieties in the
projective quiver which are crepant resolutions of OX .

∞ ... F/R F/Q F/Z ... 0

In the above diagram, each set contains at least one correlation between a
crepant resolution and the spectrum of primes. We obtain one map

Map(F/K◦,K+) 7−→ shad

for every ring considered,15 which is associative up to all higher homotopies.

Proposition 3.5. shad+ ⊔ shad− is an H-space.

Proof. Since the map from the inverse fiber spectrum of every object in shad is
associative up to all higher homotopies, all we need now to prove that this is
an H-space is to show that commutativity holds. Let s1t be the Tate circle. Let
there be a map out of the fiber spectrum of every point in s1t onto an equivariant
system of modules

D1
mod ⊗D2

mod × ...×Dm
mod

15This is effectively an abelizanization.
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Then, let Π∞(Dn
mod) be a topological space for all n < m. Then, there is a

diagram

D1
mod ... Dn

mod

ϕ0 ... ϕn

which is essentially Cartesian. The above diagram commutes, so we have shown
that the superalgebra of shad generates only representative associative and
commutative spaces up to all higher homotopies.

Thus,
Hn(shad) = Hp(shad

+) +Hq(shad
−)
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