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Abstract

The paper studies Σ0
n-computable families (n ⩾ 2) and their numberings. It is

proved that any non-trivial Σ0
n-computable family has a complete with respect

to any of its elements Σ0
n-computable non-principal numbering. It is established

that if a Σ0
n-computable family is not principal, then any of its Σ0

n-computable
numberings has a minimal cover and, if the family is infinite, is incomparable with
one of its minimal Σ0

n-computable numberings. It is also shown that for any Σ0
n-

computable numbering ν of a Σ0
n-computable non-principal family there exists

its Σ0
n-computable numbering that is incomparable with ν. If a non-trivial Σ0

n-
computable family contains the least and greatest elements under inclusion, then
for any of its Σ0

n-computable non-principal non-least numberings ν there exists
a Σ0

n-computable numbering of the family incomparable with ν. In particular,
this is true for the family of all Σ0

n-sets and for the families consisting of two
inclusion-comparable Σ0

n-sets (semilattices of the Σ0
n-computable numberings of

such families are isomorphic to the semilattice of m-degrees of Σ0
n-sets).

Keywords: non-principal numbering, complete numbering, minimal cover, minimal
numbering.
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1 Introduction

One of the basic properties of the Gödel numbering x 7→ Wx is its principality, i.e.
for every computable numbering ν of a family of c.e. sets there exists a computable
function f such that ν(x) = Wf(x) for each x. This property is intensively studied
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in the literature (cf., e.g., [1–4]), since the principal numberings contain information
about all computable numberings of the numbered family. Another key property of
the Gödel numbering is that for any partially computable function ψ there exists a
computable function f such that, for every x, Wf(x) = Wψ(x) if ψ(x) converges, and
Wf(x) = ∅ otherwise. This property called by Mal’tsev [5, 6] the completeness (with
respect to ∅) is also actively studied in the theory of numberings (cf., e.g., [1, 7–13])
and was used by Ershov [14] to prove Kleene’s recursion theorems in arbitrary (not
necessarily computable) numberings (i.e. surjective mappings from N onto nonempty
countable sets).

In this paper, we consider generalized computable numberings of families of
arithmetical sets which were first introduced and studied in Goncharov and Sorbi’s
paper [15]. Let us fix, until the end of the paper, n ⩾ 2. By [15], a numbering ν of a
nonempty family of arithmetical sets is said to be Σ0

n-computable if

Gν = {⟨x, y⟩ ∈ N× N : y ∈ ν(x)} ∈ Σ0
n.

Families with Σ0
n-computable numberings are themselves called Σ0

n-computable. If Gν
is c.e., then the numbering ν is called computable.

Even if a Σ0
n-computable family is not principal (i.e. has no principal numberings),

it always has a Σ0
n-computable numbering complete with respect to any preselected

element (cf., e.g., [8]). In Section 3, we discuss how the algorithmic expressiveness of
such a complete numbering can be improved and prove that it can be chosen to be
complete simultaneously with respect to all elements of the numbered family.

Another motivation for studying non-principal Σ0
n-families is that some structural

properties of their numberings are proved for principal and non-principal families sep-
arately (cf., e.g., [16–18]). In Sections 4 and 5, we prove that for every Σ0

n-computable
numbering, say ν, of a non-principal Σ0

n-computable family there exists its minimal
cover (for arbitrary Σ0

n-computable families this question was raised by Badaev and
Podzorov in their paper [19]) and, if ν is not the least, a Σ0

n-computable numbering
that is incomparable with ν.

Our notation from computability theory is mostly standard. In the following, φe
denotes the partially computable function with the Gödel number e. We write φe(x) ↓
if this computation converges, and φe(x) ↑ otherwise. For a partial function ψ we
denote its domain and range by domψ and ranψ respectively. We let c(x, y) denote
the computable pairing function 2x(2y + 1) − 1. For unexplained notions we refer to
Soare [20, 21].

2 Preliminaries on the theory of numberings

For the main concepts and notions of the theory of numberings we refer to the book
by Ershov [14] and his paper [22].

Definition 1. A numbering ν of a set S is said to be complete with respect to a special
element a ∈ S if for every partially computable function ψ there exists a computable
function f such that, for each x, ν(f(x)) = ν(ψ(x)) if ψ(x) converges, and ν(f(x)) = a
otherwise.
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We say that a numbering ν is complete if it is complete with respect to some special
element.

Given numberings µ and ν, we say that µ is reducible to ν (denoted by µ ⩽ ν)
if there exists a computable function f such that µ(x) = ν(f(x)) for each x (in this
case, we say that µ is reducible to ν via f). We note that if µ ⩽ ν, then ranµ ⊆ ran ν.
We write µ < ν if µ ⩽ ν and ν ̸⩽ µ. The numbering µ is called minimal if µ ⩽ α for
every numbering α ⩽ µ with ranα = ranµ. The numberings µ and ν are said to be
incomparable if µ ̸⩽ ν and ν ̸⩽ µ. If in the definition of reducibility of numberings we
replace the computable function f by an X-computable one (X ⊆ N), then we obtain
the notion of X-reducibility ⩽X . For numberings ν0 and ν1, their direct sum is defined
by (ν0 ⊕ ν1)(2x+ i) = νi(x), i = 0, 1, x ∈ N.

A Σ0
n-computable numbering ν of a familyA is said to be aminimal cover of its Σ0

n-
computable numbering µ if µ < ν and there is no numbering α such that µ < α < ν.
It is said to be the least numbering if ν ⩽ α for each Σ0

n-computable numbering α
of A. We say that ν is principal if α ⩽ ν for each Σ0

n-computable numbering α of A.
Families with Σ0

n-computable principal numberings are called principal as well. By
replacing the reducibility ⩽ with ⩽X , we obtain the definitions of the X-principality.

3 Complete non-principal numberings

The study of the sets of special elements of complete numberings was initiated by
Denisov and Lavrov in their paper [9]. From results by Khisamiev [11], it follows that
every Σ0

n-computable family containing the least element under inclusion has a Σ0
n-

computable numbering complete simultaneously with respect to all of its elements. It
was proved by Badaev, Goncharov, and Sorbi [12] that there exists a Σ0

n-computable
principal family with a Σ0

n-computable non-principal numbering complete simultane-
ously with respect to all elements of the family. The following theorem shows that any
non-trivial (i.e. containing more than one element) Σ0

n-computable family has such a
numbering.

Theorem 1. Every non-trivial Σ0
n-computable family A has a complete with respect

to each of its elements Σ0
n-computable non-principal numbering.

Proof. Let ν be a Σ0
n-computable numbering of the family A such that ν(0) ̸= ν(1).

Without loss of generality we assume that if A is finite and |A| = k > 1, then
ν(i) ̸= ν(j) for all i < j ⩽ k − 1 and ν(i) = ν(k − 1) for each i ⩾ k.

Now we are going to define by induction sequences {µs}s∈N and {αs}s∈N of partial
mappings form N to A such that

� µs ⊆ µs+1 and αs ⊆ αs+1 for each s;
� µ =

⋃
s µs is a Σ0

n-computable numbering of A complete with respect to each of its
elements;

� α =
⋃
s αs is a Σ0

n-computable numbering of a subfamily of A such that α ̸⩽ µ.

At the same time, for every s, we will define an equivalence relation ηs on N and a
strictly increasing computable sequence of integers {zsi }i∈N.

Let µ0(x) and α0(x) be undefined for each x. We define η0 to be the equality
relation on N and z0i = i for each i.
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Assume by induction that the partial mappings µs : N → A and αs : N → A, the
equivalence relation ηs, and the strictly increasing computable sequence {zsi }i∈N have
already been defined and satisfy the following conditions:

1. µt ⊆ µs, αt ⊆ αs, and ηt ⊆ ηs for each t ⩽ s;
2. the sequence {zsi }i∈N strictly increasing and computable;
3. ⟨zsi , zsj ⟩ ̸∈ ηs for any distinct i and j;
4. domµs = N \ (

⋃
i[z

s
i ]ηs), where [z]ηs is used to denote the ηs-equivalence class of

an integer z;
5. for all x, y ∈ domµs, if ⟨x, y⟩ ∈ ηs, then µs(x) = µs(y).

It is not hard to see that conditions 1–5 hold for s = 0. To define the partial mappings
µs+1 and αs+1, the equivalence relation ηs+1, and the sequence {zs+1

i }i∈N, we consider
the following several cases.

i. s = 3t for some t.
We choose the least y ̸∈ domµs and fix an integer l such that y ∈ [zsl ]ηs . In this case,
we provide that µ(y) = ν(t). So we will obtain that ranµ = A. For every z, we define

µs+1(z) =


ν(t), if z ∈ [zs0] ∪ · · · ∪ [zsl ],

µs(z), if z ∈ domµs,

undefined, otherwise.

We set αs+1 = αs and define ηs+1 to be the equivalence relation generated by the
binary relation

ηs ∪ {⟨zsi , zsj ⟩ : i, j ⩽ l}.
For every i, we let

zs+1
i = zsl+i+1.

It is not hard to see that induction assumptions 1–5 hold and µ(y) = ν(t).

ii. s = 3t+ 1 for some t.
In this case, we provide the completeness of µ with respect to ν(t). We define ηs+1 to
be the equivalence relation generated by the binary relation

ηs ∪
{〈
zsc(e,x), φe(x)

〉
∈ N× N : φe(x) ↓

}
.

Using the Recursion Theorem we choose a strictly increasing computable sequence
{c(ei, 0)}i∈N such that

φei(0) = zsc(ei,0) (1)

for each i. For every i, we set
zs+1
i = zsc(ei,0).

Thus, induction assumptions 2 holds. From the definition of the equivalence ηs+1 and
equalities (1), it follows that induction assumption 3 also holds.
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Next, we let αs+1 = αs and µs+1(x) = µs(x) for each x ∈ domµs. Thus, induction
assumption 1 also holds. Now, for every x ̸∈ domµs, we define

µs+1(x) =


µs(φe(y)), if

〈
x, zsc(e,y)

〉
∈ ηs+1 &φe(y) ↓∈ domµs,

undefined, if ∃i [⟨x, zs+1
i ⟩ ∈ ηs+1],

ν(t), otherwise.

Therefore, induction assumptions 4 and 5 hold. By the definition of µs+1 we have that,
for all e, y,

µs+1

(
zsc(e,y)

)
=

{
µ(φe(y)), if φe(y) ↓,
ν(t), if φe(y) ↑,

whenever zsc(e,y) ∈ domµs+1. We also have that φei(0) = zsc(ei,0) for each i. Hence, the

numbering µ will be complete with respect to ν(t).

iii. s = 3t+ 2 for some t.
In this case, we provide that α is not reducible to µ via φt. Let us first assume that A
is infinite. If there exist integers x ̸∈ domαs and l such that ⟨φt(x) ↓, zsl ⟩ ∈ ηs, then,
for every y ⩽ x, we define

αs+1(y) =

{
ν(0), if y ̸∈ domαs,

αs(y), if y ∈ domαs.

For every z, we also define

µs+1(z) =


ν(1), if z ∈ [zs0]ηs ∪ · · · ∪ [zsl ]ηs ,

µs(z), if z ∈ domµs,

undefined, otherwise.

We let ηs+1 to be the equivalence relation generated by the binary relation

ηs ∪ {⟨zsi , zsj ⟩ : i, j ⩽ l}.

For every i, we set
zs+1
i = zsl+i+1.

Since ν(0) ̸= ν(1), we have
α(x) ̸= µ(φt(x)).

If the required x and l do not exist, then we let µs+1 = µs, ηs+1 = ηs, and z
s+1
i = zsi

for each i. Next we choose the least y ̸∈ domαs and define

αs+1(y + u) = ν(u)

for each u ⩽ s. For every z ∈ domαs, we set αs+1(z) = αs(z). Thus, ranα will be
infinite. Since A is infinite and ranµs is finite, we will have that α cannot be reduced
to µ via φt.
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Now suppose that A is finite. If there exist integers x ̸∈ domαs and l such that
⟨φt(x) ↓, zsl ⟩ ∈ ηs, then we define µs+1, αs+1, ηs+1, and {zs+1

i }i∈N in the same way
as in the case of infinite A. Otherwise, if φt(y) ↓ for the least y ̸∈ domαs (note that
φt(y) ∈ domµs), then we take an i < k with

ν(i) ̸= µs(φt(y))

(such i can be chosen effectively by the finiteness of A, the choice of ν, and the
definition of µs) and define αs+1(y) = ν(i). For every z ∈ domαs, we set αs+1(z) =
αs(z). Let µs+1 = µs, ηs+1 = ηs, and zs+1

i = zsi for each i. Therefore, we will have
again that α is not reducible to µ via φt.

It is not hard to see that in this case inductive assumptions 1–5 hold as well.

Thus, by the definition of the numbering µ, we have that it is Σ0
n-computable and

complete with respect to ν(t) for each t. Since α⊕µ ̸⩽ µ, it is also not principal. This
completes the proof of the theorem.

4 Minimal covers

The minimal covers of Σ0
n-computable numberings were first studied by Badaev and

Podzorov in their paper [19]. In that paper, a series of sufficient conditions for the
existence of minimal covers was proved, among which there is the non-∅′-principality
of a numbering being covered. The following theorem shows that instead of ∅′ one
can take any non-computable c.e. set. Using this theorem, we then prove that any
Σ0
n-computable numbering of a Σ0

n-computable non-principal family has a minimal
cover.

Theorem 2. Let C be a non-computable c.e. set. If a Σ0
n-computable numbering ν of

a family A is not C-principal, then it has a minimal cover.

Proof. By [23, Lemma 3.3], for every non-computable c.e. set B there exists a c.e.
equivalence η ⩽T B such that

a) the class [y]η is finite for each y;
b) for every e, if ranφe is infinite, then

N/η =∗ {[φe(y)]η : φe(y) ↓},

where for arbitrary sets X and Y the notation X =∗ Y means that their symmetric
difference is finite.

Let η ⩽T C be a c.e. equivalence relation satisfying conditions a) and b). Fix
a Σ0

n-computable numberings α of the family A such that α ̸⩽C ν and choose a
C-computable sequence {ai}i∈N of pairwise non-η-equivalent integers with

N/η = {[ai]η : i ∈ N}.
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Now we define a Σ0
n-computable numbering µ of A by letting

µ(x) = α(i)

whenever ⟨x, ai⟩ ∈ η. Since α ̸⩽C ν, we have µ ̸⩽ ν.
Let β be an arbitrary Σ0

n-numbering of A such that ν < β ⩽ µ⊕ ν. To prove that
µ ⊕ ν is a minimal cover of ν, it remains to show that µ ⩽ β. Fix an index n such
that β ⩽ µ ⊕ ν via φn. Since β ̸⩽ ν, ranφn contains infinitely many even integers.
Now, by condition b), the c.e.-ness of η, and the equalities µ(x) = µ(y) for all x, y
with ⟨x, y⟩ ∈ η, we have µ ⩽ β.

Corollary 3. Every Σ0
n-computable numbering of a Σ0

n-computable non-principal
family has a minimal cover.

Proof. Let ν be a Σ0
n-computable numbering of a Σ0

n-computable non-principal
family A and let C be a low2 non-computable c.e. set. Since

C <T ∅′ <T ∅′′ ≡T C ′′,

∅′ is high over C. It follows that there exists an ∅′-computable sequence {fn}n∈N
consisting of all C-computable functions (cf., e.g., [20, 24]). Since the family A is not
principal, its Σ0

n-computable numbering

β : c(n, x) 7→ ν(fn(x))

is not principal as well. Therefore, the numbering ν is not C-principal (because
otherwise β would be principal). By Theorem 2, ν has a minimal cover.

The question of the existence of minimal covers of numberings of principal families
remains open.

Now, using the technique from the proof of Theorem 2 we prove that for any
Σ0
n-computable numbering ν of a Σ0

n-computable non-principal family there exists its
minimal Σ0

n-computable numbering that is not reducible to ν.

Proposition 4. For every Σ0
n-computable numbering ν of an infinite Σ0

n-computable
non-principal family A there exists its minimal Σ0

n-computable numbering µ such that
µ⊕ ν is a minimal cover of ν and, hence, µ ̸⩽ ν.

Proof. Let C be a low2 non-computable c.e. set. In the same way as in the proof of
Corollary 3, it is proved that ν is not C-principal. Let us define a numbering µ in the
same way as in the proof of Theorem 2. Thus, µ ⊕ ν is a minimal cover of ν. Since
the family A is infinite, for every index e, if µ ◦ φe is a numbering of A, then ranφe
is infinite. Now, by condition b) in the proof of Theorem 2, the c.e.-ness of η, and the
equalities µ(x) = µ(y) for all x, y with ⟨x, y⟩ ∈ η, we have that µ is minimal.

The corresponding question (on the existence of such minimal numberings for
arbitrary not necessarily principal families) was posed by Badaev and Goncharov
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in [25]. In [25, 26], some other partial answers to this question were obtained, but in
the general case it remains open.

5 Incomparable numberings

One of the classical theorems of the theory of numberings proved by Badaev [27] states
that for any non-principal non-least computable numbering ν of a family of c.e. sets
there exists its computable numbering that is incomparable with ν. It is unknown
whether Badaev’s theorem holds for Σ0

n-computable families, however, if the family is
not principal, then the following theorem holds.

Theorem 5. Let A be a Σ0
n-computable non-principal family. Then for every Σ0

n-
computable non-least numbering ν of A there exists its Σ0

n-computable numbering µ
that is incomparable with ν.

Proof. If the family A is infinite, then the conclusion of the theorem follows
immediately from Corollary 4. So, we will assume that A is finite. Let

A = {P0, . . . , Pm}.

In [3, 19], it was proved that a finite Σ0
n-computable family is principal if and only

if it has the least element under inclusion. Let R0, . . . , Rk be all the pairwise distinct
and minimal under inclusion elements of A. Since A is not principal, k > 0. Just as in
the proof of [14, I § 2, Proposition 4], we choose finite sets F0, . . . , Fk that are pairwise
incomparable under inclusion and

Fi ⊆ Ri&Fi ̸⊆ Rj

for any distinct i, j ⩽ k. Fix a strongly ∅(n−1)-computable double sequence of finite
sets {νt(x)}t∈N such that

νt(x) ⊆ νt+1(x)& ν(x) =
⋃
s

νs(x)

for all t, x.
Now we proceed to defining a Σ0

n-computable numbering µ of the family A that
is incomparable with ν. Let µ0(x) = Px for each x ⩽ m. Assume by induction that
the partial mapping µs : N → A has already been defined. Let us define the partial
mapping µs+1. For every y ∈ domµs, we define µs+1(y) = µs(y). Take the least
x ̸∈ domµs. If φs(x) ↓, then we fix the least t such that there exists an i ⩽ k with
Fi ⊆ νt(φs(x)) and define

µs+1(x) =

{
R1, if i = 0,

R0, if i > 0.

If φs(x) ↑, then we set µs+1(x) = P0. Therefore, the numbering µ =
⋃
s µs is not

reducible to ν via φs. If there exists a y with φs(y) ↓> x, then we fix the least t for
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which there exists an i ⩽ k such that Fi ⊆ νt(y). For every z with x < z ⩽ φs(y), we
define

µs+1(z) =

{
R1, if i = 0,

R0, if i > 0.

Thus, ν is not reducible to µ via φs. If the required y does not exists, then φs is
bounded above. Hence, if ν ⩽ µ via φs, then ν is the least numbering of A. This
contradicts the condition of the theorem.

It follows directly from the definition of partial mappings µs : N → A, s ∈ N, that
µ =

⋃
s µs is a Σ0

n-computable numbering of A, not comparable to ν.

Denisov [28] and Khutoretskii [29] proved, respectively, that for any non-principal
non-least computable numbering ν of a family consisting of two c.e. sets comparable
by inclusion (recall that the semilattice of its computable numberings is isomorphic to
the semilattice of c.e.m-degrees [14]) or of the family of all c.e. sets there exist its com-
putable numberings that are incomparable with ν. The following theorem generalizes
these results to the case of Σ0

n-computable families.

Theorem 6. Let A be a non-trivial Σ0
n-computable family with the least and the

greatest elements under inclusion. Then for every Σ0
n-computable non-principal and

non-least numbering ν of A there eixsts its Σ0
n-computable numbering µ that is

incomparable with ν.

Proof. If the family A is not principal, then the conclusion of the theorem follows
immediately from Theorem 5. Suppose A is principal. Let α be a Σ0

n-computable
principal numbering of A such that α(0) is the least element of A under inclusion and
α(1) is its inclusion-greatest element. Fix strongly ∅(n−1)-computable double sequences
of finite sets {αt(x)}t∈N and {νt(x)}t∈N such that

αt(x) ⊆ αt+1(x)&α(x) =
⋃
s

αs(x),

νt(x) ⊆ νt+1(x)& ν(x) =
⋃
s

νs(x)

for all t, x.
Now we proceed to defining a binary function f ⩽T ∅(n−1) such that

f(x, t) ̸= f(x, t+ 1) ⇒ f(x, t) = 0 ∨ f(x, t+ 1) = 1,

∃y [lim
s
f(y, s) = x]

for all x, t. Hence, the numbering

µ : x 7→ α(lim
s
f(x, s))

will be a Σ0
n-computable numbering of A. We will also provide that the numberings

µ and ν are incomparable. In what follows, we denote

µt(x) = αt(f(x, t))
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for all x, t.
For every x, we let f(x, 0) = 0. Next, we need binary functions l and m defined as

follows:

l(e, t) = max{r ⩽ t : ∀x ⩽ r [φe,s(x) ↓ &µs(x) ↾ r = νs(φe(x)) ↾ r]},

m(e, t) = max{r ⩽ t : ∀x ⩽ r [φe,s(x) ↓ & νs(x) ↾ r = µs(φe(x)) ↾ r]}
for all e, t. It is not hard to see that for every e there exist limits limt l(e, t), limtm(e, t)
and

lim
t
l(e, t) = ∞ ⇔ µ = ν ◦ φe,

lim
t
m(e, t) = ∞ ⇔ ν = µ ◦ φe.

We assume by induction on s that all the values f(x, s), x ∈ N, have already been
defined. To define the values f(x, s+ 1), we consider the following several cases.

i. s = 3t for some t.
In these cases, we provide that ranµ = A. Fix the least e such that f(c(2e, x), s) ̸= e
for each x and define

f(c(2e, z), s+ 1) = e

for the least z with f(c(2e, z), s) = 0. For every y ̸= c(2e, z), we set f(y, s+1) = f(y, s).

ii. s = 3t+ 1 for some t.
In these cases, we provide that µ ̸⩽ ν. If there exists an e ⩽ s such that

l(e, t+ 1) > l(e, t),

then we take the least such e and define

f(c(2e+ 1, x), s+ 1) = x

for the least x > 0 with f(c(2e+ 1, x), s) = 0. Thus,

∀k < e [lim
u
l(k, u) <∞& lim

u
m(k, u) <∞] ⇒ lim

u
l(e, u) <∞.

Indeed, otherwise we would have that

µ(c(2e+ 1, x)) = α(x)

for all (except for a finite number) integers x. Therefore, µ ⩽ ν via φe and hence
α ⩽ ν. This contradicts the non-principality of ν. For each y (not equal to c(2e+1, x)
if the required e and x exist), we define f(y, s+ 1) = f(y, s).

iii. s = 3t+ 2 for some t.
In these cases, we provide tha ν ̸⩽ µ. If there exists an e ⩽ s such that

m(e, t+ 1) > m(e, t),
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then we take the least such e and define

f(z, s+ 1) = 1

for the least z = c(i, v) with i > 2e+ 1 and f(z, s) ̸= 1. Thus,

∀k < e [lim
u
l(k, u) <∞& lim

u
m(k, u) <∞] ⇒ lim

u
m(e, u) <∞.

Indeed, otherwise we would have that

µ(c(i, x)) = α(1)

for all i > 2e + 1 and x. For all j ⩽ 2e + 1 and for all (except for a finite number)
integers x, we would have that µ(c(j, x)) = α(0). Hence, ν ⩽ µ via φe and the
numbering µ is the least. This contradicts the fact that the numbering ν is not the
least. For each y (not equal to z if it exists), we define f(y, s+ 1) = f(y, s).

Now it follows directly from the definition of the function f that the numbering µ
is Σ0

n-computable and incomparable with ν.

Acknowledgments This work was supported by the Russian Science Foundation (grant

no. 23-21-00181) and performed under the development programme of the Volga Region

Mathematical Center (agreement no. 075-02-2023-944).

References

[1] Badaev S.A., Goncharov S.S., and Sorbi A. Completeness and universality
of arithmetical numberings. In: Computability and Models, S.B. Cooper and
S.S. Goncharov eds, Kluwer / Plenum Publishers, New York, 11–44 (2003).

[2] Podzorov S.Yu. Dual covers of the greatest element of the Rogers semilattice.
Siberian Adv. Math. 15(2), 104–114 (2005).

[3] Badaev S.A., Goncharov S.S. Generalized computable universal numberings.
Algebra Log. 53(5), 355–364 (2014).

[4] Grabmayr B. On the invariance of Gödel’s second theorem with regard to
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