
 1 

Redshift distances in modified flat Friedmann-Lemaître-Robertson-Walker 

spacetime containing g00(t) 

 

Steffen Haase*1 

 

*Leipzig, Germany 

 

 

Abstract 

 

     In the present paper we use a modified flat Friedmann-Lemaitre-Robertson-Walker metric containing g00(t) describing a 

spatially homogeneous and isotropic universe to derive the cosmological redshift distance in a way which differs from that 

which can be found in the general astrophysical literature. 

     Using the flat Friedmann-Lemaitre-Robertson-Walker metric the radial physical distance is described by R(t) = a(t)r. In 

this equation the radial co-moving coordinate is named r and the time-depending scale parameter is named a(t). We use the 

co-moving coordinate re (the subscript e indicates emission) describing the place of a galaxy which is emitting photons and ra 

(the subscript a indicates absorption) describing the place of an observer within a different galaxy on which the photons - 

which were traveling thru the universe - are absorbed. Therefore the physical distance - the real way of light - is calculated by 

D = a(t0)ra - a(te)re ≡ R0a - Ree. Here means a(t0) the today’s (t0) scale parameter and a(te) the scale parameter at the time te of 

emission of the photons. The physical distance D is therefore a difference of two different physical distances from an origin 

of coordinates being on r = 0. 

     Nobody can doubt this real travel way of light: The photons are emitted on a co-moving coordinate place re and are than 

traveling to the co-moving coordinate place ra. During this traveling the time is moving from te to t0 (te ≤ t0) and therefore the 

scale parameter is changing in the meantime from a(te) to a(t0). 

     Using this right physical distance we calculate some different redshift distances and some relevant classical cosmological 

equations (effects) and compare these theoretical results with some measurements of astrophysics (quasars, SN Ia and black 

hole). 

     We get the today’s Hubble parameter H0a ≈ 65.2 km/(s Mpc) as a main result. This value is a little smaller than the Hubble 

parameter H0,Planck ≈ 67.66 km/(s Mpc) resulting from Planck 2018 data. 

     Furthermore, we find for the radius of the so-called Friedmann sphere R0a ≈ 2,586.94 Mpc. This radius is not the 

maximum possible distance of seeing within an expanding universe. Photons, which were emitted at this distance, are not 

infinite red shifted. 

     The today’s mass density of the Friedmann sphere results in ρ0m ≈ 9.09 x 10-30 g/cm3. For the mass of the Friedmann 

sphere we get MFs ≈ 1.94 x 1055 g. 

     The mass of black hole within the galaxy M87 has the value MBH,M87 ≈ 1.56 x 1043 g. The redshift distance of this object is 

D ≈ 19.60 Mpc but its today’s distance is only D0 ≈ 12.27 Mpc. The radius of this black hole is RS ≈ 1.498 x 10-3 pc. 
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0. Motivation 

 

In a paper we published earlier on cosmology with flat spacetime {[11] or [12]}, we found the following 

equation for the redshift distance D(z; R0a, β0m) 
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(1) 

 

In this equation, z is the redshift, R0a = a0 ra is the present-day radius of what we call the Friedmann sphere (a 

present-day visibility horizon for any conceivable observer when the ordinary Friedmann-Lemaitre-Robertson-

Walker metric is used), and β0m is a parameter of the theory that links together some physical properties of the 

expanding universe: 
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(2) 

 

Here a0 is the current scale parameter and ra is the co-moving radial coordinate location of the observer, which 

always remains constant. 

The fundamental property of Eq. (1) is that D(z) --> R0a applies for z ---> ∞. This means a today’s visibility 

horizon for every conceivable observer. 

In Eq. (2), c0 is the speed of light in a vacuum (always within this paper), G is Newton's gravitational constant 

and ρ0m is the current density of matter (subscript m) without taking into account possible radiation within the 

universe. 

The name for the parameter β0m was chosen - based on the SRT - because it is a quotient of a velocity V0 and c0. 

 

By comparing our theory with three different astrophysical measurements, we found β0m = 1, which is why 
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(2a) 

 

can be written. According to this theory, the speed V0 today is just equal to the speed of light c0. From our point 

of view, this is no coincidence: the current value of the radius R0a of the Friedmann sphere in combination with 

the current density of matter ρ0m within the Friedmann sphere obviously generate the current value of the speed 

of light. 

 

Because the radius Ra(t) = a(t)ra of the Friedmann sphere changes with time, the velocity V(t) is not constant in 

time either. If V(t0) = c0 applies today, then the speed of light itself is obviously time-dependent. 
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With this justification, in this paper we trace the effects of g00(t) = a0/a(t) in a correspondingly modified 

Friedmann-Lemaître-Robertson-Walker metric (mFLRWM) for flat space 
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In this metric, g00(t) acts similar to a time-dependent speed of light, which may even have been infinite at the 

time of the Big Bang. 

 

1. Solving the Einstein equations 

 

The topical standard model of cosmology assumes the correctness of Einstein's field equations (EFE) containing 

the Einstein tensor Gμν, the energy-momentum tensor Tμν, the metric tensor gμν and the Newtonian constant G 

describing the interaction of gravitation 
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(4) 

 

and solves these equations with the help of the in general curved Friedmann-Lemaitre-Robertson-Walker metric 

(FLRWM) 
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(5) 

 

which is suitable for the description of a homogeneous and isotropic universe evolving over time. 

 

Λ is the cosmological constant which will neglected by us because the real physical meaning of it is not known 

at this time. 

Furthermore, the so-called ΛCDM standard model of cosmology is not able to describe the magnitude-redshift 

relation of quasars and the angular size-redshift relation of cosmic objects for big redshifts z. 

The base of the ΛCDM standard cosmological model is the dealing with too few SN Ia for big redshifts, what 

means that these measurement values are statistical not sufficiently enough. Therefore, it is not a god idea to 

introduce a further arbitrary parameter - Λ - in the theory of cosmology. 

The comparison of the redshift distance calculated without using Λ shows, that the insertion of this constant is 

not needed, because the magnitude-redshift relation of quasars and the angular size-redshift relation can be 

interpreted very much with the theory developed by us within this paper. 

  

We will use the more comfortable form instead of Eq. (4) 
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for solving of the EFE within this paper. Rμν stands for the Ricci tensor and T is the trace of the energy-

momentum tensor. 

In accordance with our motivation, we solve the EFE setting Λ = 0 and take the flat mFLRWM [Eq. (3)] 
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(3a) 

 

The solution found by solving the EFE is the single main Friedmann equation (FE) 
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The time-dependent cosmological scale parameter was designated with a(t) and its time derivative with a point 

above. The parameter a0 is today’s scale parameter and ra the co-moving radiale coordinate of the observer, 

which is a constant all the time. With MFs the Friedmann mass was named. We have neglected a possible 

pressure of matter P. 

 

All equations used for solving the EFE are given in appendix named “7.1 Equations”. 

 

Within the specialist literature, the following equation defines the Hubble parameter that is of course in general 

time depend because of a(t): 
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If we refer to the today’s Hubble parameter, we get 

 

.
2

33

00

0
,0

a

Fs
lit

ra

MG

a

a
H 


 

 

(8) 

 

1.1 Solving the main Friedmann equation 
 

Integrating the main FE [Eq. (A21)] we find the simple solution 
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We will use later the resulting interval of time dt  
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for calculating  the redshift distance. 

 

Using Eq. (9) we can rewrite the Eq. (8) referring to today to 
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(11) 

 

We see that the age of universe - t0 - is half as big as the Hubble time tH0,lit. This means at the same times that the 

Hubble time cannot be used directly as the age of universe. - Altogether, the Hubble parameter is a simple 

function of time t. 

 

Furthermore, we find that the Hubble parameter is a function of the quotient a0/ae: 
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Due to the result found within the chapter 2.2, we get the dependence of the Hubble parameter from the redshift 

[see Eq. (25)].  If we insert this formula in Eq. (12) we find 

 

    .11 3
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Therefore, the Hubble parameter is a non-linear function of redshift. It starts with H0,lit for z = 0 and grows with z 

endless. Therefore, it makes no sense to use bigger redshifts for evaluation of the Hubble parameter. 

 

2 Derivation of cosmological relevant relations 

 

2.1 Previews 
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From the requirement of homogeneity it follows that all extra-galactic objects remain at their co-moving 

coordinate location r in the course of the temporal development of the universe, i.e. the co-moving coordinate 

distance between randomly selected galaxies does not change over time, the galaxies rest in this co-moving 

coordinate system. For this reason, dr/dt = 0 applies to them. 

This does not apply to the freely moving photons inside the universe: they detach themselves from a galaxy at a 

certain point in time at a certain co-moving coordinate location, and are then later absorbed at a completely 

different co-moving coordinate location. 

 

Here we introduce the designation re (the subscript e indicates emission of light) for the co-moving coordinate 

location of the light-emitting galaxy and name the co-moving coordinate location of the galaxy in which the 

observer resides ra (the subscript a indicates absorption of light). In the Euclidean space considered here, both 

variables mark the co-moving coordinate distance from an origin of coordinates r = 0. The constant co-moving 

coordinate distance between the two galaxies is therefore calculated to be ra - re if we assume that the galaxy of 

the observer is more depart from the origin of coordinates as the light-emitting galaxy. The light should therefore 

move from the inside to the outside within a spherical assumed mass distribution (outgoing photons), which 

serves as a simple model for the universe (using the FLRWM, it is quite easy to arrange that all directions are of 

a radial kind). 

 

Due to the measurable expansion of the universe we know that in the course of cosmic evolution all real physical 

distances R(t) = a(t)r over the time-dependent scale parameter a(t) being stretched according to the solution (9) 

of FE [Eq. (A21)]. 

 

For a galaxy resting in the coordinate system of the flat mFLRWM, the real physical distance from the origin of 

coordinates becomes calculated to 
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The radial co-moving coordinate r does not depend on time for galaxies. 

 

The physical distance of the light-emitting galaxy from the origin of coordinates at time te (the time at that time) 

is therefore 
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while for the analog distance of the galaxy containing the observer at the same time 
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applies. The physical distance of both galaxies at the time te is therefore 
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   .)( eeeaeaeeeaeee RRrrararaDtD   (17) 

 

For the physical distance between both cosmic objects at a later time - means today‘s time here - t0 > te then 

applies 

 

   .)( 0000000 eaeaea RRrrararaDtD   (18) 

 

However, both distances mentioned above are worthless for the computation of cosmological relevant distance 

relations, since the emitted photons make their physical way to the observer, which has to be calculated in 

accordance with 

 

 .00 eeaeea RRraraD   (19) 

 

To see this, imagine a photon that detaches itself at the time te < t0 from the emitting galaxy at the co-moving 

coordinate re, where the scale parameter at this time has the value ae. After the photon has moved freely through 

the expanding universe, it will arrive at the co-moving coordinate point ra, the place of the observer within 

another galaxy, at time t0, with the scale parameter at that time being a0. Thus, the photon does not travel the path 

described by Eq. (17) nor by Eq. (18). The real physical distance traveled by the photon is always unequal to any 

one of these two distances. This must be taken into account when deriving the redshift distance. 

 

The real physical light path is illustrated by the green line in Fig. 1: 

 

 

Figure 1.   Real physical light path. 

 

These remarks may be sufficient as a preliminary to the now following derivation of the redshift distance. 
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2.2 Redshift-scale parameter relation 
 

For photons, ds = 0 and therefore 
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This results in two light wave crests that are emitted in close succession, 
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δt0 is the distance in time between the two light wave crests on arrival at the observer and δte is the distance in 

time between the two light wave crests on emission. 

Due to the very short time difference between the emission of the two light wave crests, both cover the same 

distance between the light source and the observer despite da/dt ≠ 0. The integration therefore results in 
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Let us arrange δt0 and δte frequencies according to 
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So we get by means of 
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the desired redshift-scale parameter relation 
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(25a,b,c) 

 

This relation is not the same relation how we can find for the not modified FLRWM. 
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2.3 The redshift distance 

 

We now want to investigate which equation results for the redshift distance (corresponding to the photon path), 

which depends on the redshift z, if the integral 
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is used. This integral results when our line element ds is set equal to zero in the mFLRWM [Eq. (3a)] and radial 

(ϑ = φ = const) outgoing photons are considered. Eq. (26) describes the motion of photons inside the universe 

traveling from the co-moving coordinate re to the co-moving coordinate ra. 

During the travel time of the photons, the scale parameter changes from a(te) = ae to a(t0) = a0. If the time 

differential dt is replaced using Eq. (10), follows from Eq. (26) 
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After executing of the integral we get 
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Some further simple calculation steps result in 
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Now we multiply both sides with a0 and get 
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(30) 

 

On the left side of Eq. (30) is not yet the real path traveled by the photon, but the today’s physical distance D0 = 

a0(ra - re) of the two galaxies involved. 

 

We now introduce the redshift. To this end, we take the relation between the two scale parameters ae and a0 at 

two different times te and t0 how it was calculated to be Eq. (25a,b,c). 
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If Eq. (25c) and Eq. (25b) are inserted into Eq. (30), the result is 
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(31) 

 

Next, all unknown variables have to be eliminated from Eq. (31). Therefore we use the light path D introduced 

by Eq. (19) 
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to find 
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(32) 

 

This is the equation for the redshift distance, for which we were searching. 

 

We have introduced the parameter B0 
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(33a,b,c) 

 

as a further abbreviation. 

RS is a formal introduced Schwarzschild radius. It does not play the same role here in cosmology as it does 

within the Schwarzschild metric. R0a = a0ra is the radius of the Friedmann sphere (Fs) so called by us, which 

contains the gravitational effective mass MFs. 

 

The redshift distance D is therefore a function of z and the two parameters R0a and B0, which both can be 

determined fundamental by fitting the equation to appropriate astrophysical measurements. 

 

The astrophysical literature does not know the parameter B0. It results from the non-zeroing of ra for the observer 

and of re ≠ 0 for the observed galaxy, respectively. 

 

For B0 = 1 the following simple equation results 
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The mass MFs takes into consideration all non-relativistic gravitational effective components within the 

Friedmann sphere: MFs = ∑Mi. These can also be different energy components Ei, to which, according to 

Einstein's energy-mass relationship Mi = Ei/c
2
, masses Mi can be assigned. 

In addition, with MFs as the total mass, such mass components that are invisible to us - perhaps only so far - are 

taken in to consideration.  

 

Using RS instead of B0 we can rewrite the redshift distance as 
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(35) 

 

For B0 = 2 we would get R0a = RS. In this case, we could believe that every observer is places (formally) on the 

surface of a black hole (corresponding to the Friedmann sphere) and that he always looks into a black hole while 

observing. Nevertheless, this is not a right thought because on the other side of each Friedmann sphere always 

matter exists. 

 

We can interpret the parameter B0 as a quotient of two velocities {how it was done in our former paper [11] or 

[12]} 
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(36a,b,c) 

 

V0 means V(t0). The velocity V(t) depends from time because Ra(t) is also a function of time. 

For B0 = 1, R0a = RS/4 results and the speed V0 would be exactly identical to the today’s speed of light c0. 

 

If the comparison with the measurement data would real show B0 = 1, we would get 
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In this case, we would immediately see that the total mass MFs of the Friedmann sphere goes directly into the 

equation in form of the formally introduced Schwarzschild radius RS (instead of RS and R0a at the same time). 

Therefore, RS could be used as a scale of cosmological distances. 

 

Fig. 2 shows the redshift distance Eq. (32) normalized to the distance R0a for various values of the parameter B0. 
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Figure 2.   Redshift distance for different values of the parameter B0. 

 

The curvature of all the curves is a direct consequence of the Friedmann equation. 

 

The comparison of Eq. (32) and Eq. (35), respectively, with a Hubble diagram thus determines the current radius 

R0a = a0ra of the Friedmann sphere (today's physical location of the observer) and its Schwarzschild radius RS. 

 

Overall, each observer is located on the surface of all imaginable Friedmann spheres around him. This means 

that for each viewing direction a Friedmann sphere with the radius R0a belongs. The extra-galactic objects 

(placed on r = re) observed by him then all lie according to their redshift z on a radial line somewhere between 

the observer (placed on r = ra) and normally the center of the Friedmann sphere (placed on r = 0). 

If B0 > 1 it can be that D(z) > R0a is valid. In this case, the co-moving coordinate re is negative. This means, that 

the observer can see cosmic objects beyond the origin of coordinates (r = 0). The reason for this is the bigger 

velocity of light in the past in comparison with today. 

 

Outside of every imaginable Friedmann sphere around the observer - means here the opposite of observer - there 

is also mass, which, however, has no gravitational effect to the place of the observer. 

 

It should be mentioned extra that the conceivable Friedmann spheres naturally at least partially overlap. 
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An increasing distance Ra(t) decreases with time the velocity V(t) introduced with Eq. (36), because RS is a 

constant. 

Because Eq. (32) and Eq. (35), respectively, describes the physical behavior of photons in the universe, the 

velocity V0 in Eq. (36c) could be interpreted as an “effective” speed of light c0* in vacuum: 
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This velocity changes actually according to Ra(t) and (t), respectively, over the time and would have for us as 

today's observers just the value of the vacuum velocity c0 that we can measure today if B0 = 1 would be true. 

However, the analysis of measurement data will show that B0 > 1 is valid. 

 

If this interpretation is correct, the effective speed of light c0* was infinitely large at the beginning of the 

expansion of the universe, because at that time the Friedmann sphere was infinitely small and its matter density 

was infinitely large, respectively. There is therefore no problem with speeds, which are apparently greater than 

today's speed of light, when looking into the visible universe. 

 

2.4 Hubble parameter 

 

For calculating the Hubble parameter we make a Taylor series expansion of our redshift distance (32) up to first 

order in z and find 
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This results in 
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This is how we find the today's Hubble parameter 
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(39) 

 

Our today’s Hubble parameter H0a depends on the two parameters R0a and B0 and is in this form valid only for 

small redshifts because of the series expansion made. This means that this H0a is only valid locally near the 

observer. 

 

The reciprocal of the Hubble parameter is the Hubble time tH0a and yields 
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This Hubble time is not the same how Eq. (11).  

 

If we consider the today's Hubble parameter Eq. (39) for small redshifts as a definition, we can write the redshift 

distance via 

 

.2
3

00

0
0 

aa RH

c
B  

 

(39a) 

 

also like this 
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(41) 

 

The quotient RH0a = c0/H0a is called the Hubble radius in the astrophysical literature. For this distance, the escape 

speed by definition reaches the speed of light if it is assumed that a linear Hubble law is valid for all distances, 

which is - of course - a very rough approximation. 

The Eq. (41) is only valid for small redshifts how the Eqs. (37) and (39) itself. 

 

2.5 The magnitude-redshift relation 

 

The magnitude-redshift relation results by the general definition of the apparent magnitude m 
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Here an apparent limit magnitude m0a was introduced instead of R0a, which also changes with time. Substituting 

Eq. (32) into Eq. (41) then provides the sought magnitude-redshift relation 
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(43)

 

 

The two free parameters m0a and B0 can be determined by direct comparison with a suitable magnitude-redshift 

diagram of astrophysical objects. 
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2.6 The angular size-redshift relation 

 

This relation results in for larger distances over 
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(45)

 

 

In this equation  means the measurable angular size and  the linear size of the observed extra-galactic object. 

 

2.7 The number-redshift relation 

 

In flat Euclidean space the equation for the light-path sphere becomes to 
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If we introduce the redshift distance via Eq. (32) 
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we get for the number-redshift relation 

 

 

  
   

  ,11

1

1
1

1
,;

3

3

2

3

102

0
00



































 z

z

B
z

N
BRzN a

a

 

 

(48)

 

 

where N0a means the expected number of objects in the whole light-path sphere V0a and besides 
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applies. With  the number density was named. 

In logarithmic form results 
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3. Derivation of further physical redshift distances 

 

The starting point for the derivation of the further redshift distances are the following elementary equations 
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and 
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and also 
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This results in the following further distances 
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(54) 

 

Ree is the distance at that time between the galaxy observed emitting the light and the origin of the coordinates at 

the time te the light was emitted (te: time at that time). 

Rea is the distance at that time of the observer's galaxy from the origin of the coordinates. 

R0e is the today’s - at time t0, at which the light is absorbed on the place of observer - distance of the light-

emitting galaxy from the origin of the coordinates. 

R0a is today's distance of the galaxy containing the observer from the origin of the coordinates. 

 

These distances become concretely with Eq. (32) 
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and 
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and of course too 
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These distances from the origin of coordinates yield 
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De is the distance at that time te between the observed galaxy and the galaxy in which the observer is located. 

 

Furthermore we find 
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D0 is the today’s distance between the two participating galaxies. 

 

The following figures illustrate the equations for the further redshift distances, where we have normalized all 

distances to R0a. 

 

 

 

Figure 3.   Redshift distance Rea normalized to the distance R0a. 

 

This distance is not depending on parameter B0. 

 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 2 4 6 8 10 12 14 

R
ea

(z
) 

/ 
R

0
a 

 

z 

Rea(z) / R0a 



 20 

 

 

Figure 4.     Redshift distance R0e normalized to the distance R0a for various values of the parameter B0. 
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Figure 5.    Redshift distance Ree normalized to the distance R0a for different values of the parameter B0. 
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Figure 6.   Today's redshift distance D0 normalized to the distance R0a for various values of the parameter B0. 

 

 

 

Figure 7.   The redshift distance at that time De normalized to the distance R0a for various values of the 

parameter B0. 

 

An observed cosmic object lies behind the origin of coordinates if the distance - Ree and R0e, respectively - to this 
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In the specialist literature, none of these redshift distances are known and they cannot be derived there, 

respectively. 

 

We will give concrete values for such redshift distances for the galaxy M87 and 27 SN Ia below. 

 

4. Determination of the parameter values 

 

The present paper presents a theoretical derivation of some redshift distances, which we carry out without 
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Nevertheless, in this chapter we will apply the theory presented here in detail to some measurement results of 

observational cosmology, whereby we only demonstrate the principle of evaluating the measurement data. For 

this reason, no more detailed error analyzes are carried out. We leave that to the interested experts of 

observational cosmology. 

 

4.1 Magnitude-redshift relation 

 

The apparent magnitude m depends according to Eq. (43) in addition to the measurable redshift z also on the two 

parameters B0 and m0a. 

 

To find the values of the parameters, the quasar catalog by Véron-Cetty et al. [1] is suitable in which measured 

redshifts and apparent magnitudes of 132,975 quasars are given. 

 

Fig. 8 shows all these quasars in a single magnitude-redshift diagram, where we have used log10(cz) on the axis  

of ordinates. 

 

 

 

Figure 8.   Magnitude-redshift diagram for all 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 
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A clear edge exists on the right side of the accumulation of measurement points, which indicates minimum 

apparent magnitudes for associated redshifts. The apparent magnitudes are usually up to far to the left of this 

edge inside the diagram. 

 

If we form redshift intervals with mean values of the redshifts and the corresponding mean values for the 

apparent magnitude, this fact leads to a clear curvature of the mean value curve in the direction of the redshift 

axis. This curvature should be explained by means of a valid astrophysical theory. More precisely: The theory 

has to explain the curvature! This suggests that our redshift distance [i.e. ultimately Eq. (32)] could be suitable 

for the measured values. 

 

It is precisely such a strange magnitude-redshift diagram, which was stimulating us to think about cosmological 

distance determinations for many years [9]. 

 

To evaluate the quasar data set, we first create 75 z-intervals with 1,773 quasars each. For these intervals, we 

calculate the mean values <zi> and the associated mean values <mi> of the quasars. 

 

We use the following χ
2
-function 
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(60) 

 

for our evaluation of the data. 

The abbreviation pk with k = 1 and 2 stands for the two parameters we are looking for, B0 and m0a. 

 

If we use our magnitude-redshift relation Eq. (43), the χ
2
-function looks more concrete 
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(60a) 

 

Using the quasar data and the usual mathematical procedure, we find the parameters to be B0 = 3.237 and m0a = 

19.836. 

 

Fig. 9 shows the result of the mean value formation and the adaptation of our theory to the curvature of the mean 

value curve. 

 



 25 

 

 

Figure 9.   Magnitude-redshift diagram for 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

From our point of view, a possible interpretation of the measured magnitude-redshift relation may be: 

The quasars came in to being historically slowly as relatively few and weakly luminous objects at a point in time 

that corresponds to about z ≈ 4.3 (development effect). The quasars later behaved as our theory expects in 

modified flat space and moved with time - i.e. for decreasing redshifts z - on average along the theoretical curve 

(in the diagram from top right diagonally to bottom left). Then the quasars have gradually died out in the recent 

past and became relatively bright in this process. 

 

4.2 Number-redshift relation 

 

We use the following variance to evaluate the number-redshift relation 
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The abbreviation pk with k = 1 and 2 stands for the two parameters we are looking for, B0 and N0a. 

 

If we insert our number-redshift relation Eq. (48), the Eq. (61) reads concrete 
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(61a) 

 

Using simple mathematics, we find N0a = 85,692 for the theoretically expected total number of quasars 

and B0 = 3.427 results. 

 

The expected number N0a is some smaller than the number of quasars given within the catalogue of M.-P. Véron-

Cetty et al. [1]. This indicates a certain incompleteness of the measurements, because N0m means the sum of all 

objects which should be found up to z = ∞ (see chapter 2.7). May be that development effects have to be 

involved also, but such effects are not the object of our theoretical contemplations. 

 

May be that more measurement values would get a better agreement between theory and reality.  

May be that the astronomers have measured to few quasars having big redshifts until now.  

May be that the some smaller number theoretical expected means that the theory using the mFLRWM describes 

the cosmological reality - the number of cosmic object in this case - not in a right way. 

 

Fig. 10 shows the graphic result. 

 

 

 

Figure 10.   Number-redshift diagram for the 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 
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4.3 Angular size-redshift relation 

 

In this case, we use the measurement data from K. Nilsson et al. [2] to find an average linear size of the cosmic 

objects measured there. 

 

The starting point is the variance 
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(62) 

 

The abbreviation pk with k = 1and 2 stands for the two parameters we are looking for, B0 and δ/R0a. 

 

If we use our angular size-redshift relation Eq. (45), the Eq. (61) reads concrete 
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(62a) 

 

The comparison of the theory with the measurement data using <B0> = 3.334 results in a value of δ/R0a = 6.7799 

x 10
-5

. <B0> means the mean value of both parameters B0 found: Analyzing m(z)- and N(z)-relation, 

respectively.  

 

Fig. 11 shows the graphic result. 
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Figure 11.   Angular size-redshift diagram according to K. Nilsson et al. [2]. 

 

The determination of the linear size δ requires the knowledge of R0a. Because the absolute magnitudes are known 

for some SN Ia (which differ strangely enough slightly from one another), we can determine R0a using a 

magnitude-redshift diagram of these cosmic objects. We will carry out this within the next chapter. 

 

4.4 Fixing of R0a with the help of SN Ia 

 

By W. L. Freedman et al. [3], data from a total set of 27 SN Ia were made available, with the help of which we 

can determine both the distance R0a - the observers current physical distance from an origin of coordinates - and, 

as a main result, the today’s Hubble parameter H0a. 

 

The data we are interested in are the distance modules (μTRGB and μCeph, respectively), the maximum apparent 

magnitudes (mCSP_B0 and mSC_B, respectively) and the radial velocities VNED, from which the redshifts zNED can 

be calculated. 

 

The methods taken into account in [3] for determining the maximum apparent magnitude and thus the associated 

absolute magnitude are different, which is why somewhat different values are given for one and the same SN Ia.  

For our purposes, we calculate the mean values from these data and assign them to the relevant SN Ia. 
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We calculate the absolute magnitudes Mi of the SN Iai using (μTRGB - mCSP_B0) and (μCeph - mSC_B), respectively, 

and then we always calculate an average value <Mi> if both value pairs are specified for one and the same SN Ia. 

From all the absolute magnitudes obtained in this way, we finally form the mean value of the absolute magnitude 

to be <M> ≈ -19.245, which enables us to determine the distance R0a with the aid of the parameter m0a, which 

results from the magnitude-redshift diagram of the SN Ia. The simple equation used for this is 
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The graphic result is shown in Fig. 12. 

 

 

 

Figure 12.   Magnitude-redshift diagram for 27 SN Ia according to W. L. Freedman et al. [3]. 

 

The theoretical curve (green) lies nearly exact on the linear trend line (dashed in red), the equation of which is 

given in the figure. 
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With the help of the value of R0a and taking the Eq. (39), which is an approximation for small redshifts, the 

today's Hubble parameter H0a ≈ 65.2 km/(s∙Mpc) results. This value is slightly below the Planck value (2018) 

with H0,Planck ≈ 67.66 km/(s∙Mpc) [4].  

 

In Table 9 in the appendix, all the values we have used for the magnitude-redshift diagram of the 27 SN Ia are 

compiled. 

 

Using Eq. (33a) and Eq. (A20) for today, we get as result for the today's mass density 
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(64) 

 

With the help of parameters, <B0> and R0a determined by us, we find ρ0 ≈ 9.088 x 10
-30

 g/cm
3
 for today's matter 

density inside the Friedman sphere. 
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(65) 

 

the constant mass of the Friedmann sphere results in MFs ≈ 1.94 x 10
55

 g. 

 

Because we generally do not consider the accuracy within this paper, we simply specify the decimal places with 

up to three places, whereby the mathematical analysis of the data usually delivers more decimal digits. 

 

Using Eq. (33c) we find for the Schwarzschild radius RS ≈ 931.949 Mpc.  

 

With the known value R0a ≈ 2,586.938 Mpc we can calculate the mean linear size of the Nilsson objects [2] to be 

δ ≈ 0.175 Mpc, because we have found δ/R0a = 6.7799 x 10
-5

 for them. 

Using known R0a and <B0>, of course, all linear dimensions of these objects can be calculated using their angular 

size and redshift if they could be measured. 

 

4.5 Calculation of all possible redshift distances for the SN Ia 

 

4.5.1 Absolute values of redshift distances 

 

Because we were able to determine R0a, we can graphically display all theoretical possible redshift distances in a 

form, which is not normalized to R0a. Fig. 13 shows the result, using the values we found for <B0> and R0a. 
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Figure 13.   Redshift distance D (real light path) and all further possible redshift distances Di (i = 0, e) and Rjk (j 

= 0, e; k = e, a) as a function of the redshift up to z = 12. 

 

To interpret Fig. 13: 

a) For redshift z going towards infinity the distance D goes to a value, which is greater than R0a. This means that 

the observer can observe objects for which is D > R0a ≈ 2,586.94 Mpc if the measured redshift z is great enough; 

the observer can have a look on the other side of the origin of coordinates. 

For z --> ∞ the redshift distance D  --> ∞ results. 

b) The light path distance D = R0a - Ree is always greater than the distance De (time at that time) but partly 

smaller than the distance D0 (today’s). 

In particular, the light path D is not equal to the today’s distance D0 between two astrophysical objects. 

c) The distances Rjk are physical distances from an origin of coordinates and develop directly with the change in 

the scale parameter a(t) over time. For large redshifts, the scale parameter was correspondingly small and, as a 

result of this, the associated physical distances Ree and Rea were also correspondingly small. 

d) Negative values of distances - e.g. Ree and R0e - mean that the observer can have a look as far as behind the 

origin of coordinates, which is mainly a fictitious one. For such distances Re(t) = a(t)re with re < 0 is the right 

equation. 

e) The distance at that time De is interesting: It shows a maximum for a specific redshift and approaches only 

zero for very large redshifts.  

 

For calculation the real redshift distances of SN Ia, we need the knowledge about possible peculiar velocities. 
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Therefore, we will investigate this situation for all SN Ia used in this paper within the next chapter. 

 

4.5.2 Peculiare velocities of SN Ia 

 

Because all SN Ia have in general the same average absolute magnitude <M> ≈ -19.245 they all have to lie on 

the theoretical curve in Fig. 12. As this is not the case, they must have partly peculiar velocities, which can be 

calculated in a simple way. The following Table 1 shows the result: 

 

SN Ia z_observed z_Hubble 
cz=v_not_Hubble  

(km/s) SN Ia z_observed z_Hubble 
cz=v_not_Hubble 

(km/s) 

2011fe 0.00151772 0.00141297 31.401 2011iv 0.00435635 0.00392084 130.563 

1989B 0.00229826 0.00262262 -97.241 1998aq 0.00456316 0.00478417 -66.258 

1998bu 0.00229826 0.00244708 -44.615 2011by 0.00456316 0.00517607 -183.748 

2001el 0.00349242 0.00444260 -284.858 2013dy 0.00470325 0.00430098 120.600 

1981B 0.00350242 0.00327384 68.526 2012ht 0.00482667 0.00524851 -126.465 

1990N 0.00350242 0.00515215 -494.576 1994ae 0.00517691 0.00597580 -239.501 

1994D 0.00350242 0.00346059 12.540 2007sr 0.00567726 0.00444260 370.142 

2012cg 0.00350242 0.00339718 31.550 2002fk 0.00621763 0.00716114 -282.856 

2015F 0.00423960 0.00465309 -123.961 1995al 0.00629102 0.00620166 26.789 

2012fr 0.00434300 0.00403119 93.479 2007af 0.00661458 0.00539647 365.180 

1980N 0.00435635 0.00401258 103.058 2005cf 0.00748518 0.00603148 435.808 

1981D 0.00435635 0.00384896 152.112 2003du 0.00807892 0.00764223 130.918 

2006dd 0.00435635 0.00461021 -76.105 2009ig 0.00845251 0.00702938 426.644 

2007on 0.00435635 0.00463160 -82.518         

 

Table 1.   Peculiar velocities of the 27 SN Ia and host-galaxies, respectively. 

Peculiar velocities with a positive sign mean that the SN Ia is moving away from us as observer in addition to the 

pure Hubble flow. Velocities with negative sign show that the SN Ia is moving locally in the direction of 

observer. 

 

These peculiar velocities are only the right ones if the absolute magnitude <M> of the SN Ia used is real valid. 

 

 

4.5.3 Real redshift distances of SN Ia 

 

After we could correct the redshifts of the SN Ia we can calculate all real redshift distances of these cosmic 

objects. Table 2 shows the result. 

 

SN Ia Rea Ree R0e R0a De D0 D 

2011fe 2,584.50 2,580.45 2,582.88 2,586.94 4.05 4.06 6.49 

1989B 2,582.42 2,574.92 2,579.42 2,586.94 7.51 7.52 12.02 

1998bu 2,582.73 2,575.72 2,579.92 2,586.94 7.01 7.02 11.22 

2001el 2,579.30 2,566.61 2,574.21 2,586.94 12.69 12.73 20.32 

1981B 2,581.31 2,571.94 2,577.55 2,586.94 9.37 9.39 15.00 

1990N 2,578.09 2,563.39 2,572.18 2,586.94 14.70 14.75 23.55 

1994D 2,580.99 2,571.09 2,577.02 2,586.94 9.90 9.92 15.85 
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2012cg 2,581.10 2,571.38 2,577.20 2,586.94 9.72 9.74 15.56 

2015F 2,578.94 2,565.66 2,573.61 2,586.94 13.29 13.33 21.28 

2012fr 2,580.01 2,568.49 2,575.39 2,586.94 11.52 11.55 18.45 

1980N 2,580.04 2,568.57 2,575.44 2,586.94 11.47 11.50 18.37 

1981D 2,580.32 2,569.32 2,575.91 2,586.94 11.00 11.03 17.62 

2006dd 2,579.02 2,565.85 2,573.73 2,586.94 13.17 13.21 21.09 

2007on 2,578.98 2,565.75 2,573.67 2,586.94 13.23 13.27 21.18 

2011iv 2,580.20 2,568.99 2,575.70 2,586.94 11.21 11.24 17.95 

1998aq 2,578.72 2,565.06 2,573.23 2,586.94 13.66 13.70 21.88 

2011by 2,578.05 2,563.28 2,572.12 2,586.94 14.77 14.82 23.66 

2013dy 2,579.55 2,567.26 2,574.61 2,586.94 12.29 12.32 19.68 

2012ht 2,577.93 2,562.95 2,571.91 2,586.94 14.98 15.03 23.99 

1994ae 2,576.68 2,559.65 2,569.84 2,586.94 17.03 17.10 27.29 

2007sr 2,579.30 2,566.61 2,574.21 2,586.94 12.69 12.73 20.32 

2002fk 2,574.66 2,554.28 2,566.46 2,586.94 20.38 20.48 32.66 

1995al 2,576.30 2,558.62 2,569.19 2,586.94 17.67 17.75 28.31 

2007af 2,577.67 2,562.28 2,571.49 2,586.94 15.40 15.45 24.66 

2005cf 2,576.59 2,559.40 2,569.68 2,586.94 17.19 17.26 27.54 

2003du 2,573.84 2,552.10 2,565.09 2,586.94 21.74 21.85 34.83 

2009ig 2,574.89 2,554.88 2,566.83 2,586.94 20.01 20.10 32.06 

 

Table 2.   Redshift distance D and the further redshift distances Di and Rjk of all 27 SN Ia. 

 

To interpret the distances from Table 2: 

For a more detailed explanation, we take into account the SN Ia 2006dd (bold market within the table), for 

example, and use it to interpret the meaning of the distances shown in the table. 

 

The "light-travel time" always means the time interval between the emission of light (the time at that time te, 

2006dd) by the SN Ia 2006dd and today (t0), i.e. Δt2006dd = t0 - te,2006dd. This light-travel time is generally different 

for all observable cosmic objects, here especially formal noticed for the individual SN Ia 2006dd we will 

consider. 

 

a) The today's (t0) distance between the selected SN Ia 2006dd and us as observers is D0 ≈ 13.21 Mpc. 

b) The distance at that time (te) between this SN Ia 2006dd and us as observers was De ≈ 13.17 Mpc. 

According to this, the distance between the two participated cosmic objects has increased by about 0.04 Mpc 

during the light-travel time Δt2006dd = t0 - te,2006dd. 

c) The SN Ia 2006dd has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 

7.88 Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observers has been expansively shifted away from the origin of the coordinates by ΔRa 

= R0a - Rea ≈ 7.92 Mpc during the light-travel time due to a(t). 

The difference between the two displacement distances is of course the increase in the distances between the two 

participated cosmic objects noted above. 

e) The real light path (redshift distance) covered by the photons within the interval of time Δt2006dd = t0 - te,2006dd  

is D ≈ 21.09 Mpc. It is unequal to the other mentioned distances Di and greater than these, because of small 

redshifts for SN Ia used. 
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These redshift distances are only the right ones if the absolute magnitude <M> of the SN Ia used is real valid. 

 

4.6 Evaluation of the data from the black hole in M87 

 

For the sake of simplicity, we summarize the data taken from the specialist literature on the galaxy M87 

containing a black hole (BH) in it in the first line of Table 3 {see [5] and [6]}. 

The second line lists the data specified in this paper, which usually differ from those in the specialist literature. 

 

  D [ Mpc ] MB [ mag ] z mB [ mag ] ΘBH [ μas ] δ/2 = RS [ pc ] MBH [ g ] 

literature 16.9 / 16.8 -23.5 0.004283 9.6 42 

 

1.2928E+43 

we 19.60 -26.86 

   

1.49843E-03 1.5571E+43 

 

Table 3.   Summary of data from galaxy M87 containing a black hole in it. 

 

The theory was adapted to the measured angle size ΘBH given in the specialist literature. Overall, a larger redshift 

distance D, a bigger absolute magnitude MB and a similar value of mass MBH of the black hole follow. 

Table 4 lists the values found by means of our theory for all redshift distances Rjk, Di and D, respectively. 

 

[Mpc] Rea Ree R0e R0a De D0 D 

we 2,579.58 2,567.34 2,574.67 2,586.94 12.24 12.27 19.60 

literature  ---  ---  ---  ---  ---  --- 16.8/16.9 

 

Table 4.   Redshift distances Di, D and Rjk belonging to the black hole in M87. 

 

From these values, the expansion-related shifts in distance of the galaxy M87 and of the galaxy with us as 

observers can be calculated, which took place during the time of light travel. 

 

The theory from the specialist literature does not know the most distances listed in Table 4. Therefore, they 

cannot be calculated using this theory and not determined in terms of value. 

 

The distance D differs because of the physical meaning: In our theory, D is the real physical light path, which is 

not the case in the astrophysical specialist literature. 

 

We briefly interpret the meaning of the distances listed in Table 4, whereby the light-travel time is again defined 

as described in a former chapter: 

a) The today's (t0) distance between the BH or the galaxy M87 and us as observers is D0 ≈ 12.27 Mpc. 

b) The distance at that time (te) between the BH (or M87) and us as observers was De ≈ 12.24 Mpc. 

Accordingly, the distance between the two cosmic objects has increased by about 0.03 Mpc during the light-

travel time ΔtBH, M87 = t0 - te,BH, M87. 
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c) The BH (or M87) has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 

7.33 Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observer was expansively shifted away from the origin of the coordinates by ΔRa = R0a 

- Rea ≈ 7.36 Mpc during the light-travel time due to a(t). 

e) The real light path (redshift distance) covered by the photons during the interval of time ΔtBH, M87 = t0 - te,BH, 

M87 is D ≈ 19.60 Mpc. It is unequal to the other mentioned distances Di and greater than these. 

 

4.7 Maximum values known today: Galaxy UDFj-39546284 and Quasar J0313 

 

The galaxy UDFj-39546284 [8] currently holds the record among the galaxies with a redshift of z = 10.3, while 

the quasar J0313 [7] with z = 7.642 holds the analog record among the quasars. 

 

Table 5 summarizes all calculated redshift distances of the two cosmic objects. 

 

object name z Rea Ree R0e R0a De D0 D object 

J0313 7.642 614.29 -435.17 -1,832.60 2,586.94 1,049.46 4,419.54 3,022.11 quasar 

UDFj-39546284 10.3 513.73 -435.26 -2,191.80 2,586.94 948.99 4,778.74 3,022.20 galaxy 

 

Table 5.   All calculated redshift distances Rjk, Di and D for the two cosmic objects with the maximum redshifts 

and for us as observer [Mpc]. 

 

We see some negative redshift distances: 

Here Re(t) = a(t)re < 0 is valid what means re < 0 in these cases. Both observed cosmic objects were beyond of 

the origin of coordinates at the time te. In addition, negative distances of both objects are bigger today. 

 

Table 6 summarizes the spatial shifts of the objects with respect to the origin of coordinates due to the expansion 

during the associated light travel times. 

 

object name R0e - Ree R0a - Rea object 

J0313 -1,397.43 1,972.64 quasar 

UDFj-39546284 -1,756.54 2,073.21 galaxy 

 

Table 6.   Expansion-related shifts in the distances of the quasar and the galaxy and of the observer [Mpc]. 

We have already explained above how the tables have to be interpreted. 

 

Fig. 14 shows the distances Di and D of the three special astrophysical objects chosen to analyze in this paper in 

one diagram, whereby we have entered all numerical values for the distances in Mpc. 
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Figure 14.   All distances Di and D for M87, J0313 and UDFj-39546284. 

 

We recognize that from about z ≈ 2 the today’s distance D0 is larger than the associated light path D. 

Furthermore, we see that the light path distance D is hardly growing anymore for larger redshifts from about z ≈ 

6. Therefore, the difference between Dquasar and Dgalaxy are very small although the difference of both redshifts is 

relatively large. 

 

5 About the mass of Friedman sphere 

 

The cause of the expansion of the universe is its effective constant mass MFs or the time-varying matter density 

ρ(t), respectively. It ensures that the scale parameter a(t) changes over time. To check this statement, one should 

simply set the matter density in the Friedmann equation to zero. 

 

Every cosmologist, therefore, has to ask himself where exactly this mass is located within the universe. He can 

gain an answer for this by borrowing the appropriate ideas from classical non-relativistic Newtonian cosmology. 

There he has to imagine a mass sphere whose radius changes over time (e.g. grows). This means that the mass in 

question is completely within this sphere, and it is evenly distributed and remains there according to the 

cosmological principle. 
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In relativistic cosmology, the time depend product of scale parameter and co-moving coordinate distance R(t) = 

a(t)r takes over the role of the physical radius of the mass sphere, and it holds that the entire mass to be 

considered is inside this sphere (Friedmann sphere named here). 

 

The Fig. 15 shows the projection of a Friedmann sphere in to the plane at time t0 (today) in which examples of 

possible places for an observer and galaxy observed are drawn. 

 

 

 

Figure 15.   Friedmann sphere containing examples of physical locations of an observer and a galaxy. 

 

Because of the law of conservation of mass  
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(66)

 
 

which is used here, we see that R0a is today's radius of the Friedmann sphere with today's mass density ρ0. 

 

Of course, each observer can also, e.g., look in exactly the opposite direction to the direction shown (green 

arrow). In this case, he looks again into a Friedmann sphere, which belongs to this direction. The observer can of 
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course also look in any other directions. The observer always looks into Friedmann spheres, which of course 

partially overlap. 

 

A universe thought to be spherical corresponds to at least one sphere with the radius 2 x R0a, since beyond R0a 

there is always also mass. 

Every observer sits on the surface of Friedmann spheres. Nevertheless, he can believe that his place is also in a 

center of such a Friedmann sphere. 

 

If we would put the position of an observer a little outside the Friedmann sphere shown in Fig. 15, he would find 

the same situation as described above, if the universe would be actually much larger than a sphere with the 

radius 2 x R0a or even infinitely large. 

 

Hint: 

Because of possible negative distances Ree and R0e an observable galaxy can have also co-moving coordinates 

with re < 0. Such cosmic objects are on the other side of the center of the Friedmann sphere with r = 0. 

 

6. Hubble parameter again 

 

At this point we explicitly point out that our equation of today's Hubble parameter - which also only applies to 

very small redshifts - differs significantly from the definition (!) used in the specialist literature. The equations 

for both are 
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For an arbitrary point in time t this reads 
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(67a) 

 

The index a generally indicates the spatial proximity to the observer, meaning r = ra. 
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In our theory, the numerator contains the constant physical speed of light c0 in vacuum, while the current, i.e. the 

variable spatial expansion speed da/dt is found at this place in the specialist literature. 

 

In the more recent past - time tx - our distance from the origin of coordinates Rxa < R0a was slightly smaller than 

the current one and the Hubble parameter Hxa was therefore correspondingly larger (also via the parameter Bx). 

 

Furthermore, in the case of the Hubble parameter in specialist literature, the non-physical spatial expansion 

speed da/dt can have been arbitrarily large in the past and, in addition, the scale parameter a(t) arbitrarily small. 

Both types of Hubble parameters therefore show a completely different physical behavior! 

 

In addition, our Hubble parameter is actually made up of physical quantities, while the Hubble parameter in the 

astrophysical literature is only defined using the non-physical scale parameter a(t), although to the latter can be 

assigned a suitable unit of measurement - e.g. Mpc. This means that a(t) alone per se is not a physical distance. 

This meaning only applies to the real physical distance R(t) = a(t)r and the differences that can be calculated 

from it. 

 

The Hubble parameter is the proportionality factor between the so called Hubble speed V = c0z and a distance, 

i.e. the actual linear Hubble law applies 
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For the redshift z it simply follows therefore 
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In the specialist literature, the redshift z is therefore depending on the ratio of the current speed da/dt to the speed 

of light c0 in the product with the ratio of an object distance Dlit and the current scale parameter a0. 

 

Our redshift, on the other hand, is depending on the ratio of the light path distance D and the current distance R0a 

of the observer galaxy from an origin of the coordinates and is besides proportional to the factor that contains the 

parameter B0. 
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Using the parameter B0 

 

2

0

0
0

2
2

c

MG
Rwith

R

R
B Fs

S

S

a   

 

(33b) 

 

we see in our case 
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i.e. an direct dependence on the Schwarzschild radius RS, or more precisely on the ratio R0a to RS. 

 

Overall, it is somewhat unclear in the specialist literature what exactly corresponds to the distance Dlit. 

 

Fig. 16 shows the difference between our non-approximated redshift distance D and the linear Hubble redshift 

distance that is an approximated one. 
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Figure 16.   Non-approximated redshift distance D compared to the linear Hubble redshift distance. 

 

It can be seen that the two curves already clearly separate from each other at z ≈ 0.0075, and that Hubble's linear 

law results in distances that are significantly too large for larger redshifts, so that it is no longer applicable from 

around this value. 

 

Recall: 

Of course, it should be noted that the Hubble parameter H0a in our theory results from an approximation for 

small redshifts z. This is not the case in specialist literature. 

 

Because the value of R0a could be identified, we can use it in Eq. (67) and get 
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if we supplement simple with ra. 

 

Hint: 

In the specialist literature of cosmology the redshift distance is calculated using regular ra = 0. This is not the 

case in our theory! 

 

If we replace H0a,lit using Eq. (8) 
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we get 
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(71c) 

 

In this form we see that dR(t)/dt was infinitely big at t = 0 because R(t) was infinitely small at this time. This 

means that dR(t)/dt becomes smaller with time. 

 

Because H0,lit = 69.557 is also known for us [Eq. (8)], we find dRa/dt = 179,938.38 km/s for today. This is the 

today’s physical velocity of expansion, which is valid for all observers (homogeneity of the cosmological 

model). 

 

In summary, we find two different Hubble times: 
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tH_0,lit = 14.07 x 10
9
 years and tH_0a = 15.01 x 10

9
 years, respectively. 

 

 

7. Concluding remarks 

 

The real light path D(z) of the photons through the expanding universe corresponds to a dynamic distance and 

appear therefore as an apparent one. This distance is not identical to the today’s distance D0(z) between the 

cosmic objects. 

For every conceivable observer, the cosmic objects are not radial-spatially, where they appear at first glance! 

In cosmology, nothing is what it seems to be if we look at distances and therefore in the past. 

 

Of course, all cosmological relevant astrophysical objects have a today’s distance D0(z). However, this is not 

observable, but we can calculate it. Photons that are emitted at this distance from the observed galaxy cannot 

have reached us so far. 

 

A fundamental property of quantum mechanics is that it can only make probability statements about the 

microscopic objects it deals with. Here we see that both the measuring and the theorizing astrophysics and 

cosmology, respectively, strictly speaking, can only make statements about mean values of very distant and large 

numbers of cosmic objects (see e.g. the magnitude - redshift relation of quasars). 

This may be one of the reasons why both theories - the theory for the extremely small and the theory for the 

extremely large - do not fit together, i.e. cannot be brought together. 

 

 

 

Note of thanks: 

I would like to thank my wife for the long-standing toleration and the corresponding endurance of my almost 

constant virtual absence. What would I be without her?! 

 

 

 

8. Appendices 

 

8.1 Equations 

 

We use the following equations to solve the EFE with the help of the modified FLRWM. 

 

a) mFLRWM 
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ae is the scale parameter at the time of emission of the observed photons. 

 

b) Christoffel symbols 
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Using the mFLRWM (3a) the calculated Christoffel symbols result in 
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and 
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and 
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c) Ricci tensor Rμν 
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Using the calculated Christoffel symbols the components of the Ricci tensor - the left sides of EFE  - result in 
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and 
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All other components of Rμν are equal to zero. 

 

d) energy-momentum tensor Tμν 

 

For solving the Einstein equations, we need furthermore the components of the energy-momentum tensor Tμν: 
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P describes the possible pressure within the universe and ρ stand for the energy and matter density, respectively. 

The four covariant components of the four-velocity uμ read in our case 
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because all space components are equal to zero (co-moving coordinates). 

Therefore, we get 
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e) Trace of energy-momentum tensor 

 

The trace T of the energy-momentum tensor results in 
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f) concrete EFE 

 

Putting all together, we find at first  
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Combining this with the left sides of EFE calculated above we get 
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g) Friedmann equations 

 

In summary, we get only two remaining different Friedmann equations, which read 
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(A18) 

 

if we neglect the possible pressure P. 

These both equations together lead to the wanted main Friedmann equation 
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which describes the evolution of the scale parameter a(t) in time. 

During this evolution of the universe, the mass MFs, which is represented by the mass density ρ, is a constant: 
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Therefore, the main Friedmann equation takes the form 
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The square root has a constant value. 
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8.2 Tables 
 

In this table appendix, we provide the essential data that we have used and some of the data that we have edited 

or generated for general purposes. 

 

< V >i < z >i < V >i < z >i < V >i < z >i 

17.12072194 0.269543711 19.5118161 1.28508799 19.7439932 1.86740102 

18.42994924 0.434725324 19.4960406 1.30997857 19.7431839 1.90379949 

18.77986464 0.514410603 19.5406994 1.33635871 19.73815 1.91629442 

18.92177101 0.571495206 19.5648675 1.36044896 19.7370051 1.94113536 

19.01993232 0.621120135 19.5526283 1.38646193 19.6390299 1.96661139 

19.07454597 0.665043993 19.5667343 1.41249746 19.7247377 1.99498872 

19.10685279 0.710045685 19.5917766 1.43823632 19.7073435 2.02761873 

19.20756345 0.750830795 19.5835759 1.46348111 19.7225437 2.05895826 

19.23878173 0.788362662 19.6146701 1.4877084 19.7209927 2.09067964 

19.34673999 0.823077834 19.6560914 1.50872984 19.7166723 2.12286464 

19.35605189 0.857111675 19.6421545 1.53039989 19.7562211 2.15726452 

19.35379019 0.889902425 19.6730062 1.55031021 19.6955838 2.1915251 

19.35354202 0.925268472 19.669718 1.57141117 19.7102256 2.23148844 

19.36111675 0.958962211 19.691489 1.59370615 19.6203328 2.27565595 

19.36687535 0.99085674 19.6689622 1.61663057 19.6516638 2.32895262 

19.39208122 1.021072758 19.7130344 1.64024196 19.7034969 2.39616356 

19.41216018 1.049862944 19.7208742 1.66227637 19.6915454 2.47184715 

19.43737733 1.076128596 19.7568415 1.68460462 19.7660462 2.57089058 

19.47736041 1.10186802 19.6973942 1.70912747 19.7708009 2.71401918 

19.4307727 1.129618161 19.7453187 1.7323057 19.7781162 2.90122279 

19.45345178 1.157690919 19.7723632 1.75403384 19.9208291 3.05796277 

19.4499718 1.18469656 19.7568754 1.77625888 20.0279357 3.20401523 

19.50609701 1.208890017 19.7599436 1.79742358 20.2283362 3.40521263 

19.48940778 1.233098139 19.7587704 1.82113988 20.5549521 3.7254264 

19.47597857 1.259028765 19.7435195 1.84394303 21.3169261 4.34427862 

 

Table 1.   Mean values from the quasar data set used according to [1]. 

 

Hint: 

<z>i (with i = 1, 2, ..., 75) are the 75 mean values of the redshifts of the quasars in the redshift intervals formed. 

<V>i are the associated 75 mean values of the apparent visual magnitude of the quasars. 
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zi (end of interval) Ni zi (end of interval) Ni 

0.24669 622 3.45369 128,884 

0.49338 3,891 3.70038 130,205 

0.74008 12,827 3.94708 131,357 

0.98677 25,495 4.19377 132,019 

1.23346 41,724 4.44046 132,432 

1.48015 58,818 4.68715 132,669 

1.72685 78,456 4.93385 132,848 

1.97354 97,109 5.18054 132,902 

2.22023 110,358 5.42723 132,924 

2.46692 117,810 5.67392 132,932 

2.71362 121,463 5.92062 132,949 

2.96031 123,820 6.16731 132,972 

3.20700 126,835 6.41400 132,977 

 

Table 2.   Numbers Ni summed up in the redshift intervals zi of the quasars according to [1]. 

 

SN Ia μTRGB μCeph μ or <μ> mCSP_B0 mSC_B mB or <mB> Mi or <Mi> VNED z 

1980N 31.46 

 

31.46 12.08 

 

12.08 -19.38 1,306.00 0.004356347 

1981B 30.96 30.91 30.94 11.64 11.62 11.63 -19.31 1,050.00 0.003502423 

1981D 31.46 

 

31.46 11.99 

 

11.99 -19.47 1,306.00 0.004356347 

1989B 30.22 

 

30.22 11.16 

 

11.16 -19.06 689.00 0.002298257 

1990N 

 

31.53 31.53 12.62 12.42 12.52 -19.01 1,050.00 0.003502423 

1994D 31.00 

 

31.00 11.76 

 

11.76 -19.24 1,050.00 0.003502423 

1994ae 32.27 32.07 32.17 12.94 12.92 12.93 -19.24 1,552.00 0.005176915 

1995al 32.22 32.50 32.36 13.02 12.97 13.00 -19.37 1,886.00 0.006291019 

1998aq 

 

31.74 31.74 12.46 12.24 12.35 -19.39 1,368.00 0.004563157 

1998bu 30.31 

 

30.31 11.01 

 

11.01 -19.30 689.00 0.002298257 

2001el 31.32 31.31 31.32 12.30 12.20 12.25 -19.07 1,047.00 0.003492416 

2002fk 32.50 32.52 32.51 13.33 13.20 13.27 -19.25 1,864.00 0.006217635 

2003du 

 

32.92 32.92 13.47 13.47 13.47 -19.45 2,422.00 0.008078922 

2005cf 

 

32.26 32.26 12.96 13.01 12.99 -19.28 2,244.00 0.007485178 

2006dd 31.46 

 

31.46 12.38 

 

12.38 -19.08 1,306.00 0.004356347 

2007af 31.82 31.79 31.81 12.72 12.70 12.71 -19.10 1,983.00 0.006614576 

2007on 31.42 

 

31.42 12.39 

 

12.39 -19.03 1,306.00 0.004356347 

2007sr 31.68 31.29 31.49 12.30 12.24 12.27 -19.22 1,702.00 0.005677261 

2009ig 

 

32.50 32.50 13.29 13.46 13.38 -19.13 2,534.00 0.008452514 

2011by 

 

31.59 31.59 12.63 12.49 12.56 -19.03 1,368.00 0.004563157 

2011fe 29.08 29.14 29.11 9.82 9.75 9.79 -19.33 455.00 0.001517717 
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2011iv 31.42 

 

31.42 12.03 

 

12.03 -19.39 1,306.00 0.004356347 

2012cg 31.00 31.08 31.04 11.72 11.55 11.64 -19.41 1,050.00 0.003502423 

2012fr 31.36 31.31 31.34 12.09 11.92 12.01 -19.33 1,302.00 0.004343005 

2012ht 

 

31.91 31.91 12.66 12.70 12.68 -19.23 1,447.00 0.004826672 

2013dy 

 

31.50 31.50 12.23 12.31 12.27 -19.23 1,410.00 0.004703254 

2015F 

 

31.51 31.51 12.40 12.28 12.34 -19.17 1,271.00 0.0042396 

      

<M>= -19.24 

   

Table 3.   Summary of the data which we have used from the 27 SN Ia according to [3]. 

 

SN Ia values that can be traced back to a mean value are marked in green (bold). 

The individual meanings of the data can be found in the original article mentioned. 

 

The data for the angular-size redshift diagram can be found in full in [2]. 
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