
TransBERT Polymer Informatics: A Fusion of Transformer Language Modeling 

and Machine-Driven Chemistry for Accelerated Property Predictions 

BHAUMIK TYAGI1, PRATHAM TANEJA2, AKSHITA GUPTA3 , DAAMINI BATRA4 and 

KESHAV CHANDRA5            

                                      
1Jr. Research Scientist, Delhi, India    

  2Graduate Student, (Electronics and Communication Engineering), ADGITM, Delhi, India   
3,4,5 Undergraduate Student, (Information Technology), ADGITM, Delhi, India 

 

 

Abstract—This research introduces a pioneering 

framework named TransBERT that capitalizes on the 

capabilities of two sophisticated language models, 

TransPolymer and polyBERT, to comprehensively 

advance the polymer informatics field. TransPolymer, 

a Transformer-based language model, predicts 

polymer properties by leveraging self-attention 

mechanisms. The model employs a polymer tokenizer 

imbued with chemical awareness, facilitating the 

extraction of meaningful representations from 

polymer sequences. Moreover, TransPolymer benefits 

from rigorous pretraining on extensive unlabeled 

datasets through Masked Language Modeling, 

underscoring the pivotal role of self-attention in 

effectively modeling polymer sequences. In 

conjunction with TransPolymer, polyBERT 

contributes a fully automated polymer informatics 

pipeline designed to expedite the identification of 

application-specific polymer candidates with 

heightened speed and accuracy. Drawing inspiration 

from Natural Language Processing concepts, 

polyBERT operates as a chemical linguist, treating the 

chemical structure of polymers as a unique language. 

The pipeline integrates a polymer chemical 

fingerprinting capability and a multitask learning 

approach to map polyBERT fingerprints to diverse 

polymer properties effectively. Notably, polyBERT 

outperforms existing polymer property prediction 

methods based on manually crafted fingerprint 

schemes by achieving a remarkable two orders of 

magnitude increase in speed while maintaining high 

accuracy and integrating TransPolymer and 

polyBERT results in a robust computational tool 

poised to propel the fields of polymer design and 

structure-property relationship understanding. This 

combined framework strategically harnesses the 

strengths of Transformer models and machine-driven 

informatics, offering unparalleled efficiency in the 

prediction and identification of polymer properties. 

This synergistic approach holds significant promise for 

scalable deployment, including applications in cloud 

infrastructures, thereby making substantial 

contributions to the advancement of polymer science 

and informatics. 

Keywords— Polymer Informatics, TransPolymer, 

PolyBERT, NLP, Machine-driven informatics  

 

I. INTRODUCTION 

The establishment of rational representations that 

effectively map polymers into a continuous vector 

space is imperative for the successful application of 

machine learning tools in polymer property 

prediction. The precision and efficiency of property 

prediction play a pivotal role in the strategic design 

of polymers for diverse applications, spanning from 

polymer electrolytes [1] to organic optoelectronics 

[2], energy storage [3], and various other fields [4]. 

To enhance the predictive capabilities in polymer-

related tasks, we introduce fingerprints (FPs), a 

proven and effective approach derived from 

molecular machine-learning models [5]. Recent 

advancements in deep neural networks (DNNs) have 

revolutionized polymer property prediction by 

enabling the direct learning of expressive 

representations from data, leading to the generation 

of deep fingerprints. This innovative approach 

eliminates the reliance on manually engineered 

descriptors [6]. While Graph Neural Network 

(GNN)--based models have demonstrated 

significant progress in polymer property prediction, 

they necessitate explicit knowledge of structural and 

conformational information, which can be 

computationally or experimentally expensive to 

acquire. In the realm of polymer informatics 

pipelines, a crucial step involves the conversion of 

polymer chemical structures into numerical 

representations commonly referred to as 

fingerprints, features, or descriptors. This research 

underscores the evolving landscape of polymer 

property prediction methodologies, emphasizing the 

shift towards data-driven approaches facilitated by 

deep learning techniques. The integration of 

fingerprints and the elimination of manual descriptor 

engineering mark a significant leap forward, 

streamlining the prediction process and contributing 

to the advancement of polymer science and 

informatics. 

Historically, prior methodologies for fingerprinting 

in polymer research [17] have relied on 



cheminformatics tools to numerically encode 

essential chemical and structural features. While 

these handcrafted fingerprinting approaches are 

rooted in valuable intuition and accumulated 

experience, their development is characterized by a 

laborious and intricate process. This involves 

complex computations, consuming a substantial 

portion of time during both model training and 

inference phases. Furthermore, the resultant 

fingerprints often lack generalizability across all 

polymer chemical classes, necessitating ad hoc 

additions to the feature catalogue when encountering 

new classes. The reliance on handcrafted 

fingerprints introduces inherent challenges within 

machine learning (ML) pipelines, particularly in the 

exploration of novel polymer chemical classes. Such 

pipelines, utilizing manually engineered 

fingerprints, are susceptible to errors and may 

encounter difficulties accommodating diverse 

chemical structures. Additionally, these handcrafted 

approaches present obstacles to the realization and 

deployment of fully machine-driven pipelines, 

which are essential for achieving scalability in cloud 

computing and high-throughput environments. This 

research underscores the limitations of traditional 

handcrafted fingerprinting methodologies, 

emphasizing the need for more scalable and 

adaptable approaches in the context of modern 

polymer informatics. The transition towards fully 

machine-driven pipelines is essential for 

overcoming the challenges associated with diverse 

polymer chemical classes and facilitating seamless 

integration into scalable computing environments. 

To address the aforementioned constraints, a 

promising strategy involves the substitution of 

manual fingerprinting methodologies with machine-

crafted counterparts, particularly those generated 

through the application of "Transformer" 

technology. Transformers, a recent innovation 

originating from Natural Language Processing 

(NLP), have swiftly emerged as the benchmark in 

machine learning language modeling [18]. This 

study introduces a novel paradigm where Simplified 

Molecular-Input Line-Entry System (SMILES) [19] 

strings, commonly employed for polymer 

representation, serve as the foundational "chemical 

language" for polymers. The approach involves the 

utilization of millions of Polymer SMILES 

(PSMILES) strings to train a language model named 

polyBERT. This model is designed to transcend 

beyond conventional fingerprinting methods, 

evolving into an expert—a linguist—proficient in 

deciphering the intricate chemical language specific 

to polymers. 

 

II. LITERATURE REVIEW 

Recurrent Neural Network (RNN)-based models, 

commonly employed for encoding chemical 

knowledge from polymer sequences, often face 

limitations in competitiveness. This is attributed to 

their reliance on previous hidden states for capturing 

dependencies between words, resulting in 

information loss as the model progresses to deeper 

steps. In contrast, the transformative impact of 

Transformer models on natural language processing 

(NLP) tasks, as evidenced by their exceptional 

performance in recent years [7], has prompted a 

reevaluation of their application in chemistry and 

materials science. 

The Transformer and its variants, noted for their 

attention mechanism, have demonstrated a paradigm 

shift in NLP tasks. This architecture excels in 

capturing relationships between tokens in a 

sequence without relying on past hidden states. 

Notable Transformer-based models such as BERT 

[8], RoBERTa [9], GPT [10], ELMo [11], and XLM 

[12] have emerged as effective pretraining methods 

through self-supervised learning, enhancing 

representations derived from unlabeled texts and 

subsequently improving performance across diverse 

downstream tasks. This paper explores the potential 

of Transformer models in the context of chemistry 

and materials science, highlighting their unique 

ability to overcome the limitations associated with 

traditional RNN-based approaches. The 

transformative impact of attention mechanisms, 

coupled with the success of various Transformer-

based pretraining methods, underscores the 

promising avenue these models present for 

advancing the understanding and application of 

language-based approaches in chemical and 

materials informatics. 

The application of Transformer models in predicting 

the properties of small organic molecules has been 

demonstrated [13]. However, when extended to 

sequence models for polymers, a notable challenge 

emerges due to the inherent scarcity of readily 

available and well-labeled data. This scarcity is 

exacerbated by the labor-intensive nature of the 

characterization process in laboratory settings, 

compounded further by limited accessibility to 

certain polymer data sources [14]. The utilization of 

Transformer models, exemplified by TransPolymer, 

proves advantageous in encoding chemical 

information about the internal interactions of 

polymers and influential factors governing polymer 

properties. The observation of attention scores 

through visualization provides empirical evidence of 

TransPolymer's capacity to learn generalizable 



features, thereby facilitating their transferability to 

the prediction of polymer properties. This ability 

holds significant implications for polymer design, 

emphasizing the broader applicability of 

TransPolymer in addressing challenges related to 

limited and inaccessible polymer data sources. 

Recent investigations [20] have underscored the 

advantageous utilization of Transformers within the 

molecular chemical space. Notably, Wang et al. [21] 

demonstrated the efficacy of training a BERT [22] 

model, a widely adopted general language model, 

using a dataset of molecule Simplified Molecular-

Input Line-Entry System (SMILES) strings. 

Leveraging BERT's latent space representations as 

molecular fingerprints, the authors observed 

superior performance compared to other 

fingerprinting methods, including those based on 

unsupervised recurrent neural networks and graph 

neural networks. A parallel effort by Schwaller et al. 

[23] introduced a Transformer model for predicting 

retrosynthesis pathways of molecules, surpassing 

established algorithms in the field of reaction 

prediction. In a recent study, Xu et al. [24] harnessed 

a RoBERTa model, an evolution of the BERT 

Transformer, for polymer property predictions. 

Their approach involved a two-step process, 

commencing with the pretraining of the RoBERTa 

model through unsupervised learning on a dataset of 

5 million polymers. Subsequently, a fine-tuning 

step, conducted through supervised training, enabled 

direct predictions of polymer properties. 

Additionally, alternative neural network 

architectures, specifically graph neural networks 

[25], have been applied to both the molecule and 

polymer chemical spaces in prior research. In 

contrast to Transformers, graph neural networks 

represent atoms as nodes and bonds as edges within 

a graph, capturing immediate and extended 

connectivities between atoms. Unlike Transformers, 

graph neural networks do not rely on Polymer 

SMILES (PSMILES) strings but necessitate an 

initial set of feature vectors (such as atom types, 

implicit valence, etc.) assigned to each node. 

III. METHODOLOGY 

 

Fig. 1 | Polymer informatics with TransBERT. a Prediction pipeline.  

The left pipeline shows the prediction using 

handcrafted fingerprints using cheminformatics 

tools, while the right pipeline (present work) 

portrays a fully end-to-end machine-driven predictor 

using polyBERT. Illustration of the pretraining (left) 

and finetuning (right) phases of TransPolymer. The 

model is pretrained with Masked Language 

Modeling to recover original tokens, while the 

feature vector corresponding to the special token 

‘〈s〉’ of the last hidden layer is used for prediction 

when finetuning. Within the TransPolymer block, 

lines of deeper color and larger width stand for 

higher attention scores. 

Transformer based encoder: 

Unlike RNN-based models which encoded 

temporal information by recurrence, Transformer 

uses self-attention layers instead. The attention 

mechanism used in Transformer is named Scaled 

Dot-Product Attention, which maps input data into 

three vectors: queries (Q), keys (K), and values 

(V). The attention is computed by first computing 



the dot product of the query with all keys, dividing 

each by √𝑑𝑘 for scaling where dk is the dimension 

of keys, applying the SoftMax function to obtain 

the weights of values, and finally deriving the 

attention. The dot product between queries and 

keys computes how closely aligned the keys are 

with the queries. Therefore, the attention score can 

reflect how closely related the two embeddings of 

tokens are. The formula of Scaled Dot-Product 

Attention can be written as: 

Attention (Q, K, V) = softmax (QKT/√𝑑𝑘) V 

Multi-head attention is performed instead of single 

attention by linearly projecting Q, K, and V with 

different projections and applying the attention 

function in parallel. The outputs are concatenated 

and projected again to obtain the results. In this way, 

information from different subspaces could be 

learned by the model. 

TransPolymer framework: Our TransPolymer 

framework consists of tokenization, Transformer 

encoder, pretraining, and finetuning. Each polymer 

data is first converted to a string of tokens through 

tokenization. Polymer sequences are more 

challenging to design than molecule or protein 

sequences as polymers contain complex hierarchical 

structures and compositions. For instance, two 

polymers that have the same repeating units can vary 

in terms of the degree of polymerization.  

 

Fig. 2 | The whole TransPolymer framework with a pre-

train-finetune pipeline. 

The benchmark, whose size is around 1M, was built 

by Ma et al. by training a generative model on 

polymer data collected from the PolyInfo database 

[15]. The generated sequences consist of monomer 

SMILES and ‘*’ signs representing the 

polymerization points. The ~1M database was 

demonstrated to cover similar chemical space as 

PolyInfo but populate space where data in PolyInfo 

are sparse. Therefore, the database can serve as an 

important benchmark for multiple tasks in polymer 

informatics. To finetune the pretrained 

TransPolymer, ten datasets are used in our 

experiments which cover various properties of 

different polymer materials, and the distributions of 

polymer sequence lengths vary from each other. 

The performance of our pretrained TransPolymer 

model on ten property prediction tasks is illustrated 

below. We use root mean square error (RMSE) and 

R2 as metrics for evaluation. For each benchmark, 

the baseline models and data splitting are adopted 

from the original literature. we develop long 

shortterm memory (LSTM), another widely used 

language model, as well as unpretrained 

TransPolymer trained purely via supervised learning 

as baseline models in all the benchmarks. 

TransPolymerunpretrained and TransPolymerpretrained 

denote unpretrained and pretrained TransPolymer, 

respectively. 

IV. RESULTS 

The results of TransPolymer and baselines on PE-I 

are illustrated in Table 2. 

Table 1. Performance of TransPolymer and baseline 

models on PE-I 

Model Train 

RMS

E  

Test 

RMS

E  

Trai

n R2 

Tes

t  

R2 

TransPolymerunpreta

tined 

0.90 1.03 0.71 0.3

2 

LSTM 1.05 1.46 0.69 -

0.2

7 

TransPolymerpretatin

ed 

0.22 0.69 0.99  0.7

0 

 

TransPolymerpretrained, which achieves the lowest 

RMSE of 0.69 and highest R2 of 0.99 on the average 

of cross-validation sets, exhibits better 

generalization. 

 



Fig. 3 | Scatter plots of predicted values by 

TransPolymerpretrained and baseline model on PE1 dataset 

Table 2. Performance of TransPolymer and baseline 

models on OPV 

Model Train 

RMS

E  

Test 

RMS

E  

Trai

n R2  

Tes

t  

R2 

TransPolymerunpreta

tined 

1.92 2.12 0.37 0.2

0 

LSTM 2.37 2.36 -

0.02 

0.0

1 

TransPolymerpretatin

ed 

1.20 1.93 0.75 0.3

3 

 

 

Fig. 4 | Scatter plots of predicted values by 

TransPolymerpretrained and baseline model on OPV dataset 

This research introduces TransPolymer, a 

Transformer-based model with Masked Language 

Modeling (MLM) pretraining, positioned as an 

advanced solution for accurate and efficient polymer 

property prediction. The proposed model employs a 

meticulously designed polymer tokenization 

strategy to effectively map polymer instances to 

sequences of tokens. Data augmentation strategies 

are implemented to augment the available data, 

enhancing the model's capabilities in representation 

learning. TransPolymer undergoes a two-step 

training process, commencing with MLM 

pretraining on approximately 5 million unlabeled 

polymer sequences, followed by fine-tuning on 

diverse downstream datasets. This comprehensive 

training approach results in TransPolymer 

outperforming all baselines and unpretrained 

versions. The superior model performance is 

attributed to the impact of pretraining with a 

substantial amount of unlabeled data, fine-tuning 

Transformer encoders, and data augmentation for 

expanding the data space. Attention scores from 

hidden layers in TransPolymer offer empirical 

evidence of the model's efficacy in learning 

representations with chemical awareness and 

identifying influential tokens in final prediction 

results. The study anticipates that TransPolymer, 

with its desirable model performance and 

exceptional generalization ability even with limited 

labeled downstream data, holds potential as a 

solution for predicting newly designed polymer 

properties and guiding polymer design. The 

pretrained TransPolymer is envisioned to be applied 

in an active-learning-guided polymer discovery 

framework, contributing to virtual screening of the 

polymer space, recommending potential candidates 

based on model predictions, and updating through 

learning on data from experimental evaluation. 

Furthermore, TransPolymer exhibits outstanding 

performance on copolymer datasets compared to 

existing baseline models, thereby shedding light on 

the exploration of copolymers. Although the primary 

focus of this paper centers on regression, 

TransPolymer is positioned to pave the way for 

promising (co)polymer discovery frameworks. 

 

(A) Attention scores in the first hidden layer. 

 



(B) Attention scores in the last hidden layer. 

 

(C) Visualization of attention scores from finetuned TransBERT. 

Fig. 5 | Visualization of attention scores from pretrained TransPolymer. 

 

 

Fig. 6 | Attention maps and neuron activation for three polymers. Panels a–c shows the normalized attention maps summed 

over all 12 attention heads and 12 encoders of TransBERT. 

This study presents a highly adaptable, expeditious, 

and precise polymer informatics pipeline designed 

for seamless scalability on cloud hardware, 

specifically tailored for high-throughput screening 

of extensive polymer spaces. At the core of this 

pipeline is polyBERT, a Transformer-based Natural 

Language Processing (NLP) model engineered for 

the nuances of polymer chemical language. Trained 

on a dataset comprising 100 million hypothetical 

polymers, polyBERT forms the cornerstone of an 

informatics pipeline that delivers polymer 

representations and predicts polymer properties at 

speeds two orders of magnitude faster than the most 

effective pipeline relying on manually crafted 

fingerprints. The enormity of the polymer universe, 

constrained by current limitations in 

experimentation, manufacturing techniques, 

resources, and economic considerations, 

necessitates novel approaches for exploration. 

Considering various polymer types, including 

homo-polymers, copolymers, and polymer blends, 

alongside unexplored chemistries, additives, and 

processing conditions, the potential diversity within 

the polymer universe is limitless. However, the 

exploration of this vast space, enabled by property 

predictions, is currently hindered by prediction 

speed. The accurate prediction of 29 properties for 

100 million hypothetical polymers within a 

reasonable timeframe underscores polyBERT's role 

as an enabler for extensive exploration of the vast 

polymer universe at scale. 

TransBERT not only accelerates polymer 

informatics pipelines, surpassing state-of-the-art 

approaches by a factor of 100, but also maintains 

accuracy comparable to slower handcrafted 

fingerprinting methods. Leveraging Transformer-

based Machine Learning (ML) models originally 

developed for Natural Language Processing, 

TransBERT fingerprints emerge as dense and 

chemically pertinent numerical representations 

facilitating precise measurement of polymer 

similarity. These fingerprints find application in 

various polymer informatics tasks, including 

property predictions, polymer structure predictions, 

and ML-based synthesis assistance. The potential of 

TransBERT fingerprints to replace handcrafted 

fingerprints in accelerating polymer informatics 

pipelines is significant. Additionally, TransBERT 

holds promise in directly designing polymers based 

on fingerprints, a prospect that entails retraining and 



structural updates to TransBERT, marking a 

direction for future work. 

V. CONCLUSION 

This research presents two innovative approaches, 

TransPolymer and polyBERT, contributing to the 

advancement of polymer informatics and property 

prediction. TransPolymer, a Transformer-based 

model, employs Masked Language Modeling 

(MLM) pretraining on approximately 5 million 

unlabeled polymer sequences, demonstrating 

superior performance in accurate and efficient 

polymer property prediction. Through a well-

designed polymer tokenization strategy and data 

augmentation, TransPolymer excels in 

representation learning, outperforming baselines 

and unpretrained versions. Attention scores from hidden 

layers provide insights into the model's capacity to 

learn chemical representations and influential 

factors in polymer properties. Concurrently, 

polyBERT, a Transformer-based Natural Language 

Processing (NLP) model, serves as a critical 

component in a generalizable, ultrafast, and accurate 

polymer informatics pipeline. Trained on 100 

million hypothetical polymers, polyBERT facilitates 

predictions of polymer properties at speeds two 

orders of magnitude faster than pipelines relying on 

handcrafted fingerprints, maintaining high accuracy. 

The scalability of the polyBERT-based informatics 

pipeline on cloud hardware enables high-throughput 

screening of extensive polymer spaces. The 

collective superior performance of TransPolymer 

and polyBERT highlights their potential in guiding 

polymer design and exploration. TransPolymer's 

application in an active-learning-guided polymer 

discovery framework and its notable performance on 

copolymer datasets suggest promising avenues for 

future research. polyBERT, with its dense and 

chemically pertinent numerical representations of 

polymers, accelerates polymer informatics pipelines 

by replacing handcrafted fingerprints. The study 

concludes by emphasizing the potential of 

polyBERT fingerprints in various polymer 

informatics tasks and its role in future 

advancements, such as direct polymer design based 

on fingerprints through retraining and structural 

updates. 
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