Solvable quintic Equation $X^{5}-45 X+108=0$

Nguyen Van Quang
Hue - Vietnam, 12-2023

Abstract

We have previously proposed a quintic equation [2] that is outside the available arguments of the solvable quintic equations. In this article, we give another quintic equation in Bring-Jerrard form and its root.

Some available arguments:
During the second half ofthe 19th century, john Stuart Glashan, George Paxton Young, and Carl Runge gave such a parameterization : an irreducible quintic with rational coefficients in Bring-Jerrard form is solvable if and only if either $a=0$ or it may be written [1]

$$
x^{5}+\frac{5 \mu^{4}(4 \nu+3)}{\nu^{2}+1} x+\frac{4 \mu^{5}(2 \nu+1)(4 \nu+3)}{\nu^{2}+1}=0
$$

And the theorem. [3] Let a and b be rational numbers such that the quintic trinomial $x^{5}+a x+b$ is irreducible. Then the equation $x^{5}+a x+b=0$ is solvable by radicals if and only if there exist rational numbers $\epsilon(= \pm 1), c(\geqslant 0)$ and $e(\neq 0)$ such that

$$
a=\frac{5 e^{4}(3-4 \epsilon c)}{c^{2}+1}, b=\frac{-4 e^{5}(11 \epsilon+2 c)}{c^{2}+1}
$$

However, the irreducible equation below :

$$
X^{5}-45 X+108=0
$$

is not satisfy the arguments above, but solvable by radicals. The roots are:

$$
X=\frac{\left(x_{0}-3\right)\left(21 x_{0}-18\right)}{-x_{0}^{3}+9 x_{0}-18}
$$

x_{0} are the roots of the equation: $x_{0}^{4}+45 x_{0}^{2}-270 x_{0}+360=0$

References

[1] Quintic function - Wikipedia
[2] Quang N V, A new solvable quintic equation of the Bring - Jerrard form $x^{5}+a x+b=0$, Vixra: 2108.0060 (AL)
[3] B.K.Spearman, K.S.Williams: Characterization of solvable quintics $x^{5}+a x+b$, The American Math Monthly - Volume 101,1994-Issue 10.
[4] Quang N V, A new solvable quintic equation of the shape $x^{5}+a x^{2}+b=0$ Vixra:2011.0165 (AL), Semanticscholar.org:229488183
[5] Quang N V, A proof of the four color theorem by induction Vixra: 1601.0247 (CO)cited by IPJO 2020, London, UK and others - Semanticscholar.org:124682326

Email:
nguyenvquang67@gmail.com
quangnhu67@yahoo.com.vn

