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Abstract. Clifford algebras are an active area of mathematical research with
numerous applications in mathematical physics and computer graphics among

many others. The paper demonstrates an algorithm for the computation of

inverses of such numbers in a non-degenerate Clifford algebra of an arbitrary di-
mension. This is achieved by the translation of the classical Faddeev-LeVerrier-

Souriau (FVS) algorithm for characteristic polynomial computation in the lan-

guage of the Clifford algebra. The FVS algorithm is implemented using the
Clifford package in the open-source Computer Algebra System Maxima. Sym-

bolic and numerical examples in different Clifford algebras are presented.

1. Introduction

Clifford algebras provide the natural generalizations of complex, dual and split-
complex (or hyperbolic) numbers into the concept of Clifford numbers, i.e. general
multivectors. The power of Clifford or, geometric, algebra lies in its ability to
represent geometric operations in a concise and elegant manner. The develop-
ment of Clifford algebras is based on the insights of Hamilton, Grassmann, and
Clifford from the 19th century. After a hiatus lasting many decades, the Clif-
ford geometric algebra experienced a renaissance with the advent of contemporary
computer algebra systems. Clifford algebras can be implemented in a variety of
general-purpose computer languages and computational platforms. There are mul-
tiple actively developed applications in computer-aided design (CAD), computer
vision and robotics, protein folding, neural networks, modern differential geometry,
genetics, and mathematical physics. Recent years have seen renewed interest in Clif-
ford algebra and its implementations in various computational platforms. There
are implementation for the major computer algebra systems, such as Maple, Mat-
lab, Mathematica, Maxima, as well as domain-specific applications – i.e. Ganja.js
for JavaScript, GaLua for Lua, http://spencerparkin.github.io/GALua/, Gal-
gebra for Python, https://galgebra.readthedocs.io/, Grassmann for Julia.
https://grassmann.crucialflow.com/.

Computation of inverses of multivectors has drawn continuos attention in the
literature as the problem was only gradually solved [7, 1, 6, 15]. In order to compute
an inverse of a multivector, previous contributions used series of automorphisms of
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special types discussed in Sec. 2.3. This allows one to write basis-free formulas
with increasing complexity.

As a main application, the present contribution demonstrates an algorithm for
multivector inversion, based on the based on Faddeev–LeVerrier–Souriau (FVS)
algorithm. The algorithm is implemented in the Computer Algebra SystemMaxima
using the Clifford package [12, 10]. The theory enabling the FVS algorithm has been
presented in a preliminary form at the Computer Graphics International conferee,
CGI 2023, Shanghai, Aug 28th – Sept 1 st 2023 (in press). Unlike the original FVS
algorithm, which computes the characteristic polynomial and has a fixed number
of steps, the present Clifford FVS algorithm involves only Clifford multiplications
and subtractions of scalar parts and has a variable number of steps, depending
on the spanning subspace of the multivector. The correctness of the algorithm is
proven using an algorithmic, constructive representation of a multivector in the
matrix algebra over the reals, but it by no means depends on such a representation.
The present FVS algorithm is in fact a proof certificate for the existence of an
inverse. To the present author’s knowledge the FVS algorithm has not been used
systematically to exhibit multivector inverses.

The paper is organized in the following way. Sec. 2 introduces the notation. Sec.
3 exhibits a real matrix representation of the algebra. Sec. 4 discusses the charac-
teristic and minimal polynomials of multivectors. Sec. 5 discusses the multivector
inverse and derives the FVS multivector algorithm. Sec. 6 introduces the notion of
rank of a multivector. Sec. 7 demonstrates the algorithm. Sec. 8 gives the outlook
of the work.

2. Notation and Preliminaries

2.1. Notation. Cℓn will denote a Clifford algebra of order n but with unspecified
signature. Clifford multiplication is denoted by simple juxtaposition of symbols.
Algebra generators will be indexed by Latin letters. Multi-indices will be considered
as index lists and not as sets and will be denoted with capital letters. The operation
of taking k-grade part of an expression will be denoted by ⟨.⟩k and in particular
the scalar part will be denoted by ⟨.⟩0. Set difference is denoted by △. Matrices
will be indicated with bold capital letters, while matrix entries will be indicated
by lowercase letters. The scalar product of the blades will be denoted by ∗; ̂ in
superscript will denote the grade negation operation, while ∼ – the reversion of
Clifford products. The degree of the polynomial P will be denoted as degP .

2.2. General Definitions.

Definition 1. The generators of the Clifford algebra will be denoted by indexed
symbol e. It will be assumed that there is an ordering relation ≺, such that for two
natural numbers i < j =⇒ ei ≺ ej. The extended basis set of the algebra will be
defined as the ordered power set B := {P (E),≺} of all generators E = {e1, . . . , en}
and their irreducible products.

Definition 2 (Scalar product). Define the diagonal scalar product matrix as

G := {σIJ = eI ∗ eJ | eI , eJ ∈ B, I ≺ J} (1)

A multivector will be written as A = a0 +
∑r

k=1 ⟨A⟩k = a0 +
∑

J aJeJ , where
J is a multiindex, such that eJ ∈ B. In other words, J is subset of the power set
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of the first n natural numbers P (n). The maximal grade of A will be denoted by
gr[A]. The pseudoscalar will be denoted by I.

A multivector for which all the coefficients are non zero will be called full-grade
or generic multivector.

Definition 3 (Span of a multivector). The span of the multivector A, written as
span[A], is defined as the minimal ordered set of generators span[A] := {ei} for
which

(A− ⟨A⟩0) ∧ eJ = 0, eJ ∈ B

It is clear that span[A] ⊆ E and span[A] = E only for a full grade multivector.

Definition 4 (Sparsity property). A (square) matrix has the sparsity property if
it has exactly one non-zero element per column and exactly one non-zero element
per row. Such a matrix we call sparse.

Here it is useful to remind the definition of a permutation matrix, which is a
square binary matrix that has exactly one entry of 1 in each row and each column,
with all other entries being 0. Therefore, a sparse matrix in the sense of the above
definition generalizes the notion of a permutation matrix.

2.3. Automorphisms. Consider the general multivector M . Most authors define
two (principal) automorphisms: inversion

M̂ :=

n∑
k=0

(−1)k ⟨M⟩k (2)

and grade reversion

M∼ :=

n∑
k=0

(−1)k(k−1)/2 ⟨M⟩k (3)

They can be further composed into Clifford conjugation:

M := M̂∼ = (M̂)∼ =

n∑
k=0

(−1)k(k+1)/2 ⟨M⟩k (4)

Another, less used, automorphisms are the Hitzer-Sangwine involution [7]:

hJ(M) :=

n∑
k∈J

(−1)k ⟨M⟩k (5)

for the multiindex J and the inverse (or Hermitian) automorphism

M# :=

n∑
k=0

M−1
k (6)

which have no standard notation.

3. Clifford algebra real matrix representation map

In the present we will focus on non-degenerate Clifford algebras, therefore the
non-zero elements of G are valued in {−1, 1}.
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Lemma 1 (Sparsity lemma). If the matrices A and B are sparse then so is C =
AB. Moreover,

cij =

{
0

aiqbqj

(no summation!) for some index q.

Proof. Consider two sparse square matrices A and B of dimension n. Let cij =∑
µ aiµbµj . Then as we vary the row index i then there is only one index q ≤ n,

such that aiq ̸= 0. As we vary the column index j then there is only one index
q ≤ n, such that bqj ̸= 0. Therefore, cij = (0; aiqbqj) for some q by the sparsity of
A and B. As we vary the row index i then cqj = 0 for i ̸= q for the column j by
the sparsity of A. As we vary the column index j then ciq = 0 for j ̸= q for the
row i by the sparsity of B. Therefore, AB is sparse. □

Lemma 2 (Multiplication Matrix Structure). For the multi-index disjoint sets
S ≺ T the following implications hold for the elements of M :

mµλ eS mµλ′eT

mλµeS mλµmµλ′eS△T mλλ′′eS△T

∃

∃λ′ > λ

∃ ∃λ′′ = λ′

so that mλλ′ = mλµσµmµλ′ for some index µ.

Proof. Suppose that the ordering of elements is given in the construction of Cℓp,q,r
. To simplify presentation, without loss of generality, suppose that es and et are
some generators. By the properties of M there exists an index λ′ > λ, such that
eMeL′ = mµλ′ et, L

′\M = T for L ≺ L′. Choose M , s.d. L ≺ M ≺ L′. Then for
L ≺ M ≺ L′ and S ≺ T

eMeL = mµλ es, L△M = S ⇔ eLeM = mλµ es

eMeL′ = mµλ′ et, L′△M = T

Suppose that eset = est, st = S ∪ T = S△T . Multiply together the diagonal
nodes in the matrix

eL eMeM︸ ︷︷ ︸
σµ

eL′ = mλµmµλ′ est

Therefore, s ∈ L and t ∈ L′. We observe that there is at least one element (the
algebra unity) with the desired property σµ ̸= 0.

Further, we observe that there exists unique index λ′′ such that mλλ′′est. Since
λ is fixed. This implies that L′′ = L′ ⇒ λ′′ = λ′. Therefore,

eLeL′ = mλλ′est, L′△L = {s, t}

which implies the identity mλλ′ est = mλµσµmµλ′ est. For higher graded elements
eS and eT we should write eS△T instead of est.

□

Proposition 1. Consider the multiplication table M. All elements mkj are differ-
ent for a fixed row k. All elements miq are different for a fixed column q.
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Proof. Fix k. Then for eK , eJ ∈ B we have eKeJ = mkjeS , S = K△J . Suppose
that we have equality for 2 indices j, j′. Then K△J ′ = K△J = S. Let δ = J ∩ J ′;
then

K△ (J ∪ δ) = K△J = S ⇒ K△δ = S ⇒ δ = ∅
Therefore, j = j′. By symmetry, the same reasoning applies to a fixed column
q. □

Proposition 2. For es ∈ E the matrix As = Cs(M) is sparse.

Proof. Fix an element es ∈ E. Consider a row k. By Prop. 1 there is a j, such
ekj = es. Then akj = mkj , while for i ̸= j aki = 0.

Consider a column l By Prop. 1 there is a j, such ejl = es. Then ajl = mjl,
while for i ̸= j ail = 0. Therefore, As has the sparsity property. □

Proposition 3. For generator elements es and et EsEt +EtEs = 0.

Proof. Consider the basis elements es and et. By linearity and homomorphism of
the π map (Th. 3.1): π : eset + etes = 0 7→ π(eset) + π(etes) = 0. Therefore, for
two vector elements EsEt +EtEs = 0. □

Proposition 4. EsEs = σsI

Proof. Consider the matrixW = GAsGAs. Then wµν =
∑

λ σµσλaµλaλν element-
wise. By Lemma 1 W is sparse so that wµν = (0;σµσqaµqaqν).

From the structure of M for the entries containing the element eS we have the
equivalence {

eMeQ = asµqeS , S = M△Q

eQeM = asqµeS ,

After multiplication of the equations we obtain eMeQeQeM = asµqeSa
s
qµeS , which

simplifies to the First fundamental identity :

σqσµ = asµqa
s
qµσs (7)

We observe that if σµ = 0 or σq = 0 the result follows trivially. In this case also
σs = 0. Therefore, let’s suppose that σsσqσµ ̸= 0. We multiply both sides by
σsσqσµ to obtain σs = σqσµa

s
µqa

s
qµ. However, the RHS is a diagonal element of W,

therefore by the sparsity it is the only non-zero element for a given row/column so
that W = E2

s = σsI. □

Definition 5 (Clifford coefficient map). Define the linear map acting element-wise
Ca : Cℓn 7→ R by the action Ca(ax+ b) = x for x ∈ R, a, b ∈ B.

Define the Clifford coefficient map indexed by eS as AS := CS(M), where M
is the multiplication table of the extended basis M = {eMeN | eM , eN ∈ B}, and
AS action of the map.

Definition 6 (Canonical matrix map). Define the map π : B 7→ MatR(2
n ×

2n), n = p+ q + r as
π : eS 7→ Es := GAs (8)

where s is the ordinal of eS ∈ B and AS is computed as in Def. 5.

Proposition 5. The π-map is linear.

The proposition follows from the linearity of the coefficient map and matrix
multiplication with a scalar.
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Theorem 3.1 (Semigroup property). Let es and et be generators of Cℓp,q,r . Then
the following statements hold

(1) The map π is a homomorphism with regard to the Clifford product (i.e. π
distributes over the Clifford products): π(eset) = π(es)π(et).

(2) The set of all matrices Es forms a multiplicative semigroup.

Proof. Let Es = π(es),Et = π(et),Est = π(eset). We specialize the result of
Lemma 2 for S = {s} and T = {t} and observe that mλλ′ est = mλµσµmµλ′ est for
λ, λ′, µ ≤ n and σλmλλ′ = σλmλµσµmµλ′ . In summary, the map π acts on Cℓp,q
according to the following diagram:

es Es

eset ≡ est Est ≡ EsEt, st = s ∪ t

et

π

Et

π

Therefore, Est = EsEt. Moreover, we observe that π(eset) = Est = EsEt =
π(es)π(et).

For the semi-group property observe that since π is linear it is invertible. Since
π distributes over Clifford product its inverse π−1 distributes over matrix multipli-
cation:

π−1(EsEt) ≡ π−1(Est) = est ≡ eset = π−1(Es) π
−1(Et)

However, Cℓp,q is closed by construction, therefore, the set {E}s is closed under
matrix multiplication. □

Proposition 6. Let L := {li| li ∈ B} be a column vector and Rs be the first row
of Es. Then π−1 : Es 7→ RsL.

Proof. We observe that by the Prop. 2 the only non-zero element in the first row
of Es is σ1m1s = 1. Therefore, RsL = es. □

Theorem 3.2 (Complete Real Matrix Representation). Define the map g : A 7→
GA as matrix multiplication with G. Then for a fixed multiindex s π = Cs ◦ g =
g ◦ Cs. Further, π is an isomorphism inducing a Clifford algebra representation in
the real matrix algebra according to the diagram:

Cℓp,q(R) MatR (2n × 2n)
π

π−1

Proof. The π-map is a linear isomorphism. The set {Es} forms a multiplicative
group, which is a subset of the matrix algebra MatR(N ×N), N = 2n. Let π(es) =
Es and π(et) = Et. It is claimed that

(1) EsEt ̸= 0 by the Sparsity Lemma 1.
(2) EsEt = −EtEs by Prop. 3.
(3) EsEs = σsI by Prop. 4.

Therefore, the set {ES}P (n)
S={1} is an image of the extended basis B. Here P (n)

denotes the power set of the indices of the algebra generators. □
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What is useful about the above representation is the relationship between the
trace of the multivector matrix and the scalar part of the preimage

trA = 2n ⟨A⟩0 (9)

for the image π(A) = A of a general multivector element A. This will be used
further in the proof of FVS algorithm.

Remark 1. The above construction works if instead of the entire algebra Cℓp,q we
restrict a multivector to a sub-algebra of a smaller grade max gr[A] = r. In this
case, we form grade-restricted multiplication matrices Gr and Mr.

4. Characteristic and minimal polynomials of a multivector

Let us first introduce the notions of characteristic and minimal polynomials of a
multivector.

Definition 7 (Characteristic polynomial). The characteristic polynomial pA of the
multivector A is the preimage of the characteristic polynomial PA(x) := det(xI−A)
of its matrix representation by the map π.

From the properties of the π map it is clear that

π−1 : PA(A) = 0 7→ pA(A) = 0 (10)

so that the above definition is consistent with the usual notion of a characteristic
polynomial. Therefore, the notion of an eigenvalue λ of a multivector can be also
defined having its usual meaning – that is, a member of the list of real or complex
numbers {λ}i, such that the equation

pA(A) =

2n∏
i

(A− λi) = 0 (11)

holds true for the multivector A.

Definition 8 (Minimal polynomial). The minimal polynomial m is the monic poly-
nomial µ of minimal degree, such that

µ(A) =

m∑
k=0

ckA
k = 0, cm = 1 (12)

for a given multivector A.

The coefficients of the polynomial will be assumed to be real numbers although
this is not strictly necessary, as discussed in [5].

Proposition 7. The minimal polynomial µ is unique for a given multivector A ∈
Cℓp,q.

Proof. The proof is given in [5]. Suppose that f(x) and g(x) are two monic poly-
nomials of minimal degree m such that f(y) = g(y) = 0, then h(x) = f(x) - g(x)
is a polynomial of smaller degree (m-1) such that h(y) = 0. This contradicts the
minimality of f and g. Therefore, h = 0. □

Proposition 8. Under the mapping π the polynomial µ is the minimal polynomial
of the complete real matrix representation of the generic multivector A.
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Proof. Consider the generic multivector A and fix the value of the coefficients of its
minimal polynomial µ. Then by the properties of the π map we can compose the
diagram

µ(A) µ(π(A)) = µ(A)

0 0

=

π

π

=

which is true. □

Lemma 3. Suppose that pA(x) and µ(x) are the characteristic and minimal poly-
nomials of the multivector A, respectively; and furthermore µ(0) ̸= 0. Then

• µ divides pA: µ|PA;
• pA and µ share the same roots;
• Finally, pA can be written as

pA(x) =

n=⌊N/m⌋∑
k=1

akµ
k(x), an = 1 (13)

where deg[p] = N and m|N .

Proof. Suppose that pA is of degree N and is divided by µ (of degree m) as

pA(x) = µ(x)g(x) + r(x),

where g(x) is a polynomial of degree N −m and r(x) is the reminder polynomial
of maximal degree k < m (by the definition of µ). Then we evaluate A at any of
its roots to obtain 0 = r(A). Therefore, r = 0 since µ by hypothesis is the minimal
polynomial.

Suppose that λ ̸= 0 is a root of PA with multiplicity 1. Then there exits a
non-null eigenvector v, such that Av = λv. Furthermore, by associativity, for any
natural number m we have Amv = λmv. Hence

µ(A)v = µ(λ)Iv = 0

by Prop. 8. Therefore, by the above diagram PA and hence pA, and µ share the
same roots.

Now suppose that λ is a root of µ with multiplicity 1. To establish the validity
of eq. 13 we write it first as

pA(x) =

n=⌊N/m⌋∑
k=0

akµ
k(x) + r(x),

where r is the reminder term. However, we have already established that h = 0.
Then we use a result on the condition when one polynomial is a polynomial of
another one, as stated in [13, Prop. 1] since pA and µ share the same roots as
established above they do fulfil the technical condition. Furthermore, we observe
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that an = 1 since pA is monic. To determine n we observe that the coefficients can
be determined by the analytical formula

ak =
1

k!

(
1

µ′(x)

∂

∂x

)k

pA(x)

∣∣∣∣∣
x=λ

(14)

Therefore, at the final step nm = deg[p] = N . The series terminates for k > n.
The proof of eq. 14 follows by induction observing that for a differentiable function
µ we have that

∂

∂µ
pA =

dx

dµ

∂

∂x
pA =

1

µ′(x)

∂

∂x
pA

while also µ′(λ) ̸= 0. □

To optimize the inverse calculation the following needs to be considered. On the
first place, for the case whenever pA(x) = µ(x)n one could determine the coefficients
of µ by equating the equal powers from both sides of the equation. The exponent
n in the formula can be determined by the polynomial Greatest Common Divisor
algorithm. The algorithm how to compute µ from pA for this case is presented in
Listing 1.

On the other hand, if µ(0) = 0 then µ(x) = xh(x), where h(x) corresponds to a
zero divisor, since detA = 0 in that case. Suppose that h(0) ̸= 0. In such a case
we proceed as follows. Write pA as

pA(x) =

n=⌊N/m⌋∑
k=0

akh
k(x) (15)

Then by the chain rule we obtain

∂

∂h
pA =

dx

dh

∂

∂x
pA =

1

h′(x)

∂

∂x
pA

Therefore,

ak =
1

k!

(
1

h′(x)

∂

∂x

)k

pA(x)

∣∣∣∣∣
x=λ

(16)

by induction, in a similar way as above. The above discussion is valid also for the
case when µ(x) = xqh(x) for some natural number q. In such case h is computed
in corresponding manner as h(x) = µ(x)/xq, so we only need to determine the
multiplicity of the root x = 0 by successive differentiations.

From this discussion it is apparent that in the general case the minimal polyno-
mial can not be determined solely from the characteristic one. However, this is not
interesting for applications, since in the case detA = 0 the inverse will not exist.

5. Multivector inverses and related notions

5.1. Low dimensional formulas for the inverse. The following formulas for
the inverse element have been shown to hold[7]: For n=1,2

M−1 =
M

MM
(17)

For n = 3

M−1 =
MM̂M∼

MMM̂M∼
(18)
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For n = 4

M−1 =
Mh3,4(MM)

MMh3,4(MM)
(19)

For n = 5

M−1 =
MM̂M∼h1,4(MMM̂M∼)

MMM̂M∼h1,4(MMM̂M∼)
(20)

Other, but equivalent formulas have been derived by different authors [8, 14, 3].

5.2. The FVS multivector inversion algorithm. Multivector inverses can be
computed using the matrix representation and the characteristic polynomial.

The matrix inverse is given as A−1 = adjA/detA, where detA is the determi-
nant and adj denotes the adjunct. The formula is not practical, because it requires
the computation of n2 + 1 determinants. By Cayley-Hamilton’s Theorem, the in-
verse of A is a polynomial in A, which can be computed at the last step of the
FVS algorithm [4]. This algorithm has a direct representation in terms of Clifford
multiplications as follows.

Theorem 5.1 (Reduced-grade FVS algorithm). Suppose that A ∈ Cℓp,q is a mul-
tivector of span s, such that A ⊆ span[e1, . . . , es]. The Clifford inverse, if it exists,
can be computed in k = 2⌈s/2⌉ Clifford multiplication steps as

m1 = A c1 = −kA ∗ 1, t1 := −c1
m2 = Am1 − t1 c2 = −k

2A ∗m1, t2 := −c2
. . . . . .
mk = Amk−1 − tk ck = −A ∗mk−1, tk := −ck

until the step where mk = 0 so that

A−1 = −mk−1/ck. (21)

The inverse does not exist if ck = − detA = 0.
There is a polynomial of A of maximal grade k

χA(λ) = λk + c1λ
k−1 + . . . ck−1λ+ ck, (22)

such that χA(A) = 0. This polynomial will be called reduced characteristic polyno-
mial.

Proof. The proof follows from the homomorphism of the π map. We recall the
statement of FVS algorithm:

pA(λ) = det (λIn −A) = λn + c1λ
n−1 + . . . cn−1λ+ cn, n = dim(A),

where
M1 = A, t1 = tr[M1], c1 = −t1
M2 = AM1 − t1In, t2 = 1

2 tr[AM1], c2 = −t2
. . . . . . . . .
Mn = AMn−1 − tnIn, tn = 1

n tr[AMn−1], cn = −tn.

The matrix inverse can be computed from the last step of the algorithm as A−1 =
Mn−1/tn under the obvious restriction tn ̸= 0.

Therefore, for the kth step of the algorithm application of π−1 leads to

π−1 : Mk = AMk−1 − tkI 7→ mk = Amk−1 − tk.
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Furthermore, tr[Mk] = n ⟨mk⟩0 = tk by eq. 9. Moreover, the FVS algorithm ter-
minates with Mn = 0n, which corresponds to the limiting case n = 2p+q wherever
A contains all grades. Here 0n denotes the square zero matrix of dimension n.

On the other hand, examining the matrix representations of different Clifford
algebras, Acus and Dargys [2] make the observation that according to the Bott
periodicity the number of steps can be reduced to 2⌈n/2⌉. This can be proven
as follows. Consider the isomorphism Cℓp,q ⊃ Cℓ+p,q

∼= Cℓq−1,p−1. Therefore, if a
property holds for an algebra of dimension n = p+q it will hold also for the algebra
of dimension n−2. Therefore, suppose that for n even the characteristic polynomial
is square free: pA(v) ̸= q(v)2 for some polynomial. We proceed by reduction. For
n = 2 in Cℓ2,0 and A = a1 + e1a2 + e2a3 + e12a4 we compute

pA(v) =
(
a21 − a22 − a23 + a24 − 2a1v + v2

)2
and a similar result holds also for the other signatures of Cℓ2 . Therefore, we have
a contradiction and the reduced polynomial is of degree k = 2n/2 and the number
of steps can be reduced accordingly. In the same way, suppose that n is odd and
the characteristic polynomial is square-free. However, for n = 3 in Cℓ3,0 and
A = a1 + e1a2 + e2a3 + e3a4 + a5e12 + a6e13 + a7e23 + a8e123 it is established that
pA factorizes as pA(v) = q(v)2 for q(v) =

(a21−a22−a23−a24+a25+a26+a27−a28+2i(a3a6−a4a5−a2a7+a1a8)−2(a1+ia8)v+v2)

(a21−a22−a23−a24+a25+a26+a27−a28+2i(a4a5−a3a6+a2a7−a1a8)−2(a1−ia8)v+v2).

The above polynomial is factored due to space limitations. Similar results hold
also for the other signatures of Cℓ3 . Therefore, we have a contradiction and the
reduced polynomial is of degree k = (n + 1)/2. Therefore, overall, one can reduce
the number of steps to k = 2⌈n/2⌉.

As a second case, let Es = span[A] be the set of all generators, represented in A
and s their number. We compute the restricted multiplication tables M(Es) and
respectively G(Es) and form the restricted map πs. Then

πs(AA−1) = πs(A)πs(A
−1) = AA−1 = In, n = 2s.

Therefore, the FVS algorithm terminates in k = 2s steps. Observe that π−1 :
AMk 7→ Amk. Therefore, tr[AMk] will map to 2sA ∗mk by eq. 9. Now, suppose
that tk ̸= 0; then for the last step of the algorithm we obtain:

Amk−1 − tk = 0 ⇒ Amk−1/tk = 1 ⇒ A−1 = mk−1/tk.

Therefore, by the argument of the previous case, the number of steps can be reduced
to k = 2⌈s/2⌉. □

Corollary 1. The adjunct of a multivector A can be computed as

adjA = mk−1, k = 2⌈s/2⌉

Corollary 2. χA is the minimal polynomial of the generic multivector A of span
s. The maximal grade of the µ is m = 2⌈s/2⌉. The algebra signature determines
uniquely χA.

Proof. The first statement follows from Prop. 8. The second statement follows
from Prop. 7. □

Remark 2. To avoid possible confusion the name ”reduced characteristic polyno-
mial” will be kept for the minimal polynomial of the algebra.
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6. Multivector rank

The above proof demonstrates that the degree of the minimal polynomial deter-
mines the number of steps (i.e. Clifford multiplications) in the computation. If the
degree of the minimal polynomial is smaller than the degree of the characteristic
polynomial some optimization of the algorithm is possible but then we have to de-
termine the minimal polynomial of a specific, possibly sparser multivector. To do
so one could use the following result.

Proposition 9. Suppose that µ is of degree m. Then the multivector FVS algorithm
will terminate in m steps.

Proof. By Lemma eq. 3 pA(x) is a polynomial in µ. Since in Cℓp,q there are no
nilpotents

pA(A) = 0 =⇒ µ(A) = 0 =⇒ π[µ(A)] = µ(π(A)) = µ(A) = 0

So we obtain a matrix polynomial. On the other hand, similarly to the method of
Horner we calculate

0 = Bm = A(Bm−1 − pm−1I) = A(A(Bm−2 − pm−2I)− pm−1I) =

. . . = A(Am . . .− pm−2A− pm−1I) = Aµ(A).

Therefore, we recover the structure of the FVS matrix algorithm with the identifi-
cation pk = −cm−k−1.

□

Based on Th. 5.1 we can tabulate the numbers for steps necessary for the
determinant computation (Table 1) in view of the algebra dimension. The table
can be extended in an obvious way for the higher dimensional Clifford algebras.
However, here it is truncated to n = 8 considering the Bott periodicity.

dimension s 1 2 3 4 5 6 7 8
maximal number of steps 2⌈s/2⌉ 2 2 4 4 8 8 16 16
Table 1. Number of steps of the reduced-grade FVS algorithm

Proposition 10 (Rank algorithm). Consider the multivector A, such that detA ̸=
0, having span Es = span[A] = {e1, . . . , es} of s dimensions. Consider the elements
of the Krylov sequence

W = {1, A,A2, . . . Ak}, k = 2⌈s/2⌉

Populate a matrix W by the action, generating its k-th row

W(k) = {e−1
J ∗ (Ak)}, eJ ∈ P (Es)

Then the rank of W is equal to the degree of µ(A).

Proof.

W(k) = G−kAk1T = {e−1
J ∗ (Ak)}, eJ ∈ P (Es)

Therefore, rank(W) is equal to the degree of µ(A) by definition from where the
result follows. □

This allows us to define the rank of a multivector in the following way:
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Definition 9 (Rank of a multivector). The rank of the multivector A, r(A), is the
degree of its minimal polynomial µ(A).

Therefore, we claim that

Proposition 11. The determinant of the multivector A (and hence its inverse if
it exists) can be computed in at least r(A) number of steps.

Remark 3. If the matrix rank is determined by direct computation the above result
stated in Prop. 10 may not be very practical. On the other hand, the computation
of the set W can be parallelized which can lead to some time saving. For example
this could be done by adapting the Samuleson-Berkowitz algorithm. On the second
place, there maybe more economic algorithms for determining the rank of A.

From the above results we can conclude that the rank of a multivector is a
measure of its complexity. Once could expect that the multivector rank will have
impact also on other algorithms.

7. Experiments

Computations are performed using the Clifford package in Maxima, which was
first demonstrated in [12]. The present version of the package is 2.5 and it is avail-
able for download from a Zenodo repository [10]. The function fadlevicg2cp returns
the inverse (if it exists) and the characteristic polynomial pA(v) of a multivector
A (Appendix A). Experiments were performed on a Dell® 64-bit Microsoft Win-
dows 10 Enterprise machine with configuration – Intel® CoreTM i5-8350U CPU @
1.70GHz, 1.90 GHz and 16GB RAM. The computations were performed using the
Clifford package version 2.5 on Maxima version 5.46.0 using Steel Bank Common
Lisp version 2.2.2.

7.1. Symbolical experiments.

Example 1. For Cℓ2,0 and a multivector A = a0+a1e1+a2e2+a3e12 the reduced
grade algorithm produces

t1 = −2a1, m1 = a1 + e1a2 + e2a3 + a4e12,

resulting in A−1 = (a1 − e1a2 − e2a3 − a4e12)/(a
2
1 − a22 − a23 + a24) and the reduced

characteristic polynomial is χA(v) = a21 − a22 − a23 + a24 − 2a1v + v2.

Example 2. For Cℓ1,1 and a multivectorA = a0+ a1e1+ a2e2+ a3e12 the reduced
grade algorithm produces

t1 = −2a1, m1 = a1 + e1a2 + e2a3 + a4e12,

resulting in A−1 = (−a1 + e1a2 + e2a3 + a4e12)/(−a21 + a22 − a23 + a24) and the re-
duced characteristic polynomial is χA(v) = a21 − a22 + a23 − a24 − 2a1v + v2.

Example 3. For Cℓ0,2 and a multivector A = a0+a1e1+a2e2+a3e12 the reduced
grade algorithm produces

t1 = −2a1, m1 = a1 + e1a2 + e2a3 + a4e12,

resulting in A−1 = (a1 − e1a2 − e2a3 − a4e12)/(a
2
1 + a22 + a23 + a24) and the reduced

characteristic polynomial is χA(v) = a21 + a22 + a23 + a24 − 2a1v + v2.

Bespoke computations are practically instantaneous on the testing hardware
configuration.
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Example 4. The real matrix representation of a generic multivector A in the
quaternion algebra Cℓ0,2 is

A =


a1 a2 a3 a4
−a2 a1 −a4 a3
−a3 a4 a1 −a2
−a4 −a3 a2 a1


Suppose that we wish to determine if a particular Hadamard 4 × 4 matrix (discussed
for example in [9])

Aq =


q1 q2 −q3 q4
−q2 q1 q4 q3
q3 −q4 q1 q2
−q4 −q3 −q2 q1


encodes the same algebra. One could proceed as follows. Applying the matrix FVS
algorithm to compute the characteristic polynomial of Aq, we obtain

χAq (v) =
(
q21 + q22 + q23 + q24 − 2q1v + v2

)2
On the other hand, the reduced multivector FVS algorithm applied to A results in
the polynomial

χA(v) = a21 + a22 + a23 + a24 − 2a1v + v2

Therefore, by simple inspection one could conclude that Aq encodes the same Clif-
ford (i.e. quaternion) algebra, which was also recognized in [9] using the full mul-
tiplication table of the matrix algebra. The identification using the multiplication
table requires 16 matrix multiplications, while the multivector FVS algorithm only
2 multivector multiplications as shown above.

Example 5. Consider Cℓ3,0 . Let

A = a1 + e1a2 + e2a3 + e3a4 + a5 (e1 e2) + a6 (e1 e3) + a7 (e2 e3) + a8 (e1 e2 e3)

Then the application of the FVS algorithm yields

A−1 =
S + V +BV +Q

∆

where the determinant is given by

∆ = a41 − 2a21 a
2
2 + a42 − 2a21 a

2
3 + 2a22 a

2
3 + a43

−2a21 a
2
4+2a22 a

2
4+2a23 a

2
4+a44+2a21 a

2
5−2a22 a

2
5−2a23 a

2
5+2a24 a

2
5+a45−8a3a4a5a6+2a21

a26−2a22 a
2
6+2a23 a

2
6−2a24 a

2
6+2a25 a

2
6+a46+8a2a4a5a7−8a2a3a6a7+2a21 a

2
7+2a22 a

2
7

− 2a23 a
2
7 − 2a24 a

2
7 + 2a25 a

2
7 + 2a26 a

2
7 + a47 − 8a1a4a5a8 + 8a1a3a6a8 − 8a1a2a7a8

+ 2a21 a
2
8 + 2a22 a

2
8 + 2a23 a

2
8 + 2a24 a

2
8 − 2a25 a

2
8 − 2a26 a

2
8 − 2a27 a

2
8 + a48

and

S =
(
a31 − a1a

2
2 − a1a

2
3 − a1a

2
4 + a1a

2
5 + a1a

2
6 + a1a

2
7 − 2a4a5a8 + 2a3a6a8 − 2a2a7a8 + a1a

2
8

)
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While the vector part is given by

V =

e1
e2
e3


−a21a2 + a32 + a2a

2
3 + a2a

2
4 − a2a

2
5 − a2a

2
6 + 2a4a5a7 − 2a3a6a7 + a2a

2
7 − 2a1a7a8 + a2a

2
8

−a21a3 + a22a3 + a33 + a3a
2
4 − a3a

2
5 − 2a4a5a6 + a3a

2
6 − 2a2a6a7 − a3a

2
7 + 2a1a6a8 + a3a

2
8

−a21a4 + a22a4 + a23a4 + a34 + a4a
2
5 − 2a3a5a6 − a4a

2
6 + 2a2a5a7 − a4a

2
7 − 2a1a5a8 + a4a

2
8


(23)

the bi-vector part by

BV =

e12
e23
e13


−a21a5 + a22a5 + a23a5 − a24a5 − a35 + 2a3a4a6 − a5a

2
6 − 2a2a4a7 − a5a

2
7 + 2a1a4a8 + a5a

2
8

2a3a4a5 − a21a6 + a22a6 − a23a6 + a24a6 − a25a6 − a36 + 2a2a3a7 − a6a
2
7 − 2a1a3a8 + a6a

2
8

−2a2a4a5 + 2a2a3a6 − a21a7 − a22a7 + a23a7 + a24a7 − a25a7 − a26a7 − a37 + 2a1a2a8 + a7a
2
8


(24)

and the pseudoscalar part by

Q = I
(
2a1a4a5 − 2a1a3a6 + 2a1a2a7 − a21a8 − a22a8 − a23a8 − a24a8 + a25a8 + a26a8 + a27a8 − a38

)
The inverse exists if the determinant ∆ ̸= 0.

Up to sign permutations the above results hold also for Cℓ2,1 , Cℓ1,2 , and Cℓ0,3
but are not given in view of space limitations.

7.2. Numerical experiments. Note that the trivial last steps will be omitted be-
cause of space limitations. To demonstrate the utility of FVS algorithm here follow
some high-dimensional numerical examples. Examples for higher dimensional alge-
bras are not particularly instructive as they result in very long expressions. These,
can be nevertheless useful for hardcoding formulas in particular niche applications.

Example 6. In Cℓ2,2 let

A = 1 + e1 + e134 − 2 (e2 e3)

Let B = e134, C = e123

t1 = −4, m1 = 1 + e1 +B − 2e23
t2 = −2, m2 = 1− 2e1 − 4C − 2B + 4e23 + 2e34
t3 = 12, m3 = −9 + 3e1 + 4C −B + 2e23 − 2e34

so that

A−1 = 1 + e1 +
4

3
C − 1

3
B +

2

3
e23 −

2

3
e34

The reduced characteristic polynomial is

χA(v) = −3 + 12v − 2v2 − 4v3 + v4

and is also minimal.
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Example 7. Let us compute a rational example in Cℓ2,5 . Let A = 1− 2B + 5C,
where B := e15 and C := e1e3e4. Then span[A] = {e1, e3, e4, e5} and for the
maximal representation we have k = 24 = 16 steps:

t1 = −16, m1 = −15 + 5C − 2B;
t2 = 288, m2 = 252− 70C + 28B;
t3 = −2912, m3 = −2366 + 1190C − 476B;
t4 = 29456, m4 = 22092− 10640C + 4256B;
t5 = −213696, m5 = −146916 + 99820C − 39928B;
t6 = 1509760, m6 = 943600− 634760C + 253904B;
t7 = −8250496, m7 = −4640904 + 4083240C − 1633296B;
t8 = 43581024, m8 = 21790512− 19121280C + 7648512B;
t9 = −181510912, m9 = −79411024 + 89831280C − 35932512B;
t10 = 730723840, m10 = 274021440− 307223840C + 122889536B;
t11 = −2275435008, m11 = −711073440 + 1062883360C − 425153344B;
t12 = 6900244736, m12 = 1725061184− 2492483840C + 996993536B;
t13 = −15007376384, m13 = −2813883072 + 6132822080C − 2453128832B;
t14 = 32653412352, m14 = 4081676544− 7936593280C + 3174637312B;
t15 = −39909726208, m15 = −2494357888 + 12471789440C − 4988715776B.

Therefore, A−1 = (1− 5C + 2B) /22 and pA(v) = (22−2v+v2)8. Evaluation takes
0.0469 s using 12.029 MB memory on Maxima. On the other hand, the reduced
algorithm will run in k = 2⌈4/2⌉ = 4 steps:

t1 = −4, m1 = 1 + 5C − 2B;
t2 = 48, m2 = −24− 10C + 4B;
t3 = −88, m3 = 66 + 110C − 44B;

and χA(v) = 484−88v+48v2−4v3+v4 = (22−2v+v2)2. Evaluation takes 0.0156
s using 2.512 MB memory on Maxima. Note, that in this case detA = AA∼ = 22.
Therefore, in accordance with Shirokov’s approach A−1 = A∼/22.

Example 8. The example was presented in [1]. In Cℓ5,0 consider the multivector
A = 1 + 2e1 + 3e23 + 4e2345. The reduced algorithm will run in k = 23 = 8 steps.
Let B = e2345, C = e123 and D = e145.

t1 = −8 m1 = 1 + 2e1 + 3e23 + 4B,
t2 = −16 m2 = 4− 12e1 + 12C + 16I − 18e23 − 24B − 24e45,
t3 = 208 m3 = −78− 8e1 − 60C − 80I − 144D + 66e23 − 112B + 120e45,
t4 = 1064 m4 = −532 + 112e1 + 624C − 768I + 576D − 144e23 + 608B − 96e45,
t5 = −5792 m5 = 3620− 3768e1 − 1632C + 2624I + 192D + 3084e23 + 912B − 192e45,
t6 = 20416 m6 = −15312 + 7280e1 − 7536C − 10048I − 1536D − 5928e23 − 3104B − 14880e45,
t7 = −28608 m7 = 25032− 96e1 + 8592C + 8256I + 28992D + 53832e23 − 47424B + 15072e45

The inverse is

A−1 = − 1

14790
(−149− 4e1 + 358e123 + 344e12345 + 1208e145 + 2243e23 − 1976e2345 + 628e45)

and the reduced characteristic polynomial is

χA(v) = 354960− 28608v + 20416v2 − 5792v3 + 1064v4 + 208v5 − 16v6 − 8v7 + v8
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which is also minimal. The reduced rank matrix is W =



1 0 0 0 0 0 0 0
1 2 3 0 0 0 4 0
12 4 6 −24 12 0 8 16
34 56 162 −72 36 −144 16 48

−276 208 624 −1056 1104 −576 32 −128
−1604 −4168 6228 −4800 5280 −6720 −4496 −960
−46608 −27056 31176 −29664 32112 −34560 −27232 −46784
−303176 −403744 74232 −141792 151536 −81984 −396224 −313152
−2918256 −2717312 34944 585984 −583296 −32256 −2660608 −2966528



which is of rank 8.

Example 9. Consider Cℓ5,2 and let A = 1 − e2 + I. The full-grade algorithm
takes 128 steps and will not be illustrated due to space limitation. The reduced
grade algorithm can be illustrated as follows. Let C = e134567. Then

t1 = −16, m1 = 1− e2 + I;
t2 = 120, m2 = −15 + 14e2 − 14I + 2C;
t3 = −560, m3 = 105− 89e2 + 93I − 26C;
t4 = 1836, m4 = −459 + 340e2 − 388I + 156C;
t5 = −4560, m5 = 1425− 881e2 + 1145I − 572C;
t6 = 9064, m6 = −3399 + 1682e2 − 2562I + 1454C;
t7 = −14960, m7 = 6545− 2529e2 + 4557I − 2790C;
t8 = 20886, m8 = −10443 + 3096e2 − 6648I + 4296C;
t9 = −24880, m9 = 13995− 3051e2 + 8091I − 5448C;
t10 = 25480, m10 = −15925 + 2386e2 − 8242I + 5694C;
t11 = −22416, m11 = 15411− 1475e2 + 7007I − 4934C;
t12 = 16716, m12 = −12537 + 596e2 − 4932I + 3548C;
t13 = −10480, m13 = 8515− 35e2 + 2795I − 1980C;
t14 = 5400, m14 = −4725− 50e2 − 1150I + 850C;
t15 = −2000, m15 = 1875 + 125e2 + 375I − 250C,

resulting in A−1 = (1 − e2 − 3 I + 2C)/5. The reduced characteristic polynomial
can factorize as

χA(v) = (5− 4v + 6v2 − 4v3 + v4)2 = (1 + v2)4(5− 4v + v2)4 (25)

This is an indication that the rank of the multivector is lower as will be demonstrated
below.
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Example 10. We use the same data A = 1− e2 + I in Cℓ5,2 to compute the rank
according to Prop. 10. The reduced (with zero columns removed) rank matrix is

W =



1 0 0 0
1 −1 0 −1
1 −2 2 −2
1 −1 6 −5
−3 4 12 −12
−19 19 20 −21
−59 58 22 −22
−139 139 −14 15
−263 264 −168 168
−359 359 −600 599
−119 118 −1558 1558
1321 −1321 −3234 3235
5877 −5876 −5148 5148
16901 −16901 −4420 4419
38221 −38222 8062 −8062
68381 −68381 54346 −54345
82417 −82416 177072 −177072


It can be triangularized to the matrix

W′ =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0


T

From the structure of the matrix it can be seen that it has rank 4. The determinant

detA can be computed by the sequence of operations B = AÂ = 1− 2I, followed by
detA = BB∼ = 5. This allows for writing the formula

A−1 = Â(AÂ)∼/5

Example 11. We use A = 1 − e2 + e3 + e13456 in Cℓ5,2 to compute the rank
according to Prop. 10. The span is a 6 dimensional vector space – span[A] =
{e1, e2, e3, e4, e5, e6}. The reduced (with zero columns removed) rank matrix is

W =



1 0 0 0 0 0
1 −1 1 0 0 −1
2 −2 2 −2 0 −2
4 −4 2 −6 2 −6
4 −8 0 −16 8 −16
−4 −12 −12 −40 24 −36
−40 −8 −56 −88 64 −72
−160 32 −184 −168 152 −120
−496 192 −512 −256 320 −128
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It can be triangularized to the matrix

W′ =



1 0 0 0 0 0
0 −1 1 0 0 −1
0 0 2 6 −2 2
0 0 0 −4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


From the structure of the matrix it can be seen that it has rank 4.

The minimal polynomial is computed as µ(v) = 4+4v2−4v3+v4 and the inverse
is

A−1 =
1

2
(e3 + e12456 − e13456 − e1456) (26)

In this case, the determinant can be computed by the sequence of steps

B = AA∼, detA = BB̂ = −4

Therefore, the inverse can be computed by the formula

A−1 = −A∼(̂AA∼)/4

in an obvious manner.

8. Discussion

From Table 1 we can conclude that the low dimensional formulas reported in the
literature are optimal in terms of the number of Clifford multiplications. It is also
apparent that looking for specific formulas of the general inverse element for higher
dimensional Clifford algebras would offer little immediate insight.

The maximal matrix algebra construction exhibited in the present paper allows
for systematic translation of matrix-based algorithms to Clifford algebra simulta-
neously allowing for their direct verification. For example, future work could focus
on formulating the algorithm exhibited in Prop. 10 entirely in the language of the
Clifford algebra.

The advantage of the multivector FVS algorithm is its simplicity of implemen-
tation. This can be beneficial for purely numerical applications as it involves only
Clifford multiplications followed by taking scalar parts of multivectors, which can
be encoded as the first member of an array. The Clifford multiplication computa-
tion can be reduced to O(N logN) operations, since it involves sorting of a joined
list of algebra generators. On the other hand, the FVS algorithm does not ensure
optimality of the computation but only provides a certificate of existence of an
inverse. Therefore, optimized algorithms can be introduced for particular appli-
cations, i.e. Space-Time Algebra Cℓ1,4 , Projective Geometric Algebra Cℓ3,0,1 ,
Conformal Geometric Algebra Cℓ4,1 , etc. As a side product, the algorithm can
compute the characteristic polynomial of a general multivector and, hence, its de-
terminant also without any resort to a matrix representation. This could be used,
for example, for computation of a multivector resolvent or some other analytical
functions.
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One of the main applications of the present algorithms could be in Finite Ele-
ment Modelling where a Geometric algebra approach would improve the efficiency
and accuracy of calculations by providing a more compact representation of vec-
tors, tensors, and geometric operations. This can lead to faster and more accurate
simulations of elastic deformations.
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Appendix A. Program code

The Clifford package can be downloaded from a Zenodo repository [10]. The
examples can be downloaded from a Zenodo repository and it includes the file
climatrep.mac, which implements different instances of the FVS algorithm [11].

Listing 1. Minimal polynomial determination
1

minpoly (P, x ) :=block ( [ dP : ra t (P) , md: 0 , %a , Q, Q1, n , k , cc : [ ] ,

so l , m, qq ] ,

l o c a l (%a , cc ) ,

P : expand (P) ,

n : hipow (P, x ) ,

6 i f debug1=a l l then d i sp l ay ( n) ,

whi l e gcd (dP , ra t (P) )#1 do (

dP : d i f f (dP , x ) ,

md:md+1

) ,

11 i f md=1 then (

p r i n t (P, ” i s minimal” ) ,

r e turn (P)

) ,

i f debug1=a l l then d i sp l ay (md) ,

16 m: n/md,

i f not i n t eg e rp (m) then return ( f a l s e ) ,

Q: sum(%a [ i ]* vˆ i , i , 0 , m) ,

Q1 : expand (P−Qˆ(md) ) ,

21

f o r k : n thru 1 step −1 do (

qq : r a t c o e f f (Q1 , x , k ) ,

qq : subst ( cc , qq ) ,

s o l : s o l v e (qq , %a [m] ) ,

26 i f debug1=a l l then d i sp l ay (qq , k , m, s o l ) ,

i f l i s t p ( s o l ) then

cc : push ( l a s t ( s o l ) , cc )

e l s e re turn ( [ subst ( cc ,Q) , cc ] ) ,

m:m−1 ,

31 i f m <0 then return ( [ subst ( cc ,Q) , cc ] )

) ,

[ subst ( cc , Q) , cc ]

) ;
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Listing 2. FVS algorithm implementation in Maxima based on
the Clifford package

1 f a d l e v i c g2 cp (A, v ) :=block (

[M: 1 , K, i : 1 , n , k : l ength ( c l v (A) ) , cq , c , s s ] ,

n : 2 ˆ ( c e i l i n g (k/2) ) ,

array ( c , n+1) , f o r r : 0 thru n+1 do c [ r ] : 1 ,

A: ra t (A) ,

6 s s : c [ 1 ] * vˆˆn ,

whi l e i<n and K#0 do (

K: dotsimpc ( expand (A.M) ) ,

cq :−n/ i * s c a l a r p a r t (K) ,

i f debug1=a l l then p r i n t ( ” t {” , i , ”}=” , cq , ”

m {” , i , ”}=” ,K, ”\\\\” ) ,

11 i f K#0 then

M: ra t (K + cq ) ,

c [ i +1] : cq , s s : s s+c [ i +1]*vˆˆ(n−i ) ,

i : i+1

) ,

16 K: dotsimpc ( expand (A.M) ) ,

cq :−n/ i * s c a l a r p a r t (K) ,

i f debug1=a l l then p r i n t ( ” t {” , i , ”}=” , cq , ”

m {” , i , ”}=” ,K, ”\\\\” ) ,

s s : s s+cq ,

i f cq=0 then cq : 1 , M: f a c t o r (−(M) /cq ) ,

21 [M, s s ]

) ;
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