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ABSTRACT

The Newton-Raphson method applies to the numerical calculation of the
roots of Real functions, through successive approximations towards the Root
of the function. The Newton-Raphson method has the drawback that it does
not always converge. This work establishes the convergence condition of the
Newton-Raphson method for Real functions in general; once the convergence
condition is met, the method will always converge towards the Root of the
function. In this work, the development of the application of the convergence
condition is established to speci�cally solve Real polynomial functions.
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1. Convergence condition in Real Functions

For Real functions f(x); f : R → R, if the method of the tangents (Newton-
Raphson) is started at an in�exion point, it will always converge towards a
(x, f(x))=(x, 0) point.

2. Application of the convergence condition in real polynomial functions

Here we propose the calculation of the roots of a Real polynomial function
of order H, f(x) =

∑H
i=0 aix

i; f : R → R, in two phases:

First Phase: Numerical calculation of H − 2 roots of the function with a
successive approximation method that starts for the calculation of each root
with the value of each of the roots of the second derivative of the function.
This start condition causes safe convergence towards the value of the root of the

function.

Second Phase: Direct calculation of the two remaining roots through a sec-
ond degree equation obtained once H − 2 roots of the function are known.

2.1. Successive approximation method

In this method, the �rst approximation to the value of a root of the function
will be the value of a root of the second derivative of the function; the second
approximation to the value of the root of the function will be the value of x of
the intersection point of the abscissa axis with the line tangent to the function
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at the point whose abscissa corresponds to the value of the root of the second
derivative of the function. For this new value of x, the tangent line to the
function is speci�ed, and from the point of intersection of that tangent line with
the abscissa axis, another value of x is determined that will be even closer to the
value of the root of the function. Each time this procedure is repeated, a value
of x closer to the root of the function will be achieved until a value as close as
desired to the value of the root of the function is obtained. With this method

there will always be convergence towards the value of the root of the function.

A variant of this method will be to test the function until the value of the
root is reached or to get a value as close as one wants to the root, from any
approximation x obtained in the way described above that is di�erent from the
value of the root of the second derivative. The testing is done with values greater
than x if x is greater than the value of the root of the second derivative of the
function and with values less than x if x is less than the value of the root of
the second derivative of the function. It is possible that the value of the root of
the second derivative of the function coincides with the value of the root of the
function.

2.2. Roots of the second derivative

To obtain the values of the roots of the second derivative of the Real poly-
nomial function to be solved, the successive derivatives of such function are
previously determined until the last derivative is a linear function. From this
group of successive derivatives, the roots of the intermediate derivatives are cal-
culated, starting from the last derivative if the order of the function to solve is
odd and from the penultimate derivative if the order of the function to solve is
even, until the values of the roots of the second derivative of the function to solve
are calculated. The last derivative equal to zero is a linear equation and the
penultimate derivative equal to zero is an equation of the second degree, both
are equations of direct resolution. To calculate the roots of each intermediate
derivative, we proceed with the approximation method described above.

The successive derivatives of a Real polynomial function are Real polynomial
functions. The number of roots of the second derivative of a Real polynomial
function is equal to H − 2, where H is the order of the function. Thus, knowing
H − 2 roots of the function, such function can be reduced to quadratic function
that allows direct calculation of the remaining two roots. These two roots will
be the smallest and the largest of the roots of the function.

2.3. De�nitions

Let P0(x) be a Real polynomial function; domain ∈ R, co-domain ∈ R.
Let x(k, n) be the ordinal root k of the function Pn(x)
Let x(l, k, n) be the ordinal approximation l to the root x(k, n)
Starting from n = 1, Pn(x) is the nth derivative function of the Real poly-

nomial function P0(x)
Ecn: Pn(x) = 0
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x(l + 1, k, n) =
−Pn(x(l, k, n)) + Pn+1(x(l, k, n)) ∗ x(l, k, n)

Pn+1(x(l, k, n))

2.4. Example

Let
P0(x) = x5 − 19x4 + 133x3 − 421x2 + 586x− 280

P0'(x) = P1(x) = 5x4 − 76x3 + 399x2 − 842x+ 586
P0�(x) = P2(x) = 20x3 − 228x2 + 798x− 842
P0� '(x) = P3(x) = 60x2 − 456x+ 798
P0� �(x) = P4(x) = 120x− 456
P1(x);P2(x);P3(x);P4(x) are the successive derivatives of the function P0(x)

H = 5: the order of P0(x) is odd → Ec4: P4(x) = 0; Ec4: 120x�456 = 0 →
x(1, 4) = 456/120 = 3.80

x(1, 4) corresponds to the value of the second derivative of the function
P2(x), so x(1, 4) will be the �rst approximation to a root of the function P2(x).
Then:

x(1, 1, 2) = x(1, 4) → x(1, 1, 2) = 3.80

The approximations to the roots of the function are de�ned by the following
formula:

x(l + 1, k, n) =
−Pn(x(l, k, n)) + Pn+1(x(l, k, n)) ∗ x(l, k, n)

Pn+1(x(l, k, n))

Thus,
x(1, 1, 2) = 3.80;P2(x(1, 1, 2)) = −4.48
x(2, 1, 2) = 3.734502924;P2(x(2, 1, 2)) = −0.0005619475
x(3, 1, 2) = 3.73442045758701;P2(x(3, 1, 2)) = −2.67369E − 08
x(4, 1, 2) = 3.73442045719464;P2(x(4, 1, 2)) = 0
Then x(1, 2) = x(4, 1, 2) → x(1, 2) = 3.73442045719464

P2(x)

(x− x(1, 2))
=

P2(x)

(x− 3.73442045719464)
= 20x2 − 153.3115909x+ 225.4700588

20x2 − 153.3115909x+ 225.4700588 = 0 → x(2, 2) = 1.984337851;x(3, 2) =
5.681241692

x(1, 2);x(2, 2);x(3, 2) correspond to the values of each root of the second
derivative of the function P0(x), so x(1, 2);x(2, 2);x(3, 2) will each be the �rst
approximation to one of the roots of the function P0(x). Then:
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x(1, 1, 0) = x(1, 2);x(1, 2, 0) = x(2, 2);x(1, 3, 0) = x(3, 2)
x(1, 1, 0) = 3.73442045719464;x(1, 2, 0) = 1.984337851;x(1, 3, 0) = 5.681241692

Thus,
x(1, 1, 0) = 3.73442045719464;P0(x(1, 1, 0)) = −5.205518732
x(2, 1, 0) = 3.989557854;P0(x(2, 1, 0)) = −0.188927438
x(3, 1, 0) = 3.999947413;P0(x(3, 1, 0)) = −0.000946592
x(4, 1, 0) = 3.99999999861755;P0(x(4, 1, 0)) = −2.48833E − 08
x(5, 1, 0) = 3.99999999999995;P0(x(5, 1, 0)) = −9.09495E − 13
x(6, 1, 0) = 4;P0(x(6, 1, 0)) = 0
Then x(1, 0) = x(6, 1, 0) → x(1, 0) = 4

x(1, 2, 0) = 1.984337851;P0(x(1, 2, 0)) = 0.470028549
x(2, 2, 0) = 1.999997258;P0(x(2, 2, 0)) = 8.226E − 05
x(3, 2, 0) = 2;P0(x(3, 2, 0)) = 0
Then x(2, 0) = x(3, 2, 0) → x(2, 0) = 2

x(1, 3, 0) = 5.681241692; P0(x(1, 3, 0)) = −26.02866987
x(2, 3, 0) = 5.122483594; P0(x(2, 3, 0)) = −3.322773707
x(3, 3, 0) = 5.012417523; P0(x(3, 3, 0)) = −0.302023732
x(4, 3, 0) = 5.000162194; P0(x(4, 3, 0)) = −0.00389334
x(5, 3, 0) = 5.000000028; P0(x(5, 3, 0)) = −6.72E − 07
x(6, 3, 0) = 5; P0(x(6, 3, 0)) = 0
Then x(3, 0) = x(6, 3, 0) → x(3, 0) = 5

P0(x)

(x− x(1, 0)) ∗ (x− x(2, 0)) ∗ (x− x(3, 0))
=

P0(x)

(x− 4) ∗ (x− 2) ∗ (x− 5)
= x2−8x+7

x2�8x+ 7 = 0 → x(4, 0) = 1;x(5, 0) = 7

Then the roots of the function P0(x) = x5−19x4+133x3−421x2+586x−280
are x(1, 0) = 4; x(2, 0) = 2; x(3, 0) = 5; x(4, 0) = 1; x(5, 0) = 7

Conclusions:

This Article proposes the novelty of the convergence condition of the Newton-
Raphson Method in general for Real functions. It also presents the development
of the application of the convergence condition in Real polynomial functions,
which settles everything related to the numerical calculation of Real polynomial
functions. According to the Abel-Ru�ni theorem, the resolution of polynomial
functions of order higher than 4 is only possible through numerical calculation.
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